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Abstract—Let G = (V,E) be a simple, connected and
un-directed graph. We introduce a new notion of rainbow
vertex antimagic coloring. This is a natural expansion of
rainbow vertex coloring combined with antimagic labeling. For
f : E(G) → {1, 2, . . . , |E(G)|}, the weight of a vertex v ∈ V (G)
against f is wf (v) = Σe∈E(v)f(e), where E(v) is the set of
vertices incident to v. The function f is called vertex antimagic
edge labeling if every vertex has distinct weight. A path is
considered to be a rainbow path if for each vertex u and v, all
internal vertices on the u− v path have different weights. The
rainbow vertex antimagic connection number of G, denoted by
rvac(G), is the smallest number of colors taken over all rainbow
colorings induced by rainbow vertex antimagic labelings of
G. In this paper we aim to discover some new lemmas or
theorems regarding to rvac(G). Furthermore, to see the robust
application of rainbow vertex antimagic coloring, at the end
of this paper we will illustrate the implementation of RVAC
on spatial temporal graph neural networks (STGNN) multi-
step time series forecasting on subsidized diesel consumption of
some petrol stations.

Index Terms—rainbow vertex antimagic coloring, STGNN,
time series forecasting, subsidized diesel consumption.

I. INTRODUCTION

IN graph theory, a labeling of a graph G is essentially a
function that assigns a collection of graph elements to a

group of non-negative integers [1]. When this function maps
the set of vertices or edges, it’s termed vertex labeling or
edge labeling, respectively [2].
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Graph labeling provides useful wide range of applications.
Recently, there is a big effort to apply graph labeling for
machine learning, namely pseudo-labeling for Graph Neural
Networks (GNN), see [3]. Other GNN research results can be
seen in [4], [5], [6], [7].In the realm of graph theory, numer-
ous labeling types exist, including magic and antimagic label-
ings. Consider a function f : E(G) → {1, 2, . . . , |E(G)|},
the weight of a vertex v ∈ V (G) under f is wf (v) =
Σe∈E(v)f(e), where E(v) is the set of vertices incident to
v. The function f is considered to have vertex antimagic
labeling if it assigns a unique weight to each vertex. There
have been some good results on vertex antimagic study, those
can be seen in [8], [9], [10], [11].

Meanwhile, the other important study on graph is a
rainbow coloring of a graph. It is a coloring of graph such
that there exist a rainbow path. In rainbow vertex coloring,
a path is considered to be a rainbow path if for each
vertex u and v, all internal vertices on the u − v path have
different colors. According to Krivelevich and Yuster [12],
the lower bound for rainbow vertex connection number is
rvc(G) ≥ diam(G) − 1, where diam(G) is the diameter
of graph G. There have been some good results on rainbow
vertex coloring study, those can be found in [13], [14], [15],
[16], [17], [18].

In this study, we combine the two notions, namely vertex
antimagic labeling and rainbow vertex coloring. Thus we
introduce a new notion, namely rainbow vertex antimagic
coloring. It satisfies both properties either vertex antimagic
labeling and rainbow vertex coloring (RVAC). The term
”rainbow vertex antimagic connection number” of a graph
G, represented as rvac(G), refers to the minimal number of
colors needed across all rainbow colorings that result from
rainbow vertex antimagic labelings of G. This paper focuses
on uncovering new lemmas or theorems related to rvac(G).
There have been some results on rainbow vertex antimagic
coloring, it can be found in [19], [20], [21]. Furthermore,
to see the robust application of rainbow vertex antimagic
coloring, at the end of this paper, we will illustrate the
implementation of RVAC on spatial temporal graph neural
networks (STGNN) multi-step time series forecasting on
subsidized diesel consumption of some petrol stations.

STGNN is a type of graph neural network specifically
developed for analyzing data that has both spatial and tempo-
ral components, organized in the form of graphs [22], [23],
[24]. This model is used to understand patterns and relation-
ships among interconnected entities in both space and time.
The applications of spatio-temporal graph neural networks
include various fields such as weather prediction, traffic
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movement, social data analysis, environmental monitoring,
precision agriculture, and subsidized diesel consumption dis-
tributions as well as other domains involving temporal data
and graph structures. Together with RVAC, we will analyse
STGNN multi-step time series forecasting on subsidized
diesel consumption of some petrol stations.

II. METHOD

The research employed both analytical and experimental
approaches. The analytical aspect involved a mathematical
deductive method to detail the results, while the experi-
mental side relied on computer programming for simulation
purposes. We analysed the subsidized diesel consumption
of some petrol stations across Surabaya city, East Java,
Indonesia. First, we collected some data from some petrol
stations regarding to five features, namely weather, sales,
number of vehicles, number of buyer, and diesel supply.
We developed the STGNN programming to train 60% input
data initiated by doing the vertex embedding process, test the
model and finally forecast the subsidized diesel consumption
of some petrol stations. We used the following STGNN
algorithm.

Single Layer GNN Algorithm

Step 0. Consider a graph G(V,E) with an
order of n and a feature matrix Hn×m

corresponding to its n vertices and m
features from some petrol stations, and
give a tolerance ϵ.

Step 1. Determine the matrix adjacency
A of graph G arising from spatiality of
petrol stations and set a matrix B = A+I,
where I is an identity matrix.

Step 2. Initialize weights W, bias β,
learning rate α. (For simplicity, set
Wm×1 = [w1 w2 . . . wm], where 0 < wj < 1, bias
β = 0 and 0 < α < 1)

Step 3. Multiply weight matrix with
vertex features, by setting a message
function mu

l = MSGl(hl−1
u ), for linear

layer mu
l = W l(hl−1

u ).
Step 4. Aggregate the messages from

vertex v’s neighbors, by setting function
hl
v = AGGl{ml−1

u , u ∈ N(v)}, and by applying
the sum(·) function hl

v = SUM l{ml−1
u , u ∈ N(v)}

in regards with matrix B.
Step 5. Determine the error, by setting

errorl =
||hvi

−hvj
||2

|E| , where vi, vj are any two
adjacent vertices.

Step 6. Observe whether error ≤ ϵ or not.
If yes then stop, if not then do Step 7 to
update the learning weight matrix W.

Step 7. Update the learning weight matrix
by adjusting W l+1 = W l

j − α × zj × el, where
zj represents the column sum in H l

vi
and

divide by the number of nodes.
Step 8. Save the embedding results in

a vector when dealing with time series

data, and repeat this procedure for
subsequent time data observations.

Step 9. Load the vector data then use
the time series machine learning to do
training, testing and multi-step time
series forecasting.

Step 10. Is RMSE ≤ ϵ? If YES then STOP. If
No then improve W, do Step 2-9.

III. RESEARCH FINDINGS

A. Rainbow Vertex Antimagic Coloring

In this section, first we will show rainbow vertex antimagic
coloring of some graph and obtain their rvac. Secondly,
by utilizing one of the obtained theorem, we will analyse
STGNN time series forecasting for subsidized diesel con-
sumption on some petrol stations.

Remark 1: [20] Let G be a connected graph, rvac(G) ≥
rvc(G).

Lemma 1: Let Bl be a bull-like graph. The rainbow
vertex connection number of shackle of bull-like graph,
rvc(Shack(Bl, xi,j , t)) = 6t− 1.

