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Abstract—This paper deals with the estimation of multi
element stress strength system reliability R when the stress and
strength follow Burr type X distributions. The maximum
likelihood and Bayesian methods are used to obtain the point
estimates of R, and the confidence intervals of R are obtained
via the delta and MCMC methods. The performances of the
different point estimation methods and their corresponding
confidence intervals are compared via the extensive simulation
studies. To illustrate the effectiveness of the developed model
and methods, a real data set is utilized.

Index Terms—Multi element stress strength model, Burr
type X distribution, Maximum Likelihood method, Bayesian
method, Confidence interval

I. INTRODUCTION

HE applications of the stress strength model (SSM) are

very widely, encompassing engineering applications,
survival analysis, and so on. A system with a single element
is referred to as a single element SSM. Within this model, a
system can operate normally if its stress is lower than its
inherent strength. Over the past few years, there has been a
large literature to study the single element SSM under various
distributional assumptions regarding stress and strength, such
as Chen and Cheng[1], Rezaei et al.[2], Krishna et al.[3] and
Babayi and Khorram[4], Asgharzadeh et al.[5], Akgul et
al.[6], Agiwal [7], Safariyan et al.[8], and Kotz et al.[9].

If a system comprises more than one element, it is termed a
multi element stress strength model (MSSM) in Ref [10].
Similar to single element SSM, many papers have been
studied the MSSM under different distribution assumptions,
such as Kumaraswamy distribution[11], Burr type XII
distribution[12], Rayleigh distribution[13], Marshall-Olkin
bivariate Weibull[14], Chen distribution[15], Topp Leone
distribution[16] and generalized logistic distribution[17].

The Burr type X distribution has been widely applied to
model lifetime data or survival data by Burr[18], Sartawi and
Abu Salih[19], Jaheen[20] and Ragab[21]. The CDF and
PDF of the Burr type X distribution can be obtained as

F(X) = (1—exp(—x2))g ,X>0,0>0, (1)
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and
0
f(x) =2¢9xexp(—x2)(l—exp(—x2)) X>0,0>0, (2
where 6 is a shape parameter, and let X~Burr(9).

In Refs [22-25], the reliability estimation of a single
element SSM has been extensively investigated under the
Burr type X distribution. In this paper, we extend the study
from single element SSM to the MSSM under the same
distribution.

Il. RELIABILITY MODELING OF THE MSSM SYSTEM

The reliability of MSSM is introduced by Bhattacharyya
and Johnson[10] as
Rsk = P[at least s of the (X1, Xz, -

—Z[ jj [1-F (0] [FeW] 7 dG, (v) 3)

where Y denotes the stress variable, X; denotes the strength
variable of the i element (i=1,2,--,k). G(J and F(J are the
cumulative distribution functions of Y and X; (i=1,2,--,k),
respectively.
Let X; be (i=1,2, --,k) random sample, and X;~Burr(61). Let
Y~Burr(6-), then the reliability of MSSM can be calculated as
Rsk = P[at least s of the (X1, Xz, -, X) exceed Y]

—Z[ jjo [L-F (v )] [Fe (v: )] G, (v:6,)

—Z[ jf -y [ (-eoy) |

<26,yexp(-y?)(1-exp(-y)) dy  (4)

, Xi) exceed Y]

Let
u= (1— exp(—xz))y1 (5)

Then, we have

:_z( jf Uy du

1|s

22( JBeta( —i+%,i+1j (6)

where Beta(53 is the standard Beta function. After the
simplification, we can get

6& Kk [if 6 A
R =g e I)!m(m@ Jﬂ ™

This article is to obtain the estimates of Rsx via different
methods when the strength and stress variables follow Burr
type X distribution. This article is organized as: In Sections
111 and 1V, the maximum likelihood estimate and asymptotic
confidence interval of Rsx are obtained. The Bayesian
estimator using the MCMC method is provided in Section V.
Some simulation studies are presented in Section VI, and a
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Considering that the exact confidence interval of Rsy iS
difficult to obtain, similar to Efron[26], the delta method is

used.
IV. AN ASYMPTOTIC APPROACH USING THE DELTA METHOD
In order to obtain the asymptotic confidence interval of Ry
the delta method is used in this paper, and the MLE F’isyk in

real data example is presented in Section VII. In Section V111
Eq (14) is asymptotically normal distribution with variance
(15)

some conclusions are given
MAXIMUM LIKELIHOOD ESTIMATION (MLE) OF Rs
To obtain the MLE of R, some estimations of Burr type X

