
 

  

Abstract— Poverty is still a global problem that must be 

immediately eradicated by Sustainable Development Goals 

(SDGs) 1, namely ending poverty anywhere and in any form. In 

2021, West Papua province will have the 2nd most significant 

percentage of poor people after Papua province, with 21.84% of 

the poor population. Poor households in West Papua province 

are dominated by families, with the Head of Household (KRT) 

working in the agricultural sector at 65.10 %. In this research, 

joint modelling was carried out between the level of household 

welfare and the employment sector of the head of the household 

in the West Papua province. It is suspected that these two 

variables have endogeneity problems, where one of the response 

variables becomes a predictor variable in the other equation, so 

a recursive bivariate binary probit regression model is used. 

Recursive bivariate binary probit regression parameter 

estimation uses Maximum Likelihood Estimation (MLE), but 

the results are not closed form, so it is continued using the 

Newton-Raphson iteration method. The results of hypothesis 

testing show that partially, variables that significantly influence 

the level of household welfare include the variable marital 

status, KRT formal/informal workers, health complaints, asset 

ownership status, migration status, number of household 

members, classification of area of residence (Village/City), age 

of head of household, and employment sector of head of 

household. Meanwhile, variables that significantly influence the 

choice of working in the agricultural sector include the director 

of household education, classification of area of residence 

(rural/city), and the age of the head of household. 

 
Index Terms— Maximum Likelihood Estimation, Newton 

Raphson, SDGs, Recursive Bivariate Binary Probit 

I. INTRODUCTION 

N of the welfare indicators based on the expenditure 

approach is the percentage of poor people [1], [2]. 

Poverty must be eradicated immediately by the 1st goal of the 

Sustainable Development Goals (SDGs), namely ending 

poverty anywhere and in any form [1], [3].  
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The National Socioeconomic Survey (SUSENAS) conducted 

by the Central Bureau of Statistics (BPS) in 2021 shows that 

in Indonesia, there are 10.14% of poor people. The province 

with the second largest percentage of poor people after Papua 

province is West Papua province, with 21.84% of poor 

people. West Papua has an Open Unemployment Rate (TPT) 

of 6.18%. This figure is similar to the national TPT rate of 

6.26%. West Papua Province ranks 25th with the lowest TPT. 

But ironically, the low TPT does not lead to lower poverty in 

West Papua, which may be due to the low income earned 

from workers in the agricultural sector [4]. The agricultural 

sector is the primary employment sector in West Papua [5]. 

Based on the results of the National Labor Force Survey 

(SAKERNAS) conducted by BPS in February 2021, the 

agricultural sector is the employment sector with the highest 

percentage of workers, namely 32.69%, followed by the 

wholesale, retail, and pharmaceutical sectors, with 18.12%, 

administration government 13.75%, and other sectors 

63.56%. Based on the March 2021, SUSENAS results, 

87.74% of the poor work in the agricultural sector, and 

65.10% of poor households with heads of household work 

there. 

Another welfare indicator, according to the World Bank 

[6], is the disparity in spending between the population with 

the lowest 40% spending level compared to the highest 60% 

of the population [7]. Inequality is measured by calculating 

the proportion of expenditure of the bottom 40% of the 

population. Currently, in West Papua, the proportion of 

expenditure of the lowest 40% of the population is 22.57%. 

West Papua has a low level of inequality but a very high 

poverty rate. This shows that many people are not classified 

as poor but whose per capita expenditure is close to the 

poverty line. 

Studies examining and discussing welfare issues use 

response variables with categorical data scales [8], [9]. One 

method that can be used to model some categorical response 

variables is probit regression[10], [11]. Probit regression is a 

regression method that is used to analyze the dependent 

variable, which is qualitative, and the independent variable, 

which is qualitative, quantitative, or a combination of 

qualitative and quantitative with the standard normal 

distribution [9], [12]. Cumulative Distribution Function 

(CDF) approach to estimate parameters so that a probit model 

is formed [13]. The probit model that uses two dichotomous 

variables as the response variable, while the independent 

variables can be either discrete or continuous, and qualitative 

variables, namely nominal or ordinal variables, is called the 

bivariate binary probit model[14]. To perform modeling on a 

bivariate model, the conditions that must be met are that the 
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two response variables in the model must have a 

relationship[15], [16]. If there is an endogeneity problem 

between the two equations in the bivariate probit, then the 

bivariate probit model cannot provide accurate results. 