Proof. Shack(Bl, xi,1, t) has vertex set
V (Shack(Bl, xi,1, t)) = {xi,j ; 1 ≤ i ≤ t, 1 ≤
j ≤ 6} ∪ {xt,7} ∪ {zi; 1 ≤ i ≤ t} and edge
set E(Shack(Bl, xi,1, t)) = {xi,jxi,j+1; 1 ≤
i ≤ t, 1 ≤ j ≤ 5} ∪ {xi,6xi+1,1; 1 ≤ i ≤
t − 1} ∪ {xt,6xt,7} ∪ {xi,4zi, xi,5zi; 1 ≤ i ≤ t}.
Shack(Bl, xi,1, t) has a diameter of 6t. According to the
lower bound of rvc(G), we have rvc(Shack(Bl, xi,1, t)) ≥
diam(Shack(Bl, xi,1, t)) − 1 = 6t − 1. Next, we will
prove the upper bound of rvc(Shack(Bl, xi,1, t)).
Define a function f : V (Shack(Bl, xi,1, t)) →
{1, 2, · · · , |V (Shack(Bl, xi,1, t))|} as follows: f(x1,1) =
1; f(xi,1) = 7i−8 for 2 ≤ i ≤ t; f(xi,j) = 6i+j−7 for 1 ≤
i ≤ t and 2 ≤ j ≤ 6; f(xt,7) = 2; f(zi) = i for 1 ≤ i ≤ t.

The above function is a rainbow vertex coloring of
rvc(Shack(Bl, xi,1, t)) which assure the existence of rain-
bow path. Now, we will show the cardinality of the ob-
tained colors. The set of colors {1, 2, · · · , 6t − 1} forms
an arithmetic sequence. Thus, |f | = 6t − 1. Accord-
ing to the lower bound and upper bound, we have 6t −
1 ≤ rvc(Shack(Bl, xi,j , t)) ≤ 6t − 1. It concludes
that rvc(Shack(Bl, xi,j , t)) = 6t − 1 with t ≥ 2. For
the illustration, the rainbow vertex coloring of the graph
Shack(Bl, xi,j , t) can be seen in Fig. 1.

Theorem 1: For t ≥ 2, rvac(Shack(Bl, xi,j , t)) = 6t−1.
Proof. By using Lemma 1 and Remark 1, we de-
termine the lower bound rvac(Shack(G, xi,1, t)) ≥
rvc(Shack(G, xi,1, t)) = 6t − 1. Now, we prove
the upper bound of rvac(Shack(G, xi,1, t)) by defin-
ing a label function f : E(Shack(G, xi,1, t)) →
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Fig. 1. Rainbow vertex coloring on Shack(Bl, xi,j , 2)

{1, 2, · · · , |E(Shack(G, xi,1, t))|} as follows.

f(x1,1x1,2) = 3; f(xi,1xi,2) = 8i− 5 for 2 ≤ i ≤ t

f(x1,2x1,3) = 1; f(xi,2xi,3) = 8i− 2 for 2 ≤ i ≤ t

f(x1,3x1,4) = 2; f(xi,3xi,4) = 8i− 1 for 2 ≤ i ≤ t

f(x1,4z1) = 5; f(xi,4xi,5) = 8i for 1 ≤ i ≤ t

f(x1,5z1) = 6; f(xi,5xi,6) = 8i+ 1 for 1 ≤ i ≤ t− 1

f(xt,6xt,7) = 4; f(xi,6xi+1,1) = 8i+ 2 for 1 ≤ i ≤ t− 1

f(xt,5xt,6) = 7; f(xi,4zi) = 8i− 4

f(xi,5zi) = 8i− 3 for 2 ≤ i ≤ t

Based on the label function above, we have vertex weight
sets as follows:

w(xt,5) = 16t+ 4; w(xi,1) = 16i− 11 for 2 ≤ i ≤ t

w(x1,1) = 3; w(xi,2) = w(zi) = 16i− 7 for 2 ≤ i ≤ t

w(x1,2) = 4; w(xi,3) = 16i− 3 for 2 ≤ i ≤ t

w(xt,6) = 11; w(xi,4) = 24i− 5 for 2 ≤ i ≤ t

w(x1,4) = 15; w(xi,5) = 24i− 2 for 2 ≤ i ≤ t− 1

w(x1,5) = 23; w(xi,6) = 16i+ 3 for 1 ≤ i ≤ t− 1

w(x1,3) = 3; w(xt,7) = 4

w(z1) = 11

The above sets will induce the rainbow vertex coloring of
graph. We can calculate the cardinality of vertex weight sets
as follows:
W2,1 = {w(xt,5)} ∪ {w(x1,1)} ∪ {w(x1,3)} ∪ {w(x1,2)} ∪
{w(xt,7)}∪{w(xt,6)}∪{w(z1)}∪{w(x1,4)}∪{w(x1,5)} =
{16t+ 4, 3, 4, 11, 15, 23} −→ |W2,1| = 6.
W2,2 = {w(xi,1)} = {21, 37, · · · , 16t − 11} −→ U|W2,2| =
a+ (|W2,2| − 1)d←→ 16t− 11 = 21+ (|W2,2| − 1)16 −→
|W2,2| = t− 1.
W2,3 = {w(xi,2)} = {25, 41, · · · , 16t − 7} −→ U|W2,3| =
a+ (|W2,3| − 1)d ←→ 16t− 7 = 25 + (|W2,3| − 1)16 −→
|W2,3| = t− 1.
W2,4 = {w(xi,3)} = {29, 45, · · · , 16t − 3} −→ U|W2,4| =
a+ (|W2,4| − 1)d ←→ 16t− 3 = 29 + (|W2,4| − 1)16 −→
|W2,4| = t− 1.
W2,5 = {w(xi,4)} = {43, 67, · · · , 24t − 5} −→ U|W2,5| =
a+ (|W2,5| − 1)d ←→ 24t− 5 = 43 + (|W2,5| − 1)24 −→
|W2,5| = t− 1.
W2,6 = {w(xi,5)} = {46, 70, · · · , 24t − 26} −→ U|W2,6| =
a+(|W2,6|−1)d←→ 24t−26 = 46+(|W2,6|1−1)24 −→
|W2,6| = t− 2.
W2,7 = {w(xi,6)} = {19, 35, · · · , 16t − 13} −→ U|W2,7| =
a+ (|W2,7| − 1)d ←→ 16t− 3 = 29 + (|W2,7| − 1)16 −→
|W2,7| = t− 1.

Based on the above calculation, we obtain the total
cardinality of 6 + (t − 1) + (t − 1) + (t − 1) + (t −

1) + (t − 2) + (t − 1) = 6t − 1. It implies the up-
per bound of rvac(Shack(G, xi,1, t)) ≤ 6t − 1. Accord-
ing to the lower bound and upper bound, we have 6t −
1 ≤ rvac(Shack(G, xi,1, t)) ≤ 6t − 1. It concludes that
rvac(Shack(G, xi,1, t)) = 6t − 1 for t ≥ 2. For the
illustration, the rainbow path of the graph Shack(G, xi,1, t)
can be seen in Table I. For the illustration, the rainbow vertex
antimagic coloring of the graph Shack(G, xi,1, t) can be
seen in Fig. 2.

