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Abstract—This paper presents a decision-making approach 

grounded in rough set theory and evidential reasoning to ad-

dress the demand for expert decision-making in greenhouse 

environmental control systems. Furthermore, a deci-

sion-making model is developed by integrating the D-S evidence 

theory with an expert knowledge table for greenhouse envi-

ronmental control systems. The model's reasoning process 

encompasses continuous attribute discretization, expert deci-

sion table formation, attribute reduction, and evidence combi-

nation reasoning. Firstly, the fuzzy C-means clustering algo-

rithm is employed to discretize the original environmental data 

and cluster it. Subsequently, an attribute reduction algorithm 

based on information entropy is utilized to optimize the decision 

table by eliminating unnecessary conditional attributes in ex-

pert knowledge. The reduced indicators are then combined 

using evidential theory. Finally, suitable greenhouse control 

methods are determined by the confidence decision proposed by 

the D-S evidence theory. To assess the efficacy of this intelligent 

decision-making algorithm based on rough set and D-S evidence 

theory, its performance is compared with traditional SVM 

algorithms and small-shot learning algorithms. The results 

indicate that this proposed method significantly enhances the 

credibility of control decision-making processes, with an aver-

age running time of 0.002378s for the fusion decision algorithm 

and 0.017939s for the support vector machine (SVM) algorithm, 

respectively. The SVM accuracy rate after testing and training 

stands at 90.34%. Moreover, retraining based on information 

entropy attribute reduction leads to a correct decision rate 

increase of up to 100%. This method notably improves confi-

dence levels in decision-making processes while reducing un-

certainty and demonstrates reliability when applied in making 

decisions regarding greenhouse environments. 

Index Terms—Greenhouse systems control, Intelligent deci-

sion-making, Rough sets, D-S evidence theory 

I.  INTRODUCTION 
GRICULTURE is an important pillar industry of the 

country, and the intelligent decision-making technol-

ogy of the greenhouse influencing factors is the top priority 

of China's agricultural development[1].  
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At present, the majority of greenhouse environmental 

control strategies are centered on the greenhouse's internal 

model, with the primary objective of regulating external 

conditions for crop growth[2,6]. Expert decision-making 

systems play an important role in regulating the greenhouse 

microclimate environment and should provide a suitable 

environment for each influencing factor and crop to ensure its 

good growth[7,8]. 

However, the seamless integration of the monitoring in-

strument with greenhouse decision-making processes is 

hindered by delays, switching issues, and other challenges. 

Therefore, to reduce uncertainty in decision-making, it is 

crucial to utilize the raw data from this instrument for regu-

lating the greenhouse environment[9]. To enhance FRST 

applications and complement MCDM studies, we propose 

fuzzy rough set theory (FRST). By building upon this foun-

dation, we introduce new predictive decision-making models 

that combine fuzzy theory to effectively address complex 

problems encountered in such models[10]. This paper pre-

sents a novel approach to predictive decision-making that 

utilizes rough set theory for solving multi-attribute decisions 

through cluster analysis to identify categorical features and 

predict specific outcomes[11]. Rough sets have proven to be 

highly efficient in handling uncertain information, while also 

eliminating irrelevant data attributes[12]. They preserve the 

classification capability of information systems and signifi-

cantly support simulated data across multiple computing 

stages[13]. However, when dealing with issues related to 

multi-source evidence, data fusion analysis fails to classify it 

accurately; even if streamlined information is obtained, un-

certainty in decision-making arises from uncertain data, 

which makes accurate model building difficult[14]. D-S 

proof theory offers advantages in expressing uncertain and 

unknown situations, as well as leveraging knowledge or data 

from completely different sources. It establishes various 

aggregation rules within the field of decision-level data fu-

sion and device intelligence research while addressing un-

certainties associated with a basic probability distribution 

(BPA) required for threat assessment under the D-S proof 

theory[15]. 

In response to the aforementioned issues, this paper pro-

poses a decision-making method that combines rough sets 

with Dempster-Shafer's (D-S) evidence theory[16]. D-S 

evidence theory is a novel mathematical tool designed to 

address issues related to fuzziness and imprecision, effec-

tively handling data in uncertain situations[17]. Firstly, 

judgment indicators are reduced through attribute reduction 

recognition ability, eliminating irrelevant conditional attrib-
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utes selected after D-S evidence theory reduction. Subse-

quently, the decision of basic credibility allocation is em-

ployed to assess the state of the greenhouse environment[18]. 

This facilitates the selection of appropriate control categories 

and enhances decision-making accuracy[19]. Rough sets are 

employed to construct basic probability distribution func-

tions and calculate the degree of support among various 

influencing factors within the greenhouse[20]. The improved 

D-S evidence theory is then applied to compute the created 

BPA allocation matrix, constructing a confidence matrix that 

influences the combination of greenhouse factors. Finally, 

numerical examples are provided to verify the correctness 

and superiority of this method[21]. 

