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Existence ofPositive Solution for Fractional
Differential Equation with Switched Nonlinearity

Lidong Zhang

Abstract—In this study, by application of the theory of two D§.v(0) =bDgv(v), w,v € [0,1].
mixed monotonic operators and their properties, the author
propose an existence theorem of the unique positive solution for ~ Lv and Chen [14] demonstrate the existence theorem for
the switched system. Among them, the equation is of fractional the system model which nonlinear term with switching signal
order, and the boundary conditions are multipoint. Then, based
on the obtained results, we bring a specific fractional order DG y(t) + Forry Y1) + gor) (£, y(t) = 0,
switching system to obtain more general results.

Index Terms—Unique positive solution; Switched system; t lies in the interval from 0 to 1

Fractional differential equation; theory of two mixed monotonic 1
operators and their properties. y(0) =4"(0) =0, y(1)= / y(¢)dc.
0
I. INTRODUCTION However, there is no result on the existence theorem for

YBRID system is a system that allows for the interthe fractional model with switched nonlineartity

action both discrete and continuous events. Switched DS () + Foquy(ts pu(t), pu(t))
system belongs to hybrid systems, it is currently a very g0y (t, (1), (1)) = 0, (1)
popular research field in the scientific community [1-4,19- ¢ lies in the interval from 0 to 1

20]. It includes a set of nonlinear subsystems and a logical

rule. As we all know, the intelligent control are based on N mz2 N

the concept of switching between different controllers [5], (0) =0, Dy, p(l) = Z i Do p(n:), 2
this is also why people discuss switching systems. The =1

actual system was initially generated by several dynamithere D)), represents the fractional derivative of Riemann-
systems with multiple models that needed to be expressefbuville type,1 < 3<2, 0<y <1, 0< f—v—1, ay,m;
and their behavior depends on many environmental factei® constants between the interdaand 1, i equalsl,?2, - -

[6]. Switched systems arise in many fields like chemical pro- m=2 1

cesses, communication industries. And computer controlled™ and 7; a7 <1, hereg(t) : J = {1,2,--, N}
systems and transportation systems also involve switchirefers to piecewise constant function afidg; € C[J x
systems. In recent years, the design methodology and stabitt x R*, R*], i equalsl,2,- - -, N. Corresponding to the
ity analysis of the switched system are considered in [7-1FBwitching signalp(t), there have the switching sequence
[12-14] demonstrate existence theorem of positive function

which Satisy some switched System_ {(iOatO)a cey, (ijﬂtj)a ) (Zkatk)‘zj within {13 2; ) N}v
In [12], the authors ppncerned Wit.h positiye solution fpr j equalso, 1,2, - -, k},

integral boundary condition model which nonlinear term with

switching signal which means that the;¢h nonlinearity is activated when

" o lies in the intervalt;, ¢;11) and thei,th nonlinearity is acti-
v"(8) + fo(s) (s, 0(s)) =0, s within .J = [0, 1], vated whert lies in the intervalt,, 1]. Herezo = 0, to = 0.
1 The objective of this study is to establish an iterative scheme
v(0) =0, w1)= [ a(Quv(¢)dC, for approximating the unique solution for the model to be

. 0 studied in this article.
in this the constant functiorp(s) is piecewise constant

function, and it map$0, 1] to {1,2,---, N}. Also, o(t) is a
finite switching signal.