Therefore, a recursive bivariate binary probit model was 

developed[17]. 

Recursive bivariate probit regression is a method in which 

two probit equations whose errors are correlated, and one of 

the response variables becomes an endogenous factor in the 

other dependent variable[18]. The recursive bivariate binary 

probit regression model is good for modeling variables with 

binary response variables that have endogeneity but can also 

be interpreted partially [19]. The value of the correlation 

parameter on the recursive bivariate probit is not the same as 

the correlation on the bivariate probit. This is because, in 

recursive bivariate probit, endogeneity occurs so that it can 

affect the value of the correlation parameter [20], [21]. 

In this study, modeling was carried out jointly between 

the level of household welfare and the employment sector of 

the head of the household in West Papua province. These two 

variables are suspected of having an endogeneity problem, 

where the household head's employment sector variable 

influences the household welfare level. So, in modeling, the 

response variable of the household head's employment sector 

will be the predictor variable. Therefore, the analytical 

method used is recursive bivariate binary probit 

regression[22]. This study aimed to obtain parameter 

estimates from a recursive bivariate binary probit regression 

model and to model the factors that influence the level of 

household welfare and the employment sector of the head of 

the household in West Papua province. The output of this 

research is a theoretical and applicative study of case studies. 

   

II. BIVARIATE BINARY PROBIT REGRESSION MODEL 

The bivariate probit regression model is a method that 

describes the relationship between two response variables 

that are qualitative and several predictor variables that are 

qualitative, quantitative, or a combination of qualitative and 

quantitative with the normal distribution CDF (Cumulative 

Distribution Function) approach to estimate parameters so 

that a probit model is formed [23], [24]. The assumption that 

must be fulfilled in the bivariate probit model is that the 

response variables are mutually dependent. Therefore, a 

dependency test must be carried out between the response 

variables before modeling [25]. The bivariate binary probit 

model has two qualitative response variables, 𝑌1 and 𝑌2, 

which are assumed to originate from the unobserved 

variables 𝑦1
∗ and 𝑦2

∗, each having two categories [26]. The 

equation of the two variables is defined as Equation (1).  

 

𝒚𝟏
∗ = 𝐗1

𝑇𝜷1 + 𝜺𝟏  ;  𝒚𝟐
∗ = 𝐗2

𝑇𝜷2 + 𝜺𝟐 (1) 
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and p is the number of predictor variables for 𝐗𝟏 of size 

(p+1) x n, q is the number of predictor variables for 𝐗𝟐 of 

size (q+1) x n. 𝜷1 and 𝜷2 are the regression coefficients in 

each equation. The error in each equation is denoted 𝜀1 and 

𝜀2 which are assumed to have a standard normal distribution 

with mean 0 and variance 1. So 𝑦1
∗ and 𝑦2

∗ are denoted by 

𝑦1
∗~N (𝛃1

T𝐗1, 1) and 𝑦2
∗~N (𝛃2

T𝐗2, 1). 

Formation of categories on the response variable of the 

bivariate binary probit regression model is no different from 

the univariate probit regression model, namely by 

determining a certain threshold for each unobserved variable 

𝑦1
∗ and 𝑦2

∗ for example γ and δ [27]. In the case of the 

bivariate binary probit regression model, the thresholds used 

in categorizing are assumed to be γ = 0 and δ = 0. The 

categories formed from the unobserved 𝑦1𝑖
∗  and 𝑦2𝑖

∗  are as in 

Equation (2). 

 

𝑌1𝑖 = 0 if 𝑦1𝑖
∗ ≤  0 and 𝑌1𝑖= 1 if 𝑦1𝑖

∗ > 0 ; 𝑌2𝑖 = 0 

if 𝑦2𝑖
∗ ≤  0 and 𝑌2𝑖= 1 if 𝑦2𝑖

∗  > 0 
(2) 

   

 In the bivariate binary probit regression model equation, 

there are two random variables that are normally distributed, 

namely 𝑦1𝑖
∗  and 𝑦2𝑖

∗ . Therefore, a bivariate normal distribution 

is formed. The PDF (probability density function) bivariate 

normal distribution is as in Equation (3). 
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The function in Equation (3) can be denoted like Equation 

(4). 
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Where 𝜌12 = 𝜌21 = 𝜌. 

Then the bivariate standard normal PDF is shown in Equation 

(5). 