The first section introduces the fundamental concepts of 

rough set theory and D-S evidence theory, presenting a model 

for assessing greenhouse environments based on functional 

relationships. The second section provides an in-depth de-

scription of decision-making methods derived from rough set 

theory and evidence theory. The third section presents results 

obtained from the application of rough set-based techniques 

in conjunction with D-S evidence theory within a greenhouse 

system; these results are validated using experimental data. 

Finally, the fourth section concludes by demonstrating the 

feasibility of this fusion algorithm for controlling decisions 

related to greenhouse environments. 

II.  SYSTEM REQUIREMENTS AND PARAMETERS ANALYSIS 

A. Basic Concepts Of The Rough Set Theory   

Polish scientist Z. Polack developed rough set theory, a 

novel mathematical approach capable of addressing ambi-

guity and imprecision in problems. Notably, this theory does 

not necessitate specifying the numerical description of cer-

tain properties in advance, but rather, directly originates from 

the set of descriptions of a given problem. It employs indis-

tinguishable relationships and indistinguishable classes to 

determine the approximate domain of the problem and un-

cover the internal laws within. This has spurred significant 

advancements in data processing and analytics. Attribute 

reduction and rule reduction are essential research topics 

within rough set theory. Owing to the presence of redundant 

knowledge in the knowledge base, this information can 

consume resources and cause losses, as well as potentially 

interfere with accurate judgments made by humans or com-

puters. The objective of attribute reduction is to ensure that 

the original data's decision classification capability remains 

unaltered, while unnecessary conditional attributes are re-

moved. This process does not alter the dependency between 

decision attributes and conditional attributes[22]. 

Definition 1: Let I = (C∪D), where C and D represent 

conditional attributes and decision attributes, respectively. If 

c∈C, 𝛾𝑐(𝐷) = 𝛾𝑐−[𝑐](𝐷), c is in C can be reduced, which 

means that any c∈C is not advisable. In this case, C is con-

sidered independent; otherwise, C is related. The sum kernel 

consists of all the irreducible relations in C and is referred to 

as the nuclear set or CORE(C). Knowledge divisions P and 

Q are derived on the domain U and X and Y, where X = 

U/ind(P) = {𝑋1, 𝑋2,⋯ , 𝑋𝑛}，and Y=U/ind(Q)={ 𝑌1, 𝑌2 , ⋯, 
𝑌ℎ}. Consequently, the probability distribution of P and Q on 

the algebra of subsets of the domain U can be denoted 

as 𝜎[23]. 

     [𝑋: 𝑝] = [
𝑋1 𝑋2 ⋯ 𝑋𝑛

 𝑝(𝑋1) 𝑝(𝑋2) ⋯ 𝑝(𝑋𝑛)
] 

[𝑌: 𝑝] = [
𝑌1 𝑌2 ⋯ 𝑌ℎ

 𝑝(𝑌1) 𝑝(𝑌2) ⋯ 𝑝(𝑌ℎ)
]             (1) 

 𝑝(𝑋𝑖) =
|𝑋𝑖|

|𝑈|
, 𝑖 = 1,2, ⋯ , 𝑛; 𝑝(𝑌𝑗) =

|𝑌𝑗|

|𝑈|
, 𝑗 =

1,2, ⋯ , ℎ. 

Definition 2: The information entropy H(P) of knowledge 

P is defined as: 

𝐻(𝑃) = − ∑ 𝑝𝑛
𝑖=1 (𝑋𝑖)log 𝑝(𝑋𝑖)                 (2) 

Definition 3: The conditional entropy H ((Q│P)) of 

knowledge Q relative to knowledge P is defined as: 

𝐻( 𝑄 ∣∣ 𝑃 ) = − ∑ 𝑝

n

𝑖=1

(𝑋𝑖) ∑ 𝑝

ℎ

𝑗=1

( 𝑌𝑗 ∣∣ 𝑋𝑖 ) log 𝑝( 𝑌𝑗 ∣∣ 𝑋𝑖 ) 

                                              (3) 

where 𝑃(𝑌𝑗 ∣ 𝑋𝑖) =
|𝑌𝑗∩𝑋𝑖|

|𝑋𝑖|
, 𝑖 = 1,2, ⋯ , 𝑛，𝑗 = 1,2, ⋯ , 𝑛. 

B. Basic Concepts Of The D-S Evidence Theory 

G. Sanger introduced the concept of trust function into D-S 

evidence theory, representing a significant improvement over 

D-S evidence theory—an extension of probability theory. 

This novel approach possesses a weaker nature than proba-

bility theory, yet it enables objective reflection of uncertain-

ties through rigorous logical reasoning, thereby establishing a 

set of scientific mathematical methods suitable for handling 

multi-data fusion. The Bayesian inference method serves as 

the foundation for D-S evidence theory, with Bayesian con-

ditional probability playing a crucial role in its realiza-

tion[24]. The concept of basic probability allocation (BPA) 

refers to the degree of trust assigned by the framework to 

each proposition, while m(A) represents the basic credible 

number that reflects the reliability of A. The two sources of 

evidence for the basic probability distribution function are 

m1 and m2. The calculation of this function is derived 

through the existing D-S evidence theory combination rule, 

which serves as the fundamental method for D-S evidence 

fusion[25]. 

