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Abstract—In this study, by application of the theory of two
mixed monotonic operators and their properties, the author
propose an existence theorem of the unique positive solution for
the switched system. Among them, the equation is of fractional
order, and the boundary conditions are multipoint. Then, based
on the obtained results, we bring a specific fractional order
switching system to obtain more general results.

Index Terms—Unique positive solution; Switched system;
Fractional differential equation; theory of two mixed monotonic
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I. I NTRODUCTION

H YBRID system is a system that allows for the inter-
action both discrete and continuous events. Switched

system belongs to hybrid systems, it is currently a very
popular research field in the scientific community [1-4,19-
20]. It includes a set of nonlinear subsystems and a logical
rule. As we all know, the intelligent control are based on
the concept of switching between different controllers [5],
this is also why people discuss switching systems. The
actual system was initially generated by several dynamic
systems with multiple models that needed to be expressed,
and their behavior depends on many environmental factors
[6]. Switched systems arise in many fields like chemical pro-
cesses, communication industries. And computer controlled
systems and transportation systems also involve switching
systems. In recent years, the design methodology and stabil-
ity analysis of the switched system are considered in [7-11].
[12-14] demonstrate existence theorem of positive function
which satisy some switched system.

In [12], the authors concerned with positive solution for
integral boundary condition model which nonlinear term with
switching signal

v′′(s) + f%(s)(s, v(s)) = 0, s within J = [0, 1],

v(0) = 0, v(1) =
∫ 1

0

a(ζ)v(ζ)dζ,

in this the constant function%(s) is piecewise constant
function, and it maps[0, 1] to {1, 2, · · ·, N}. Also, %(t) is a
finite switching signal.

In [13], Guo discussed the unique solution to fractional p-
Laplacian operator model which nonlinear term with switch-
ing signal

Dβ
0+ϕp(Dα

0+v(t)) = f%(t)(t, v(t), Dγ
0+v(t)),

t within the set[0, 1],

v(0) = a

∫ 1

0

v(ζ)dζ + λv(µ),
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Dα
0+v(0) = bDα

0+v(ν), µ, ν ∈ [0, 1].

Lv and Chen [14] demonstrate the existence theorem for
the system model which nonlinear term with switching signal

CDα
0+y(t) + f%(t)(t, y(t)) + g%(t)(t, y(t)) = 0,

t lies in the interval from 0 to 1,

y(0) = y′′(0) = 0, y(1) =
∫ 1

0

y(ζ)dζ.

However, there is no result on the existence theorem for
the fractional model with switched nonlineartity

Dβ
0+µ(t) + f%(t)(t, µ(t), µ(t))

+g%(t)(t, µ(t), µ(t)) = 0,
t lies in the interval from 0 to 1,

(1)

µ(0) = 0, Dγ
0+µ(1) =

m−2∑

i=1

αiD
γ
0+µ(ηi), (2)

whereDβ
0+ represents the fractional derivative of Riemann-

Liouville type,1 < β ≤ 2, 0 < γ ≤ 1, 0 < β−γ−1, αi, ηi

are constants between the interval0 and 1, i equals1, 2, · ·
·,m, and

m−2∑
i=1

αiη
β−γ−1
i < 1, here%(t) : J → {1, 2, · · ·, N}

refers to piecewise constant function andfi, gi ∈ C[J ×
R+ × R+, R+], i equals1, 2, · · ·, N. Corresponding to the
switching signal%(t), there have the switching sequence

{(i0, t0), · · ·, (ij , tj), · · ·, (ik, tk)|ij within {1, 2, · · ·, N},
j equals0, 1, 2, · · ·, k},

which means that theijth nonlinearity is activated whent
lies in the interval[tj , tj+1) and theikth nonlinearity is acti-
vated whent lies in the interval[tk, 1]. Herex0 = 0, t0 = 0.
The objective of this study is to establish an iterative scheme
for approximating the unique solution for the model to be
studied in this article.

II. T HE PRELIMINARY LEMMAS

Let us begin this article with a few fundamental defini-
tions, useful Lemmas.