.
distribution should be obtained, and the samples can be
Var(R,,)=[G'1'G]

organized as
X11 XlZ Xlk Yl
X:21 X:22 X:Zk _and Y:z (8) as
an an Xnk Yn
aRsk aRsk H : :
Then, we can get where G’ = 8—9’,—‘ and | is Fisher’s information
1 2
L(6.6,1X.Y) H[Hf(xu)jg(y,) HHf(x,J)Hg(y, matrix as
= 2InL@,6) 8 nL(6,6,)
2
l<E 06, 06,00, (16)
_62 InL(6.6,) o*InL(6,,6,)
06,00, 00;

where the partial derivatives are
_InL(g,6,))_n
o

£ 3 InL(8,6,)) _nk
06? o7 062
% In L(Hl,Hz)j_O

&) __
oo

k 4-1
j{ [T(1-exp(- xu))}
i=1 j=1
E(_azlnL(ﬁl, ) _
06,06,

=ﬁﬁ201xij exp<_xij)(l exp( Xu))
1)

i2l j=1
xﬁZ@zyi exp(-y; ) (1-exp(-y) )02
i=1

>

n_k nk
=(20)™ [HHxijJexp[ PR
i=1 j=1 i=1 =1
n n n 021
x(292)”(HyiJexp[—Zy?j[ (1-exp(-y; )}
i i=1 i=1 1
9) Then, the Var of R, is computed as follows
Var(R,,)=[G'1'G |, .
nk 0 (R,
o6,

i=1
Take the log of both sides of Eq (9), then we can get
n k n k
INL(6,6,| X,Y)=nkIn2+nkIng, +> > Inx; = > > xi

i=1 j=1 i=1 j=1

_ aRs.k aRs,k 012

o6, ' 06, n | oRg,
0 o0,

+(6, —1)izk: In (1—exp(—x§))

i=1 j=1

=nIn2+nlné, +2In Y, — Zy, +(6, l)ZIn(l exp(-y7)) 2
2 (0R 2 (R
(10) — 0_1 s,k + 9_2 s,k
nk\ 06, n\ o6, (18)
Considering that the derivation of Rs, is very difficult, in
particular, for (s,k) = (1,3) and (2,4), the derivation of R, can

i=1
36,

j=0

By taking the derivatives of Eq (10), then we can get
oInL(6,,6,]X,Y) nk L
:%,2 ZZ'H(l exp(~ Xu)) be obtained as
1 i=1 j=1
(11) R, =
~36,+6,
olnL(84,6,|X,Y n 110,
(;02 )ZQ_J“;In(l_EXp(_y‘ )) R, 30,
2 2 0= S
(12) o6, (30,+06,)
Then, the MLE of 6, and 6. can be sovled from Eqgs (11) oR, 30
and (12) as S L
A nk 06, (36,+6,)
1~ n & 1202
> In(1-exp(-x})) R,, = 1
i1 j-1 (46, +6,)(36, + 6,)
and R, 126276, +26,)
A n = —
b,=—— 06, [(46?1 +6,)(36, + 92)]
2
> in(1-exp(-y)) @ R, 1206,(76,+26)) 9
Then, the MLE of Rsx can be sovled as 00, [(491 +6,)(30, + 92)]
Zk: {H[ é, Hl Then, we can get
t—=— A2 2
—in A 966 1 1
F(k ') b (14) Var(R;) = ———=— (— +—j
(36,+6,) n (20)

ca>| >

Volume 54, Issue 6, June 2024, Pages 1083-1088



TAENG International Journal of Applied Mathematics

and

Var(R,,) =

1446162 (76, + 26,)? ( 1 1) 1)

(46, +6,)36,+6,)|

n
Thus, we can get the following asymptotically distribution
as

Ry, — R
: ~N(0,2)

\/Qar(Rs )

Then, the asymptotic 100(1 —
Rs,k can be obtained as

(F”e_z

(22)
v)% confidence interval for

0R+2Z, 0, ) (23)

1-y/
where Z,_, is a quantile of standard normal distribution.
V. BAYESIAN ESTIMATORS OF Rs«

Suppose that Xi, Xz, -, Xn and Yy, Yz, -, Yn are two
independent random samples of sizes n and m, drawn from
Burr(6y) and Burr(6,), respectively. Then, the likelihood
functions of each sample can be obtained as