In [13], Guo discussed the unique solution to fractional p- Let us begin this article with a few fundamental defini-
Laplacian operator model which nonlinear term with switchions, useful Lemmas.
ing signal Definition 2.1 [15] The g order Riemann and Liouville

D0ﬁ+<pp(Dg+U(t)) = Fyo(t0(0), DL v(0)), fractional integral form about functioh is like

Il. THE PRELIMINARY LEMMAS

t
¢ within the set]0, 1], IV h(t) = ﬁ/ (t= Q)" 'h(Q)d¢, 5> 0.
1 0
v(0) = a/ v(€)d¢ + Mv(p), Definition 2.2 [15] For continuous functiork, the 3 > 0
0 order Riemann-Liouville fractional differentiator is expressed
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AssumeF represents @eal Banach space, it is sorted okatisfies the equation (3)(4), here

the size relationship of the elements in the cone, we say

v —pu € P if and only if the setP C E and satisfyu < v.
We write p < v or v > u, if 4 < v andy not equals to
v. 6 is the zero element is. Chooseu, v with in the set
E, 0 < pu <v,we get|u]| < N|v|, hereN is a positive
constant, we calP a normal cone. The interval between
and v,, which we denotdy, 5] = {v € Ejiy <v < 1p}
forvi,ve € Elf u <vimpliesTuy <Tvor(Tu>Tv), we

call T mapsE to F is increasing or (decreasing) operator.

For u, v within the setF, if the positive constants and
A satisfying \p < v < pp, we denotey ~ v. From this

definition, ~ stands an equivalence relation. Given a positive

function h, we write P, = {u € E|u ~ h}. Then P, is a
subset ofP.

Definition 2.3 [16] For u;,v;(i = 1,2) within P, if uy <
ta, V1 > vo, We haveT (u1, v1) < T'(pe2, v2), then we say
the operatofl” is a mixed monotone operator. Af within P,
T(u, 1) equalsy implies o a fixed point ofT.

Definition 2.4 [16] For p within P, if )\ lies in the interval
(0,1), we have

T(Ap) = AT (),

then we say operatdf : P — P is sub-homogeneous.
Definition 2.5[16] For p within P, if \ lies in the interval
(0,1), and0 < 8 < 1, we have

T(Ap) > AT (p),

then we say operatdf : P — P is f— concave.
Lemma 2.6 [17] We define P which is a normal cone
and two mixed monotone type operatars D which map

P x P — P, suppose’, D satisfies the subsequent relationgii)

() for any A lies in the interval0, 1), and everyu, v within
P, if (X) € (A, 1] we have

CA, A7) 2 (W) C (s, v);

(9) for A lies in the interval(0, 1), and everyu, v within P,
there haveD (\u, A™1v) > AD(u, v);

(#497) for h within P,h > 6, we haveC'(h, h) belong to the
set P,, D(h,h) belong to the seP,;

(iv) for § > 0, every u, v within P, the relationC'(u,v) >
dD(u,v) holds:

Thus we can find a* € P, that satisfyC'(u, )+ D (p, p) =
1. Moreover, if we establish an iterative sequence

Hn = C(,U/nfhynfl) + D(Mnfla anl)y

Vp = C(Vn—la ,Un—l) + D(Vn—luufn—l)v n equa|51, 2,0

here pp, vy € Py, thus we have ifn — oo, we havepu,
converges tq.* and alsov,, converges tq.*.

Lemma 2.7[18] For everyh in the function spac€’|0, 1],
the system is presented as follows

D0+u()+h(t):07 0<t<l, 1<pB<2, ()
m—2
p(0) =0, DJyp(l)=> a;Dj,pu(n), 0<y<1, (4)
=1
then the following functionu(t)
1
- [ conqc ©)

G(t7 C) - Gl(t7 C) + Gz(t, C), (6)
in this
11— ¢)P L — (¢ — )P
F(ﬁ()) <(<L<t<L1 |
Gi(t,Q) = W”ﬂ—(ﬁ“wl_c_ <L (g
I'(3) ’
0<t<¢<l,
tﬁ*l Z 047,[77,8 Y= 1(1 . C)ﬁi’yil
DF(ﬂ) 0<¢<n; '
Ga(t,C) = —(ni = Q)P 1] 0<t<l,
Z O/Znﬁ L 1 — )P
77,<(<1
0<t<1,
(8)
in which

fl—Zamﬁ =1

Lemma 2.8[18] If the constantsy;, n;, here the value of

m—2

¢ ranging from 1 tom — 2 satisfy amf’”’l < 1, then
;=1

the expressiori= (¢, () possesses 'Ehe following relationship:

