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Abstract—The study aims to explore wavelet applications for
analyzing nonlinear boundary value problems. Although several
wavelet methods are reviewed in the literature, a comparative
study of their strengths and limitations has found only a few
attempts. This study bridges the gap between two wavelet-based
numerical methods, namely, higher order Daubechies wavelet-
based Galerkin method and Haar wavelet collocation method,
by conducting a comparative study. Nonlinear boundary value
problems arising in mathematical physics are solved using
both schemes, followed by the computation of optimal error
estimates. Furthermore, the advantages offered by the Haar
wavelet collocation method over the wavelet-Galerkin method
and the rate of convergence are also discussed in detail.

Index Terms—Haar wavelets, Wavelet-Galerkin method,
Boundary value problems, Error estimates.

I. INTRODUCTION

THE advancement in modern numerical methods for
differential equations pushes one to extract qualitative

information about the behavior of solutions, convergence,
efficiency in tackling natural nonlinearity, etc. rather than
just finding a solution or quantitative information about
it. This shift from the quantitative to the qualitative is
reflected in a shift in the mathematical techniques used to
analyze differential equations. In this regard, wavelet-based
numerical approaches are a revolutionary evolution.

Wavelets are a powerful mathematical tool with numerous
applications in practical fields including signal and image
processing, optimization problems, data compression, etc.
The ability to simultaneously optimize time and frequency
resolutions is a significant advantage of utilizing wavelets
for signal processing. Wavelets are also extremely useful to
solve and analyze differential equations arising in numerous
mathematical modeling problems. The wavelet technique
permits the division of a complicated function into several
simpler ones and their separate analysis.

Among the different wavelet families, Haar wavelets are
mathematically the simplest, and historically the first ex-
ample of real-valued wavelets with an explicit expression
for its scaling and wavelet functions. In 1910, Alfred Haar
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used rectangular type of orthonormal basis functions instead
of the sine and cosine basis functions and introduced the
Haar function as a group of square waves with magnitude
±1 in some finite intervals that vanish outside the interval.
Haar wavelet methods have had great success in solving
several linear and nonlinear problems of engineering interest.
Chen and Hsiao [1] were the first to derive the operational
matrix for Haar wavelets and demonstrated its application for
solution of integral/differential equations. They accomplished
this by expanding the highest derivative appearing in the
problem in terms of Haar series and obtaining all other
derivatives using integration. Later, Lepik [2] employed the
algorithm with uniform grid. Chang [3] applied the Haar
wavelet method to solve ordinary differential equations with
initial or boundary conditions. Subsequently, many inves-
tigators have expanded on the work of Lepik for various
model integral and differential equations [4]–[6]. Due to
their simplicity, Haar wavelet-based numerical methods have
attained distinctive attention among wavelet families and
have become a useful tool for solving several problems of
differential and integral equations.

Another well-known family of wavelets is the Daubechies
wavelet functions, which are compactly supported, differ-
entiable, and form an orthonormal basis of L2(R), dis-
covered by Ingrid Daubechies [7]. It is interesting to note
that these functions combine orthogonality with localization
(i.e. compact support) and scaling properties, which are
beneficial for the numerical solution of differential equations.
Also, this family of Daubechies wavelets includes members
from highly localized to highly smooth. More significantly,
finite linear combinations of Daubechies wavelets offer local
pointwise representations of low-degree polynomials, which
is one of the interesting features of this wavelet.

The pioneering work on exploring the wavelet-Galerkin
method was initiated by Glowinski et al. [8]. They considered
the dilates of translated Daubechies scaling functions with
support (0, L− 1) and restricted it to (0, 1). Latto et al. [9]
proposed methods for evaluation of connection coefficients
(both single term and multiple term) on unbounded intervals.
Romine and Peyton [10] modified the connection coefficients
obtained by Latto et al. [9] at the boundaries and derived the
proper connection coefficients on bounded intervals. Ama-
ratunga et al. [11] applied wavelet-Galerkin technique for
the solution of one-dimensional partial differential equations.
Lu et al. [12] proposed a fictitious boundary approach for
treating different types of boundary conditions in the solution
of differential equations. Recently, Choudhury and Deka [13]
further generalized the approach given in [8] for arbitrary
domain (a, b) and obtained the numerical solutions for
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one-dimensional elliptic problems of order two. Priyadarshi
and Kumar [14] demonstrated the wavelet-Galerkin solu-
tion for fourth-order differential equations, Da Silva et al.
[15] studied the propagation of electromagnetic waves and
later Černá and Finěk [16] solved integral and integro-
differential equations using wavelet-Galerkin method. Ganga
et al. utilized wavelet-Galerkin method to study the Blasius
flow problem. Bin Jebreen and Dassios [17] implemented
the method to solve fractional order Riccati equation. Very
recently, Rostami [18] applied wavelet-Galerkin method to
solve Volterra equations, and Koksal [19] analyzed telegraph
equations using wavelet-Galerkin method.