L (6) (29)"k(1‘[1‘[x.,}exp[ ZZX.,J

i=1 j=1 i=1 j=1

{ﬁﬁ(l_exp<_x;>)Tl

-1 j=21

n Kk G-
oc (260,)™ {Hn(l— exp(—xﬁ))} (24)
and

n

o= ([ o - [ e

« (26,)" {ﬁ(l—exp(—yf))}

i=1
Suppose that 8; and 6, are independent gamma prior with
the cumulative distribution functions as

(25)

n(&)—rtzl )9"11 exp(-béd), 6,>0 (26)
and
ﬂ(&z)—rk() 2)4932 exp(-h,6,), 6,>0 (27)

with 4 ~Gamma(a,,b) and 6, ~ Gamma(a,,b,).

Therefore, the joint density of the 6, and ;, X and Y can
be obtained as

L(6.6,:X.Y) =L (0)xL,(6,)x7(6)x7(6,)  (28)
From the Bayesian theorem, the joint posterior density of
61 and 0, can be obtained as

L(6,,6,;X,Y
L(6,6,]X.,Y)= (6,0, X.Y)

[7]. " L(6.0,:x.Y)dade,

o Hlnk+arl exp({bl _ i In (l— eXp(—Xu?))} HlJ
In(1-exp(-y, ))} sz (29)

x0,"% 7 exp [—[bz

Then, we can get

5 th

i=1

dd?
rE)r,) -

Then, we can get the posterior PDFs of 6, and 0, are as
follows

L(6,6,|X.Y)= 6°76,* " exp(~d,4, - d,6,) (30)

6, | X ~Gamma(c,, d,) (31)
and
6, Y ~Gamma(c,,d,) (32)
where
n_k
¢ =nk+a, 0 =b—> > In(1-exp(-x;)),

i=1 j=1

c,=n+a,, d, =b, —Zn:m(l—e)(p(—yiz))-
i=1

In order to calculate the Bayesian estimator for Rs,, we
apply the approach proposed by Geman & Geman [27] to the
sample by using the MCMC method. The procedure is
outlined as follows:

Step 1): Generate 61 from Gamma(c,,d,),
Step 2): Generate 6, from Gamma(c,,d,) .
Step 3): Repeat Steps 1 and 2, M times,

N N -1
49 ko kI i 0. )
Step 4): Let R{) = . k+ -2 — ,
p4): 4, & (k- 0!{1]}{ . JH

t=1,2,,M

Under the squared error loss function, the approximate
posterior mean, and posterior variance of Rs,x can be obtained
as

and

A 1M O e 2
V(Rs,k):_Z(Rs,k _E(Rs,k)) (33)
M3

Similar to Chen and Shao[28], we can get the credible

intervals of Rg as

[# (5 (-5))

where R and R 1—Z are ~ and 1-7 quantiles
2 2 2 2

(34)

®
of R, .

VI. SIMULATION STUDY

In this study, we performed a series of simulation
experiments to compare the performance of the MLE and the
Bayesian estimator for Rsk. These comparisons were made
across varying sample sizes of n=m=10, 15, 20, 25, 30 and
under different parametric settings of (61, 62) = (1.5,0.5),
(1.5,1.0), (1.5,2.0), (1.0,0.5), (2.0,0.5) and (3.0,0.5).