 

2 2

1 2 1 1 2 22

1 1
( , ) exp ( 2 )

2(1 )2
i i i i i iz z z z z z 



 
= − − + 

−  
 (5) 

where 1

1

1

1

1

*

1

T

ii

i

y
z


=

− x β
, if 𝜎11 = 1, then  𝑧1𝑖=𝑦1𝑖

∗ − 𝐱1𝑖
T 𝜷1, 
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, if 𝜎22 = 1, then 𝑧2𝑖=𝑦2𝑖

∗ − 𝐱2𝑖
T 𝛃2, with 

𝑧2𝑖⁓N(0,1). 

So, the joint probability 𝑧1𝑖 and 𝑧2𝑖shown in Equation (6). 

 

(𝑦1𝑖
∗ < 𝛾, 𝑦2𝑖

∗ < 𝛿) = 𝑃(𝑍1 < 𝛾 − 𝐱1𝑖
T 𝛃1, 𝑍2

< 𝛿 − 𝐱2𝑖
T 𝜷2) 

(𝑦1𝑖
∗ < 𝛾, 𝑦2𝑖

∗ < 𝛿) = 𝑃( 𝑍1 < 𝑧1𝑖 , 𝑍2 < 𝑧2𝑖)     
(6) 
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(𝑦1𝑖
∗ < 𝛾, 𝑦2𝑖

∗ < 𝛿) =  ∫ ∫ 𝜙(𝑧1, 𝑧2)𝑑𝑧1𝑑𝑧2

𝑧1𝑖

−∞

𝑧2𝑖

−∞

 

(𝑦1𝑖
∗ < 𝛾, 𝑦2𝑖

∗ < 𝛿) = Ф(𝑧1𝑖 , 𝑧2𝑖) 

With 𝑃(𝑌1𝑖 = 0, 𝑌2𝑖 = 0) or 𝑃00(𝑥).  

Φ(𝑧1𝑖 , 𝑧1𝑖) = Φ(.) is the CDF of the bivariate standard 

normal distribution. 

III. RESEACRH METHODOLOGY 

The data used in this study is secondary data from the 

March 2021 National Socioeconomic Survey (SUSENAS) 

conducted by the Central Statistics Agency (BPS) of West 

Papua Province. The data covers 5930 households spread 

across all Districts/Cities consisting of 12 districts and one 

city with a household research unit. The variables used in this 

study consisted of two response variables (Y) and eleven 

predictor variables (X) which are presented in the Table 1. 

 

Table 1. Research Variable 

Notation Variable Data Scale Coding 

Y
1
 Household welfare 

level 
Categorical 

1 = Households with 

the lowest 40% 

spending 
0 = Other 

X
1
 Marital status Categorical 

1 = Married 

0 = Other 

X
2
 Employment 

sector status 
Categorical 

1 = Formal workers 

0 = Informal workers 

X
3
 Health complaints Categorical 

1 = There are 
complaints  

0 = No complaints 

X
4
 Working hours Numeric - 

X
5
 Home ownership Categorical 

1 = One's own 
0 = Other 

X
6 Migration Categorical 

1 = Non migrant 
0 = Migrant 

Y2 
KRT employment 

sector 
Categorical 

1 = Agriculture 

0 = Non-agricultural 

X
7
 

Number of 

household 

members 

Numeric - 

X
8
 

Education 
completed by 

KRT 

Categorical 

1 = High School and 

Above 

0 = Junior high school 
and below 

X
9
 Region 

classification 
Categorical 

1 = City 

0 = Village 

X
10

 KRT age Numeric - 

X
11

 KRT Gender Categorical 
1 = Male 

0 = Female 

Noted: KRT is Head of household 

 

This study aimed to obtain parameter estimates from a 

recursive bivariate binary probit regression model and to 

model the factors that influence the level of household 

welfare and the employment sector of the head of the 

household in West Papua province. 

 

a. Estimation of Recursive Binary Bivariate Probit 

Regression Model 

The steps in estimating the recursive bivariate binary 

probit regression model are as follows: 

1. Form the ln likelihood function on the variable Y with 

the likelihood function in Equation (7) 
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2. Get the first derivative of the likelihood function for the 

parameters for 𝜽𝟏, 𝜽𝟐, and 𝝆 then equate to 0. 
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Based on the first derivative, it is assumed that the 

equation is not closed form, so that it is continued with the 

Newton-Raphson iteration method using the gradient 

vector g which is the first derivative component of the ln 

likelihood function Q with respect to 𝜽𝟏, 𝜽𝟐, and 𝝆. 
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3. Obtain the Hessian matrix H which is the second 

derivative of the ln likelihood of the parameters for 𝜃1, 𝜃2, 
and 𝜌. 
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4. Iterate with Newton-Raphson until it converges with 

the iteration formula. 