Our primary contribution in this work is three-fold.
Firstly, we brief the general solution procedure of wavelet-
Galerkin method (WGM) and Haar wavelet collocation
method (HWCM) for differential equations. Secondly, we
exemplify the concrete implementation process of applying
the two proposed methods for the solution of some nonlinear
second-order boundary value problems and carry out the
error analysis. We compare the two strategies using two es-
sential criteria: effort spent on implementation and accuracy
of the solution. We also explore the rate of convergence of
HWCM. Lastly, we draw some potential observations of the
two methods. The insights from this comparative study can
be further developed to analyze the higher-order nonlinear
problems.

This paper is structured as follows: A short introduction to
Haar wavelets and Daubechies wavelets is given in Section
II. Section III illustrates the method of solution of wavelet-
Galerkin and Haar wavelet collocation approaches. Section
IV discusses some case studies through the proposed meth-
ods. Important concluding remarks are reported in Section
V.

II. PRELIMINARIES

A. Haar wavelets

The Haar scaling function h1(t) is defined as

h1(t) =

{
1, t ∈ [0, 1)

0, elsewhere.
(1)

The Haar mother wavelet is derived as the linear combination
of the Haar scaling function:

h2(t) = h1(2t)− h1(2t− 1). (2)

The family of Haar wavelets is constructed from the single
function h2(t) by applying translations and scalings:

hiH (t) = h2(2
jt− k) =


1, t ∈ [a, b)

−1, t ∈ [b, c)

0, elsewhere

(3)

where

a =
k

m
, b =

k + 0.5

m
, c =

k + 1

m
,

and the dilation parameter j = 0, 1, . . . , J measures de-
gree of compression. J is the level of resolution of the
wavelet. The support of wavelet decreases as j increases.
k = 0, 1, . . . ,m − 1 stands for the translation parameter
which signifies the location of the particular function, where

m = 2j . The wavelet number i = m+k+1 takes the lowest
value 2 (that is k = 0, m = 1) and the highest value 2J+1.
The value i = 1 corresponds to the Haar scaling function
defined in Eqn.(1).

Observe that, each Haar wavelet function hi(t) vanishes
outside the interval I = [a, c). The length of the interval
I is 2−j and so for larger j, the length of I decreases.
Therefore, based on the context, the function hi(t) is well
localized in time or space. This property is to be contrasted
with the trigonometric basis {e2πint}n∈Z. Note that each
element of the trigonometric basis has an absolute value of
1 for every t ∈ [0, 1), and so it never vanishes for any t.
Graphical construction of the first eight Haar wavelets and
their integrals are shown in Fig.1.

B. Daubechies wavelets
The Daubechies scaling function is defined as

ϕ(t) =
√
2
L−1∑
k=0

ckϕ(2t− k) , (4)

where ϕ(t) is normalized (i.e.
∫∞
−∞ ϕ(t)dt = 1). L is an even

positive integer called the genus (or order) of the Daubechies
wavelet. The coefficients ck, k = 0, 1, . . . , L − 1 are called
low-pass filter coefficients. The Daubechies mother wavelet
is defined in terms of the scaling function as

ψ(t) =
√
2
L−1∑
k=0

dkϕ(2t− k) , (5)

where dk, k = 0, 1, . . . , L − 1 are called high-pass filter
coefficients. The filter coefficients ck and dk are connected
by the relation dk = (−1)kcL−1−k, k = 0, 1, . . . , L− 1, and
are derived so as to satisfy the following conditions:

(i) ck = 0 for k /∈ {0, 1, 2, . . . , L− 1}
(ii)

∑L−1
k=0 ck =

√
2

(iii)
∑L−1

k=0 ckck−m = δ0,m
(iv)

∑L−1
k=0 (−1)kkmck = 0, m = 0, 1, ...L2 − 1

where δ0,m is the Kronecker delta function.
The sets

{
ϕj,k(t) = 2j/2ϕ(2jt− k)|j, k ∈ Z

}
and{

ψj,k(t) = 2j/2ψ(2jt− k)|j, k ∈ Z
}

obtained by dilation
and translation of ϕ(t) and ψ(t) forms orthonormal bases.
The support of Daubechies scaling function ϕ(t) and
wavelet ψ(t) are supp(ϕ) = supp(ψ) = [0, L − 1]. Also,
the Daubechies wavelet has L/2 vanishing moments. In
fact, the Haar wavelet discussed in Section II-A is the
simplest Daubechies wavelet with two filter coefficients
(i.e. c0 = c1 = 1) and one vanishing moment (and hence
denoted as db1). When L = 4, the filter coefficients for
Daubechies wavelets are

c0 =
1 +

√
3

4
√
2

; d0 =
1−

√
3

4
√
2

c1 =
3 +

√
3

4
√
2

; d1 =

√
3− 3

4
√
2

c2 =
3−

√
3

4
√
2

; d2 =
3 +

√
3

4
√
2

c3 =
1−

√
3

4
√
2

; d3 =
−1−

√
3

4
√
2

.

The graphs of ϕ(t) and ψ(t) for L = 4, 8, 12, 16 are plotted
in Fig.2. The Daubechies wavelets do not exhibit symmetry
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Fig. 1: First eight Haar wavelets and their integrals

or antisymmetry for L > 2 but, their smoothness (regularity)
increases with L.