Definition 2.1 [15] The β order Riemann and Liouville
fractional integral form about functionh is like

Iβ
0+h(t) =

1
Γ(β)

∫ t

0

(t− ζ)β−1h(ζ)dζ, β > 0.

Definition 2.2 [15] For continuous functionh, the β > 0
order Riemann-Liouville fractional differentiator is expressed
like

Dβ
0+h(t) =

1
Γ(n− β)

(
d

dt
)n

∫ t

0

(t− ζ)n−β−1h(ζ)dζ.
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AssumeE represents areal Banach space, it is sorted of
the size relationship of the elements in the cone, we say
ν − µ ∈ P if and only if the setP ⊂ E and satisfyµ ≤ ν.
We write µ < ν or ν > µ, if µ ≤ ν and µ not equals to
ν. θ is the zero element inE. Chooseµ, ν with in the set
E, θ ≤ µ ≤ ν, we get‖µ‖ ≤ N‖ν‖, hereN is a positive
constant, we callP a normal cone. The interval betweenν1

and ν2, which we denote[ν1, ν2] = {ν ∈ E|ν1 ≤ ν ≤ ν2}
for ν1, ν2 ∈ E.If µ ≤ ν impliesTµ ≤ Tν or (Tµ ≥ Tν), we
call T mapsE to E is increasing or (decreasing) operator.

For µ, ν within the setE, if the positive constantsµ and
λ satisfying λµ ≤ ν ≤ µµ, we denoteµ ∼ ν. From this
definition,∼ stands an equivalence relation. Given a positive
function h, we write Ph = {µ ∈ E|µ ∼ h}. Then Ph is a
subset ofP.

Definition 2.3 [16] For µi, νi(i = 1, 2) within P, if µ1 ≤
µ2, ν1 ≥ ν2, we haveT (µ1, ν1) ≤ T (µ2, ν2), then we say
the operatorT is a mixed monotone operator. Ifµ within P,
T (µ, µ) equalsµ implies µ a fixed point ofT.

Definition 2.4 [16] For µ within P, if λ lies in the interval
(0, 1), we have

T (λµ) ≥ λT (µ),

then we say operatorT : P → P is sub-homogeneous.
Definition 2.5 [16] For µ within P, if λ lies in the interval

(0, 1), and0 ≤ β < 1, we have

T (λµ) ≥ λβT (µ),

then we say operatorT : P → P is β− concave.
Lemma 2.6 [17] We defineP which is a normal cone

and two mixed monotone type operatorsC,D which map
P ×P → P, supposeC, D satisfies the subsequent relation:
(i) for anyλ lies in the interval(0, 1), and everyµ, ν within
P , if ψ(λ) ∈ (λ, 1] we have

C(λµ, λ−1ν) ≥ ψ(λ)C(µ, ν);

(ii) for λ lies in the interval(0, 1), and everyµ, ν within P ,
there haveD(λµ, λ−1ν) ≥ λD(µ, ν);
(iii) for h within P, h > θ, we haveC(h, h) belong to the
setPh, D(h, h) belong to the setPh;
(iv) for δ > 0, everyµ, ν within P, the relationC(µ, ν) ≥
δD(µ, ν) holds:
Thus we can find aµ∗ ∈ Ph that satisfyC(µ, µ)+D(µ, µ) =
µ. Moreover, if we establish an iterative sequence

µn = C(µn−1, νn−1) + D(µn−1, νn−1),

νn = C(νn−1, µn−1) + D(νn−1, µn−1), n equals1, 2, · · ·,
here µ0, ν0 ∈ Ph, thus we have ifn → ∞, we haveµn

converges toµ∗ and alsoνn converges toµ∗.
Lemma 2.7[18] For everyh in the function spaceC[0, 1],

the system is presented as follows

Dβ
0+µ(t) + h(t) = 0, 0 < t < 1, 1 < β ≤ 2, (3)

µ(0) = 0, Dγ
0+µ(1) =

m−2∑

i=1

αiD
γ
0+µ(ηi), 0 < γ ≤ 1, (4)

then the following functionµ(t)