�̂�(𝑚) = �̂�(𝑚−1) − [𝑯(�̂�(𝑚−1))]
−1

𝐠(�̂�(𝑚−1)) (11) 

 

b. Modelling with Recursive Binary Bivariate Probit 

Regression   

The steps for modeling a case with a recursive bivariate 

probit regression model are as follows: 

1. Identify the relationship (dependency) between the 

response variables Y
1
 and Y

2
 by using the Chi-square test. 

2. Perform the response variable endogenity test 

3. Modeling the response variable and predictor variable 

with a recursive bivariate binary probit regression model. 

4. Modeling the response variable and predictor variable 

with a recursive bivariate binary probit regression model. 

5. Testing the significance of model parameters 

simultaneously and partially. 

 

IV. RESULTS AND DISCUSSION 

a. Estimation of Recursive Binary Bivariate Probit 

Regression Model Parameters 

To obtain parameter estimates in the bivariate recursive 

binaryprobit model, the maximum likelihood estimation 

(MLE) method is used, it is known that the variable  𝐘 =

[Y11  Y10  Y01i  Y00i]
T multinomial distribution so that it can be 

denoted as Y⁓M(1; 𝑃11𝑖 , 𝑃10𝑖,𝑃01𝑖,𝑃00𝑖). The recursive 

bivariate binary probit model equation can be written as in 

Equation (12). 

𝒚𝟏
∗ = 𝐗1

𝑇𝜷1 + 𝑣𝒚𝟐
∗ + 𝜺𝟏 

𝒚𝟐
∗ = 𝐗2

𝑇𝜷2 + 𝜺𝟐   
(12) 
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Where: 

Y1 = 1 if 𝑦1
∗ > 0 and Y1 = 0 if 𝑦1

∗ ≤ 0                                                                                              

Y2 = 1 if 𝑦2
∗ > 0 and Y2 = 0 if 𝑦2

∗ ≤ 0     

To facilitate parameter estimation, the recursive bivariate 

binary probit model can be simplified by assuming 𝜼𝟏 =

𝐖𝑇𝛉𝟏 and 𝜼𝟐 = 𝐗𝑇𝛉𝟐 where W is the predictor variable 

matrix of the first equation consisting of 𝐗𝟏 and 𝒚𝟐
∗ . Then X 

is the predictor variable of the second equation consisting of 

𝐗𝟐. For each observation 𝐰𝟏𝒊 = (1, x1𝑖 , x2𝑖 , x3𝑖, … , x𝑝𝑖, 𝑦2𝑖
∗ )𝑇 

and 𝐱𝒊 = (1, x1𝑖 , x2𝑖, x3𝑖 , … , x𝑞𝑖)
𝑇. 𝛉𝟏contains components 𝛃1

T 

and δ, then 𝛉𝟐 contains components 𝛃2
T as in the Equation 

(13). 

𝑦1𝑖
∗ = 𝐰𝐢

𝐓𝛉𝟏 + 𝜀1𝑖 

𝑦2𝑖
∗ = 𝐱𝐢

𝐓𝛉𝟐 + 𝜀2𝑖    
(13) 

 

With: 

𝐘𝟏𝒊 = 1 if 𝒚𝟏𝒊
∗ > 0 and  𝐘𝟏𝒊 = 0 if 𝒚𝟏𝒊

∗ ≤ 0 

𝐘𝟐𝒊 = 1 if 𝒚𝟐𝒊
∗ > 0 and 𝐘𝟐𝒊 = 0 if 𝒚𝟐𝒊

∗ ≤ 0 

 

Opportunities for a respondent to be categorized into one of 

the categories are as follows: 
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The likelihood function of the bivariate random variable can 

be formed based on the probability in Equations (14), (15), 

(16), and (17) so that Equation (18) is obtained. 
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Where θ= (𝛉𝟏, 𝛉𝟐, 𝜌). 