TABLE I
THE RAINBOW PATH FROM u TO v OF RAINBOW VERTEX COLORING OF

Shack(Bl, xi,j , t)

Case u v Rainbow Vertex Condition
1 xi,j xi,k xi,j , xi,j+1, · · · j ̸= k

, xi,k−1, xi,k

2 xi,j xk,l xi,j , xi,j+1, · · · , i ̸= k,
xi,5, xi+1,1, j ̸= l

· · · , xk,1, · · · , xk,l

3 xi,j zi xi,j , xi,j+1, · · · , xi,3, zi
4 xi,j zk xi,j , xi,j+1, · · · , xk,1,

xk,2, xk,3, zk
5 zi zj zi, xi,4, xi,5, · · · ,

xj,1, xj,2, xj,3, zj

Lemma 2: Let B3,n be bull graph with n ≥ 3. Then
rvc(B3,n) = 2n.

Proof. B3,n has vertex set V (B3,n) = {xi,j ; 1 ≤ i ≤
2, 1 ≤ j ≤ n} ∪ {x1, x2} ∪ {y} and edge set E(B3,n =
{x1,ix1,i+1, x2,ix2,i+1; 1 ≤ i ≤ n − 1} ∪ {xix1,i, xiy; 1 ≤
i ≤ 2} ∪ {x1x2}. B3,n has a diameter of 2n+1. According
to the lower bound of rvc(G), we have rvc(B3,n) ≥
diam(B3,n) − 1 = 2n + 1 − 1 = 2n. Next, we will
prove the upper bound of rvc(B3,n). Define a function
f : V (B3,n)→ {1, 2, · · · , |V (B3,n)|} as follows: f(x1,n) =
f(x1,n−1) = f(x2,n) = 1; f(x1,i) = i + 2 for 1 ≤ i ≤
n − 2; f(y) = f(x1) = 2; f(x2,i) = i + n + 1 for 1 ≤ i ≤
n− 1, f(x2) = n+ 1.

The above function is a rainbow vertex coloring of
rvc(B3,n) which assure the existence of rainbow path. Now,
we will show the cardinality of the obtained colors. The
set of colors {1, 2, · · · , 2n} forms an arithmetic sequence.
Thus, |f | = 2n. According to the lower bound and upper
bound, we have 2n ≤ rvc(B3,n) ≤ 2n. It concludes that
rvc(B3,n) = 2n with n ≥ 3. For the illustration, the rainbow
vertex coloring of the graph B3,n can be seen in Fig. 3.

Theorem 2: For n ≥ 3, rvac(B3,n) = 2n.
Proof. By using Lemma 2 and Remark 1, we determine the
lower bound rvac(B3,n) ≥ rvc(B3,n) = 2n. Now, we prove
the upper bound of rvac(B3,n) by defining a label function
f : E(B3,n) → {1, 2, · · · , |E(B3,n)|}. We divide the proof
into two cases.
Case 1. n = 3
For n = 3, we define a label function f :
E(B3,n) → {1, 2, · · · , |E(B3,n)|} as follows: f(x1x1,1) =
2; f(x1,1x1,2) = 1; f(x1,2x1,3) = 3; f(x2,2x2,3) =
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Fig. 2. Rainbow vertex antimagic coloring on Shack(Bl, xi,j , 2)

Fig. 3. Rainbow vertex coloring on B3,3

4; f(x2x2,1) = 8; f(x1y) = 5; f(x1x2) = 9; f(x2y) =
6; f(x2,1x2,2) = 7.

Based on the label function above, we have vertex weight
sets as follows: w(y) = w(x2,2) = 11;w(x1,1) = w(x1,3) =
3;w(x2,1) = 15;w(x1,2) = w(x2,3) = 4;w(x2) =
23;w(x1) = 16.

The above sets will induce the rainbow vertex coloring
of graph. We can calculate the cardinality of vertex weight
sets and we have rvac(B3,3) ≥ |{w(V (B3,n))}| = 6.
According to the lower bound and upper bound, we have
6 ≤ rvac(B3,3) ≤ 6. It concludes that rvac(B3,3) = 6 for
n = 3.

Case 2. n ≥ 4
Now, we prove the upper bound of rvac(B3,n) by defining
a label function f : E(B3,n) → {1, 2, · · · , |E(B3,n)|} as
follows.

f(x1,n−1x1,n) = 3

f(x1x2) = 2n+ 3

f(x2x2,1) = n+ 5

f(x2y) = 6

f(x1,n−3x1,n−2) = 2

f(x1y) = 5

f(x1x2) = 2n+ 3

f(x1,jx1,i+1) = i+ 8 for 1 ≤ i ≤ n− 4

f(x2,n−1x2,n) = 4

f(x2,ix2,i+1) = n+ i+ 5 for 1 ≤ i ≤ n− 3

f(x2,n−2x2,n−1) = 7

Based on the label function above, we have vertex weight

sets as follows:

w(x1,n) = w(x1,n−2) = 3

w(x2,n−2) = 2n+ 9

w(x1) = 2n+ 16

w(x1,n−1) = w(x2,n) = 4

w(x2,n−1) = w(y) = 11

w(x2) = 3n+ 14

w(x1,i) = 2i+ 17 for 2 ≤ i ≤ n− 3

w(x2,i) = 2n+ 2i+ 9 for 1 ≤ i ≤ n− 3

w(x1,1) =

{
10 for n = 4

i+ 16 for n ≥ 5

The above sets will induce the rainbow vertex coloring of
graph. We can calculate the cardinality of vertex weight sets
as follows:
W4,1 = {w(x1,n)} ∪ {w(x1,n−2)} ∪ {w(x1,n−1)} ∪
{w(x2,n)} ∪ {w(x2,n−1)} ∪ {w(x2,n−2)} ∪ {w(y)} ∪
{w(x1)}∪{(x2)} = {3, 4, 11, 2n+9, 2n+16, 3n+15} −→
|W4,1| = 6

W4,2 = {w(x1,1)}=

{
10 for n = 4

16 for n ≥ 5
−→ |W4,2| = 1

W4,3 = {w(x1,i)} = {21, 23, · · · , 2n + 11} −→ U|W4,3| =
a + (|W4,3| − 1)2 −→ 2n + 11 = 21 + (|W4,3| − 1)2 ←→
|W4,3| = n− 4
W4,4 = {w(x2,i)} = {2n + 11, 2n + 13, · · · , 4n + 3} −→
U|W4,4| = a+(|W4,4|−1)2 −→ 4n+3 = 2n+11+(|W4,4|−
1)2←→ |W4,4| = n− 3

Based on the above calculation, we obtain the total car-
dinality of 6 + 1 + (n − 4) + (n − 3). It implies the upper
bound of rvac(B3,n) ≤ 2n. According to the lower bound
and upper bound, we have 2n ≤ rvac(B3,n) ≤ 2n. For the
illustration, the rainbow path of the graph B3,n can be seen
in Table II. For the illustration, the rainbow vertex antimagic
coloring of the graph B3,n can be seen in Fig. 4.