Unlike Haar wavelets, Daubechies wavelets do not have an
explicit expression for the basic scaling function and wavelet.
However, different approaches such as cascade algorithm,
subdivision scheme, Daubechies-Lagarias algorithm, succes-
sive approximation [7], [20], etc., are well documented for
direct evaluation of ϕ(t) and ψ(t) at dyadic rational points.
Due to the unavailability of explicit forms for ϕ(t) and ψ(t),
analytical integration or differentiation is not possible. This
complicates the procedure for solution of differential equa-
tions which includes integral or product of nonlinear terms.
Although this shortcoming is overcome through the concept
of connection coefficients (discussed in the Appendix), the
calculation of connection coefficients [9] is a tedious task and
must be performed separately for various types of integrals.

III. METHOD OF SOLUTION

In this section, we implement the HWCM and WGM for
the solution of nonlinear boundary value problems of the
form

f (t, u(t), u′(t), u′′(t)) = 0 , 0 ≤ t ≤ 1 , (6)

with boundary conditions

u(0) = α , u(1) = β , (7)

where f is a nonlinear function. The Daubechies scaling
functions are employed as basis functions for Galerkin solu-
tions of some special cases of Eq.(6).

A. Haar wavelet collocation method (HWCM):
By definition, the Haar wavelet function is not continuous

and so it is not possible to directly apply it for the solution
of differential equations. But, as displayed in fig.1, the inte-
grals of Haar wavelet are continuous. Therefore the highest
derivative appearing in the problem equation is approximated
usig Haar wavelet and the lower derivatives are obtained by
integration. This ensures that the required unknown function
is approximated using a higher Haar integral, which is known
to be smooth. Following the approach introduced by Chen
and Hsiao [1], the integrals of Haar wavelet are given as

p1,i(t) =

∫ t

0

hi(t)dt

pv,i(t) =

∫ t

0

pv−1,i(t)dt, v = 2, 3, . . .

(8)
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Fig. 2: Daubechies scaling and wavelet functions.

The solution procedure for the second-order problems given
in this paper also dictates the use of the integral

p2,i(1) =

∫ 1

0

p1,i(t)dt. (9)

The basic idea of HWCM is to transform the given differ-
ential equation into a system of algebraic equations with a
finite number of variables. This transformation is achieved by
making use of the collocation method where the collocation
points are given by tl = (l − 0.5)∆t , l = 1, 2, ...2M ,∆t =
1/(2M).

To solve Eq. (6) with the given boundary conditions,
we first approximate the highest derivative appearing in the
equation, u′′(t), in terms of Haar wavelets as

u′′(t) =
2M∑
i=1

aihi(t) (10)

and integrate it twice to obtain lower derivatives u′(t) and
u(t). The obtained approximations are discretized at the
collocation points and substituted back to Eq. (6). This yields
a system of nonlinear algebraic equations

Fl(a1, a2, . . . , a2M ) = 0 , l = 1, 2, . . . , 2M , (11)

where ai are the wavelet coefficients to be determined. The
required unknown function is then computed by substitut-
ing ai in its Haar approximation. The solution procedure

also makes use of the Jacobian matrix, which is given by
S = ∂Fl

∂ai
.

The Newton-Raphson method is used to solve the system
of equations (11). For the νth iteration, this system is of the
form

S(ν)∆a(ν) = −F(ν) (12)

where ∆a(ν) and F(ν) are vectors with elements ∆a(ν) =
a
(ν+1)
i − a

(ν)
i , F(ν) = F

(ν)
l , and S(ν) = S

(ν)
l respectively.

The solution of this equation is given by

∆a(ν) = −F(ν)/S(ν). (13)

This method is initiated at J = 0 and the level of resolution
of Haar wavelet increases with each iteration. Thus the size
of S,F and ∆a doubles with each iteration.

In this comparative study, since the exact solution of all
problems under consideration is known, the accuracy of the
Haar solution is estimated as

L∞ = max|uej − uhj | (14)

where uej and uhj are the exact solution and Haar solution at
collocation points tj , 1 ≤ j ≤ 2M The rate of convergence
of the solution is determined using the following relation

σ(ν) =
Lν−1
∞
Lν
∞

ν = 2, 3, ... (15)

where Lν−1
∞ and Lν

∞ are the absolute errors at resolution
level ν − 1 and ν respectively.

B. Wavelet-Galerkin method (WGM):

The wavelet-Galerkin method is a combination of or-
thonormal wavelet bases with the Galerkin method. At this
juncture, an alternative to classical polynomial or trigonomet-
ric bases, the Daubechies wavelets (which are orthonormal
bases for L2(R)) are used to construct Galerkin bases. In
WGM, it is important to compute the connection coefficients
at a particular level of resolution of a Daubechies wavelet of
a certain order. They are basically integrals where the inte-
grands are products of Daubechies wavelet bases and their
derivatives or integrals. In general, connection coefficients
at a particular resolution of a certain order of Daubechies
wavelet are necessary to achieve an acceptable approximate
solution of a differential equation. The Galerkin method in
conjunction with wavelet basis results in sparse matrices with
bounded condition number (or low condition number). To
illustrate the method, we consider the formulation of the
Galerkin method for a general one-dimensional differential
equation.