Definition 1: Let U be the recognition framework. The 

function m: 2u → [0,1]  satisfies the following conditions： 

m(𝜑) = 0, ∑ mA⸦U (𝐴) = 1, m(𝐴) = 0 . The basic assign-

ment of A and m (A) = 0 denotes the degree of trust in A, also 

known as the mass function.  

Definition 2: Belief Function  

     Bel: 2𝑢 → [0,1]                               (4) 

     Bel(𝐴) = ∑ 𝑚(𝐵)𝐵⊂𝐴 = 1(∀A ⊂ U)              (5) 

The sum of the probability distribution functions repre-

senting all subsets of A.  

Define 3: Synthesis of multiple trust functions 
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Let Bel1, ⋯, and Beln be the trust functions on the same 

recognition framework Θ. The basic credibility of each 

proposition on the framework is assigned as m1, ⋯, man. If 

Bel1⊕⋯⊕Beln is meaningful, we can calculate the basic 

credibility distribution after D-S evidence theory synthesis 

recorded as m for ∀A∈Θ, A≠ 𝜙, A1, …, An∈Θ can be 

trusted by Eq. (6). 

𝑚(𝐴) =
1

𝐾
∑ 𝑚1

𝐴∩𝐴2∩⋯∩𝐴𝑛𝐴

(𝐴1)𝑚2(𝐴2) ⋯ 𝑚𝑛(𝐴𝑛)

𝐾 = ∑ 𝑚1

𝐴∩𝐴2∩⋯𝐴𝑛≠𝜙

(𝐴1)𝑚2(𝐴2) ⋯ 𝑚𝑛(𝐴𝑛)
      (6) 

Decisions based on basic confidence allocation ∀𝐴1, 𝐴2 ∈
Θ.  

      𝑚(𝐴1) = 𝑚𝑎𝑥{𝑚(𝐴𝑖), 𝐴𝑖 ∈ Θ}            (7) 

𝑚(𝐴2) = 𝑚𝑎𝑥{𝑚(𝐴𝑖), 𝐴𝑖 ∈ Θ 且 𝐴𝑖 ≠ 𝐴1}     (8) 

{

𝑚(𝐴1) − 𝑚(𝐴2) > 𝜀1

𝑚(Θ) < 𝜀2                   

𝑚(𝐴1) > 𝑚(Θ)           
                 (9) 

If equation (6) is satisfied, then A1 is the result of the 

verdict, where 𝜀1 and 𝜀2 are preset thresholds. 

In D-S evidence theory, the primary concern is determin-

ing the fundamental probability distribution function of the 

focal element. Simultaneously, gathering evidence and dis-

tributing basic credibility depend on domain experts' expe-

rience or historical data, making subjectivity challenging to 

avoid. However, due to the characteristics of rough set theory, 

we can employ the concept of membership degree to enhance 

it. By analyzing an object's membership degree, rough set 

theory can be refined and utilized to identify a recognition 

framework that achieves obtaining a basic credibility distri-

bution[26]. In summary, rough set theory is well-suited for 

integration with D-S evidence theory, as it aids in resolving 

significant issues associated with the challenges of evidence 

acquisition and also addresses errors resulting from expert 

judgment based on experience. 

III.  THE INTEGRATION OF ROUGH SET AND EVIDENCE 

THEORY 

A. Discretization Method Based On Fuzzy C-Means Algo-

rithm And Membership Degree Overlap 

The data preprocessing method employed in this study is 

data regression, which typically involves dimensionality 

reduction and data compression. This implies that 

researchers can utilize smaller conditional attributes, value 

ranges, and less data to convey the same or similar 

information as the original dataset. The key feature of rough 

set theory is reducing conditional attributes by exchanging 

equivalence classes with objects for compressing data. By 

leveraging expert knowledge and considering factors 

affecting the greenhouse, we can eliminate both conditional 

attributes and redundant attributes through analysis of the 

expert table. The attribute reduction of the expert knowledge 

table data on greenhouse influence factors is carried out 

using rough set theory as the model frontier. Subsequently, 

the D-S evidence theory and various greenhouse influence 

factors are applied to obtain the essential confidence 

distribution of the combined result. The decision-making 

process based on the rough set and D-S evidence theory 

decision model is roughly divided into seven steps, as shown 

in Fig.1. 

 

Fig.1. Decision model based on rough set and D-S evidence 
theory. 