Fig. 4. Rainbow vertex antimagic coloring on B3,3

Lemma 3: Let N3,n be a net graph. The rainbow vertex
connection number of net graph, rvc(N3,n) = 3n.
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TABLE II
RAINBOW VERTEX COLORING FROM u TO v IN B3,n

Case u v Rainbow Vertex Condition
1 xi,j xi,k xi,j−1, xi,j−2, · · · , j ̸= k,

xi,k−2, xi,k−1 j ≤ k
2 xi,j xk,l xi,j−1, xi,j−2, · · · , i ̸= k,

xi,1, yi, yk, yk,1, j ̸= l
· · · , xi,k−2, xi,k−1

3 xi,j yi xi,j−1, xi,j−2, · · · , xi,1 -
4 xi,j yk xi,j−1, xi,j−2, · · · , xi,1, xi i ̸= k
5 xi,j z xi,j−1, xi,j−2, · · · , xi,1, xi -

Fig. 5. Rainbow vertex coloring on N3,4

Proof. N3,n has vertex set V (N3,n) = {xi,j ; 1 ≤ i ≤
3, 1 ≤ j ≤ n} ∪ {x1, x2, x3} and edge set E(N3,n =
{x1x2, x2x3, x1x3} ∪ {xixi,1, 1 ≤ i ≤ 3} ∪ {xi,jxi,j+1; 1 ≤
j ≤ n− 1}. N3,n has a diameter of 3n+1. The graph N3,n

has 3 pendants where the diameter for each pendant is n.
Based on this conditions, we have a rainbow vertex connec-
tion number of 3 pendants is 3(diam−1) = 3n−3. N3,n also
has C3 with each pendant end connected to C3, so 3 vertices
in C3 become internal vertices. Because of the rainbow
vertex coloring requirement, the internal vertices cannot have
the same color, so rvc(N3, n) ≥ 3n−3+3 = 3n. According
to the lower bound of rvc(G), we have rvc(N3,n) ≥ 3n.
Next, we will prove the upper bound of rvc(N3,n). Define
a function f : V (N3,n)→ {1, 2, · · · , |V (N3,n)|} as follows:
f(xi,n) = f(xi,n−1) = i for 1 ≤ i ≤ 3; f(xi,j) =
i(n− 2)− n+ j + 5 for 1 ≤ i ≤ 3, 1 ≤ j ≤ n− 2; f(xi) =
3n+ j − 3 for 1 ≤ i ≤ 3.

The above function is a rainbow vertex coloring of
rvc(N3,n) which assure the existence of rainbow path. Now,
we will show the cardinality of the obtained colors. The
set of colors {1, 2, · · · , 3n} forms an arithmetic sequence.
Thus |f | = 3n. According to the lower bound and upper
bound, we have 3n ≤ rvc(N3,n) ≤ 3n. It concludes that
rvc(N3,n) = 3n. For the illustration, the rainbow vertex
coloring of the graph N3,n can be seen in Fig. 5.

Theorem 3: For n ≥ 3, rvac(N3,n) = 3n.
Proof. Next, we determine the lower bound of rvac(N3,n)
using Lemma 3 and Remark 1. Based on Lemma 3 and
Remark 1, we have rvac(N3,n) ≥ rvc(N3,n) = 3n. Then,
we prove the upper bound of rvac(N3,n) by defining a label
function l : E(N3,n) → {1, 2, · · · , |E(N3,n)|}. We divide
the proof into seven cases.
Case 1. n = 3
For n = 3, we prove the upper bound
of rvac(N3,n) by defining a label function
f : E(N3,n) → {1, 2, · · · , |E(N3,n)|} as follows:
f(x1,2x1,3) = 3; f(x1x2) = 10; f(x2x2,1) =
5; f(x2,2x2,3) = 4; f(x3,1x3,2) = 7; f(x1,1x1,2) =
1; f(x1x3) = 9; f(x2,1x2,2) = 6; f(x3x3,1) =
8; f(x3,2x3,3) = 11; f(x1x1,1) = 2; f(x2x3) = 12.
Based on the label function above, we have vertex weight sets
as follows: w(x1,3) = w(x1,1) = 3;w(x2,8) = w(x3,3) =
11;w(x2) = 27;w(x3,1) = 15;w(x3) = 29;w(x1,2) =

w(x2,3) = 4;w(x1) = 21;w(x2,2) = 10;w(x3,2) = 18.

The above sets will induce the rainbow vertex coloring
of graph. We can calculate the cardinality of vertex weight
sets and we have rvac(N3,n) ≥ |W (V (N3,n))| = 3n = 9
for n = 3. According to the lower bound and upper bound,
we have 9 ≤ rvac(N3,n) ≤ 9 for n = 3. It concludes that
rvac(N3,n) = 9 for n = 3.
Case 2. n = 4

For n = 4, we prove the upper bound
of rvac(N3,n) by defining a label function
f : E(N3,n) → {1, 2, · · · , |E(N3,n)|} as follows:
f(x1x1,1) = 5; f(x1,3x1,4) = 3; f(x2x3) =
15; f(x2,2x2,3) = 7; f(x3,1x3,2) = 10; f(x1,1x1,2) =
2; f(x1x2) = 14; f(x2x2,1) = 8; f(x2,3x2,4) =
4; f(x3,2x3,3) = 9; f(x1,2x1,3) = 1; f(x1x3) =
13; f(x2,1x2,2) = 6; f(x3x3,1) = 12; f(x3,3x3,4) = 11.
Based on the label function above, we have vertex weight sets
as follows: w(x1,3) = w(x2,4) = 4;w(x1) = 32;w(x2,1) =
14;w(x3,1) = 22;w(x2,3) = w(x3,4) = 11;w(x1,1) =
7;w(x2,2) = 13;w(x3,2) = 19;w(x1,2) = w(x1,4) =
3;w(x2) = 37;w(x3) = 40;w(x3,3) = 20.

The above sets will induce the rainbow vertex coloring of
graph. We can calculate the cardinality of vertex weight sets
and we have rvac(N3,n) ≥ |{w(V (N3,n))}| = 3n = 12 for
n = 4. According to the lower bound and upper bound of
rvac(N3,n), we have 12 ≤ rvac(N3,n) ≤ 12 for n = 4. It
concludes that rvac(N3,n) = 12 for n = 4.
Case 3. n = 5

For n = 5, we prove the upper bound
of rvac(N3,n) by defining a label function
f : E(N3,n) → {1, 2, · · · , |E(N3,n)|} as follows:
f(x1x1,1) = 6; f(x1,1x1,2) = 5; f(x1,2x1,3) =
2; f(x1,3x1,4) = 1; f(x1,4x1,5) = 3; f(x2x2,1) =
10; f(x2,1x2,2) = 9; f(x2,2x2,3) = 7; f(x2,3x2,4) =
8; f(x2,4x2,5) = 4; f(x3x3,1) = 15; f(x3,1x3,2) =
14; f(x3,2x3,3) = 12; f(x3,3x3,4) = 13; f(x3,4x3,5) =
11; f(x1x2) = 17; f(x2x3) = 18; f(x1x3) = 16.

Based on the label function above, we ave vertex weight sets
as follows: w(x1) = 39;w(x1,1) = w(x3,5) = 11;w(x1,2) =
7;w(x1,3) = w(x1,5) = 3;w(x2) = 45;w(x2,1) =
19;w(x2,2) = 16;w(x2,3) = 15;w(x3) = 49;w(x3,1) =
29;w(x3,2) = 26;w(x3,3) = 25;w(x1,4) = w(x2,5) =
4;w(x2,4) = 12;w(x3,4) = 24.