Lu(t) = f(t) , 0 ≤ t ≤ 1 , (16)

with boundary conditions

u(0) = a , u(1) = b . (17)

The approximate solution of (16) is

uS =
∑
k∈Λ

xkvk ∈ S . (18)

The reduced system of equations is given by∑
k∈Λ

⟨Lvk, vj⟩xk = ⟨f, vj⟩ , ∀j ∈ Λ (19)
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which is in matrix form

AX = Y . (20)

The idea of selecting a wavelet basis for the Galerkin method
emerges due to the two major requirements on the matrix A
in (20): (i) we expect A to have a small condition number
in order for the solution to be stable, and (ii) the matrix A
should be sparse in order to obtain computational efficiency.
Thus, the approximation solution (18) is rewritten in terms
of wavelet basis ψj,k as follows

uS =
∑

(j,k)∈Λ

xj,kψj,k , where ψj,k(t) = 2j/2ψ(2jt−k) .

(21)

The system (19) takes the form∑
(j,k)∈Λ

⟨Lψj,k, ψl,m⟩xj,k = ⟨f, ψl,m⟩ , ∀ (l,m) ∈ Λ . (22)

The matrix form of (22) is

AX = Y (23)

where the vectors X = (xj,k)(j,k)∈Λ, Y = (yl,m)(l,m)∈Λ,
yl,m = ⟨f, ψl,m⟩ and the matrix
A = [al,m;j,k](l,m),(j,k)∈Λ, al,m;j,k = ⟨Lψj,k, ψl,m⟩ with
row indexed by (l,m) ∈ Λ and column indexed by (j, k) ∈
Λ. The details of construction of connection coefficients
are given as an appendix to the paper. We computed the
connection coefficients for various genus L of Daubechies
wavelets at different scales using [21].

IV. APPLICATIONS

In fulfilment of the objective stated in Section I, we have
considered two-point nonlinear boundary value problems and
discussed the method to tackle various forms of nonlinearities
using HWCM and WGM through three case studies.

Example 1.
u′′(t) = 2u3(t) , (24)

u(0) = 1 , u(1) =
1

2
. (25)

Method 1 (WGM): The nonlinear term u3(t) in Eq.(24) is
linearized using the quasilinearization technique resulting in

u′′r+1(t)− 6u2r(t)ur+1(t) = −4u3r(t) (26)

with boundary conditions

ur+1(0) = 1 , ur+1(1) =
1

2
. (27)

Let the wavelet expansion for the unknown function u(t) of
Eq.(26) be

ur+1(t) =
2j∑

k=1−L

ck2
j/2ϕ(2jt− k) (28)

where ck are the unknown Daubechies wavelet filter coeffi-
cients. Substituting Eq.(28) in Eq.(26) we obtain

d2

dt2

∑
k ck2

j/2ϕ(2jt− k)− 6u2r(t)
∑

k ck2
j/2ϕ(2jt− k)

= −4u3r(t) (29)

We use the substitution y = 2jt, Ck = 2j/2ck so that
dn

dtn = 2nj dn

dyn , n ∈ Z+. Equation (29) simplifies to∑
k

Ck2
2jϕ′′(y−k)−6u2r(t)

∑
k

Ckϕ(y−k) = −4u3r(t) .

(30)

Multiplying ϕ(y−p) on both sides of Eq.(30) and integrating,∑
k Ck2

2j
∫
ϕ′′(y − k)ϕ(y − p)dy

−6u2r(t)
∑

k Ck

∫
ϕ(y − k)ϕ(y − p)dy

= −4u3r(t)
∫
ϕ(y − p)dy (31)

=⇒ 22j
∑
k

CkΩ
0,2
k−p−6u2r(t)

∑
k

Ckδkp = −4u3r(t) (32)

or 22j
∑
k

CkΩ
0,2
k−p − 6u2r(t)Cp = −4u3r(t) (33)

where

Ω0,2
k−p =

∫
ϕ′′(y − k)ϕ(y − p)dy (34)

δkp =

∫
ϕ(y − k)ϕ(y − p)dy (35)

The boundary conditions Eq.(27) implies

ur+1(0) =
∑
k

Ckϕk(0) = 1 , (36)

ur+1(1) =
∑
k

Ckϕk(1) =
1

2
. (37)

Equations (36)-(37) represents the relation of the unknown
coefficients ck. On taking the inner product of ϕp(0) and
ϕp(1) respectively, the Eq.(36) and Eq.(37) reduces to∑

k

Ckδkp(0) = 1 , (38)

∑
k

Ckδkp(1) =
1

2
. (39)

The first and last equations of Eq.(33) are replaced by
Eq.(38) and Eq.(39). The modified system is solved by
using Daubechies scaling function with L = 6 & 12
at different resolution levels j. The Daubechies scaling
function at L = 6 and various dyadic points t is displayed
in Table I.