µ(t) =
∫ 1

0

G(t, ζ)h(ζ)dζ, (5)

satisfies the equation (3)(4), here

G(t, ζ) = G1(t, ζ) + G2(t, ζ), (6)

in this

G1(t, ζ) =





tβ−1(1− ζ)β−γ−1 − (t− ζ)β−1

Γ(β)
,

0 ≤ ζ ≤ t ≤ 1,
tβ−1(1− ζ)β−γ−1

Γ(β)
,

0 ≤ t ≤ ζ ≤ 1,

(7)

G2(t, ζ) =





tβ−1

DΓ(β)

∑

0≤ζ≤ηi

αi[η
β−γ−1
i (1− ζ)β−γ−1

−(ηi − ζ)β−γ−1], 0 ≤ t ≤ 1,
tβ−1

DΓ(β)

∑

ηi≤ζ≤1

αiη
β−γ−1
i (1− ζ)β−γ−1,

0 ≤ t ≤ 1,
(8)

in which

D = 1−
m−2∑

i=1

αiη
β−γ−1
i .

Lemma 2.8 [18] If the constantsαi, ηi, here the value of

i ranging from 1 tom− 2 satisfy
m−2∑
i=1

αiη
β−γ−1
i < 1, then

the expressionG(t, ζ) possesses the following relationship:
(i) the expressionG(t, ζ) is a continuous function about
variablet, ζ ∈ [0, 1];
(ii) the expressionG(t, ζ) is a positive function for the
variablesζ, t in the interval(0, 1);

(iii) the expression G(t, ζ) ≤
[
(1− ζ)β−γ−1

Γ(β)
+

m−2∑
i=1

αiη
β−γ−1
i (1− ζ)β−γ−1

DΓ(β)

]
h(t) for ζ, t ∈ [0, 1];

(iv) the expressionG(t, ζ) ≥ h(t)
D

m−2∑

i=1

αiG2(ηi, ζ) for ζ, t ∈
[0, 1], where

G2(t, ζ) =





tβ−γ−1(1− ζ)β−γ−1 − (t− ζ)β−γ−1

Γ(β)
,

0 ≤ ζ ≤ t ≤ 1,
tβ−γ−1(1− ζ)β−γ−1

Γ(β)
,

0 ≤ t ≤ ζ ≤ 1,

h(t) = tβ−1.

III. T HEOREM

The Banach spaceE standing for all continuous function
from 0 to 1 is considered and the norm‖µ‖ = max

0≤t≤1
|µ(t)|

is assigned toE. We write the setP just like P =
{µ within E|µ(t) ≥ 0, and t within the interval[0, 1]}, we
know the coneP is normal.

Theorem 3.1Suppose that
(H1) functionsfi, gi map [0, 1] × [0,+∞) × [0,+∞) to

[0,+∞), herei equals1, 2, · · · , N, and for all t within the
interval [0, 1], gi(t, 0, 1) 6= 0;

(H2) when variables t within the interval [0, 1]
and ν within the interval [0,+∞) are fixed, functions
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fi(t, µ, ν), gi(t, µ, ν) are increasing about the variableµ
within the interval [0,+∞); when variablest within the
interval [0, 1] and µ belonging to the interval[0,+∞) are
fixed, functionsfi(t, µ, ν), gi(t, µ, ν) are decreasing about
the variableν belonging to the interval[0,+∞) for i =
1, 2, · · · , N ;

(H3) for λ belonging to the interval(0, 1), andt belonging
to the interval[0, 1], x, y belonging to the interval[0,+∞),
if ψ(λ) belongs to the interval(λ, 1), we can get

fi(t, λx, λ−1y) ≥ ψ(λ)fi(t, x, y),

gi(t, λx, λ−1y) ≥ λgi(t, x, y), i = 1, 2, · · · , N ;

(H4) if δ > 0, andt belongs to the interval[0, 1], andx, y
belonging to the interval[0,+∞), we obtain

fi(t, x, y) ≥ δgi(t, x, y),

when i equals to1, 2, · · · , N. It can be deduced that the
problem (1)(2) has a unique positive solution, denoted asµ∗

belonging toPh, hereh(t) = tβ−1, t ∈ [0, 1]. If we define
the iterative sequences as follows

µn+1(t) =
∫ 1

0

G(t, ζ)[f%(ζ)(ζ, µn(ζ), νn(ζ))

+g%(ζ)(ζ, µn(ζ), νn(ζ))]dζ, n = 0, 1, 2, · · ·,

νn+1(t) =
∫ 1

0

G(t, ζ)[f%(ζ)(ζ, νn(ζ), µn(ζ))

+g%(ζ)(ζ, νn(ζ), µn(ζ))]dζ, n = 0, 1, 2, · · ·,
in this placeµ0, ν0 belongs to thePh. Letting n → ∞,
we can obtain that‖µn − µ∗‖ approaches0 and‖νn − µ∗‖
approaches0.