After obtaining the recursive bivariate binary probit 

likelihood function, then the natural logarithm of the 

likelihood function is formed as in Equation (19). 
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To get parameter estimates, the next step is to maximize the 

function ln 𝐿(𝜽) to parameters 𝛉𝟏, 𝛉𝟐, and 𝜌 then equal to 

zero. As for the first derivative ln 𝐿(𝛉) to 𝛉𝟏, 𝛉𝟐, and ρ is as 

follows: 

∂ln 𝐿(𝛉)

∂𝜃1
= ∑ 𝒘𝒊𝜙(𝜂1𝑖)𝑛

𝑖=1 [(
𝑦11𝑖

𝑝11𝑖
−

𝑦01𝑖

𝑝01𝑖
) Ф (

𝜂2𝑖−𝜌𝜂1𝑖

√(1−𝜌2)
) + (

𝑦10𝑖

𝑝10𝑖
−

𝑦00𝑖

𝑝00𝑖
) (1 −

Ф (
𝜂2𝑖−𝜌𝜂1𝑖

√(1−𝜌2)
))]  

 

(20) 

 
∂ln 𝐿(𝛉)

∂𝛉2
= ∑ 𝒙𝒊𝜙(𝜂2𝑖)𝑛

𝑖=1 [(
𝑦11𝑖

𝑝11𝑖
−

𝑦10𝑖

𝑝10𝑖
) Ф (

𝜂1𝑖−𝜌𝜂2𝑖

√(1−𝜌2)
) + (

𝑦01𝑖

𝑝01𝑖
−

𝑦00𝑖

𝑝00𝑖
) (1 −

Ф (
𝜂1𝑖−𝜌𝜂2𝑖

√(1−𝜌2)
))]  

(21) 

 

 
∂ln 𝐿( 𝛉)

∂𝜌
= ∑ (

𝑦11𝑖

𝑝11𝑖
−

𝑦10𝑖

𝑝10𝑖
−

𝑦01𝑖

𝑝01𝑖
+𝑛

𝑖=1

𝑦00𝑖

𝑝00𝑖
) 𝜙(𝜂1𝑖, 𝜂2𝑖) 

4 exp(2𝜌∗)

(exp(2𝜌∗)+1)2  (22) 

 

From the first derivative of the ln likelihood function, it is 

equated to 0. However, closed form results were not obtained, 

so a parameter estimation approach was carried out using the 

Newton-Raphson method. This method uses a vector g(θ) 

whose elements are the first derivative of the ln likelihood 

function with respect to the parameters and the Hessian 

matrix H. To obtain the components of the matrix H, we 
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perform derivatives on each element of the vector g(θ) 

against 𝜃1,𝜃2, and ρ as follows: 

 
∂ln 𝐿( 𝜽)

∂𝜃1 ∂𝜃1
= ∑ 𝜙(𝜂1𝑖)𝒘𝒊

𝟐 {(
𝑦11𝑖

𝑝11𝑖
−

𝑦10𝑖

𝑝10𝑖
−

𝑦01𝑖

𝑝01𝑖
+𝑛

𝑖=1

𝑦00𝑖

𝑝00𝑖
) (−𝜂1𝑖Ф (

𝜂2𝑖−𝜌𝜂1𝑖

√(1−𝜌2)
) −

𝜌

√(1−𝜌2)
𝜙 (

𝜂2𝑖−𝜌𝜂1𝑖

√(1−𝜌2)
)) + ((

𝑦00𝑖

𝑝00𝑖
−

𝑦10𝑖

𝑝10𝑖
) 𝜂1𝑖)}                             

(23) 

 

∂ln 𝐿( 𝜽)

∂𝜃2 ∂𝜃2
= ∑ 𝒙𝒊

𝟐𝜙(𝜂2𝑖)𝑛
𝑖=1 ((

𝑦11𝑖

𝑝11𝑖
−

𝑦10𝑖

𝑝10𝑖
+

𝑦01𝑖

𝑝01𝑖
+

𝑦00𝑖

𝑝00𝑖
) [−𝜂2𝑖Ф (

𝜂1𝑖−𝜌𝜂2𝑖

√(1−𝜌2)
) 

+
𝜌

√(1−𝜌2)
𝜙 (

𝜂1𝑖−𝜌𝜂2𝑖

√(1−𝜌2)
)] + (

𝑦00𝑖

𝑝00𝑖
−

𝑦01𝑖

𝑝01𝑖
) 𝜂2𝑖)  

 

(24) 

 
∂ln 𝐿(𝛉)

∂𝜃1 ∂𝜌
= ∑ 𝒘𝒊𝜙(𝜂1𝑖)

𝑛
𝑖=1 [(

𝑦11𝑖

𝑝11𝑖
−

𝑦01𝑖

𝑝01𝑖
−

𝑦10𝑖

𝑝10𝑖
+

𝑦00𝑖

𝑝00𝑖
) 𝜙 (

𝜂2𝑖−𝜌𝜂1𝑖

√(1−𝜌2)
)] 

−𝜂1𝑖(1−𝜌2)
1
2+(𝜂2𝑖−𝜌𝜂1𝑖)−𝜌(1−𝜌2)

−
1
2

(1−𝜌2)
  

 

(25) 

 
∂ln 𝐿( 𝛉)

∂𝜃2 ∂𝜌
= ∑ 𝒙𝒊𝜙(𝜂2𝑖)

𝑛
𝑖=1 [(

𝑦11𝑖

𝑝11𝑖
−

𝑦01𝑖

𝑝01𝑖
−

𝑦10𝑖

𝑝10𝑖
+

𝑦00𝑖

𝑝00𝑖
)  (

𝜙 (
𝜂1𝑖−𝜌𝜂2𝑖

√(1−𝜌2)
)

−𝜂2𝑖(1−𝜌2)
1
2+(𝜂1𝑖−𝜌𝜂2𝑖)−𝜌(1−𝜌2)−

1
2

(1−𝜌2)

)] 
(26) 

 
∂2ln 𝐿( 𝜽)

∂𝜌 ∂𝜌
= ∑ (

𝑦11𝑖

𝑝11𝑖
−

𝑦10𝑖

𝑝10𝑖
−

𝑦01𝑖

𝑝01𝑖
+

𝑦00𝑖

𝑝00𝑖
)𝑛

𝑖=1    

[
(𝜙(𝜂1𝑖 , 𝜂2𝑖)

(−𝜂1𝑖𝜂2𝑖)+2𝜌2𝜂1𝑖𝜂2𝑖)

(1−𝜌2)

4 exp(2𝜌∗)

(exp(2𝜌∗)+1)2
)

+𝜙(𝜂1𝑖 , 𝜂2𝑖)
8 exp(2𝜌∗)(exp(2𝜌∗)+1)−16 exp(2𝜌∗)

(exp(2𝜌∗)+1)3

]  (27) 

 

After obtaining the Hessian matrix H, it is iterated with the 

Newton-Raphson method until it converges with the iteration 

formula as in Equation (28). 

 

�̂�(𝑚) = �̂�(𝑚−1) − [𝑯(�̂�(𝑚−1))]
−1

𝐠(�̂�(𝑚−1)) (28) 

The iteration stages use the Newton-Raphson method as 

follows. 

a. Specifies the starting value or determines the initial 

value of �̂� when m=0. 

b. Then do the first iteration starting from m = 1 by 

counting 

�̂�(𝑚) = �̂�(𝑚−1) − [𝑯(�̂�(𝑚−1))]
−1

�̂�(�̂�(𝑚−1)) (29) 

If ‖�̂�(𝑚) − �̂�(𝑚−1)‖ ≤ 𝛩 , where 𝛩 is a very small number 

close to 0, then the iteration stops and the parameter 

estimation results are obtained. 

 

 

 

 

b. Estimation of Recursive Binary Bivariate Probit 

Regression Model Parameters 

1. Response Variable Independence Test 

To carry out bivariate modeling, the first assumption that 

must be fulfilled is the existence of a relationship 

(dependency) between the response variables. The hypothesis 

used in testing the independence of the response variable uses 

the Chi-square test as follows: 

𝐻0 : There is no relationship between household 

welfare and the employment sector of the head of 

the household 

𝐻1 : There is a relationship between household 

welfare and the employment sector of the head of 

the household 

Based on the results with the Chi-Square test, a p-value of 

0.00 was obtained and the 𝐻0 decision was rejected. It can be 

concluded if there is a relationship between household 

welfare and the employment sector of the head of the 

household. 

 
2. Response Variable Endogenity Test 

One novelty why one should use recursive bivariate 

binary probit regression modeling is when there is an 

endogeneity problem. If there is no endogeneity, then 

bivariate binary probit regression is used. Hypothesis testing 

to test endogeneity was carried out using the Lagrange 

Multiplier Test with the following hypothesis: 

 

𝐻0  : 𝜌 = 0 (there is no endogeneity problem) 

𝐻1  : 𝜌 ≠ 0 (there is endogeneity problem) 

  
The test results show that the p-value is 0.00 and the decision 

𝐻0 is rejected. It can be concluded if there is a residual 

relationship between the two models. This shows that there is 

an endogeneity problem in the model so that the suggested 

modeling is bivariate recursive binary probit regression. 

 

3. Modelling with Recursive Binary Probit 

To get the best model, in the modeling process, the 

predictor variables are eliminated which do not have a 

significant effect on the partial test. Elimination of variables 

is carried out using the backward method, which removes the 

variables one by one starting from the variables that have no 

effect. The final modeling results using significant variables 

are shown in Table 2. 

 

Table 2. Testing the significance of parameters in the model 
 

Variable 
Recursive Bivariate Binary Probit 

Estimate P-value 

Household welfare level 

Constant -2.5512 0.0000 

𝑋1 0.4804 0.0004 

𝑋2  0.1469 0.0053 

𝑋3  -0.2189 0.0011 

𝑋5  -0.1235 0.0355 

𝑋6  0.3422 0.0000 

𝑋7  0.2986 0.0000 

𝑋9  -0.4154 0.0000 

𝑋10  -0.0080 0.0000 

𝑦2
∗  1.3608 0.0000 

Household Head Employment Sector 

Constant 0.3540 0.0000 

𝑋8  -0.5923 0.0000 

𝑋9  -1.5590 0.0000 

𝑋10  0.0075 0.0000 
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Based on the parameter estimation results, a recursive 

bivariate binary probit model is: 

 

𝑦1𝑖
∗ = −2.5512 + 0.4804𝑋1 + 0.1469𝑋2 − 0.2189𝑋3

− 0.1235𝑋5 + 0.3422𝑋6 + 0.2986𝑋7

− 0.4154𝑋9 − 0.0080𝑋10 + 1.3608𝑦2
∗ 

 

𝑦2𝑖
∗ = 0.3540 − 0.5923𝑋8 − 1.5590𝑋9 + 0.0075𝑋10 

 

The recursive bivariate binary probit model has an AIC value 

of 12539.77. Based on the selection of the best model, then 

the value 𝜂1𝑖 = 𝑦1𝑖
∗  dan 𝜂2𝑖 = 𝑦2𝑖

∗  obtained using the recursive 

bivariate binary probit model. Furthermore, to interpret the 

recursive bivariate binary probit model, for example a 

household with a married 𝑋1 = 1, the head of household 

works in the formal sector 𝑋2 = 1, the head of household 

does not experience health complaints (𝑋3=0), the household 

live in their own house (𝑋5=1), head of household is a non-

migrant (𝑋6=1), the number of household members is 11 

people (𝑋7=11), the highest education completed by the head 

of household is junior high school (𝑋8=0), classification of 

area where they live in rural areas (𝑋9=0), head of household 

is 55 years old (𝑋10=55). From the equation above, the 

following probabilities are obtained. 

 

𝑃11𝑖 = ϕ(𝜂1𝑖,𝜂2𝑖) 

= ϕ(0.7681 ;  2.1821) 

= 0.7643 

 

𝑃10𝑖 = ϕ(𝜂1𝑖) − ϕ(𝜂1𝑖,𝜂2𝑖) 

= ϕ(0.7681) − ϕ(0.7681 ;  2.1821) 

= 0.2211 

 

𝑃01𝑖 = ϕ(𝜂2𝑖) − ϕ(𝜂1𝑖,𝜂2𝑖) 

= ϕ(2.1821) − ϕ(0.7681 ;  2.1821) 

= 0.0144 

 

𝑃00𝑖 = 1 − ϕ(𝜂1𝑖) − ϕ(𝜂2𝑖) + ϕ(𝜂1𝑖,𝜂2𝑖) 

= 1 − ϕ(0.7681) − ϕ(2.1821) + ϕ(0.7681; 2.1821) 

= 0.0001 

 

Based on the calculation above, the greatest opportunity value 

is obtained at 𝜌11, namely the probability 𝑌1 = 1 and 𝑌2 = 1 

with a value of 0.7643. This shows that these households have 

a greater chance of being categorized into households with a 

low level of welfare and the head of household works in the 

agricultural sector. 

 

4. Bivariate Marginal Effect 

The bivariate marginal effect is calculated on the variables 

used in the equations 𝑦1𝑖
∗  and 𝑦2𝑖

∗  together, namely the 

variable of residential area classification (𝑋9) and the 

variable age of the household head (𝑋10). The marginal effect 

for the variable area of residence can be calculated by the 

following equation. 
 