The above sets will induce the rainbow vertex coloring of
graph. We can calculate the cardinality of vertex weight sets
and we have rvac(N3,n) ≥ |{w(V (N3,n))}| = 3n = 15 for
n = 5. According to the lower bound and upper bound, we
have 15 ≤ rvac(N3,n) ≤ 15 for n = 5. It is concludes that
rvac(N3,n) = 15 for n = 5.
Case 4. n ≡ 0(mod3), 6 ≤ n ≤ 9

For n ≡ 0(mod3), 6 ≤ n ≤ 9, we define a label
function f : E(N3,n) → {1, 2, · · · , |E(N3,n)|} as follows:
f(x1,n−1xx1,n

) = 3; f(x1x1,1) = n+1; f(x1,n−2xx1,n−1
) =

1; f(x2,n−1x2,n) = 4; f(x3,n−1x3,n) =
11; f(x1,n−3x1,n−2) = 2; f(x1,jxi,j+1) = n− j+1 for 1 ≤
j ≤ n − 4; f(x2,jx2,j+1) = 2n − j + 1 for 1 ≤ j ≤
n−2; f(x3,jx3,j+1) = 3n−j for 1 ≤ j ≤ n−4; f(x2x2,1) =
2n + 1; f(x3,n−2x3,n−1) = 2n + 3; f(x3x3,1) =
3n; f(x3,n−3x3,n−2) = 2n + 2; f(x1x3) =
3n+ 1; f(x2x3) = 3n+ 3; f(x1x2) = 3n+ 2.
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Based on the label function above, we have vertex weight
sets as follows:

w(x2,n−1) =

{
12 if n = 6

16 if n = 9

w(x2,n−2) =

{
17 if n = 6

25 if n = 9

w(x2,n−3) =

{
19 if n = 6

27 if n = 9

w(x1,1) = 2n+ 1; w(x1) = 7n+ 4;

w(x1,n−3) = 7; w(x1,n−2) = w(xn) = 3;

w(x3,6) = 11; w(x3,n−1) = 2n+ 14;

w(x3,n−2) = 4n+ 5; w(x3,n−3) = 4n+ 6;

w(x3) = 9n+ 4; w(x3,1) = 6n− 1;

w(x2,1) = 4n+ 1; w(x2) = 8n+ 6;

w(x1,j) = 2n− j + 3 for 2 ≤ j ≤ n− 4;
w(x2,j) = 4n− 2j + 3 for 2 ≤ j ≤ n− 4;
w(x3,j) = 6n− 2j + 1 for 2 ≤ j ≤ n− 4;
w(x2,n) = w(x1,n−1) = 4.

The above sets will induce the rainbow vertex coloring
of graph. We can calculate the cardinality of vertex weight
sets and we have rvac(N3,n) ≥ |W (V (N3,n))| = 3n for
n ≡ 0(mod3), 6 ≤ n ≤ 9. According to the lower bound
and upper bound, we have 3n ≤ rvac(N3,n) ≤ 3n for n ≡
0(mod3), 6 ≤ n ≤ 9. It concludes that rvac(N3,n) = 3n for
n ≡ 0(mod3), 6 ≤ n ≤ 9.

Case 5. n = 7
For n = 7, we define a label function f : E(N3,n) →
{1, 2, · · · , |E(N3,n)|} as follows:

f(x1x1,1) = 8
f(x1,4x1,5) = 2
f(x1,6x1,7) = 3
f(x2x2,1) = 15
f(x2,6x2,7) = 4
f(x3,6x3,7) = 11
f(x1,5x1,6) = 1
f(x3x3,1) = 21
f(x1,jx1,j+1) = n− j + 1, 1 ≤ j ≤ 3
f(x2,jx2,j+1) = 2n− j + 1, 1 ≤ j ≤ 3
f(x2,jx2,j+1) = n+ j − 2, 4 ≤ j ≤ 5

f(x3,j) =

{
2n− j + 1 for 1 ≤ j ≤ 3

2n+ j − 2 for 4 ≤ j ≤ 5

f(x2,j) =

{
2n− j + 1 for 1 ≤ j ≤ 3

n+ j − 2 for 4 ≤ j ≤ 5

Based on the label function above, we have the vertex weight
sets as follows:

w(x1,n) = w(x1,n−2) = 3
w(x1,n−1) = w(x2,n) = 4
w(x1,n−3) = 7
w(x1,j) = 2n− 2j + 3, 2 ≤ j ≤ n− 4
w(x1,1) = 2n+ 1
w(x1) = 7n+ 4
w(x2,j) = 4n− 2j + 2, 2 ≤ j ≤ n− 4
w(x2,n−1) = 16
w(x2,n−2) = 22
w(x2,n−3) = 23
w(x2,1) = 4n+ 1
w(x3,n−1) = 30
w(x3,j) = 6n− 2j + 1, 2 ≤ j ≤ n− 4
w(x3,n−3) = 38
w(x3,n−2) = 37
w(x3,1) = 6n− 1
w(x3) = 9n+ 4

The above sets will induce the rainbow vertex coloring
of graph. We can calculate the cardinality of vertex weight
sets and we have rvac(N3,n) ≥ |W (V (N3,n))| = 3n for
n = 7. According to the lower bound and upper bound, we
have 3n ≤ rvac(N3,n) ≤ 3n for n = 7. It concludes that
rvac(N3,n) = 3n for n = 7.
Case 6. n = 8
For n = 8, we define a label function f : E(N3,n) →
{1, 2, · · · , |E(N3,n)|} as follows:

f(x1,n−1x1,n) = 3; f(x1,n−2x1,n−1) = 1;
f(x3,n−2x3,n−1) = 19; f(x3,n−3x3,n−2) = 18;
f(x3x3,1) = 3n; f(x1x2) = 3n+ 2;
f(x3,n−1x3,n) = 11; f(x1x1,1) = n+ 1;
f(x1,n−3x1,n−2) = 2; f(x3,1x3,2) = 3n− 1;
f(x2,n−1x2,n) = 4; f(x1x3) = 3n+ 1;
f(x2x3) = 3n+ 3; f(x2,n−2x2,n−1) = 12;
f(x2,n−3x2,n−2) = 10; f(x2x2,1) = 2n+ 1

f(x1,jx1,j+1) = n− j + 1 for 1 ≤ j ≤ n− 4

f(x3,jx3,j+1) = 3n− j for 1 ≤ j ≤ n− 4

f(x2,jx2,j+1) = 2n− j + 1 for 1 ≤ j ≤ n− 4

Based on the label function above, we have vertex weight
sets as follows:

w(x1,n) = w(x1,n−2) = 3
w(x1,n−3) = 7
w(x1,j) = 2n− 2j + 3, 2 ≤ j ≤ n− 4
W (x1) = 7n+ 4
w(x2,j) = 4n− 2j + 2, 2 ≤ j ≤ n− 4
w(x2,n−1) = 16
w(x2,n−2) = 22
w(x2,n−3) = 23
w(x2,1) = 4n+ 1
w(x3,n−1) = 30
w(x3,j) = 6n− 2j + 1, 2 ≤ j ≤ n− 4
w(x3,n−3) = 38
w(x3,n−2) = 37
w(x3,1) = 6n− 1
w(x3) = 9n+ 4
w(x1,n−1) = w(x2,n) = 4
w(x1,1) = 2n+ 1