For the given sample sizes and parameter settings, when
(s,k) =(1,3), the true values of Ry3 are 0.9, 0.8182, 0.6923,
0.8571, 0.9231 and 0.9474, respectively. Similarly, when (s,k)
= (2,4), the true values of R4 are 0.8308, 0.7013, 0.5192,
0.7619, 0.8688, 0.9095.
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TABLE |
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES CASE 1
Methods MLE MCMC
(s, (nm) R AVR BIAS MSE EL cpP AVR BIAS MSE EL CP
(13) (10100 08182  goe7 00115 00036 02186 09316 07949  0.0493 00040 02157  0.935
(15,15) 0.8103 00079  0.0023  0.1774 09408 08032 00370 00023  0.1755 0.944
(20,20) 0.8123 00058  0.0017  0.1526 09418 08074 00319 00017  0.1514 0.946
(25,25) 0.8140  0.0042 00013  0.1360  0.9448 0.81 0.0285  0.0013  0.1351 0.958
(30,30) 0.8142 00040 00010  0.1241 009483 08111 00248 00010  0.1235 0.953
(24) (10100 07013 (gge2 00151 00076 03165 09311 06708 00688 00075 03066  0.935
(15,15) 0.6905  0.0108  0.0048 02590 009411  0.6802  0.0551  0.0048  0.2534 0.945
(20,20) 0.6935 00078  0.0035  0.2239 09401 06859 00468 00035  0.2203 0.957
(25,25) 0.6944  0.0069 00028 02004  0.9391 0.69 0.0422 00027  0.1972 0.941
(30,30) 0.6958  0.0055  0.0023  0.1858 009426  0.6922  0.0377 00023  0.1844 0.948
TABLE Il
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES CASE 2
Methods MLE MCMC
(s, (nm) R AVR BIAS MSE EL cP AVR BIAS MSE EL CP
(13) (10100 06923 o792 00131 00067 03023 09312 06729 00620 00064 02884 0945
(15,15) 06849 00074 00043 02486 09412 06812 00490 00039 02393 0954
(20,20) 0685  0.0073 00034 02149 09421 0683 00462 00032 02089  0.943
(25,25) 0.6878  0.0045  0.0027 01922 09426 06838 00405 0.0024  0.1885 0.946
(30,30) 06888 00034 00021 01754 09440 06872 00341 00019 01723  0.964
(24) (10100 05192 05083 00109 00104 03883 09228 04991 00809 00102 03651  0.936
(15,15) 05109  0.0083  0.0068  0.3210 09348 05063  0.0654 00066  0.3074 0.949
(20,20) 05121 00071 00055 02794 09374 05084 00600  0.0053  0.2701 0.943
(25,25) 05129  0.0064 00042 02508 09390 05114 00510  0.0040  0.2442 0.952
(30,30) 05144 00049 00035 02295 09473 05129 00472 00033 02243  0.949
TABLE Il
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES CASE 3
Methods MLE MCMC
(s,k) (n,m) R AVR BIAS MSE EL CP AVR BIAS MSE EL cP
13 (010 09231  pg159 00072 00011 01085 09360 09108 00241 9.30E-04 01100  0.939
(15,15) 09186  0.0045 592E-04  0.087 0.9437 09149  0.0185 5.60E-04 0.0879 0.953
(20,20) 0.9198 00033 4.14E-04 00741 09473 09176 00154 3.98E-04 00745  0.949
(25.25) 0.9206  0.0024 4.14E-04 00659 09483 09181 00136 2.95E-04 0.0666  0.951
(30,30) 0.921 0.0021  3.02E-04 0.0601 09433 09183 00133 249E-04 0.0608 0.949
(24) (10100 08688  (g579 00108 00026 01726 09388 08497 00375 240E-03 01728 0944
(15,15) 0.8623  0.0065  0.0017  0.1380 009448  0.8554 00300 140E-03 0.1390 0.946
(20,20) 0.8638 00051  0.0012 01188 09482 08573 00254 1.00E-03 0.1203 0.950
(25,25) 0.8645  0.0042 9.18E-04 0.1058 009504 08599 00222 7.95E-04 0.1067 0.951
(30,30) 0.8652  0.0035 7.01E-04 00962 009466  0.8623 00204 6.33E-04 0.0964 0.949
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TABLE IV
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES CASE 4

Methods MLE MCMC

(s,6) (n,m) R AVR BIAS MSE cpP AVR BIAS MSE EL CP

(13) (10200 09474 (09427 00047 479E-04 00770 0941 09379 00177 A475E-04 00794  0.947
(15,15) 0.9440  0.0034 292E-04 0.0611 0.944 0.9413 00135 295E-04 0.0625 0.948
(20,20) 0.9449  0.0025 2.03E-04 0.0525 0.948 0.9425  0.0116  2.04E-04 0.0535 0.949
(25.25) 0.9455  0.0019 151E-04 0.0465 0.943 0.9437 00100 148E-04 0.0472 0.946
(30,30) 0.9458  0.0016  127E-04 0.0423 0.947 0.9443  0.0090 1.26E-04 0.0428 0.947

24  (1010) 0809  0goo9 00085 00013 01255 0946 08935 00279 00014 01280  0.957
(15,15) 0.9043  0.0052  7.38E-04 0.0997 0.944 0.8925  0.0223  7.49E-04 0.1018 0.948
(20,20) 0.9060  0.0035  5.20E-04 0.0851 0.944 0.9025  0.0183 4.68E-04 0.0859 0.945
(25.25) 0.9066  0.0029  3.96E-04 0.0758 0.952 0.9045 00157  3.42E-04 0.0758 0.953
(30,30) 09071 00024 335E-04 00689 0947 09051 00144 257E-04 00691 0955