Method 2 (HWCM): In solving Eq.(24) with HWCM, the
highest derivative term u′′(t) is approximated in terms of
Haar wavelets as

u′′(t) =
2M∑
i=1

aihi(t) (40)

where ai are Haar coefficients to be determined. The lower
order derivatives u′(t) and u(t) are subsequently derived
using integration.
On integrating Eq.(40) and using the given boundary condi-
tions, we obtain

u′(t) =
2M∑
i=1

ai (p1,i(t)− p2,i(1))−
1

2
(41)

u(t) =
2M∑
i=1

ai (p2,i(t)− tp2,i(1)) + 1− t

2
(42)
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Eq.(24) takes the form

Fl = u′′(tl)− 2(u(tl))
3 (43)

and the elements of the matrix S are given by

S(i, l) =
∂u′′(tl)

∂ai
− 6(u(tl))

2 ∂u(tl)

∂ai
(44)

substituting the values of ul(t) and u′′l (t) according to
Eq.(40) and Eq.(42),

F =
2M∑
i=1

aihi(t)− 2

(
2M∑
i=1

ai(p2,i(t)− tp2,i(1)) + 1− t

2

)3

(45)

S = hi(t)− 6

(
2M∑
i=1

ai(p2,i(t)− tp2,i(1)) + 1− t

2

)2

(p2,i(t)− tp2,i(1))

(46)

Equations (45) and (46) are substituted in Eq (13) and solved
according to the procedure outlined previously. Table II gives
the comparison of wavelet-Galerkin solution obtained by db6
with four iterations and Haar wavelet collocation method
with the exact solution (Exact solution is u(t) = 1/(1 + t)).
The proposed method assures the accuracy of the results
even for a lower resolution level as shown in Table II. The
accuracy of the solution can be improved as the genus of
the wavelet is increased. From the table, it is clear that the
accuracy of the HWCM outperforms that of the WGM for a
similar J value.

The comparison of the WGM for db3 and db6 and HWCM
with the exact solution of Eq.(24) are plotted in Fig. 4. For an
accurate picture of the scale of error in the two methods, the
absolute errors obtained in the solution by both methods are
plotted in the same figure with different axes. The absolute
error in WGM is plotted on the left-hand axis using a dashed
line, and the absolute error in HWCM is plotted on the
the right-axis with a solid line. It is clearly observed that
the error in HWCM is of the order 10−2 less than that in
WGM. The absolute error and the rate of convergence for
different values of J for the Haar solution of Eq.(24) are
shown in Table III. The theoretical rate of convergence for
HWCM is σ = 4, and from the table it is clear that the rate
of convergence for the solution of Eq.(24) approaches the
theoretical value for higher J values. Fig.3 plots the values
of Haar coefficients ai for J = 4, 5. The figure demonstrates
one of the desirable properties of Haar wavelets which is
the fact that the coefficients for higher i values tend to be
close to zero. This property ensures that the Haar solution is
accurate with minimal number of coefficients.

Example 2.
u′′(t) + u′(t) + u2(t) = t4 + 2t+ 2 , (47)
u(0) = 0 , u(1) = 1 . (48)

Method 1 (WGM): The quasilinearized form of Eq.(47) is

u′′r+1(t)+u
′
r+1(t)+2ur(t)ur+1(t) = u2r(t)+t

4+2t+2 (49)

ur+1(0) = 0 , ur+1(1) = 1 . (50)

TABLE I: Daubechies scaling function at L = 6.

t ϕ(t) t ϕ(t)

0.000 0.0 2.625 -0.03693836

0.125 0.133949835 2.750 -0.040567571

0.250 0.284716624 2.875 0.037620632

0.375 0.422532739 3.000 0.095267546

0.500 0.605178468 3.125 0.062104053

0.625 0.743571274 3.250 0.02994406

0.750 0.89811305 3.375 0.011276602

0.875 1.090444005 3.500 -0.031541303

1.000 1.286335069 3.625 -0.013425276

1.125 1.105172581 3.750 0.003025131

1.250 0.889916048 3.875 -0.002388515

1.375 0.724108826 4.000 0.004234346

1.500 0.441122481 4.125 0.001684683

1.625 0.30687191 4.250 -0.001596798

1.750 0.139418882 4.375 0.000149435

1.875 -0.125676646 4.500 0.000210945

2.000 -0.385836961 4.625 -7.95485E-05

2.125 -0.302911152 4.750 1.05087E-05

2.250 -0.202979935 4.875 5.23519E-07

2.375 -0.158067602 5.000 -3.16007E-20

2.500 -0.014970591

TABLE II: Comparison of wavelet-Galerkin solution using
db6 and Haar wavelet solution of Eq.(24) fixing level of
resolution of both wavelets to 8.