The above sets will induce the rainbow vertex coloring
of graph. We can calculate the cardinality of vertex weight
sets and it implies the upper bound of rvac(N3,n) ≥
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|W (V (N3,n))| = 3n for n = 8. According to the lower
bound and upper bound, we have 3n ≤ rvac(N3,n) ≤ 3n
for n = 7. It concludes that rvac(N3,n) = 3n for n = 8.
Case 7. n ≡ 0(mod3), n ≥ 12 and n ≡ 1, 2(mod3), n ≥ 10
For n ≡ 0(mod3), n ≥ 12 and n ≡ 1, 2(mod3), n ≥ 10, we
define a label function f : E(N3,n)→ {1, 2, · · · , |E(N3,n)|}
as follows: f(x1,n−1x1,n) = 3; f(x1,n−2x1,n−1) =
1; f(x1,n−3x1,n−2) = 2; f(x1,jx1,j+1) ={
n− j + 2 for 1 ≤ j ≤ n− 10

n− j + 1 for n− 9 ≤ j ≤ n− 4
; f(x1x1,1) =

n + 2; f(x2,n−1x2,n) = 4; f(x2,n−2x2,n−1) =
n+ 4; f(x2,n−3x2,n−2) = n+ 3; f(x2,jx2,j+1) = 2n− j +
1 for 1 ≤ j ≤ n− 4; f(x2x2,1) = 2n+ 1; f(x3,n−1x3,n) =
11; f(x3,n−2x3,n−1) = 2n + 3; f(x3,n−3x3,n−2) = 2n +
2; f(x3,jx3,j+1) = 3n − j for 1 ≤ j ≤ n − 4; f(x3x3,1) =
3n; f(x1x2) = 3n+2; f(x1x3) = 3n+1; f(x2x3) = 3n+3.

Based on the label function above, we have vertex weight
sets as follows:

w(x1,j) =



3, if j = n, j = n− 2

4, if j = n− 1

7, if j = n− 3

11, if j = n− 4

2n− 2j + 3, if n− 8 ≤ j ≤ n− 5

22, if j = n− 9

2n− 2j + 5, if 2 ≤ j ≤ n− 10

2n+ 3, if j = 1

w(x2,j) =



4n+ 1, if j = 1

4n− 2j + 3, if 2 ≤ j ≤ n− 4

2n+ 8, if j = n− 3

2n+ 7, if j = n− 2

n+ 8, if j = n− 1

4, if j = n

w(x3,j) =



6n− 1, if j = 1

6n− 2j + 1, if 2 ≤ j ≤ n− 4

4n+ 6, if j = n− 3

4n+ 5, if j = n− 2

2n+ 14, if j = n− 1

11, if j = n

w(xj) =


7n+ 5, if j = 1

8n+ 6, if j = 2

9n+ 4, if j = 3
The above sets will induce the rainbow vertex coloring of

graph. We can calculate the cardinality of vertex weight sets
as follows:
W6,1 = {w(x1,n), w(x1,n−2), w(x1,n−9), w(x1,n−3),
w(x1,n−4), w(x1,1), w(x2,1), w(x2,n−3), w(x2,n−2),
w(x2,n−1), w(x2,n), w(x3,1), w(x3,n−3), w(x3,n−2),
w(x3,n−1), w(x3,n), w(x1), w(x2), w(x3)} =
{3, 4, 7, 22, 11, 2n + 3, 4n + 1, 2n + 8, 2n + 7, n +
8, 6n− 1, 4n+ 6, 4n+ 5, 2n+ 14, 7n+ 5, 8n+ 6, 9n+ 4},
so |W6,1| = 17.

W6,2 = {w(x1,j)|n− 8 ≤ j ≤ n− 5},W6,3 = {w(x1,j)|2 ≤
j ≤ n − 10},W6,4 = {w2,j |2 ≤ j ≤ n − 4},W6,5 =
{w(3, j)|2 ≤ j ≤ n − 4} −→ W6,2 = {13, 15, 17, 19} −→
|W6,2| = 4
W6,3 = {25, 27, · · · , 2n + 1} −→ U|W6,3| = a + (|W6,3| −

Fig. 6. Rainbow vertex antimagic coloring on N3,4

1)2 −→ 2n+1 = 25+ (|W6,3| − 1)2←→ |W6,3| = n− 11.
W6,4 = {2n + 11, 2n + 13, · · · , 4n − 1} −→ U|W6,4| =
a+(|W6,4|−1)2←→ 4n−1 = 2n+11+(|W6,4|−1)2←→
|W6,4| = n− 5.
W6,5 = {4n + 9, 4n + 11, · · · , 6n − 3} −→ U|W6,5| =
a+(|W6,5|−1)2←→ 6n−3 = 4n+9+(|W6,5|−1)2←→
|W6,5| = n− 5.

Based on the above calculation, we obtain the total cardi-
nality of |W6| = |W6,1|+|W6,2|+|W6,3|+|W6,4|+|W6,5| =
17 + 4 + (n − 11) + (n − 5) + (n − 5) = 3n. It implies
the upper bound of rvac(N3,n) ≤ 3n. According to the
lower and upper bound, we have 3n ≤ rvac(N3,n) ≤ 3n
for n ≡ 0(mod3), n ≥ 12 and n ≡ 1, 2(mod3), n ≥ 10. It
concludes that rvac(N3,n) = 3n for n ≡ 0(mod3), n ≥ 12
and n ≡ 1, 2(mod3), n ≥ 10.

According to the lower bound and upper bound of Case 1
until Case 7, we have 3n ≤ rvac(N3,n) ≤ 3n. It concludes
that rvac(N3,n) = 3n for n ≥ 3. For the illustration, the
rainbow path of the graph N3,n can be seen in Table III. For
the illustration, the rainbow vertex antimagic coloring of the
graph N3,n can be seen in Fig. 6.

TABLE III
RAINBOW VERTEX COLORING FROM u TO v IN N3,n

Case u v Rainbow Vertex Condition
1 xi,j xi,k xi,j , xi,j+1, · · · , j ̸= k,

xi,k−1, xi,k j < k
2 xi,j xk,l xi,j , xi,j−1, · · · , i ̸= k
2 xi,j xk,l xi,1, xi, xk, xk,1, · · · , i ̸= k
2 xi,j xk,l xk,l−1, xk,l i ̸= k
3 xi,j xi xi,j , xi,j−1, · · · , xi,1, xi

4 xi,j xk xi,j , xi,j−1, · · · , xi,1, xi, xk i ̸= k
5 xi xj xi, xj i ̸= j

B. The Application of Rainbow Vertex Antimagic Coloring

The next research result is implementing the rainbow
vertex antimagic coloring scheme on the subsidized petrol
distribution. We utilizes the graph representation of eight
petrol stations in Surabaya, Indonesia. The selected graph
representation is in the form of Shack(G, xi,j , t) graph
which has been shown in Theorem 1. The petrol station
locations and the graph representation can be depicted in
Figure 7.

Based on Theorem 1, the graph representation of the
eight petrol stations is the base graph of Shack(Bl, xi,j , t).
Theorem 1 shows that Shack(Bl, xi,j , t) = 6t − 1.
When we have a graph Shack(Bl, xi,j , 1), thus we have
rvac(Shack(Bl, xi,j , 1)) = 5, see Figure 8(a). We denote
Petrol Station 54.602.69 as x1, Petrol Station 54.602.30
as x2, Petrol Station 51.601.77 as x3, Petrol Station
54.601.100 as x4, Petrol Station 54.602.48 as x5, Petrol
Station 54.602.64 as x6, Petrol Station 54.602.52 as x7,
and Petrol Station 54.602.68 as z. By Theorem 1, we
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Fig. 7. (a) The map of eight petrol stations, (b) Its graph representation

have RVAC on Shack(Bl, xi,j , 1), see Figure 8(a). Since
rvac(Shack(Bl, xi,j , 1)) = 5, it means that we need to
have computer five admins to monitor subsidized petrol
distribution, see Table V. This table tell us that Admin 3
monitors the subsidized diesel distribution on Petrol Station
x2, Admin 15 monitors the subsidized diesel distribution
on Petrol Station x1, x3, z, Admin 21 monitors the subsi-
dized diesel distribution on Petrol Station x4, x7, Admin 11
monitors the subsidized diesel distribution on Petrol Station
x5, Admin 4 monitors the subsidized diesel distribution on
Petrol Station x6. The biggest workload is Admin 15, since
it monitors three petrol stations.