Proof: In light of Lemma 2.2, given

µ(t) =
∫ 1

0
G(t, ζ)[f%(ζ)(ζ, µ(ζ), µ(ζ))

+g%(ζ)(ζ, µ(ζ), µ(ζ))]dζ,

where the Green functionG(t, ζ) is expressed by (6). Con-
sequently, the boundary value problem possesses a solution
µ = µ(t) preciselyµ(t) satisfy the above integral equation.

We now specify two operatorC, D : P × P → E in the
following manner:

C(µ, ν)(t) =
∫ 1

0

G(t, ζ)f%(ζ)(ζ, µ(ζ), ν(ζ))dζ,

D(µ, ν)(t) =
∫ 1

0

G(t, ζ)g%(ζ)(ζ, µ(ζ), ν(ζ))dζ.

Consequently, the switched system (1)(2) possesses a so-
lution µ = µ(t) precisely µ(t) satisfy the relationship
µ = C(µ, µ) + D(µ, µ).

By condition (H1), we haveC mapsP × P to P andD
mapsP×P to P. Thus we set out to prove that all conditions
of Lemma 1 are satisfied byC,D.

Firstly, two mixed monotone operators ofC and D will
be proven. Take anyµ1, µ2, ν1, ν2 with in P, moreover,
µ1(t) ≥ µ2(t), ν1(t) ≤ ν2(t), which imply µ1(t) ≥ µ2(t)
andν1(t) ≤ ν2(t), whent belongs to the interval[0, 1]. From
(H2), one has

∫ 1

0

G(t, ζ)fi(ζ, µ1(ζ), ν1(ζ))dζ

≥
∫ 1

0

G(t, ζ)fi(ζ, µ2(ζ), ν2(ζ))dζ, i = 1, 2, · · · , N,

∫ 1

0

G(t, ζ)gi(ζ, µ1(ζ), ν1(ζ))dζ

≥
∫ 1

0

G(t, ζ)gi(ζ, µ2(ζ), ν2(ζ))dζ, i = 1, 2, · · · , N,

this equation is equivalent to

C(µ1, ν1)(t) ≥ C(µ2, ν2)(t),

D(µ1, ν1)(t) ≥ D(µ2, ν2)(t),

this is also

C(µ1, ν1) ≥ C(µ2, ν2), D(µ1, ν1) ≥ D(µ2, ν2).

Secondly, we prove that assumption (i) of Lemma 2.1
holds.
For anyλ lies in the interval(0, 1), andµ, ν with in P, from
(H3), one has

∫ 1

0
G(t, ζ)fi(ζ, λµ(ζ), λ−1ν(ζ))dζ

≥ ψ(λ)
∫ 1

0
G(t, ζ)fi(ζ, µ(ζ), ν(ζ))dζ,

i = 1, 2, · · · , N,

(9)

this equation is equivalent to

C(λµ, λ−1ν)(t) ≥ ψ(λ)C(µ, ν)(t),

this is also,

C(λµ, λ−1ν) ≥ ψ(λ)C(µ, ν) for λ

lies in the interval(0, 1), µ, ν within P.

Thirdly, we prove that assumption (ii) of Lemma 2.1 holds.
For anyλ lies in the interval from0 to 1, and µ, ν within
the cone, condition(H3) implies that

∫ 1

0
G(t, ζ)gi(ζ, λµ(ζ), λ−1ν(ζ))dζ

≥ λ
∫ 1

0
G(t, ζ)gi(ζ, µ(ζ), ν(ζ))dζ,

i = 1, 2, · · · , N,

(10)

this equation is equivalent to

D(λµ, λ−1ν)(t) ≥ λD(µ, ν)(t),

this is also,

D(λµ, λ−1ν) ≥ λD(µ, ν) for λ ∈ (0, 1), µ, ν ∈ P.