1)Discretization of continuous attributes: Rough set theo-

ry can only process attribute values with discrete character-

istics, while environmental index data is usually continuous 

in expert knowledge. Therefore, before attribute reduction 

can be performed, the data must be discredited. In this paper, 

we propose a new method for continuous attributes based on 

the Fuzzy C-means clustering method. The fuzzy C-means 

clustering method is used to process continuous data by as-

signing them to clusters where all the data have the highest 

similarity within each cluster and different attribute values 

across clusters. The main difference between the fuzzy 

C-means clustering algorithm and the ordinary C-means 

clustering algorithm is that the fuzzy C-means clustering 

algorithm utilizes fuzzy partitioning. This means that each 

given data point uses a degree of membership ranging from 

[0, 1] to determine its extent of belonging to each group. 

The membership function is a function that indicates the 

extent to which an object x belongs to the set A, typically 

denoted as μA(x) its argument range encompasses all objects 

that may belong to set A, and the value range is [0,1], that is 

0≤ μA(x) ≤1. The fuzzy C-means clustering algorithm di-

vides n vectors (i=1, 2, . . . , n) into c fuzzy groups and finds 

the cluster center of each fuzzy group, then minimizes the 

value function of the dissimilarity index. Therefore, the val-

ue function of the fuzzy C-means clustering algorithm as Eq. 

(10): 

𝐽(𝑈, 𝑐1, ⋯ , 𝑐𝑐) = ∑ 𝐽𝑖

𝑐

𝑗=1

= ∑.

𝑐

𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑑𝑖𝑗

2

𝑎

𝑗

                       (10) 

The basic principle of fuzzy C-means clustering algo-

rithm is as follows: let X={𝑥1,𝑥2,⋯,𝑥𝑛}∈R P is the object to 
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be classified, where P is the dimension of the object and c is 

the number of clusters given by the user. C={𝑐1, 𝑐2,⋯, 𝑐𝑖}, 

𝑐𝑖 is the clustering center of class I, and 𝑢𝑖𝑗 Is the degree 

of membership of the js object belonging to class I. The 

fuzzy C-means algorithm performs clustering by continu-

ously adjusting the centroid and membership functions 

through iterative calculation of 𝑐𝑖 and 𝑢𝑖𝑗. 

where 𝑢𝑖𝑗 is [0,1], Ci is the cluster center of I in the 

fuzzy C-means cluster, and 𝑑𝑖𝑗 = ||𝑐𝑖 − 𝑥𝑗|| Is the Euclid-

ean jetties between the first cluster center and the jet data 

point. M>=1 is a weighted index. The calculation of the 

Center Ci is as Eq. (11): 

           𝐶𝑖 =
∑ 𝑣𝑖𝑗

𝑚𝑋𝑗

𝑛

𝑗−1

∑ 𝑣𝑖𝑗
𝑚

𝑛

𝑗=1

                   （11） 

The membership degree is calculated as follows Eq. (12): 

  𝑈𝑖𝑗 =
1

∑ (
𝑐

𝑘−1

𝑑𝑖𝑗

𝑑𝑘𝑖
)2/(𝑚−1)

                 (12) 

                                                             

2) Formation of Expert Decision Tables: The discredited 

expert knowledge can be expressed as S=(U, H, W, F), 

where S is the knowledge expression system corresponding 

to the greenhouse environment control expert knowledge. 

U={x1, x2,..., xn} is the domain, corresponding to the set of 

greenhouse environmental control objects; H=C∩D is the 

attribute set, C∩D=Ø, C={ck, k=1,2,..., m} is the condition-

al attribute set, corresponding to the greenhouse environ-

ment indicator attribute set; D={d} is the decision attribute 

set, corresponding to the greenhouse control decision attrib-

ute values; W is the set of all attribute ranges; F is the in-

formation function, which determines the value of each ob-

ject in U under each attribute. 

3)Attribute reduction is the process of representing the 

decision attributes of a decision system in their simplest 

form, without losing any information and considering their 

dependence or association with the set of conditional attrib-

utes. The reduction of a decision system may not be unique; 

there can be multiple sets of reductions, and the intersection 

of all reductions is referred to as the kernel. This article ap-

plies an attribute reduction algorithm based on information 

entropy to achieve the reduction of greenhouse environ-

mental control decision tables. 

4) Evidence combination reasoning: Based on the data 

reduction of the evidence theory, the basic confidence func-

tion of each attribute is combined into a smaller subregion. 

The fuzzy C-means clustering algorithm is then applied after 

continuous data discretization to determine the category 

with the highest membership degree for each original data 

point in the discretion sample. This process affects the dis-

credited data sample and allows for more effective analysis 

as a discrete set. Finally, based on these synthesis results, the 

decision type is determined. The basic idea is as follows: (1) 

constructing a cognitive framework according to the problem; 

(2) establishing a reliability distribution function based on 

expert experience; (3) classifying each focal element based 

on data collected from different sources of evidence to de-

termine its classification basis. (4) Synthesizing the basic 

confidence allocation value according to the principle of 

evidence consolidation, and (5) determining the final deci-

sion-making result based on the judgment criterion of basic 

confidence assignment[27]. 

B. Greenhouse influence factors control expert knowledge 

The typical solar greenhouse selected in Northwest China 

is shown in Fig.2. This type of greenhouse consists of a wall 

and a single layer of transparent plastic film. The actuator 

includes a film rolling motor, a fan, and a wet curtain pump. 

Additionally, a special controller is added to collect envi-

ronmental information within the greenhouse, implement 

decision-making methods based on rough sets and evidence 

theory, and drive the action of the actuator according to the 

decisions made. This leads to the creation of an expert 

knowledge table on factors that affect greenhouse control, as 

presented in Table I, consisting of a total of 12 sets of sam-

ples. Each group contains six greenhouse effect factors and 

determines a decision outcome based on these influencing 

factors. The greenhouse effect factors include temperature, 

humidity, light intensity, soil temperature, soil moisture, and 

CO2 volume fraction all contributing to four possible deci-

sion results: opening the roller blind, opening the roller 

shutter and starting the fan, starting the fan only, or taking no 

action with regards to the wet curtain. Table I provides data 

on greenhouse influencing factor indicators along with their 

corresponding decision outcomes. However, it is challenging 

for users to comprehend the information contained within 

this data and utilize it directly for decision-making purposes. 

 

Fig.2. Solar Greenhouse in Northwest China
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TABLE I 

EXPERT KNOWLEDGE TABLE ON GREENHOUSE IMPACT FACTOR CONTROL 

Number Temperature 

/°C 

Humidity 

/% 

Light inten-

sity/klx 

Soil 

temperature/ °C 

Soil 

humidity/% 

Carbon 

dioxide/ 

(μL · L-1) 

Decision- 

making 

result 

1 31.5 76.9 11.2 28.2 52 472 1 

2 32.8 76.2 12.8 29.1 53 433 1 

3 29.2 80.1 8.2 27.4 56 511 1 

4 35.1 68.0 14.8 30.2 57 355 2 

5 36.0 61.5 17.3 30.9 56 319 2 

6 34.7 74.2 13.2 29.9 53 384 2 

7 38.2 50.0 25.9 34.0 58 263 3 

8 42.3 46.9 39.2 35.2 54 259 3 

9 37.5 56.1 19.8 31.5 57 281 3 

10 24.9 59.3 5.9 23.5 54 389 4 

11 27.0 52.3 8.2 26.4 54 392 4 

12 25.1 60.2 3.1 22.9 57 399 4 

Note: The data presented in Table I encompasses green-

house environmental indicators and their correlations. 

However, the implicit information within the data is not 

easily comprehensible to users, rendering it challenging for 

direct decision-making. Categories 1 to 4 denote curtain 

opening, curtain and door opening with fan initiation, fan 

activation alone, and curtain wetting without action, respec-

tively. Employing the fuzzy C-means clustering algorithm, 

Table I is segmented into 4 clusters, each corresponding to a 

distinct number of decision outcome categories.  

The algorithm generates a cluster center with a 4-level 

return value, and each sample's membership function is as-

signed to one of the 4 cluster centers. Consequently, classi-

fying samples with the highest membership allows deriving 

their corresponding values and transmitting them from an 

initial continuous variable space to a discrete feature space. 

This spatial transformation facilitates the exportation of the 

corresponding decision table, as illustrated in Table II. It is 

noteworthy that Table II contains no incompatible samples, 

suggesting that the level of aggregation is a suitable balance.
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TABLE II 

GREENHOUSE IMPACT FACTOR CONTROL DECISION TABLE 

Number Temperature 

/°C 

Humidity 

/% 

Light inten-

sity/klx 

Soil 

Temperature 

/ °C 

Soil 

humidity/% 

Carbon 

dioxide/ 

(μL · L-1) 

Decision-making 

result 

1 2 4 2 2 2 4 1 

2 2 4 2 3 1 3 1 

3 2 4 1 2 4 4 1 

4 3 3 2 3 2 2 2 

5 3 2 2 3 3 2 2 

6 3 4 2 3 1 3 2 

7 4 1 3 4 4 1 3 

8 4 1 4 4 1 1 3 

9 3 2 3 3 3 1 3 

10 1 2 1 1 2 3 4 

11 1 2 1 2 3 3 4 

12 1 2 1 1 4 3 4 

IV.  ILLUSTRATIVE RESULTS 

A. Intelligent Decision-Making Based On Rough Set And D-S 
Evidence Theory 

For the sake of calculation convenience, symbols a, b, c, d, 

e, f, and g are employed to represent temperature, relative 

humidity, illuminance, soil temperature, soil moisture con-

tent, carbon dioxide volume fraction, and decision category. 

Table 2 is reduced using an attribute reduction algorithm 

based on information entropy. First, calculate the mutual 

information I(C, D) between the conditional attribute C and 

the decision attribute D as follows: I(C, D) = H(D) - H(D|C). 

Then calculate CORED(C), which is the kernel of C relative 

to D. Let B = CORED(C). Next,calculate I(B, 

D)=H(D)-H(D|B), For each calculate∀𝑐𝑖 ∈ (𝐶 ∖ 𝐵), 𝐼(𝑐𝑖 , 𝐷 ∣

𝐵) = 𝐻(𝐷 ∣ 𝐵) − 𝐻(𝐷 ∣ 𝐵 ∪ {𝑐𝑖}), 𝑐𝑚 = arg 𝑚𝑎𝑥
𝑐𝑖∈𝐶\𝐵

𝐼(𝑐𝑖 , 𝐷 ∣

𝐵). Update B by adding ci to it: let B=B∪{ci}, The output 

property with the largest entropy reduction value is {c, f}, 

where c and B have 7 attribute combinations with f and B.    

Finally, if I(B∪C, D)=I((B∪F, D )=I(C, D), then only 

the decision categories related to {temperature, illuminance} 

and {temperature, carbon dioxide volume fraction} are con-

sidered; other conditional properties are not relevant. 

During the intelligent control decision of greenhouse in-

fluencing factors, the influencing factors in the whole 

framework indicate which control method should be adopt-

ed. Therefore, the whole framework can be written as 

{L(k),k=1,2,3,4} in Table 1, k is the result of four kinds of 

decisions. The power set of basic reliability distribution 

function under greenhouse affecting factors control deci-

sions recognition framework expresses the support degree of 

the decision category in the greenhouse and m( 𝜙 )=0, 

∑ 𝑚(𝐴𝐴⊂Θ )=1, in which m (1), m (2), m (3), and m (4) rep-

resent the basic reliability distribution of greenhouse deci-

sion factors, and m (Θ) expresses the greenhouse effect of 

the uncertain factor of a basic probability distribution.  
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In this paper, the mean values of environmental indicators 

corresponding to each decision category in Table 1 are used 

to divide the basic confidence intervals. Let a, b, and c be 

temperature, light intensity, and CO2 volume fraction re-

spectively. Taking temperature as an example, the basic 

confidence interval is divided by the mean value of envi-

ronmental indicators corresponding to each decision cate-

gory. The sets of temperature values corresponding to M(1), 

M(2), M(3) and M(4) are  

{31.5 ℃, 32.8 ℃, 29.2 ℃}, {35.1 ℃, 36.0 ℃, 34.7 ℃}, 

{38.2 ℃, 42.3 ℃, 37.5 ℃}, {24.9 ℃, 27.0 ℃, 25.1 ℃}. 

The average values of each set are calculated to be 31.2 ℃, 

35.3 ℃, 39.3 ℃, and 25.3 ℃ respectively. The basic credi-

bility of temperature factors is established as follows: 

When a <  25.3 ℃, then m (4) = 0.9, m (1), m (2), m (3) 

are zero, m (Θ) = 0.1. 

When 25.3 ℃  ≤ a ≤ 31.2 ℃, m (4) = [1-(a-25.3) / 

(31.2-25.3)]× 0.9, m (2), m (3) are zero, m (1) = [(a-25.3) / 

(31.2-25.3)]× 0.9, m (Θ) = 0.1. 

When 31.2 ℃ ≤ a ≤ 35.3 ℃, m (3), m (4) are zero, m 

(2)= [(a-31.2) / (35.3-31 .2)]×0.9, m (1) = [1-(a-31.3) / (35.3 

-31.3)]×0.9, m (Θ) = 0.1. 

When 35.3 ℃ ≤  a ≤39.3 ℃, m (1), m (4) are zero, m (3) 

= [(a-35.3) / (39.3-35.3)]× 0.9, m (2) = [1-(a-35.3) / (39.3 

-35.3)]×0.9, m (Θ) = 0.1. 

When 39.3 ℃ ≤ a, m = 0.9 (3), m (1), m (2), m (4) are 

zero, m (Θ) = 0.1.  

The data collected at different times is A1={30.2℃，

9.4clx，438 μL/L}, A2={33.8℃，12.4clx，358 μL/L}, 

A3={38.1℃，20.8clx，283 μL/L}, A4={23.0℃，8.5clx，

371 μL/L}.Table III is shown as follows: Index a, b, and c 

represent temperature, illuminance, and carbon dioxide 

volume fraction respectively; A1, A2, A3, and A4 represent 

the four groups of experimental samples;m(1), m(2), m(3), 

m(4), and m(Θ) represent the support and uncertainty of 

opening the rolling curtain, opening the rolling shutter door 

to start the fan, starting the fan and wetting the curtain, re-

spectively. Similarly, basic reliability calculations can be 

performed for both light intensity and CO2 volume fraction.     

In this case, the indexes a, b, and c represent temperature, 

light intensity, and CO2 volume fraction respectively. 

TABLE III 

BASIC CREDIBILITY ALLOCATION BEFORE THE COM-

BINATION 

Sample Combine m(1) m(2) m(3) m(4) m(Θ) 

A1 a 0.747 0 0 0.153 0.1 

A1 b 0.639 0 0 0.261 0.1 

A1 c 0.552 0 0 0.348 0.1 

A2 a 0.329 0.571 0 0 0.1 

A2 b 0.579 0.321 0 0 0.1 

A2 c 0 0.572 0 0.428 0.1 

A3 a 0 0.270 0.630 0 0.1 

A3 b 0 0.505 0.395 0 0.1 

A3 c 0 0.179 0.721 0 0.1 

A4 a 0 0 0 0.9 0.1 

A4 b 0.384 0 0 0.516 0.1 

A4 c 0 0.617 0 0.383 0.1 

Finally, through the decision based on the allocation of 

basic credibility, we can determine the decision category 

and select the threshold value: 𝜀1 = 0.2, 𝜀2 = 0.03, Table 

IV is shown as follows, where L(1), L(2), L(3), and L(4) are 

the decision results, L(1) express opening rolling curtain, 

L(2) represents opening rolling curtain and starting the fan, 

L(3) corresponds to starting fan and wet curtain, and L(4) 

corresponds to no action[28].
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TABLE IV 

D-S EVIDENCE COMBINATION AND DECISION MAKING 

Sample Evidence 
Combination m(1) m(2) m(3) m(4) m(Θ) Decision 

Result 

A1 a⊕b 0.89932 0 0 0.09124 0.00944 L(1) 

A1 a⊕c 0.85113 0 0 0.13438 0.01449 L(1) 

A1 a⨁b⨁c 0.91647 0 0 0.08327 0.00026 L(1) 

A2 a⊕b 0.58793 0.38284 0 0 0.02923 L(1) 

A2 a⊕c 0.08732 0.81573 0 0.06379 0.03316 L(2) 

A2 a⨁b⨁c 0.16793 0.81674 0 0.01374 0.00159 L(2) 

A3 a⊕b 0 0.42378 0.56825 0 0.00797 unknown 

A3 a⊕c 0 0.15643 0.83797 0 0.00560 L(3) 

A3 a⨁b⨁c 0 0.18479 0.81457 0 0.00064 L(4) 

A4 a⊕b 0.05377 0 0 0.92976 0.01674 L(4) 

A4 a⊕c 0 0.13893 0 0.84267 0.01840 L(4) 

A4 a⨁b⨁c 0.01643 0.03766 0 0.94376 0.00215 L(4) 

From Table IV, it can be observed that the fusion decision 

algorithm proposed using the D-S evidence theory has a 

significant influence on the judgment results, which are de-

termined based on four samples. As in Table I, in the com-

bination of evidence for {a, b} in sample A2, the difference 

between m (1) and m (2) is more than 0.2, m (2) is less than 

0.03, and m (1) is much larger than m (2), so it is concluded 

that the combination of L (1), {a, c} is concluded. In con-

trast, the difference between m (2) and m (1) is more than 

0.2, m (1) is less than 0.03, and m (2) is much larger than m 

(2), so the decision result is L (2), because the result of the 

two combined decisions is not the same, so the combination 

needs to be further integrated. On m(1) and m(2), the basic 

probability distribution values are 0.16793, and 0.81674, 

respectively, and the difference between m (2) and m (1) is 

greater than 0.2, m (1) is less than 0.03, and m (2) is much 

larger than m (2), so the decision result should be L (2). In 

addition, it can be seen from the change of m (Θ) in Table 

III that after the fusion of decision by D-S evidence theory, 

m (Θ) has decreased significantly, and after the combination 

of {a, b, c}, the uncertainty of the reduction of each set of 

attributes in the three sets of combined decision attributes 

will be reduced relative to the two sets of combined decision 

attribute sets. Three sets of combined decision attributes, 

each of which introduces less uncertainty than two sets of 

combined decision attributes. Table IV shows that the error 

value changes from 10-2 to 10-3. Therefore, we believe that 

the D-S synthesis of multiple indicator sets can effectively 

reduce the uncertainty of decision-making and improve the 

accuracy of decision-making. 

Fig.3. is a comparative diagram illustrating the basic reli-

ability of key decision attributes, namely temperature, light 

intensity, and carbon dioxide volume fraction, when the 

decision outcome is L(1), as well as the basic reliability 

generated after combining evidence using D-S evidence 

theory. 

 

Fig.3. Basic reliability changes before and after the combi-

nation of M (1). 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 6, June 2024, Pages 1240-1250

 
______________________________________________________________________________________ 



 

The findings from Fig.3. suggest that the basic reliability 

distribution following the D-S evidence combination exhibits 

a higher peak value, thereby bolstering the system's deci-

sion-categorization capacity. Furthermore, each influencing 

factor demonstrates an enhanced peak in basic reliability 

following the combination with the basic credibility at the 

initial point. This suggests a heightened decision-making 

precision prior to the fusion process. The D-S evidence fu-

sion significantly augments decision-making accuracy and 

effectively mitigates issues of miscalculation or the inability 

to make accurate assessments. 

B. Comparative Analysis With Svm Algorithm 

In this study, we comparatively evaluate the SVM algo-

rithm for small-scale prototype learning against the deci-

sion-making method grounded in rough set theory and D-S 

evidence theory. Firstly, the raw data from Table I are em-

ployed to train and test the support vector machine, with the 

samples presented in Tables V-VI. Subsequently, these-  

models are utilized to train and test the classifier. The optimal 

classification parameters are determined through the evalua-

tion of the classifier's performance. The results suggest that 

the support vector machine is ineffective in learning and 

applying expert knowledge under sample conditions. By 

leveraging the rough set theory and the decision-making 

approach of D-S evidence theory, an experiment was con-

ducted focusing on moisture, soil temperature, and soil 

moisture, excluding Table I. The achieved decision rate 

reached 100%. These findings demonstrate that this method 

can successfully eliminate unnecessary conditional attributes 

and significantly enhance the alignment between conditional 

attributes and decision attributes. On this basis, the rough set 

method, D-S evidence theory, support vector machine, and 

other algorithms are employed for classifying samples A1, 

A2, A3, and A4. As illustrated in Table VII, the average 

elapsed time is 0.002378 seconds and 0.017939 seconds, 

respectively. In comparison, the support vector machine 

approach proposed in this study, which is based on fusion 

methodology, exhibits lower computational requirements 

and is less complex than the latter[29]. 

TABLE V 

TEST SET DATA IN SVM ALGORITHM 

Test Set Date 

0.05377 0 0 0.92976 0.00674 

0 0.13893 0 0.84267 0.01840 

0.01643 0.03766 0 0.94376 0.00215 

TABLE VI  

THE TRAINING SET DATA IN THE SVM ALGORITHM 

Training Set Date 

0.89932 0 0 0.09124 0.00944 

0.85113 0 0 0.13438 0.01449 

0.91647 0 0 0.08327 0.00026 

0.58793 0.38284 0 0 0.02923 

0.08732 0.81674 0 0.01374 0.00159 

0.16793 0.81674 0 0.01374 0.00159 

0 0.42378 0.56825 0 0.00797 

0 0.15643 0.83797 0 0.00560 

0 0.18479 0.81457 0 0.00064 

0.05377 0 0 0.92976 0.00674 

0 0.13893 0 0.84267 0.01840 

0.01643 0.03766 0 0.94376 0.00022 
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TABLE VII 

COMPARISON OF DECISION-MAKING FACTORS OF GREEN-

HOUSE INFLUENCE 

Methods D-S evidence 

fusion 

SVM algorithm 

Accuracy 100% 90.34% 

Decision Time 0.002378s 0.017939s 

The 12 groups of greenhouse influencing factor data are 

processed and compared with expert knowledge. If the deci-

sion result obtained by the algorithm aligns with the expert 

knowledge, the recognition is considered accurate. Ulti-

mately, both approaches can lead to the same correct decision 

result. The decision algorithm proposed in this study, based 

on rough set theory and D-S evidence theory, can allocate 

conflicting information with limited professional knowledge 

and make effective decisions in such cases to achieve accu-

rate results. This method is feasible for controlling green-

house-influencing factors. Furthermore, the decision-making  

outcomes of the D-S evidence theory adapt to the uncertainty 

of greenhouse decision-making factors. Employing D-S  

evidence combinations with multiple attribute sets can ef-

fectively reduce uncertainty in decision-making results, 

thereby enhancing judgment accuracy[30]. 

V.  CONCLUSIONS 

The present study proposes a novel approach to controlling 

greenhouse environments, grounded in rough set theory and 

evidence theory. Initially, it investigates data processing 

techniques for fuzzy c-means (FCM) clustering of continuous 

data and employs rough set theory to define properties and 

generate decision rules from the original dataset. Subse-

quently, the information entropy reduction method is applied 

to expert knowledge. Conclusively, the decision-making 

process employs Dempster-Shafer (D-S) evidence fusion to 

determine the optimal control method based on basic confi-

dence distribution, decision category identification, and se-

lection. To compare and verify the decision-making out-

comes, the support vector machine (SVM) algorithm is uti-

lized for processing the same dataset. The proposed deci-

sion-making method, based on rough set theory and D-S 

evidence, demonstrates significantly lower operational costs 

and computational complexity compared to the SVM algo-

rithm while exhibiting better processing effectiveness. 

1) The reasoning decision-making method proposed in this 

study enables efficient decision-making by reasonably con-

figuring conflicting information under conditions of limited 

expert knowledge, demonstrating its feasibility for green-

house environment control.  

2) The attribute reduction method of information entropy 

proposed in this study minimizes unnecessary influencing 

factors in greenhouse environmental control decision-making, 

simplifies decision tables, effectively reduces the calculation 

requirements for evidence theory, and achieves a 100% cor-

rect decision rate through entropy property reduction, read-

justment, and further testing.  

3) The evidence theory derivation results are tailored to the 

uncertainty characteristics of greenhouse environment con-

trol decision-making. The hierarchical structure of the re-

duced attribute set is exploited for judgment, thereby signif-

icantly reducing complexity. 
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