(i) the expressionG(t,¢) is a continuous function about

variablet, ¢ € [0,1];

(i) the expressionG(t,¢) is a positive function for the

variables(, t in the interval(0, 1);

the expression G(t,{) < {(1 FC();)_VA +
73520@05 -t
=1
D) }h(t for ¢,t € [0, 1];
(iv) the expressioi(t, ¢) > h(t) Z 2(ni, ¢) for ¢, t e
[0,1], where =
G T L B (Yo Lo
F(%)< <t<1 |
__ t ,
G2 (t, Q) = =111 — C)ﬁf'yfli (sts
ING)) ’
0<t<(¢<1,
h(t) = tP~1.
[Il. THEOREM

The Banach spacg standing for all continuous function
from 0 to 1 is considered and the noip| = Jnax ()]

is assigned toE. We write the setP just like P
{p within E|u(t) > 0, and¢ within the interval[0, 1]}, we
know the coneP is normal.

Theorem 3.1Suppose that

(Hy) functions f;, g; map [0, 1] x [0, +00) X [0, 4+00) to
[0, +00), herei equalsl,2,---, N, and for allt within the
interval [0, 1], ¢;(¢,0,1) # 0;

(Hz) when variables ¢t within the interval [0,1]
and v within the interval [0, +0c0) are fixed, functions
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fi(t,m,v), g:(t, u,v) are increasing about the variabje /1 ‘ o

within the interval [0, +oc); when variablest within the = 0 Gl 016 (O 1), =12, N,

interval [0, 1] and i belonging to the interval0, +o0) are 1

fixed, functions f;(t, 1, v), g:(t, u,v) are decreasing about / G(t,0)gi(¢, 11(¢), v1(€))dC

the variabler belonging to the interval0, +oo) for ¢ = 0

1,2,---,N; 1 -
(Hs) for A belonging to the interval0, 1), andt belonging 2 /o G(t,0)gi(C, u2(C), va(C))dC, i =1,2,--+, N,

to the interval[0, 1], x,y belonging to the intervgl, +o0),

if ¢)(\) belongs to the interval\, 1), we can get this equation is equivalent to

Fit, Az, A Ly) > o\ filt, 7, y), C(pa,v1)(t) > Clpz, v2)(t),
gi(t, Az, N "Yy) > Agi(t,z,y), i=1,2,--, N; D(p1,v1)(t) = D(p2,v2)(t),
(H,) if § > 0, andt belongs to the intervdD, 1], andz, y this is also
belonging to the intervald, +o00), we obtain Clpr,11) > Clus,va), D(u1,11) > D(pa,vs).
filt,x,y) = 6gi(t, 2, y), Secondly, we prove that assumption (i) of Lemma 2.1

when ¢ equals tol,2,---, N. It can be deduced that theholds. o
problem (1)(2) has a unique positive solution, denotegi’as For any lies in the interval0, 1), andu, v with in P, from
belonging toP,, hereh(t) = t°=1, t € [0,1]. If we define (H3), one has

the iterative sequenfes as follows fo (t.0) fz AU A (C))dC 9
ftnt1(t) :/0 G(t, O f o) (G 1 (C), v (0)) Y 2fo ;[C fi(G, u(€), v(€))dC, ©)
+00(0) (G 110 (C)y v (€))]dC, n=0,1,2,---, this equation is equivalent to
-1
Unia(t) = /01 G(t, O o) (€ vn (), 1n(C)) . aISO’C()\M)\ v)(t) = (N C(p,v)(1),
+90(0) (€ vn(€), 1n(C))]dC, n=0,1,2, -+, COmA ) > BA)C(u.) for A