∂𝑝11𝑖

∂𝑥9
=

∂ϕ(𝜂1𝑖,𝜂2𝑖)

∂𝑥9
  

= 𝛽1.9𝜙(𝜂1𝑖)ϕ (
∂ϕ(𝜂2𝑖−𝜌𝜂1𝑖)

√1−𝜌2
) + 𝛽2.9𝜙(𝜂2𝑖)ϕ (

∂ϕ(𝜂1𝑖−𝜌𝜂2𝑖)

√1−𝜌2
)  

= −0.41541𝜙(𝜂1𝑖)ϕ (
∂ϕ(𝜂2𝑖−𝜌𝜂1𝑖)

√1−𝜌2
) −

1.55901𝜙(𝜂2𝑖)ϕ (
∂ϕ(𝜂1𝑖−𝜌𝜂2𝑖)

√1−𝜌2
) =  −0.4777 

 

∂𝑝10𝑖

∂𝑥9
=

∂ϕ(𝜂1𝑖) − ∂ϕ(𝜂1𝑖,𝜂2𝑖)

∂𝑥9
 

= 𝛽19𝜙(𝜂1𝑖) − 𝛽19𝜙(𝜂1𝑖)ϕ (
∂ϕ(𝜂2𝑖−𝜌𝜂1𝑖)

√1−𝜌2
) − 𝛽29(𝜂2𝑖)ϕ (

∂ϕ(𝜂1𝑖−𝜌𝜂2𝑖)

√1−𝜌2
) 

= −0,4154𝜙(𝜂1𝑖) + 0,4154𝜙(𝜂1𝑖)ϕ (
∂ϕ(𝜂2𝑖−𝜌𝜂1𝑖)

√1−𝜌2
) +

1,5590𝜙(𝜂2𝑖)ϕ (
∂ϕ(𝜂1𝑖−𝜌𝜂2𝑖)

√1−𝜌2
) = 0.4624 

The highest marginal effect value is -0.4777 at probability 

𝜌11, so that it can be concluded that the variable area of rural 

residence reduces the contribution for households categorized 

into groups of households with low levels of welfare and 

household heads work in the agricultural sector by 47.77%. 

However, it has a marginal effect with a value of 0.4624 at 

𝜌10 which means that the rural area variable increases the 

contribution for households categorized into groups of 

households with low levels of welfare and household heads 

work in the non-agricultural sector by 46.24%. 

 

The marginal effect for the age variable of the household head 

can be calculated by the following equation. 

∂𝑝10𝑖

∂𝑥10
=

∂ϕ(𝜂1𝑖) − ∂ϕ(𝜂1𝑖,𝜂2𝑖)

∂𝑥10
 

= 𝛽1.10𝜙(𝜂1𝑖) − 𝛽1.10𝜙(𝜂1𝑖)ϕ (
∂ϕ(𝜂2𝑖−𝜌𝜂1𝑖)

√1−𝜌2
) −

𝛽210𝜙(𝜂2𝑖)ϕ (
∂ϕ(𝜂1𝑖−𝜌𝜂2𝑖)

√1−𝜌2
)  

= −0.0080𝜙(𝜂1𝑖) + 0.0080𝜙(𝜂1𝑖)ϕ (
∂ϕ(𝜂2𝑖−𝜌𝜂1𝑖)

√1−𝜌2
) −

0.0075𝜙(𝜂2𝑖)ϕ (
∂ϕ(𝜂1𝑖−𝜌𝜂2𝑖)

√1−𝜌2
)  

= − 0.0022 

The highest marginal effect value is obtained at the 

probability of 𝑝10 with a value of -0.0022 so that it can be 

concluded that the age of the head of household 55 years 

reduces the contribution for households categorized into 

groups of households with low levels of welfare and 

household heads working in the non-agricultural sector is -

0.0022. 

V. CONCLUSIONS 

Based on the analysis and discussion, modeling using the 

recursive binary bivariate probit model shows that variables 

that significantly affect the level of household welfare (Y1) 

include marital status (X1), employment sector status (X2), 

health complaints (X3), home ownership (X5), migration 

status (X6), number of household members (X7), region 

classification (X9), age of head of household (X10), and sector 

of work of head of household (Y2). Meanwhile, the variables 

that significantly influence the choice of the KRT's 

employment sector (Y2) include the KRT education (X8), 

region classification (X9), and the age of the head of the 

household (X10). In modelling poverty problems, endogeneity 

problems inevitably occur, so the recursive bivariate binary 

probit model is an alternative that can be used to solve similar 

cases. 
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