
 

  

Abstract—In reliability theory, technical systems are often 

modeled using Series-Parallel configurations, which provide a 

structured framework to analyze the relationship between the 

lifetimes of individual components and the overall system 

reliability. These configurations build upon the foundational 

concept of Parallel-Series systems and are widely used in 

system design and optimization. Traditionally, system 

optimization focuses on constraints such as cost. However, 

additional factors like weight, volume, size, and space also play 

critical roles, particularly in applications such as AC motor 

control units. This paper investigates the impact of multiple 

constraints on optimizing system reliability. We explore an 

Integrated Redundant Reliability Parallel-Series configuration 

system, specifically designed to address these multidimensional 

constraints. The model is developed and solved using the 

Lagrangean multiplier method (LMM), providing real-valued 

solutions for critical parameters, including the number of 

components, component reliability, stage reliability, and 

overall system reliability. To ensure practical applicability, 

integer solutions are derived by employing the Newton-

Raphson method during the analytical process. This 

comprehensive approach facilitates a deeper understanding of 

how multiple constraints influence system reliability and offers 

valuable insights for optimizing complex technical systems. 

 

Index Terms— Survival Theory, LMM Approach, IRR 

Model, Parallel-Series, Newton-Raphson Approach, System 

Efficiency. 

I. INTRODUCTION 

N classical reliability theory, the system and its 

constituent parts are constrained to exist in one of two 

states: functional or failed. However, within the 

framework of a multi-state system, a broader spectrum of 

possibilities emerges. In this context, both the overall 

system and its individual components can traverse a range of 

states beyond the binary distinction of operational or non-

operational, introducing a more nuanced understanding of 

reliability. Redundancy optimization is defined as an integer 

programming problem with zero-one type variables, 

according to Mishra, K. B. [1]. An algorithm credited to 

Lawler and Bell are used to obtain the answer. Any arbitrary  

function can serve as the objective function and the  
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constraints. We take into consideration three distinct 

iterations of the optimization issue. Using a digital 

computer, the answer is convenient and the formulation is 

simple. The number of restrictions does not limit the 

magnitude of the problem that can be addressed. A 

mathematical model was developed by Mishra, K. B. [2] to 

optimize a system's dependability under specified linear 

constraints. The system consists of multiple stages that are 

connected in series, with parallel redundancy at each level to 

increase reliability. Part I presents a novel application of 

Lagrange multipliers to convert the model of constrained 

optimization into a saddle point issue. The reliability 

function is maximized under certain conditions, and the 

resulting multidimensional nonlinear algebraic equations are 

solved by Newton's method. enormous systems can use this 

strategy since it avoids inverting the enormous Jacobian 

matrices through additional modifications. In Part II, the 

model of restricted optimization is transformed into a 

multistage decision process, and the optimal decision is 

reached by applying the Maximum principle. It is simple to 

create, implement, and program this strategy. The solution 

not only offers a significant reduction in computing time but 

may also be attained without the worry of non-convergence, 

which was frequently seen with previous solutions. 

Alternative designs are simple to think about. 

 To increase a structure's reliability, Agarwal, K. K. and 

Gupta, J. S. [3], proposed an integrated redundant reliability 

model. This model calls for additional resources and 

incorporates strategic considerations like integrating 

elements with higher reliability or incorporating redundant 

units. Agarwal, K. K. et al. [4], introduced numerous 

methods for assessing generic systems' reliability. Every 

method’s benefit and drawback are examined. To compare 

the amount of computational work required and the size of 

the final derived dependability expression, an example is 

solved using each method. Using a variation technique, Fan, 

L. T. and Wang, T. [5], were able to determine the parallel 

system's optimal redundancy. To optimize the system profit 

is the goal function. Using this method, the optimum design 

of the multistage parallel systems can be found with a 

straightforward computational procedure. A pair of thorough 

numerical examples are provided. An overview of the 

approaches developed for solving different reliability 

optimization problems, as well as applications of these 

approaches to different kinds of design problems, heuristics, 

exact methods, reliability-redundancy allocation, multi-

objective optimization, and assignment of interchangeable 

components in reliability systems, were established by Kuo, 

W., and Prasad, V. R. [6]. Like other applications, accurate 

solutions for dependability optimization problems are not 

always desirable due to their rarity and limited usefulness. 

accurate solutions can be challenging to find. Creating 
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heuristic and metaheuristic algorithms to solve optimal 

redundancy-allocation problems constitutes most of the 

work in this field. 