t WGM HWCM Exact solution

0.0 1.0000000000 1.000000000 1.0000000000

0.1 0.9090966379 0.909090738 0.9090909091

0.2 0.8333423052 0.833333081 0.8333333333

0.3 0.7692413844 0.769230488 0.7692307692

0.4 0.7142968303 0.714285435 0.7142857143

0.5 0.6666773884 0.666666410 0.6666666667

0.6 0.6250095846 0.624999779 0.6250000000

0.7 0.5882431173 0.588235119 0.5882352941

0.8 0.5555611085 0.555555433 0.5555555556

0.9 0.5263186892 0.526315725 0.5263157895

1.0 0.5000000000 0.500000000 0.5000000000

Using the wavelet-Galerkin procedure as explained in Exam-
ple 1, Eq.(49) reduces to

22j
∑

k CkΩ
0,2
k−p + 2j

∑
k CkΩ

0,1
k−p + 2ur(t)

∑
k Ckδkp

= u2r(t) +
∑4

i=0
gi
2jiM

i
p (51)

or

22j
∑

k CkΩ
0,2
k−p + 2j

∑
k CkΩ

0,1
k−p + 2ur(t)Cp

= u2r(t) +
∑4

i=0
gi
2jiM

i
p (52)
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Fig. 3: Haar coefficients for the solution of Eq.(24) at different J values.
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Fig. 4: Comparison of wavelet-Galerkin and Haar solution
of Eq.(24) with the exact solution along with the absolute
error using WGM (left-hand axis, dashed line) and HWCM
(right-hand axis, solid line).

TABLE III: Error estimate ∆ and rate of convergence σ for
Haar solution of Eq (24).

J ∆ σ

3 7.1682607157E-05 3.8226525089

4 1.8076627278E-05 3.9654857099

5 4.5324611592E-06 3.9882586178

6 1.1338311336E-06 3.9974746016

7 2.8349851166E-07 3.9994253479

8 7.0877611113E-08 3.9998316423

9 1.7719554379E-08 3.9999657777

where

Ω0,2
k−p =

∫
ϕ′′(y − k)ϕ(y − p)dy (53)

Ω0,1
k−p =

∫
ϕ′(y − k)ϕ(y − p)dy (54)

δkp =

∫
ϕ(y − k)ϕ(y − p)dy (55)

M i
p =

∫
yiϕ(y − p)dy (56)

and g = [2, 2, 0, 0, 1]. The relevant boundary conditions
Eq.(50) simplifies to∑

k

Ckδkp(0) = 0 (57)

∑
k

Ckδkp(1) = 1 (58)

The system Eq.(52) is modified by replacing the first and
last equations by Eq.(57) and Eq.(58) respectively, and
solved for Ck by using Daubechies scaling function with
L = 12 & 16 for resolution level j = 10.
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Method 2 (HWCM): Using the approach discussed pre-
viously, the required functions u(t), u′(t) and u′′(t) are
approximated using Haar wavelets as

u′′(t) =
2M∑
i=1

aihi(t) (59)

u′(t) =
2M∑
i=1

ai (p1,i(t)− p2,i(1)) + 1 (60)

u(t) =
2M∑
i=1

ai (p2,i(t)− tp2,i(1)) + t (61)

Discretization of Eq.(47) at collocation points results in

Fl = u′′(tl) + u′(tl) + (u(tl))
2 − t4l − 2t− 2 (62)

and the Jacobian S takes the form

S(i, l) =
∂u′′(tl)

∂ai
+
∂u′(tl)

∂ai
+ 2u(tl)

∂u(tl)

∂ai
(63)

The Haar approximations are substituted into Fl and S(i, l)
to obtain

F =
2M∑
i=1

aihi(t)−
2M∑
i=1

ai(p1,i(t)− tp2,i(1))

+

(
2M∑
i=1

(p2,i(t)− tp2,i(1) + t

)2

− t4 − 2t− 1

(64)

S =hi(t) + p1,i(t)− tp2,i(1) + 2(p2,i(t)− tp2,i(1))(
2M∑
i=1

(p2,i(t)− tp2,i(1) + t

)
(65)

and the solution for the desired level of resolution J is
obtained as previously discussed.

The wavelet-Galerkin solution of Eq.(47) using db8 (four
iterations) along with the Haar wavelet solution and the
analytical solution (u(t) = t2) are presented in Table IV.
As can be seen from the provided table, the Haar wavelet
solution precisely matches the analytical solution for this
problem, and hence only the error in WGM solution is
presented. The comparison plots of the exact solution and
HWCM solution with WGM solutions for two different
orders of Daubechies wavelets db6 and db8 are shown in
Fig. 5. It is noticed that the accuracy of the WGM solution
increases with increasing the order of wavelet from db6 to
db8.