Next, we prove that assumption (iii) of Lemma 2.1 holds.
In light of condition (H2) and Lemma 2.3, about anyt lies
in the interval[0, 1], i = 1, 2, · · · , N, we get

∫ 1

0
G(t, ζ)fi(ζ, h(ζ), h(ζ))dζ

≤ h(t)
DΓ(β)

∫ 1

0

(D(1− ζ)β−γ−1

+
∑m−2

i=1 αiη
β−γ−1
i (1− ζ)β−γ−1)fi(ζ, 1, 0)dζ.

(11)

On the other hand, in light of(H2) and Lemma 2.3, for
every t lies in the interval[0, 1], then

∫ 1

0
G(t, ζ)fi(ζ, h(ζ), h(ζ))dζ

≥ h(t)
D

∫ 1

0

m−2∑

i=1

αiG2(ηi, ζ)fi(ζ, 0, 1)dζ,

i = 1, 2, · · · , N.

(12)
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For i equals1, 2, · · · , N, denote

mi =
1

DΓ(β)

∫ 1

0

(D(1− ζ)β−γ−1 +
m−2∑

i=1

αiη
β−γ−1
i

(1− ζ)β−γ−1)fi(ζ, 1, 0)dζ,
(13)

ni =
1
D

∫ 1

0

m−2∑

i=1

αiG2(ηi, ζ)fi(ζ, 0, 1)dζ. (14)

It follows from (H1) and (H4), one has
∫ 1

0

fi(ζ, 1, 0)dζ ≥
∫ 1

0

fi(ζ, 0, 1)dζ ≥ δ

∫ 1

0

gi(ζ, 0, 1)dζ,

conditiongi(t, 0, 1) 6= 0 implies that
∫ 1

0
fi(ζ, 1, 0)dζ

> 0,
∫ 1

0
fi(ζ, 0, 1)dζ > 0.

Thus, the constants

mi, ni > 0, i equals from 1 to N. (15)

Choosemin{ni, i equals from1 to N}, we denote byn,
andmax{mi, i equals from1 to N}, we denote bym, we
haven > 0 andm > 0. Therefore,

nh(t) ≤ C(h, h) ≤ mh(t), (16)

this means that

C(h, h) lies in the setPh. (17)

In the same way, we have

D(h, h) ∈ Ph. (18)

Finally, we prove that assumption (iv) of Lemma 2.1 holds.
For t lying in the intervalJ, i = 1, 2, · · ·, N, andµ, ν within
P, utilizing (H4), we have

∫ 1

0

G(t, ζ)fi(ζ, µ(ζ), ν(ζ))dζ

≥ δ

∫ 1

0

G(t, ζ)gi(ζ, µ(ζ), ν(ζ))dζ, (19)

which implies that

C(µ, ν) ≥ δD(µ, ν). (20)

Considering Lemma 2.1, the unique nonnegative function
denoted byµ∗ satisfiesC(µ, µ) + D(µ, µ) = µ. If we
construct the sequence

µn = C(µn−1, νn−1) + Dµn−1,

νn = C(νn−1, µn−1) + Dνn−1, n equals1, 2, · · ·,
in this placeµ0, ν0 ∈ Ph, letting n → ∞, we obtainµn →
µ∗ andνn → µ∗, which consequently means that

µn+1(t) =
∫ 1

0

G(t, ζ)[f%(ζ)(ζ, µn(ζ), νn(ζ))

+g%(ζ)(ζ, µn(ζ), νn(ζ))]dζ, n equals0, 1, 2, · · ·,

νn+1(t) =
∫ 1

0

G(t, ζ)[f%(ζ)(ζ, νn(ζ), µn(ζ))

+g%(ζ)(ζ, νn(ζ), µn(ζ))]dζ, n equals0, 1, 2, · · ·,
satisfy‖µn−µ∗‖ approaching0 and‖νn−µ∗‖ approaching
0 asn approaching∞.