in this place g,y belongs to theP,. Letting n — oo,
we can obtain thafju,, — p*|| approache$ and |jv,, — u*||

approaches. _ _ Thirdly, we prove that assumption (ii) of Lemma 2.1 holds.
Proof: In light of Lemma 2.2, given For any \ lies in the interval from0 to 1, and u, v within

u(t) 7f0 (t, Ol st (€ 10, 1(0)) the cone, conditior{H3) implies that

+90(0) (¢, 1(€), 1(€))]dC, I (t €)gi(¢, Au(¢), Aty

(
where the Green functio6i(t, ¢) is expressed by (6). Con- >\ fy G(t.Q)gi(C. 1(Q), v(C
sequently, the boundary value problem possesses a solution i=12---,N,
= p(t) preciselyu(t) satisfy the above integral equation.iyjs equation is equivalent to
We now specify two operatat’, D : P x P — FE in the
following manner: D(Ap, A™Mw)(t) > AD(u, v)(2),

lies in the interval(0, 1), p,v within P.

))d¢
))d¢ (10)

1 th . I ,
Cluv)(1) :/ G(t, ) fo() (¢ 1(0), v(€))dC, IS 18 &iso
O DM, A7) = AD(p,v) for A € (0,1), p,v € P.

1
D(p,v)(t) = / G(t, ) go(c) (¢, 1(€), v(¢))dC. Next, we prove that assumption (iii) of Lemma 2.1 holds.
0 In light of condition (H>) and Lemma 2.3, about artylies
Consequently, the switched system (1)(2) possesses a indghe intervall0,1], i =1,2,---, N, we get
lution © = p(t) precisely u(t) satisfy the relationship

w=Clu, 1) + Du, ). Jy Gt O (G R(Q), b))

By condition (H;), we haveC mapsP x P to P and D < h(t) / (D(1 — Oﬁ—v—l (11)
mapsP x P to P. Thus we set out to prove that all conditions Df(ﬁ)
of Lemma 1 are satisfied by, D. +30i amf TTHL = Q)P £i(¢, 1, 0)dC

Firstly, two mixed monotone operators 6f and D will On the other hand, in light ofH) and Lemma 2.3, for

be proven. Take anyui, us,v1,vo With in P, moreover

2 W ' everyt lies in the intervall0, 1], then
pa(t) = pa(t), vi(t) < va(t), which imply s (t) > pa(t)

andv, (t) < vo(t), whent belongs to the intervd0, 1]. From fl (t Q) fi(¢, h(C),h(¢))dC
(H2), one has 1m—2
1 E/Zm@mﬁcmm7 (12)
| G 0n(Cm@.mic e
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For i equalsl, 2,---, N, denote

e ot NN g
™= gy J, (P00 Yo
(1= QP ) £(C 1,0)d,
(13)
1 1m—2 L
m=p [ X aGmORCOE 14
=1

It follows from (H;) and (H,), one has

1 1 1
/ £1(C,1,00dC > / F1(C,0,1)d¢ > § / 0:(¢,0,1)dC,
0 0 0

condition g;(¢,0,1) # 0 implies thatfo1 1i(¢,1,0)d¢

>0, £:(¢,0,1)d¢ > 0.
Thus, the constants

m;, n; >0, ¢equalsfrom1toN. (15)

Choosemin{n;, 7 equals froml to N}, we denote byn,
andmax{m,, ¢ equals froml to N}, we denote byn, we

haven > 0 andm > 0. Therefore,
nh(t) < C(h,h) < mh(t), (16)
this means that
C(h, h) lies in the setP. (17)
In the same way, we have
D(h,h) € P,. (18)

IV. APPLICATIONS
Example 4.1Let’s give the system with switched signal:

D2, p(t) + Foy(t, (1), p(2)
+gg(t) (t7ﬂ(t)7ﬂ(t)) =0,te (07 1)7

1(0) =0,

1 1 1 12
D2 (= —
0+U( ) + 1000

(21)

1 2
D3+U(1) D04+,u(§), (22)

in this placeo(t) :

~ 100 3
J— M ={1,2},

Filt,pv) =2+ ps + 7%

o=

ot g, v) = 4+ sint + p¥ + v
R RS
IT+p

_ H
) S T T

91(757/% V) =

ol

+2+v s,

Obviously 3 — v —1 = 1 > 0, a7
i=1

w1 a7 = g x (D + iy x (B =
0.01884 < 1.