A general approach was proposed by Mettas, A. [7], to 

estimate the lowest reliability requirement for numerous 

components in a system that will result in the system's 

desired dependability value. There are two components to 

the model. The allocation problem is formulated using 

nonlinear programming in the first section. A cost function 

formulation for the nonlinear programming algorithm is 

presented in the second section. For this matter, it is 

assumed that the cost will behave generally as a function of 

the reliability of a component. Next, the cost of the system is 

lowered by finding an ideal component reliability that meets 

the dependability objective need of the system. Upon 

estimating the reliability required for every component, the 

choice of achieving this reliability through fault tolerance or 

fault avoidance can be made. The model can be applied to 

any kind of system, simple or complicated, and for a variety 

of distributions. It has produced highly positive results. This 

paradigm has the advantage of being very adaptable and 

requiring very little processing time. Sankaraiah, G., et al. 

[8], tried to investigate how different limitations affect 

system reliability. To conduct analysis, an integrated 

redundant reliability system is taken into consideration, 

modeled, and solved using a Lagrangian multiplier that 

yields a real-valued solution for the system's number of 

components as well as for each component's dependability 

at each stage. An integer solution is presented after the 

problem is further examined using a heuristic algorithm and 

an integer programming technique, which are validated by 

sensitivity analysis. Chunping Li and Huibing Hao [9], 

proposed an innovative reliability evaluation model that 

incorporates dependencies between two performance 

parameters through copula theory, enhancing accuracy 

compared to conventional methods that presume 

independence. The analysis of train wheel wear data 

indicates that disregarding PC dependencies might result in 

erroneous reliability findings, highlighting the necessity of 

dependency-aware methodologies in reliability engineering. 

Sridhar Akiri et.al. [10], conducted a comprehensive 

study, design, analysis, and optimization of an integrated 

coherent redundant reliability design that has not been 

reported in the literature. The system under investigation is 

initially designed and assessed using the Lagrangean 

multiplier, which provides a solution that is authentically 

accepted for the number of units, unit, and phase 

reliabilities, and thereby for the design's reliability.  

An integer solution is derived to ensure the system's 

practical applicability. The system is analyzed while the 

design reliability is optimized using the integer and dynamic 

programming techniques. The swiftly expanding application 

areas of systems and software modeling, such as intelligent 

synthetic characters, human-machine interface, menu 

generators, user acceptance analysis, picture archiving, and 

software systems, were presented by Sridhar Akiri et.al. 

[11].  

The book will be advantageous to students, research 

scholars, academicians, scientists, and industry practitioners, 

as it offers enhanced perspectives on contemporary global 

trends, issues, and practices. Offers optimization, 

simulation, and modeling of software reliability Provides 

practical applications, tools, and methodologies for resource 

allocation and reliability modeling. Demonstrates the 

optimization and cost modeling processes that are associated 

with intricate systems. 

Chunping Li, Haiqing Zhao, and Huibing Hao [12], 

formulated novel partial dependency dependability models 

for intricate systems utilizing copula functions, offering 

explicit formulations for series and parallel configurations 

under diverse dependence scenarios. They proposed 

techniques to enhance system reliability through comparison 

analysis, including altering component dependencies, 

adjusting the number of dependent components, or building 

new dependent structures, supported by numerical examples 

illustrating these improvements. 

 Srinivasa Rao Velampudi et. al. [13], conducted a review 

of the literature on system reliability optimization with 

redundancy and integrated reliability models with 

redundancy, and they recommend additional enhancements. 

This investigation explores the optimization of structural 

reliability while considering resource constraints, including 

the price, weight, and volume of components. Although 

reliability is typically evaluated in terms of component 

price, real-world scenarios demonstrate the significant 

impact of other constraints, such as component weight and 

volume, resulting in a unique enhancement in structural 

reliability. The investigation examines a refined over-

reliability model, navigating through numerous constraints 

to optimize the recommended configuration. The objective 

of Srinivasa Rao Velampudi et. al. [14], was to investigate 

and evaluate the influence of supplementary concealed 

restraints on the enhancement of structure reliability. The 

analysis is conducted with the integration of extraneous 

reliability from the structured structure. The Lagrangian 

multiplier method provides a solution for the reliability of 

elements, phases, and structures. Furthermore, The Dynamic 

programming method was implemented by employing a 

heuristic algorithm that generates an integer solution that is 

nearly optimal but not closed-bounded. The results obtained 

are illustrated by a numerical example. To optimize the 

efficiency of the system, Srinivasa Rao Velampudi et. al. 

[15], proposed an additional system that considers the 

number of factors in each phase, the efficiencies of the 

factors, and the various constraints. The authors utilized a 

variety of Lagrangean methods to ascertain the reliabilities 

of the phase and the numbers and efficiency of the factors 

under various parameters, including cost, size, and burden, 

to improve the efficiency of the system. The dynamic 

programming approach and simulation method have been 

modified to produce an integer result and to visualize the 

values as real. 

 The numerous proposed methods of system reliability 

evaluation of the consecutive-k-out-of-n: G systems were 

summarized by L Zhou et. al. [16], