
 

ABSTRACT—Quantum error correction lies at the heart of 

building reliable quantum information processing systems. 

Stabilizer codes, a fundamental class of quantum error-

correcting codes, play a pivotal role in mitigating the adverse 

effects of noise and decoherence in quantum systems. This paper 

introduces a novel construction of quantum stabilizer codes 

using Hadamard difference sets, an elegant mathematical 

concept derived from combinatorial design theory. In this 

paper, the construction of the quantum stabilizer codes over 

non- cyclic Hadamard difference sets with parameters 

( )2 2 24 ,2 ,m m m m m− − , where m is a positive integer is discussed. 

Firstly, the parity check matrices are constructed from the 

Circulant permutation matrices with the help of Hadamard 

difference sets and then, the Symplectic inner product condition 

for Hadamard difference sets over binary operation for parity 

check matrices are obtained to affirm the commutative 

condition for Stabilizer operators which is vital for the error 

detection. For application, we constructed a Hadamard 

difference sets with parameters (16,6,2)  for 2m = of ordered 

pair of the group 2 8  (non-cyclic group) and quantum 

stabilizer codes are obtained by parity-check matrix. 

 

Index Terms—Difference sets, Parity-check matrices, Quantum 

information, Quantum stabilizer codes, Symplectic inner 

product  

 
I. INTRODUCTION 

In the field of computer science, quantum information 

pertains to the information within a quantum system. Unlike 

classical information, where bits are the fundamental units of 

data, quantum information relies on qubits. Quantum 

computing exhibits significant speedups in polynomial time, 

particularly when factoring large integers, as compared to 

classical computing [1],[2],[3]. Correcting errors in quantum 

communication systems is a challenging task due to the 

continuous nature of qubits, as opposed to the two-state 

characteristic of classical bits. In 1995, Peter Shor introduced 

the concept of quantum error-correcting codes (QECCs) [4], 

followed by Steane's development of the general theory of 

QECCs in 1996 [5]. This work laid the foundation for the 

distinguished CSS (Calderbank–Shor–Steane) formalism,  
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leading to the creation of a 7-qubit CSS code capable of 

single-error correction [6]. Extensive research has been 

conducted on QECCs [7],[8]. The ability of QECCs to 

simultaneously correct the two most common types of error, 

the bit-flip error and the phase-flip error, ensures the 

correction of any error on a single qubit. [9]. But the impact 

of noisy environment of the quantum system would decrease 

the performance. Therefore, QECCs [10], [11], [12] have 

been proposed as a result to insulate the quantum information 

from the effect of noisy environments. QECCs which attain 

the quantum singleton bound are called MDS codes [13], 

[14]. After establishment in 1997 [15], Quantum stabilizer 

codes (QSCs) have played an important role in QECCs and 

enabled numerous new and powerful codes. A QSC exploits 

supplementary qubits known as ancilla to protect the original 

qubit from noise. The main significant and consequential 

advantage of QSCs are that the occurred errors can be 

identified and corrected with the help of the stabilizer 

operators [4]. Therefore, QSCs are very impactful to amplify 

the utilisation of stabilizer theory in quantum systems. 

Furthermore, the notion of stabilizer permits the classical 

codes on binary system and quaternary systems to their 

equivalent QSCs. As a result, several QSCs have been 

constructed based on classical codes [16], [17],[18]. The main 

idea of constructing a QSC is interpreting the stabilizer codes 

in the form of a parity-check matrix such that binary or 

quaternary elements of the matrix hold good the SIP 

constraint. As shown in Fig. 1, the process of quantum error 

correction entails encoding quantum data using error-

correcting codes, identifying errors through syndrome 

measurements, implementing error correction actions guided 

by the detected syndromes, and ultimately deciphering the 

corrected quantum state to recover the initial information. 

The objective is to uphold the dependability of quantum 

computations even when errors occur, with the overarching 

aim of enabling fault-tolerant quantum computing. Quantum 

BCH codes [19], quantum Reed-Solomon codes [20], 

quantum convolutional codes [21], [22], [23],[24] and more 

recently, quantum low density parity-check (LDPC) codes 

[25], [26], [27],[28] are just a few of the many constructs that 

have been proposed and examined. These more recent 

stabilizer codes, unlike the earlier ones that only corrected 

one error in a block of numerous qubits, correct numerous 

faults in a block of many qubits. The majority of them have 

their roots in traditional binary or nonbinary error correction 

codes. The only exception to construct QSC which is not 

related to classical codes is [29], [30], where Boolean 

functions are utilised.  Recently, quantum codes from 

constacyclic codes over a semi-local ring are explored [31], 

[32]. More recently stabilizer quantum codes based on trace-

depending polynomials and Hermitian self-orthogonal codes 
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are demonstrated [33], [34] which give rise to wider range of 

lengths and good parameters. 

In this paper, the particular focus is placed on the 

construction of QSCs grounded on the concept of difference 

sets (DS). Firstly, in 2004, difference sets were implemented 

in the construction of QSC [35]. In combinatorics, difference 

set [36], [37] is any subset of a group such that difference of 

any two elements lies in the group. The proposed construction 

method handles the use of non-cyclic Hadamard difference 

sets (HDS) [38] in formation of the QSCs. In the research 

work by Dillon, the idea of HDS for commutative groups is 

effectively illustrated [39]. This paper contains a general 

product construction method for HDS. See Lander's 

monograph [40] for more information on the broader theory 

of symmetric designs and DS. The ( )16,6,2  designs are 

detailed in depth in [41]. In 1978, researcher Kibler found, all 

DS of parameter ( )16,6,2  by computer in which 27 are non-

identical DS in 12 groups of order 16 enlisted in the survey 

of Kibler [42]. In Fig. 2, the process of constructing QSCs is 

depicted, starting with the selection of a difference set to 

derive the parity check matrix for the designated code. This 

ensures compliance with the Symplectic Inner Product (SIP) 

constraint. Subsequently, stabilizer generators and logical 

operators are obtained to aid in identifying a stabilizer code. 

This systematic approach forms the basis for establishing 

robust quantum error correction mechanisms, ultimately 

enhancing the reliability and integrity of quantum 

information processing systems. This paper proposes a novel 

algorithm for quantum stabilizer codes using non-cyclic 

HDSs. Unlike existing approaches [43,44], the presented 

algorithm achieves higher code distances such as the obtained 

code from the proposed method [[16,6,2]]  which is crucial 

for error correction as higher code distances generally allow 

for better error detection and correction capabilities. Using 

non-cyclic HDSs open up the possibility of exploring new 

families of QSC with unique properties and characteristics 

together with better performance under various noise models. 

This study brings exciting progress to quantum error 

correction and computation by introducing a fresh approach: 

quantum stabilizer codes built from non-cyclic HDS. 

Through this method, we have managed to enhance error 

correction performance, significantly improving our ability to 

detect and fix errors in quantum systems compared to 

traditional methods. These codes have a higher code distance 

and lower overhead, making them more resilient to errors and 

noise while also boosting efficiency and scalability. This 

approach is not just about fixing errors better, it also offers us 

greater freedom in designing codes. We can now tailor-make 

codes to suit specific tasks or hardware setups, opening up 

new possibilities for practical applications. Moreover, 

delving into non-cyclic structures gives us fresh ground to 

explore in quantum information processing, pushing us closer 

to real-world implementation. Ultimately, this study marks a 

big leap in quantum error correction techniques, promising 

more dependable and efficient quantum computing in real-

world scenarios. The organization of the paper is as follows. 

Section II contains some definitions related to the work. 

Section III introduces the theory of QSCs. Our new 

construction method is discussed in section IV. We give some 

simulation results on the relative performance of codes 

constructed by our method in section V. Finally, section VI 

concludes the paper.  

 
II. RELATED WORK 

The following definitions will be utilized in the formation 

of Stabilizer codes. 

A. Qubits 

The fundamental unit of information in quantum systems 

is qubit, which can be modelled as a two-state Hilbert space 
2H
 with dimension 2. Therefore, there are two basis 

quantum states denoted by 
1

0
0

 
=  
 

 and 
0

1
1

 
=  
 

. A linear 

superposition of a qubit's two orthogonal basis states can be 

used to represent the most arbitrary state of a qubit as 

0 1


  


 
= + =  

 
, where the probability of obtaining 

the state 0  is 
2

a  and the probability of obtaining the state 

1 is 
2

b . The criterion must be met in accordance with the 

qubit norm condition, 
2 2

1.a b+ =  

B. Hadamard Difference Set 

A DS D  with parametric equation 

( )2 2 24 ,2 ,m m m m m− − , where m + , is called a 

Hadamard difference set (HDS). 

 

C. Difference Sets and Shifted Difference sets 

A subset D  (having 𝑘 elements) of a group ( ),G +  with 

order n  is known to be a difference set (DS) of parameters 

( ), ,n k   if each element g G  can be represented as a 

difference of two distinct elements of G  in exactly   ways. 

The necessary condition for the parameters ( ), ,n k   to 

represent a DS is that ( ) ( )1 1k k n− = − [35]. For a DS 

 1 2, , , ,kD d d d= let the set be shifted by s  is 

  1 2, , , kD s d s d s d s+ = + + +  

Then D s+  also forms a DS for same parameters ( ), , .n k   

For example, let 5G =  and  0,1,3,4D = be a subset of ,G

then D  forms a DS with parameters ( )5,4,3  as   

0 1 4− =   1 0 1− =  

3 0 3− =   4 0 4− =  

0 3 2− =   1 3 3− =  

3 1 2− =   4 1 3− =  

0 4 1− =   1 4 2− =  

3 4 4− =   4 3 1− =  

The shifted DS ( )5,4,3  with a shift 2  is given as, 

 2 0,1,2,3 ,D + =  

0 1 4− =   1 0 1− =  

2 0 2− =   3 0 3− =  
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0 2 3− =   1 2 4− =   

2 1 1− =    3 1 2− =  

0 3 2− =   1 3 3− =  

2 3 4− =   3 2 1− =  

 

D. Symplectic Inner Product (SIP) condition 

The generators of stabilizer group associated to a binary 

check matrix 
1 2A A A=    satisfy the commutativity 

property if and only if 
1 2 2 1 0T TA A A A + + = . 

 

E. Pauli Group 

The group of Pauli’s on n  qubits , nP , is the set of the Pauli 

operators in which  tensor product is done n  times. 

1 0

0 1
I

 
=  
 

, 
0 1

1 0
X

 
=  
 

, 
1 0

0 1
Z

 
=  

− 
 and 

0

0

i
Y iXZ

i

 
= = 

− 
 

i.e.,   0 1 1,n nP p p p i =         and  , , , .ip I X Y Z  

 
III. MATHEMATICAL BACKGROUND 

In quantum computing, QSCs are extensively useful to 

secure the quantum information due to the noise in the 

environment and decoherence. In classical system it is 

possible to copy information, but in quantum system, it is not 

possible to copy information in light of the No-Cloning 

Theorem [45]. But information in quantum system can be 

entangled with ancillary qubits to encode the information 

using unitary operations [46],[47]. Stabilizer codes are a vital 

type of quantum codes which are closely related to the 

counterpart linear codes in information. As syndrome 

measurement is frequently used by classical codes to identify 

errors on the encoded state, QECCs too utilize the syndrome 

identification through the assistance of quantum stabilizer 

operators. Stabilizer code 
SC  is a subspace of 

nH
 which 

contains the quantum states that are fixed by a commutative 

subgroup S of nP , where nP  is the Pauli group on n -qubits, 

where any element of S  has the eigenvalue +1. That is, 

 , .n

sC H s s S  =  =    

The subgroup S is generated by elements 1 2,s , , ms s  and 

any of the two operators in S  are commutative. With ( )n k−  

linearly independent Pauli operators 1 2,s , , ms s , the 

subgroup S  forms a subspace SC  to be min[[ , ,d ]]n k  QSC 

[15] where k  logical qubits are encoded to n  physical qubits, 

correcting min[( 1) / 2]t d= −  errors [5]. When the error 

operator E enforces upon the state , then the affected state 

E   can be recovered with the help of the stabilizer 

generators 
is  from the code space .SC  For example, the QSC 

[[5,1,3]]  can correct one error and has four generators in 

Table 1 which helps to produce the full quantum stabilizer set 

S . 

TABLE I. Generators of [[5,1,3]]  QSC 

Generators Operators 

1s  XZZXI  

2s  IXZZX  

3s  XIXZZ  

4s  ZXIXZ  

 

Let nI  be the identity matrix of size n n . Then, nI x+  is 

the shift of nI  where the rows of nI  are circularly shifted to 

the right by x  positions ( )0 1 ,x n  −  

0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0

.

n

n n

n n n n n

c c c c

c c c c

C c c c c

c c c c

−

− −

 − − −

 
 
 
 =
 
 
 
 

 

An n n  Circulant Permutation (CP) matrix ,nC is a 

binary matrix written in the form where  0,1kc  . n nC   can 

be written as the linear combination of identity matrix and its 

shifted matrices. 

0 1 1(0) (1) (n 1).n n n n n nC c I c I c I −=  +  + +  −  

It is assumed that 0 1 1 .nc c c k−+ + + =  The matrix  nC  can 

also be expressed by using the Hall-polynomial form ( )ph x

[30] as 

( ) 1 2 ipp p

ph x x x x= + + +  (1) 

here,  1 2, , , ip p p  are places of 1 in the initial row of n nC 

such that 1 2 ip p p   . 

Let T

n nC 
 be the transpose of the matrix n nC   and  let 

( )
T

ph x  be the Hall-polynomial form of ,T

n nC 
 then the 

polynomial ( )
T

ph x  is expressed as 

( ) 1 2 .i
T pp p

ph x x x x
−− −

= + + + . For a (n,k, )  DS 

1 2{ , , },kD d d d=   the CP matrix nC  in equation (1) is made 

where the element jc  is 1  if j D  and is 0  otherwise. Then, 

the Hall-polynomial form for the difference set D  is 

( ) 1 2 k
D dd d

ph x x x x= + + +   (1*) 

Let  1 2, , ,ErE E denote the set of errors on the corrupted 

state .E   As all elements of the group nP  either commutes 

or anti-commutes, so the element from the error set either 

commutes or anti-commutes with the elements of the group 

of stabilizer .S  

Hence, the affected state E   is determined by the 

elements of .S  

, Error not detected

, Error detected

i

i

i

E s E
s E

E s E

 


 

  =
 =

−  =−

 

The error operator iE  is corrected by the stabilizer group if 

( )† , ,i j i jE E N S S E E E    
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where †

iE denotes the conjugated transpose of iE and ( )N S

denotes the normalizer of the group S in nP . 

The normalizer of the group S  is defined as

( )  † , .nN S N P N EN S E S=     ( )N S is defined to be 

the set of all those Pauli operators which are commutative 

with each element of .S  The minimum distance  mind  of the 

code is calculated as  

( )( ) ( )min min s.t. ,d W E E N S S=   

where ( )W E denotes the number of operators which are not 

equal to Pauli operator I in N.  

As every Pauli operator can be described in the terms of 

X and Z  operators such as .IYYZI IXXII IZZZI=   Hence, 

there is a straightforward and practical correspondence 

between Pauli operators and binary vectors, where I   

corresponds to ( )0,0 , X  corresponds to ( )1,0 , Z  

corresponds to ( )0,1  and Y  corresponds to ( )1,1 .  Distinct 

Pauli operators are either scalar multiple of each other or 

linearly independent with respect to multiplication. 

Therefore, the n k−  generators of [[ , ]]n k  code are 

formulated by a concatenation of XH  and ZH  resulting in a 

parity-check matrix H as 

X ZH H H=      (2) 

where the matrices XH  and ZH  denotes the binary matrices 

of size ( )n k n−  . The rows represent distinct stabilizer 

generators, and the columns represent different qubits. One 

of the matrices contains a '1' in a specific position if the 

corresponding stabilizer generator has either a X  or a Y  

operator, while the other matrix contains a '1' when the 

generator has either a Y  or a Z  operator. For example, the 

QSC [[5,1,3]]  in Table 1 has the corresponding parity check 

matrices as 

1 0 0 1 0 0 1 1 0 0

0 1 0 0 1 0 0 1 1 0
.

1 0 1 0 0 0 0 0 1 1

0 1 0 1 0 1 0 0 0 1

H

 
 
 =
 
 
 

 

Since, there exists the requirement for quantum stabilizer 

operators to be commutative, the SIP constraint is acted on 

,H such that 0 mod2T T

X Z Z X n kH H H H − +  =  (3) 

The parity-check matrix H  obtained in (2) is of  rank 

( )n k−  where the dual space of H  has  the dimension 

2 ( 2 ).n m m k− = +  Hence,  the normalizer group denoted by 

( )N S  can be generated by (2 ) 2n m n−   binary matrix. The 

initial m  rows represent the parity-check matrix and the last 

2k  rows represent the logical operators denoted by X and 

.Z  Here, the logical operators must hold the conditions 

1

1

1for i j

1for i = j

i j

i j

i j

i j

X X

Z Z

X Z

X Z

 = +


= +


= + 


= −

 

By implying the method of Gaussian elimination, we can 

convert the parity-check matrix into its standard form as 

follows: 

1 2 1 2

0 0 0

I A A B C C

D I E

 
 
 

  (4) 

The general standard form of logical operators is  

( )1 2

2

0 0 0
.

0 0 0 0

T T T

T

X E I E C C

Z A I

  = +  


 =  

 (5) 

Consequently, the codeword of the QSC are written as [14], 

( )1 2

1

1

2

m

k i
m

i

c c c I s
=

 
=  + 

 
   

1 2

1 2 00 0 ,kcc c

k n
X X X     (6) 

where  0,1ic  . 

The following theorem helps us in verifying the commutative 

property for stabilizer generators constructed in the proposed 

scheme. 

IV. PROPOSED SCHEME 

 

For a Hadamard Difference set ,D  the multiplication of 

two CP matrices can be represented in terms of parameter of 

HDS and the shifted HDS in the following theorem. 

Theorem 1: 

Let ( )
1ph x  and ( )

2ph x  are the two hall polynomials (h-

polynomials) with respect of shifted HDS 1D t+ and 2D t+  

which can be defined as ( ) 1

1

D t

p nh x p +=  and ( ) 2

2

D t

p nh x p +=  

respectively. And, let CP matrices XH  and ZH  be in 

correspondence to ( )
1ph x  and ( )

2ph x  respectively, then we 

can write the product of two polynomials ( )
1ph x , ( )

2

T

ph x

and the product of the two matrices XH   and T

ZH   as  

( ) ( ) ( ) 1 2

1 2

1

0

n
T t t i

p p

i

h x h x k x x 
−

−

=

 = −  +   

And,  

( ) ( )1 2

T

X Z n nH H k I t t J  = −  − +   

where the size of the matrix nJ  is n n  and entries are all 1. 

Proof. 

 Using the h-polynomials, ( )
1ph x  and ( )

2ph x  can be 

represented as  

( ) 11 1 2 1

1

kd td t d t

ph x x x x
++ += + + +  and, 

( ) 21 2 2 2

2

kd td t d t

ph x x x x
++ += + + + .  

Now, 

( ) ( ) ( )11 1 2 1

1 2

k
T d td t d t

p ph x h x x x x
++ + = + + +   

( )21 2 2 2 kd td t d tx x x
− −− − − − + + +  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 2 1 2

1

i i i i k

k
d t d t d t d t d t d t

i

x x x
+ − + + − + + − +

=

= + + +

( ) ( ) ( )1 21 2

1

i i i k

k
d d d d d dt t

i

x x x x
− − −−

=

 = + + +
   
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1 2

1 1 1

u v

k k k
d dt t

i u v

x x
−−

= = =

=    

1 2 0

1 1,

u v

k k
d dt t

u v v u

x k x x
−−

= = 

 
=   + 

 
   

We know that 
1 1

0

1 1, 1 0

.u v

k k n n
d d l l

u v v u l l

x x x x  
− −

−

= =  = =

=  =  −      

Hence, 

 

( ) ( )
1 2

1 2 0

1 1,

1
0

0

.

u v

T

p p

k k
d dt t

u v v u

n
l

l

h x h x

x k x x

x x 

−−

= = 

−

=



 
=   + 

 

=  − 

 



 

( ) 1 2 1 2

1

0

n
t t t t l

l

k x x x 
−

− −

=

= −  +    

( ) 1 2

1

0

n
t t l

l

k x x 
−

−

=

= −  +     (7) 

Also we know that the corresponding CP matrices to the 

polynomials 1 2t tx −
 and 

1

0

n
l

l

x
−

=

  are ( )1 2In t t−  and J n  

respectively, Therefore, 

( ) ( )1 2I J  .T

X Z n nH H k t t  = −  − +    (8) 

Now, we can see that the product of XH  and T

ZH  in Theorem 

1 is a function of 1, ,k t  and 2 .t  Therefore, theorem below 

explains the constraint on HDS parameters needed to satisfy 

the SIP condition of the parity-check matrix. 

 

Theorem 2:  

For a given HDS D  whose parameters are 

( )2 2 2(n,k, ) 4 , 2 ,m m m m m = − −  and any elements 1 2,t t  

where 1 2t t , the parity check matrix derived from  

X ZH H H=  where XH  and ZH  are the matrix  

corresponding to ( ) 1

1

D t

p nh x p +=  and ( ) 2

2

D t

p nh x p +=  

respectively satisfies the SIP constraint. 

Proof. 

 By using the above theorem, we get 

( ) ( )1 2

T

X Z n nH H k I t t J  = −  − +     (9) 

( ) ( )2 1

T

Z X n nH H k I t t J  = −  − +    (10) 

Using (9) and (10), we can express, 

( ) ( )1 2

T T

X Z Z X n nH H H H k I t t J  +  = −  − +   

( ) ( )2 1n nk I t t J + −  − +   

( ) ( ) ( )1 2 2 1 2n n nk I t t I t t J = −  − + − +      (11) 

According to the HDS parameters 
24 ,n m=  22k m m= −  and 

2m m = −  so,  
2 2 2(2 ) ( )k m m m m m− = − − − =  

If m  is even then k −  is also even and every element of  

( ) ( ) ( )1 2 2 1n nk I t t I t t−  − + −    in (11) is even. In addition, 

every element of the matrix 2 nJ   in (11) are also even. 

Therefore, every element of the matrix in (11) are even. 

Hence, 

0 mod2T T

X Z Z X nH H H H +  = . 

Thus, the parity-check matrices corresponding to the HDS 

( )2 2 24 ,2 ,m m m m m− − where m is an even number satisfies 

the SIP constraint (2.4). 

 

A. Construction of QSCs using HDS. 

Firstly, we shall make a difference set from HDS 

parameters which is ( )2 2 2(n,k, ) 4 ,2 ,m m m m m = − −  and 

must satisfy the condition ( -1) ( -1).n k k =  After proving 

this to be a HDS, we will construct an incidence matrix with 

the help of the HDS and hall polynomial. The parity-check 

matrix has 1as the ( , )i j  entry if and only if ,j ig g D−   

otherwise the element will be 0.  Now, the parity-check 

matrix obtained must satisfy the SIP constraint (2.4) in order 

to hold the commutative condition for Stabilizer operators. 

Later, with the use of Gaussian elimination, we find linearly 

independent rows to construct logical operators and 

codeword of the stabilizer code described in equation (5) and 

(6) respectively.  

 

Example 1:  

The HDS parameters are ( )2 2 24 ,2 , .m m m m m− −  For 

2,m =  the HDS obtained is ( )16,6,2 .  Now, we construct an 

abelian and non-cyclic difference set with the group denoted 

by 
8 2G , a 1a b b= = = i.e., 2 8G =     

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0,0 , 0,1 , 0,2 , 0,3 , 0,4 , 0,5 , 0,6 , 0,7 ,

1,0 , 1,1 , 1,2 , 1,3 , 1,4 , 1,5 , 1,6 , 1,7
G

  
=  
  

 

and ( ) ( ) ( ) ( ) ( ) ( ) 0,0 , 0,1 , 0,2 , 0,4 , 1,1 , 1,6D =  be a subset of 

the group 2 8 .  It can be easily verified that each element 

of the group G  can be written as difference of  two elements 

of the subset .D  Therefore, the subset D  forms a Hadamard 

difference set with parameter ( )16,6,2 .  Then, two shifted 

HDS are given as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,3 0,3 , 0,4 , 0,5 , 0,7 , 1,1 , 1,4D+ = and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,5 0,1 , 0,5 , 0,6 , 0,7 , 1,3 , 1,6 .D+ =  

Therefore, the h-polynomials for ( )0,3D +  and ( )0,5D +  

are  

( ) ( )

1

0,3 4 5 6 8 10 13

16

D

ph x p x x x x x x
+

= = + + + + +  and  

( ) ( )

2

0,5 2 6 7 8 12 15

16

D

ph x p x x x x x x
+

= = + + + + + respectively. 

As mentioned in subsection A of section IV, let the binary 

parity-check matrices using HDS be XH  and ZH  for ( )
1ph x  

and ( )
2ph x  respectively, which can be easily obtained using 

HDS since, the parity-check matrix has 1as the ( , )i j  entry if 

and only if ,j ig g D−   otherwise the element will be 0. So, 

the corresponding matrices are 
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1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0

0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0

0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1

1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1

1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0

0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1

1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1

1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1

1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0

0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0

0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0

0 0 0 1 1

XH =

1 0 1 0 1 0 0 1 0 0 0

0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0

0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0

0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and, 
0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1

1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1

1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1

1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1

1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0

0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0

0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1

1 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0

0 1 0 0 0

ZH =

1 1 1 0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0

0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The parity check matrix is given as 

 
X ZH H H=     (12) 

It can be easily seen that 
160 .T T

X Z Z XH H H H +  =

Therefore, the parity-check matrices XH  and ZH  satisfies the 

SIP constraint. The sixteen stabilizer operators related to the 

sixteen rows in (8) are given as  

1 XIZIIZIXXYZYIXIZ = ;

 2 ZXIZIIZIXXYZYIXI = ;

 3 IZXIZIIZIXXYZYIX = ; 

4 XIZXIZIIZIXXYZYI = ;

 5 IXIZXIZIIZIXXYZY = ;

 6 YIXIZXIZIIZIXXYZ = ; 

7 ZYIXIZXIZIIZIXXY = ;

 8 YZYIXIZXIZIIZIXX = ;

 9 XYZYIXIZXIZIIZIX = ; 

10 XXYZYIXIZXIZIIZI = ;

 11 IXXYZYIXIZXIZIIZ = ;

 12 ZIXXYZYIXIZXIZII = ; 

13 IZIXXYZYIXIZXIZI = ;

 14 IIZIXXYZYIXIZXIZ = ;

 15 ZIIZIXXYZYIXIZXI = ; 

16 IZIIZIXXYZYIXIZX = ; 

In all these sixteen generators, there are only ten linearly 

independent operators which are 

1 XIZIIZIXXYZYIXIZ = ;

 2 ZXIZIIZIXXYZYIXI = ;

 3 IZXIZIIZIXXYZYIX = ; 

4 XIZXIZIIZIXXYZYI = ;

 5 IXIZXIZIIZIXXYZY = ;

 6 YIXIZXIZIIZIXXYZ = ; 

7 ZYIXIZXIZIIZIXXY = ;

 8 YZYIXIZXIZIIZIXX = ;

 9 XYZYIXIZXIZIIZIX = ; 

10 XXYZYIXIZXIZIIZI = ; 

Other stabilizer operators can be formed by using these 

linearly independent operators

1 2 3 4 5 6 7 8 9 10, , , , , , , , ,          . Therefore, the stabilizer 

group is, 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16, , , , , , , , , , , , , , ,S =                  

And it is generated by 

1 2 3 4 5 6 7 8 9 10, , , , , , , , ,S =            

Using equation (3), the matrix 𝐻 can be transformed into its 

standard form 

1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0

0 1 0 1 0 0 1 0

H =

0 0 0 0 0 1 1 1 1 1 0

1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1

1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1

1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1

0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0



























 

0 0 1 1 1 1 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0 1 0 1 1 0

0 0 1 1 0 0 1 0 0 0 1 1 0

0 0 0 1 1 0 0 1 0 0 0 1 1

1 0 0 0 1 1 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0 1 0 0 0

0 0 1 0 0 0 1 1 0 0 1 0 0

1 0 0 1 0 0 0 1 1 0 0 1 0

1 1 1 1 0 1 0 1 1 0 1 0 0

0 1 1 1 1 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0

1 1 0 0 0 1 0 0 1 0 0 1 0

1 1 1 0 0 0 1 0 0 1 0 0 1

0 1 0 0
16 32

1 0 0 1 0 0 0 1 1



























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and its logical operators X  and Z  can be obtained by using 

the method of Gaussian elimination defined in (5). 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X









=












 

10 32

1 0 0 1 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0 0
,

1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0


















 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Z









=












 

10 32

0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0


















 

where 
iX and 

iZ  are the corresponding row vectors of the 

logical operator X  and Z respectively, given as 

1

2

3

4

5

6

X ZIIZIIZZZIXIIIII

X IZIIZIIZZZIXIIII

X ZIIIIZIIIZIIXIII

X ZZZIIIZIZIIIIXII

X IZZZIIIZIZIIIIXI

X ZIIZZIIIIIIIIIIX

=

=

=

=

=

=

  

and, 

1

2

3

4

5

6

Z ZIZIIIIIZIZIIIII

Z IZIZIIIIIIIZIIII

Z ZIIIZIIIZIIIZIII

Z IZIIIZIIIZIIIZII

Z ZIIIIIZIZIIIIIZI

Z IZIIIIIZIZIIIIIZ

=

=

=

=

=

=

 

The codewords of the QSC [[16,6]]  are described as, 

( )

3 5 61 2 4

10

1 2 3 4 5 6
10

1

1 2 3 4 5 6 1 2 16

1

2

0 0 0

i

i

c c cc c c

c c c c c c I

X X X X X X

=

 
=  +   

 

    


 

where ( )
10

1

i

o Si

I
=

+ =   and  0,1ic  . 

From the smallest weight of the operators in ( )N S S , the 

minimum distance mind of the [[16,6]]  code is calculated. 

Among the logical operators, the smallest weight is 

2Z IIIIIIIIIIIIIIII  as ( )2 3W Z IIIIIIIIIIIIIIII = , so  

Therefore, the QSC from the DS with parameters ( )16,6,2 is 

[[16,6,3]] . 

 
V. PERFORMANCE AND COMPARISON 

 

In this section, the results for the simulation of the 

constructed HDS codes are provided. The qubit error rate 

(QBER) which refers to the probability that a single quantum 

bit, or qubit, undergoes an error during a quantum 

computation or quantum communication process. This error 

can result from various sources, such as environmental noise, 

imperfect gates, or interactions with nearby qubits 

[48],[49],[50]. Classical cyclic codes are typically decoded 

with the help of majority-logic decoder to decrease the 

decoding complexity, which is a hard-decision decoding 

algorithm. Since, the HDS codes are constructed by CPM, 

majority-logic decoding [51],[52] is being performed on the 

proposed codes in Qiskit. The program uses the QASM 

simulator backend to run the quantum circuit. It adds a 

depolarizing error channel to simulate noise in the system. 

This decoding method is implemented for simulation-speed 

issues for the relative performances of the codes. Simulations 

is performed on the depolarizing channel which creates the 

X, Y and Z errors simultaneously with same probability 3.f

In this simulation, to further decrease the complexity of the 

decoder side, an approximation of marginal flip probability 

2 3f has been executed on each received qubit. On the basis 

of the proposed construction of HDS code, the performance 

of the constructed code is observed with 1000  shots. The 

relative performance of the HDS code [[16,6,3]] is calculated 

as a function of block length, see Fig. 3. QBER is remarkably 

low as the size of the block decreases. One of the possible 

reasons for this is that the distance property of the QSCs 

obtained from DS is unrelated to the block size of the code, 

but is related to the size of the difference set. For comparison, 

we see that parameter constraint for DS in the proposed 

construction are different from [53]. Since, 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 7, July 2024, Pages 1416-1426

 
______________________________________________________________________________________ 



 

2 1 1(mod 2)p p−  − , where p  is even. HDS used in the 

proposed construction cannot be obtained from [53], because 

4 1p −  must be a prime number. 

 Additionally, for the purpose of comparison, we integrated 

existed quantum code with length 16,  i.e., [[16,6,4]]  from 

[54] and [[16,10,3]]  from [15] into our decoder with 

depolarizing probability ‘ 0.4’.p =  The key observation from 

Fig. 4 is  that the performance of the proposed code 

[[16,6,3]] is comparable with our closely related [[16,6,4]]

quantum code. Here, [[16,6,4]]  provides the highest error 

correction capability but require more physical qubits, 

[[16,6,3]] offers moderate error correction with fewer 

physical qubits required and [[16,10,3]]  maximizes the 

encoding rate but sacrifices error correction capabilities. 

 

TABLE 2. Comparison of the proposed method with Xie et 

al. [53] 

Xie et al.’s construction  Proposed construction 

Difference set with 

parameters 

(4 1,2 1, 1)p p p− − −  are 

utilized, where p  is even 

and 4 1p − is prime. 

Difference set with 

parameters 

( )2 2 24 ,2 , ,m m m m m− −   

m + are utilized.  

Difference sets are cyclic 

in nature. 

Difference sets are non-cyclic 

in nature. 

Length of the QSCs must 

be a prime number. 

Length of the QSCs does not 

need to be a prime number. 

Less number of QSCs 

covered. 

Large number of QSCs 

covered with greater length. 

Ex.- [[7,3,1]]  and 

[[23,11,5]]  

Ex.- [[16,6,3]]  and 

[[36,15,6]]  

 

 

VI. CONCLUSION 

 

A non-cyclic QSC is proposed handling a new construction 

method in which HDSs over binary operation is utilised. 

These codes, which were developed using the general SIP 

condition in place of the unique CSS type, offer a variety of 

rates and lengths. The condition of a DS to satisfy the SIP 

constraint is identical to determine an HDS with parameter 

( )2 2 24 ,2 , , .m m m m m m +− −   QSC [[16,6,3]]  acquired 

from the proposed construction with HDS (16,6,2)  for 

practical application. The construction method yields 

dimensions for larger length of QSCs and illustrates enhanced 

error correction. The results of the performance indicate that 

the suggested codes are more capable of rectification and can 

accommodate a variety of dimensions. Quantum stabilizer 

codes originating from non-cyclic HDS are at the forefront of 

quantum information theory, presenting both challenges and 

remarkable capabilities. The difficulties lie in effectively 

managing error correction overhead, countering the effects of 

decoherence and noise, ensuring scalability, and addressing 

experimental obstacles. Correcting errors in quantum systems 

often demands extra qubits and computational resources, 

while environmental factors like decoherence and noise pose 

threats to the reliability of quantum computations. Moreover, 

as quantum computers expand in size, achieving fault 

tolerance and reliability becomes increasingly complex, 

requiring scalable error correction methods and precise 

experimental setups. However, alongside these challenges 

come notable advantages. Stabilizer codes derived from non-

cyclic HDS provide enhanced error correction capabilities, 

empowering fault-tolerant quantum computing architectures 

resilient to environmental disturbances. They also fortify the 

security of quantum communication protocols, safeguarding 

the confidentiality and integrity of transmitted quantum data. 

Furthermore, these codes pave the way for novel avenues in 

quantum information processing, facilitating advancements 

in quantum computation, communication, and cryptography. 

Despite the obstacles, leveraging the unique capabilities of 

these codes holds the promise of revolutionizing quantum 

technologies, unlocking their full potential for practical 

applications. 

 
VII. FUTURE WORK 

An extension to this work can be to find the QSCs over 

quasi difference sets and to find the orthogonal codes of the 

above codes with different applications of these codes. 

Moreover, QSCs from HDS could focus on optimizing 

algorithms for code design, improving experimental 

realization techniques, exploring hybrid error correction 

schemes. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Process of Quantum error correction. 
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Fig. 2. Flowchart of the Proposed Method 

 

 

Fig. 3. Performance of HDS code obtained from the proposed method 

 

 

Fig. 4. Comparison of different quantum stabilizer codes with depolarizing probability 0.4p =
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