IV. APPLICATIONS

Example 4.1Let’s give the system with switched signal:

D
3
2
0+µ(t) + f%(t)(t, µ(t), µ(t))

+g%(t)(t, µ(t), µ(t)) = 0, t ∈ (0, 1),
(21)

µ(0) = 0,

D
1
4
0+µ(1) =

1
100

D
1
4
0+µ(

1
3
) +

12
1000

D
1
4
0+µ(

2
3
), (22)

in this place%(t) : J → M = {1, 2},
f1(t, µ, ν) = 2 + µ

1
3 + ν−

1
2 ;

f2(t, µ, ν) = 4 + sint + µ
1
4 + ν−

1
6 ;

g1(t, µ, ν) =
µ

1 + µ
t2 + 1 + ν−

1
2 ;

g2(t, µ, ν) =
µ

(1 + t2)(1 + µ)
+ 2 + ν−

1
6 .

Obviously, β − γ − 1 = 1
4 > 0,

m−2∑
i=1

αiη
β−γ−1
i =

α1η
β−γ−1
1 + α2η

β−γ−1
2 = 1

100 × ( 1
3 )

1
4 + 12

1000 × ( 2
3 )

1
4 =

0.01884 < 1.
In the following, we prove

(1) It is obvious that continuous functionsfi, gi map
[0, 1] × [0,+∞) × [0,+∞) to [0,+∞), i equals1, 2, and
g1(t, 0, 1) = 2 6= 0, g2(t, 0, 1) = 3 6= 0;
(2) For the first variable, functionsfi, gi, herei equaling1, 2
are increasing, for the second variable, functionsfi, gi, here
i equaling1, 2 are are decreasing;
(3) on the other hand, forλ belonging to the interval(0, 1), t
within [0, 1], and the elementsx, y within [0,+∞), choosing
ψ(λ) = λ

1
2 ∈ (0, 1), thus

f1(t, λµ, λ−1ν) = 2 + (λµ)
1
3 + (λ−1ν)−

1
2

≥ λ
1
2 (2 + µ

1
3 + ν−

1
2 )

= ψ(λ)f1(t, µ, ν).

f2(t, λµ, λ−1ν) = 4 + sint + (λµ)
1
4 + (λ−1ν)−

1
6

≥ λ
1
4 (4 + sint + µ

1
4 + ν−

1
6 )

≥ λ
1
2 (4 + sint + µ

1
4 + ν−

1
6 )

= ψ(λ)f2(t, µ, ν).

Similarly, for all λ lies in the interval (0, 1), t within
[0, 1], x, ylies in the interval[0,+∞), one has

g1(t, λµ, λ−1ν) = λµ
1+λµ t2 + 1 + (λ−1ν)−

1
2

= λµ
1+λµ t2 + 1 + λ

1
2 ν−

1
2

> λ( µ
1+λµ t2 + 1

λ + ν−
1
2 )

> λ( µ
1+µ t2 + 1 + ν−

1
2 )

= λg1(t, µ, ν).

g2(t, λµ, λ−1ν) = λµ
(1+t2)(1+λµ) + 2 + (λ−1ν)−

1
6

= λµ
(1+t2)(1+λµ) + 2 + λ

1
6 ν−

1
6

> λ( µ
(1+t2)(1+λµ) + 2

λ + ν−
1
6 )

> λ( µ
(1+t2)(1+µ) + 2 + ν−

1
6 )

= λg2(t, µ, ν).

(4) Taking δ0 = 1, for eacht within the interval from0 to
1, x, y belonging to[0,+∞), one has

f1(t, µ, ν) = 2 + µ
1
3 + ν−

1
2

≥ µ
1+µ t2 + 1 + ν−

1
2 = g1(t, µ, ν).
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f2(t, µ, ν) = 4 + sint + µ
1
4 + ν−

1
6

≥ 3 + µ
1
4 + ν−

1
6

≥ µ
(1+t2)(1+µ) + 2 + ν−

1
6

= g2(t, µ, ν).

It follows that all necessary assumptions of Theorem 3.1 have
been fulfilled. Thus, (21)(22) possesses a unique fixed point
µ∗ ∈ Ph, at thish(t) = tβ−1, t ∈ [0, 1].
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