Fig. 8. (a) The Illustration of RVAC on Shack(Bl, xi,j , 1), (b) The
spanning tree of RVAC and its rainbow vertex antimagic coloring

TABLE IV
THE COMPUTER FIVE ADMINS REPRESENTED BY ALL VERTEX WEIGH OF

RVAC

Admin 3 15 21 11 4
Vertex Weight 4 3, 3, 11 15, 4 21 11

Vertex x2 x1, x3, z x4, x7 x5 x6

Furthermore, the rainbow vertex antimagic coloring con-
cept can be utilized for Petrol Delivery Services (PDS) with
135 as call center. Delivery services can be accessed 24
hours with the time delivery from 08.00 - 20.00. Using
the rainbow vertex antimagic coloring concept, the PDS
center can determine which petrol stations are close to the
costumers, see Table V. This table tell us if there is consumer
who needs PDS service on road 6, PDS center can easily
obtain that the closest petrol stations {11, 21} = {z, x6}.
If there is consumer who needs PDS service on road 5,
PDS center can easily obtain that the closest petrol stations
{11, 15} = {z, x4}.

TABLE V
THE COMPUTER FIVE ADMINS REPRESENTED BY ALL VERTEX WEIGH OF

RVAC

3 4 11 15 21
{3} {4} {5, 6} {2, 5, 8} {6, 7, 8}

{1, 2} {1, 3} {4, 7}

C. STGNN Multi-Step Time Series Forecasting

From now on, we will discuss STGN multi-step time
series forecasting on subsidized diesel consumption of some
petrol stations. several key metrics are employed to assess
the accuracy and effectiveness of the model’s predictions.
They are as follows.

1) Evaluation Metrics: Root Mean Squared Error
(RMSE) is a commonly utilized metric that calculates the
average size of the errors between the predicted values and
the actual ones, offering an indicator of the model’s accuracy.
Mean Absolute Error (MAE) complements RMSE by eval-
uating the average absolute differences between predictions
and true values, offering insights into the model’s overall
accuracy. Accuracy is a crucial metric in classification,
measuring the ratio of accurate predictions to the total made
by the model, especially vital for classification tasks. Addi-
tionally, the Coefficient of Determination (R2) evaluates how
much variance in the dependent variable can be predicted
from the independent variables, with values near 1 suggesting
a stronger model fit. Together, these metrics offer a detailed
insight into a model’s effectiveness, addressing various facets
of its predictive accuracy and reliability.

RMSE =

√√√√ 1

n

n∑
i=1

||yi − ŷi||2

MAE =
1

n

n∑
i=1

|yi − ŷi|

Accuracy =
TP + TN

TP + TN + FP + FN

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

Where yi and ŷi denote the actual and forecasted values at
time t, TP is True Positives, TN is True Negatives, FP is
False Positives, and FN is False Negatives.

2) Hyperparameters: The first hyperparameters related to
PyTorch and Torch Geometric versions. It then proceeds
to install necessary libraries, including ’torch-geometric’,
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’torch-geometric-temporal’, and ’networkx’, ensuring the re-
quired dependencies are in place. Five main variables are
extracted: weather, sales, number of vehicles, number of
tourists, and availability. These variables constitute the time
series data used for analysis and forecasting.

Next, we involve building a temporal graph convolution
model (RecurrentGCN) using Torch Geometric. This model
is designed to capture temporal dependencies in the graph
structure. Furthermore, the model is trained for a certain
number of epochs, and the mean square error is used as the
loss function.

The Temporal Graph Convolutional Network (TGCN)
model, a key component of the script, operates with specific
hyperparameters. The ’node features’ parameter dictates the
number of features associated with each node in the graph,
offering a comprehensive representation of the characteris-
tics inherent to each entity within the temporal structure.
Additionally, the periods parameter determines the number
of time steps considered during the application of temporal
convolutional layers, influencing the model’s capacity to
capture temporal dependencies within the graph.

In the context of training, several hyperparameters shape
the learning process. The learning rate (lr) is a crucial
factor, and in this case, it is set to 0.01 within the opti-
mizer, affecting the magnitude of adjustments made to the
model’s parameters during training. The epochs parameter
denotes the number of training cycles the model undergoes,
with the script employing 200 epochs for robust learning.
The step ahead parameter specifies the number of steps
the model foresees into the future, facilitating forecasting
capabilities. Additionally, the lags parameter indicates the
number of lagged time steps utilized as features, contributing
to the model’s understanding of temporal patterns. Lastly,
the train ratio parameter determines the proportion of the
dataset allocated for training, with a value of 0.6 ensuring
an appropriate balance between training and testing data.
Collectively, these hyperparameters orchestrate the behavior
and performance of the script’s temporal graph convolutional
model.

3) Some Models to Compare: The first model that we use
for the comparison of a number of models is the historical
average (HA). HA refers to a forecasting method that relies
on the historical average of a time series as a prediction for
future values. It is a simple and intuitive approach where the
forecast for a specific time point is based on the average of
past observations up to that point.

The ARIMA model, short for AutoRegressive Integrated
Moving Average, is a prevalent model for forecasting in
time series analysis, blending autoregressive and moving
average elements. This model requires differencing the data
to achieve stationarity, followed by examining how an ob-
servation correlates with its previous values. ARIMA excels
in identifying trends and seasonal patterns in time series
datasets.

The third model in our lineup is SVR, or Support Vec-
tor Regression, a machine learning approach designed for
regression challenges. It utilizes support vector machines
to identify an optimal hyperplane that closely aligns with
the data, aiming to reduce the error margin. SVR shines in
scenarios involving non-linear relationships and is adept at
handling time series forecasting tasks.

The fourth model that we use is the GCN. GCN, or Graph
Convolutional Network, is a specialized neural network vari-
ant tailored for analyzing data structured in graph form.
It leverages the graph structure to perform convolutional
operations on the nodes of the graph. GCNs are commonly
used in tasks involving graph data, such as social network
analysis or spatial-temporal data analysis.

The fifth model we use is the GRU (Gated Recurrent Unit).
GRU, standing for Gated Recurrent Unit, is a recurrent neural
network (RNN) architecture crafted to recognize and retain
long-term dependencies within sequential data. It includes
gating mechanisms to control the flow of information, ad-
dressing some of the challenges faced by traditional RNNs
in learning and remembering patterns over longer sequences.

The last model is the STGNN (Spatial Temporal Graph
Neural Network). STGNN is a specialized type of graph
neural network designed for spatio-temporal data. It com-
bines the concepts of GCN with the ability to model temporal
dependencies in sequential data. STGNNs are commonly ap-
plied in traffic forecasting tasks, where spatial and temporal
patterns are crucial for accurate predictions.