To compare the various estimation methods, we computed
the average bias, mean squared error (MSE), expected
lengths (ELs) of confidence intervals, and coverage
probability (CP) of Rsk. The results of the simulations are
presented in Tables I-1V, and the parameters in Case 1 are set
as 01=1.5, 6,=1.0, R13=0.8182, R,4=0.7013, the parameters in
Case 2 are set as 0;=1.5, 6,=2.0, R13=0.6923, R,4=0.5192,
the parameters in Case 3 are set as 61=2.0, 6,=0.5,
R13=0.9231, R,4=0.8688, the parameters in Case 4 are set as
6:1=3.0, 6,=0.5, R13=0.9474, R»4=0.9095.

From Tables I to IV, for both MLE and MCMC methods,
we can observe the following patterns: (1) the average
estimated value of reliability converges towards the true
value as the sample size increases; (2) with increasing sample
size, there is a consistent reduction in the AVR, the MSE, and
the EL; (3) when 6 is fixed and 6; is increased, we can find
that the MSE and EL are increasing; (4) when 6, is fixed and
61 is increased,we can find that the MSE and EL are
decreasing.

In addition, by comparing the MLE and MCMC methods,
it is evident that the MCMC method exhibits a greater
average bias than the MLE. However, the average mean
squared error (MSE) associated with the MCMC method is
lower compared to the MLE. Additionally, it can be observed
that the MCMC method yields slightly shorter average
expected lengths (ELs) and a marginally higher average
coverage probability (CP) than the MLE.

VIl. REAL DATA ANALYSIS

Real data set, as reported by Bennett and Filliben [29], was
considered by Tarvirdizade and Gharehchobogh [25] for the
single element model. In this paper, we employ the same
dataset to demonstrate the new model and method as follows:

Data Set 1: 3.051, 2.779, 2.604, 2.371, 2.214, 2.045, 1.715,
1.525, 1.296, 1.154, 1.016, 0.7948, 0.7007, 0.6292, 0.6175,
0.6449, 0.8881, 1.115, 1.397, 1.506, 1.528.

Data Set 2: 2.658, 2.434, 2.288, 2.092, 1.959, 1.814, 1.530,
1.366, 1.165, 1.041, 0.9198, 0.7241, 0.6403, 0.576, 0.5647,
0.5873, 0.8013, 1.002, 1.250, 1.347, 1.368.

By using the Kolmogorov-Smirnov test, Ref [25] showed
that Burr type X distribution fit the above two data sets well.
When (s,k) = (1,3) and (2,4), then, we can obtain the MLE of

the parameters as 91: 2.7998 and 92 =2.2861, and the point

estimates of Rskx under different cases can be obtained
accordingly.

Additionally, Table 6 presents the interval estimates for
Rsx under different cases. According to Table 6, it can be
observed that the lengths of the credible interval for the MLE
method and MCMC methods are approximately equal to 0.16
and 0.24 for Ry 3 and Rz.4, respectively. Based on Tables 5-6,
from the perspective of point estimation, we can find that the
MLE method and the MCMC method yield similar results for
R13 and Rz4. However, in terms of interval estimation, the
ELs obtained through MCMC are slightly shorter than those
obtained through the MLE method. Therefore, the MCMC
method is considered the preferable approach.

V.CONCLUSIONS

This paper focuses on estimating the reliability of a multi
element MSSM system, Ry, by using the MLE method and
the MCMC method. The stress and strength distributions in
the MSSM system are assumed to follow the Burr type X
distributions.

TABLEV
THE POINT ESTIMATES OF R UNDER THE DIFFERENT CASES
R1‘3 R2,4
MLE 0.7861 0.6528
MCMC 0.7837 0.6486
TABLE IV
THE POINT ESTIMATES OF R UNDER THE DIFFERENT CASES
MLE MCMC
Confidence Interval Confidence Interval
(EL) (EL)
Ri3 (0.7030, 0.8691) (0.6933, 0.8576)
(0.1661) (0.1643)
Ra4 (0.5331, 0.7725) (0.5247, 0.7599)
(0.2394) (0.2352)
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By comparing the performances of the different methods

via

an extensive simulation study, we can find that the

MCMC method demonstrates better performance than the
MLE method. Finally, in order to illustrate the effectiveness
of the developed model and methods, a real data set is
utilized.
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