Example 3.
u′′(t) + u(t) (u′(t)− 1) = (u′(t))

2
, (66)

u(0) = 1 , u(1) = e . (67)

Method 1 (WGM): Quasilinearization technique to Eq.(66)
implies

u′′r+1(t) + (ur(t)− 2u′r(t))u
′
r+1(t)

+ (u′r(t)− 1)ur+1(t) = ur(t)u
′
r(t)− (u′r(t))

2 (68)

with the boundary conditions

ur+1(0) = 1 , ur+1(1) = e . (69)

TABLE IV: Comparison of wavelet-Galerkin solution using
db8 and Haar solution of Eq.(47) at level of resolution = 10.

t WGM HWCM Exact solution
Absolute error

(WGM)

0.0 0.0 0.0 0.0 0

0.1 0.0100003618 0.010000000 0.010000000 3.618E-07

0.2 0.0400006461 0.040000000 0.040000000 6.461E-07

0.3 0.0900008362 0.090000000 0.090000000 8.362E-07

0.4 0.1600009258 0.160000000 0.160000000 9.258E-07

0.5 0.2500009178 0.250000000 0.250000000 9.178E-07

0.6 0.3600008234 0.360000000 0.360000000 8.234E-07

0.7 0.4900006608 0.490000000 0.490000000 6.608E-07

0.8 0.6400004526 0.640000000 0.640000000 4.526E-07

0.9 0.8100002239 0.810000000 0.810000000 2.239E-07

1.0 1.0000000000 1.000000000 1.000000000 0
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Fig. 5: Comparison of wavelet-Galerkin and Haar solution
of Eq.(47) with the exact solution.

On implementation of wavelet-Galerkin method to Eq.(68)
results in the following system

22j
∑

k CkΩ
0,2
k−p + (ur(t)− 2u′r(t)) 2

j
∑

k CkΩ
0,1
k−p

+(u′r(t)− 1)
∑

k Ckδkp = ur(t)u
′
r(t)− (u′r(t))

2 (70)

or

22j
∑

k CkΩ
0,2
k−p + (ur(t)− 2u′r(t)) 2

j
∑

k CkΩ
0,1
k−p

+(u′r(t)− 1)Cp = ur(t)u
′
r(t)− (u′r(t))

2 (71)

where

Ω0,2
k−p =

∫
ϕ′′(y − k)ϕ(y − p)dy (72)

Ω0,1
k−p =

∫
ϕ′(y − k)ϕ(y − p)dy (73)

δkp =

∫
ϕ(y − k)ϕ(y − p)dy (74)

Likewise, the boundary conditions Eq.(69) takes the form∑
k

Ckδkp(0) = 1 (75)
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∑
k

Ckδkp(1) = e (76)

Daubechies wavelets of order db3 and db6 with j = 8 are
used for the computation of solution for the given problem.

Method 2 (HWCM): For the solution of Eq.(66) using
Haar wavelets, the required unknown functions are approxi-
mated as follows

u′′(t) =
2M∑
i=1

aihi(t) (77)

u′(t) =
2M∑
i=1

ai (p1,i(t)− p2,i(1)) + e− 1 (78)

u(t) =
2M∑
i=1

ai (p2,i(t)− tp2,i(1)) + te− t+ 1 (79)

The discretized form of Eq.(66) is

Fl = u′′(tl) + u(tl)(u
′(tl)− 1)− (u′(tl))

2 (80)

and the Jacobian is written as

S(i, l) =
∂u′′(tl)

∂ai
+ u(tl)

∂u′(tl)

∂ai

+ (u′(tl)− 1)
∂u(tl)

∂ai
− 2u′(tl)

∂u′(tl)

∂ai

(81)

Haar approximations are substituted into the above equations
to get

F =

2M∑
i=1

aihi(t)−

(
2M∑
i=1

ai(p1,i(t)− p2,i(1) + e− 1

)2

+

(
2M∑
i=1

ai(p1,i(t)− p2,i(1) + e− 2

)
(

2M∑
i=1

ai(p2,i(t)− tp2,i(1) + 1 + te− t

)
(82)

S =hi(t) +

(
2M∑
i=1

ai(p1,i(t)− p2,i(1))− e+ 2)

)
(p2,i(t)− tp2,i(1)) + (p1i(t)− p2,i(1))(

2M∑
i=1

ai(p2,i(t)− tp2,i(1) + 1 + te− t

)

− 2(p1i(t)− p2,i(1))

(
2M∑
i=1

ai(p1,i(t)− p2,i(1) + e− 1

)
(83)

The Haar coefficients ai are derived using (13), (82) and
(83), and the solution for the required J value is obtained
iteratively as described in Section III. The numerical solu-
tions and the closed form solution (u(t) = et) are presented
in Table V. The obtained solution for both methods is in
good agreement with the analytical solution but it should be
noted that HWCM is once again superior to WGM in terms
of accuracy of the solution. Fig. 6 plots the exact solution
with solutions obtained by HWCM and WGM. The absolute
errors in the solution procedure for both methods are plotted

TABLE V: Comparison of wavelet-Galerkin solution using
db6 and Haar solution of Eq.(66) at level of resolution = 8.

t WGM HWCM Exact solution

0.0 1.0000000000 1.0000000000 1.0000000000

0.1 1.1051676974 1.1051708263 1.1051709181

0.2 1.2213963204 1.2214025795 1.2214027582

0.3 1.3498493237 1.3498585496 1.3498588076

0.4 1.4918125459 1.4918243715 1.4918246976

0.5 1.6487070838 1.6487208927 1.6487212707

0.6 1.8221035268 1.8221183941 1.8221188004

0.7 2.0137376947 2.0137523068 2.0137527075

0.8 2.2255280418 2.2255405822 2.2255409285

0.9 2.4595949090 2.4596028886 2.4596031112

1.0 2.7182818285 2.7182818285 2.7182818285

TABLE VI: Error estimate ∆ and rate of convergence σ for
the Haar solution of Eq.(66).