In the following, we prove
(1) It is obvious that continuous functiong;,g; map
[0,1] x [0,+00) x [0,+00) tO [0, +00), 7 equalsl,2, and
gl(tvov 1) =2 7& 0, 92(tﬂ07 1) =3 7& 0;
(2) For the first variable, functions, g;, herei equalingl, 2
are increasing, for the second variable, functighg;, here
¢ equalingl, 2 are are decreasing;

(3) on the other hand, fox belonging to the interval0, 1), ¢

Finally, we prove that assumption (iv) of Lemma 2.1 holdsyithin [0, 1], and the elements, y within [0, +occ), choosing

For ¢ lying in the intervalJ,i = 1,2,---, N, and u, v within
P, utilizing (Hy4), we have

1
/0 G(t, ) fi(C. 1(C), w(C))dC

1
= /0 G(t, O)gi(C. 1(C), (€))L, (19)

which implies that

C(p,v) = 0D (p,v). (20)

Considering Lemma 2.1, the unique nonnegative functicr@ 1]

denoted byu* satisfiesC'(u, ) + D(p,pp) = p. If we
construct the sequence
Hn = C(,U,n,h anl) + Dﬂnfla
vp = C(Vp-1, bn—-1) + Dvp—1, n equalsl,2,- -

in this placeuq, vy € Py, lettingn — oo, we obtainu,, —
w* andv, — p*, which consequently means that

i (£) = /0 Gt O s (G 1 (), va(O))

+gg(C) (<7 .uTL(C)a Vn(())]d<7 n equaIS()? 17 27 )

o1
Vi () = /0 Gt Ol e (€1 (0): 1n(O))

+90(¢) (€ v (€), un(¢))]dC, n equalso, 1,2, - - -,

satisfy ||, — p*|| approaching) and||v,, — p*|| approaching
0 asn approachingoco. [ ]

¥(\) = Az € (0,1), thus

it A, A1) + (s + (A"ly)7E
22+ pud +v8)
M fr(ts pv).
4+ sint + (A)T + (A 'w) "8
AT (4 + sint + pi +v70)
A2 (44 sint + pi +v76)

PN fa(t, 1, v).
Similarly, for all A lies in the interval (0,1), ¢ within
x, ylies in the intervall0, +c0), one has

gt A\ "ty) = 121(#752 +1+ ();*11/1)*%
— 2 1-1
_1+l;\ut + 14+ N2v f
> At + 4 +0h)
2 -3
> Mgt +1+v72)
:)‘gl(ta,u7y)'

= 7(1+t23\(ul+/\u) +24+ ();flyl)*%
= e T2 AsrTe
> A(WM + % + Vl_é)
> )\(pr +2+l/_5)

= Ag?(tvﬂa V)'

v Iv

go(t, A\, A1)

(4) Taking g = 1, for eacht within the interval from0 to
1, z,y belonging to[0, +oc), one has

N

fl(tau7l/) :2+M%+V_

_1
>t + 14+ vz = gi(t g, ).
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o=

fo(t,p,v) =4+ sint + /ﬁ +
>34 pi+v76
N TS —
2 aream T2V
= g2(t, p,v).
It follows that all necessary assumptions of Theorem 3.1 have

been fulfilled. Thus, (21)(22) possesses a unique fixed point
u* € Py, at thish(t) = t%~1 t €0,1].

ol
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