Prior to run the programming, we start with the following
observations.

Observation 1: Consider a graph G with an order of n.
The vertex set is defined as V (G) = {v1, v2, . . . , vn−1, vn},
and the edge set is E(G) = {vivj |vi, vj ∈ V (G)},
respectively. The features of the vertices are as follows

hvi
=


s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m

...
...

. . .
...

sn,1 sn,2 · · · sn,m

. The vertex embedding

can be determined using the messages passing from vertex
v’s neighbors hl+1

v = AGG{ml+1
u , u ∈ N(v)} under

the aggregation sum(·), where l = 0, 1, 2, 3, . . . , k. Thus
hl+1
v = SUM{ml+1

u , u ∈ N(v)} in regards to the matrix
B = A + I where A, I are adjacency and identity matrix,
respectively.
Proof. With graph G, we can derive the adjacency matrix A.
To account for self-adjacency for each vertex in G, we add
the identity matrix I to A, resulting in matrix B as follows.

B = A+ I =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · bn,n


According to the single layer GNNN algorithm, we need

to initialize the learning weight matrix as follow.

W =


w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
...

. . .
...

wm,1 wm,2 · · · wm,m


This weight is utilized to determine the value of mvi

and
to update the weight for the upcoming iteration. The vertex
embedding process in GNN is segmented into two phases:
message passing and aggregation. During the initial phase,
we perform message passing with mu = MSG(hu). For lin-
ear layer we have mu

l+1 = W l ·hl
u, where l = 0, 1, 2, . . . k.

We can iteratively start the calculation as follows:
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Fig. 9. The STGNN time series testing results on Petrol Station 54.602.69
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TABLE VI
THE PREDICTION RESULTS OF THE STGNN MODEL AND OTHER BASELINE METHODS ON DATASET.

T Matric Dataset of Eight Petrol Stations
HA ARIMA SVR GCN GRU STGNN

5 Days

RMSE 7.9067 8.1040 7.5346 9.7695 4.0471 3.9041
MAE 5.4847 6.1081 4.9187 7.2654 2.6792 2.6050

Accuracy 0.6595 0.3067 0.6860 0.6411 0.7057 0.8195
R2 0.7813 0.0721 0.8091 0.6026 0.8426 0.8721

10 Days

RMSE 7.9076 8.2101 7.4725 9.3429 4.0757 3.7695
MAE 5.4858 6.2143 4.9719 7.3101 2.7007 2.5441

Accuracy 0.6706 0.4271 0.6976 0.6305 0.7147 0.7565
R2 0.7813 0.0713 0.8120 0.6075 0.8356 0.8402

15 Days

RMSE 7.9076 8.2111 7.4742 9.4011 4.0901 3.9539
MAE 5.4847 6.2132 5.0310 7.3693 2.7096 2.6544

Accuracy 0.6695 0.4259 0.6964 0.6362 0.7021 0.7431
R2 0.7813 0.0815 0.8120 0.6016 0.8339 0.8498

20 Days

RMSE 7.9076 8.2031 7.4861 9.4393 4.2120 4.0020
MAE 5.4847 6.2097 5.0593 7.4109 2.7310 2.5867

Accuracy 0.6695 0.4261 0.6960 0.6244 0.7004 0.7218
R2 0.7813 0.0803 0.8133 0.5877 0.8421 0.8792

Fig. 10. Comparison of predicted performance

m1
vi

= H0
vi
·W 0 =


s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m

...
...

. . .
...

sn,1 sn,2 · · · sn,m

×

w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
...

. . .
...

wm,1 wm,2 · · · wm,m


After completing the initial step, we move on to the

second phase: aggregation concerning the neighbors of
v. Through the aggregation operation sum(·), we calcu-
late hl+1

v = AGGml+1
u , u ∈ N(v), resulting in hl+1

v =
|SUMml+1

u , u ∈ N(v)|. With reference to the matrix B =
A+ I , the embedding vector h1

vi
is expressed as follows.

hl+1
vi

=


ml+1

v1,1
ml+1

v1,2
· · · ml+1

v1,m

ml+1
v2,1

ml+1
v2,2

· · · ml+1
v2,m

...
...

. . .
...

ml+1
vn,1

ml+1
vn,2

· · · ml+1
vn,m


Subsequently, it’s essential to calculate the error value,

which reflects the proximity of two adjacent vertices in the
embedding space. A lower error value signifies a shorter

distance between the vertices. The error is defined as fol-
lows: errorl =

||hvi
−hvj

||inf

|E(G)| where i, j ∈ {1, 2, ..., n}.
We need to check whether error ≤ ϵ. If no, we need
to update new W l using the obtained hl

vi
in the previous

iteration. We update the learning weight matrix by using
W l+1 = W l − α× errorl until error ≤ ϵ. □

Applying the Single layer GNN Algorithm above, we can
develop and run the programming to analyse the subsidized
diesel consumption of some petrol stations across Surabaya
city, East Java, Indonesia. First, we collected some data
from the petrol stations regarding to five features, namely
weather, sales, number of vehicles, number of buyer, and
diesel supply within 42 days observations. We developed
the STGNN programming to train 60% input data, test and
finally forecast the subsidized diesel consumption of eight
petrol stations for several times ahead.

In regards with the algorithm above, first we need to deal
with graph embedding along with eight petrol stations. We
assume that each node will affect the other nodes whenever
they are adjacent. Thus, we need the message passing process
and consider the adjacency matrix of eight petrol stations.
Later we develop STGNN multi-step time series forecasting
to train 60% data and obtain the smallest Root Mean Square
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Fig. 11. The results of multi-step time series forecasting of petrol station 54.602.69.

Error (RMSE) or Mean Square Error (MSE) of the testing
data. Figure 9 shows the results of testing process on Petrol
Station x1.

To convince the robustness of STGNN model, We com-
pared six models, namely Historical Average (HA), Auto Re-
gressive Integrated Moving Average (ARIMA), Support Vec-
tor Regression (SVR), Graph Convolutions Networks (GCN),
Gated Recurrent Unit (GRU), Spatio Temporal Graph Neural
Networks (STGNN). The comparison results between the six
models can be seen in Figure 10 and Table VI. Figure 10
show that STGNN need 200 epochs to tend to the smallest
error and the convergence history of loss decreasing steadily.
The graphic does not show a big oscillation compared with
other models. The STGNN model also shows that time series
forecasting for 5, 10, 15, 20 days ahead, either RMSE, MAE,
Accuracy and R2 show the best values compare with other

models. Thus, we conclude that we can use this models for
doing forecasting and monitoring of eight petrol stations. By
using RVAC concept, the number of admins to do monitoring
process are only five admins, namely admin 3, 4, 11, 15,
21. Figure 11 shows the results of multi-step time series
forecasting of petrol station x1.

IV. CONCLUDING REMARKS

We have studied the rainbow vertex antimagic coloring of
shackle of bull-like graph, bull graph, and net graph. Whe
have obtained the best exact values of those rvac(G). How-
ever, finding the rainbow vertex antimagic chromatic number
is not easy task, even it is consider to be a NP-hard problem
if the order of graph is unbounded. Thus, we propose the
following open problems. (i) Find the exact values of rvac
on any other graph operations; (ii) Characterize the existence
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of rainbow vertex antimagic coloring of any graph having
a specific properties, (iii) Apply the obtained theorem into
STGNN multi-step time series forecasting for specific real-
life input data.
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