J ∆ σ

3 1.0475018846E-04 3.9687451386

4 2.6210363965E-05 3.9965178888

5 6.5509939886E-06 4.0009751209

6 1.6378200764E-06 3.9998251839

7 4.0944715928E-07 4.0000767847

8 1.0236227310E-07 3.9999811149

9 2.5590562557E-08 4.0000008937

using two different axes in the same figure. The left-hand
axis plots the error in WGM using a dashed line, whereas
the right-hand axis plots the error in HWCM with a solid
line. From the figure it is evident that the HWCM has a
better accuracy with an absolute error 10−2 orders less than
the WGM solution. Table VI shows the absolute errors and
rate of convergence of Haar wavelet solution for different
levels of resolution J . It can be clearly seen that the error in
the Haar solution decreases greatly with increasing J , and
the rate of convergence σ approaches the theoretical value
of σ = 4 for higher values of J . The Haar coefficients ai
for different J values are shown in Fig.7. It is once again
observed that as i increases, the value of ai tends close
to 0. This sparsity of the involved matrices is one of the
reasons for the efficiency of Haar wavelets in the solution of
differential equations.

V. CONCLUSION

In the present paper, three typical second-order differential
equations with various nonlinearities have been tackled using
the Daubechies wavelet-based Galerkin method and the Haar
wavelet collocation method. The ease of implementation and
the solution accuracy of both methods are examined. The
important results have been summarized below:
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Fig. 6: Comparison of wavelet-Galerkin and Haar solution
of Eq.(66) with the exact solution along with the absolute
error using WGM (left-hand axis, dashed line) and HWCM
(right-hand axis, solid line).

1) The Daubechies wavelets are orthogonal and sufficiently
smooth but they cannot be expressed in terms of an
explicit function, complicating the differentiation and
integration procedures.

2) WGM proves to be efficient for solving boundary
value problems when higher order wavelets are consid-
ered as basis functions. However, when confronted by
higher-order differential equations with nonlinearity or
singularity (Neumann or mixed boundary conditions),
calculating the corresponding connection coefficients
becomes very tedious.

3) Due to repeated computations of integrals of products of
Daubechies wavelets and their derivatives, the solution
procedure of WGM will take more computational time
in these cases. On the other hand, the HWCM provides
simple and convergent solution procedures with fast
computations.

4) It is important to observe that, in WGM, the wavelet
transform and its inverse are implemented on the
discretized system of algebraic equations, while in
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Fig. 7: Haar coefficients for the solution of Eq.(66) at J =
4, 5.

HWCM the differential equation is approximated
through wavelet series.

5) Due to the sparsity of transform matrices, HWCM
has simple implementation and small computation costs
which makes it more efficient than WGM. From a com-
putational viewpoint, this study shows that the HWCM
method is more efficient and easier to use than WGM.

APPENDIX

Two-term connection coefficients:
In solving a differential equation of the form

f

(
t,
du

dt
,
d2u

dt2

)
= 0 (84)

defined on a bounded interval t ∈ [a, b] by wavelet-Galerkin
method, it is required to determine the connection coeffi-
cients [9]. The two-term connection coefficients are defined
as

Ωd1,d2

l =

∫ ∞

−∞
ϕd1(t)ϕd2

l (t)dt (85)

By taking d times derivatives of the Daubechies scaling
function ϕ(t) =

∑L−1
k=0 pkϕ(2t − k) where pk =

√
2ck, we
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get

ϕd(t) = 2d
L−1∑
k=0

pkϕ
d
k(2t) (86)

where

ϕd(t) :=
ddϕ(t)

dtd
(87)

Using Eq.(86) in Eq.(85) and changing variables, we obtain

Ωd1,d2

l = 2d1+d2−1
∑
m,n

pmpn−2l+m

∫ ∞

−∞
ϕd1(t)ϕd2

n (t)dt

(88)

For various values of l and t, Eq.(88) gives a system of
equations which is denoted in matrix form as

TΩd1,d2 =
1

2d−1
Ωd1,d2 (89)

where Ωd1,d2 is unknown column vector with 2L − 3 com-
ponents, d = d1 + d2 and

T =
∑
m

pmpn−2l+m . (90)

The system Eq.(89) is homogeneous and does not have a
unique non-zero solution. To make the system inhomoge-
neous, a normalization equation is added (which is derived
from the moment equation of the scaling function ϕ(t))

d! = (−1)d
∑
l

Md
l Ω

0,d
l (91)

where Mk
i is kth moment of ϕi(t), defined as

Mk
i =

∫ ∞

−∞
xkϕi(t)dt (92)

Thus, the system Eq.(89) will reduce to the form(
T − 1

2d−1 I

Md

)
Ωd1,d2 =

(
0

d!

)
(93)

where Md is a row vector with all the Md
l . The unique

solution of this system will give the connection coefficients
Ωd1,d2 .
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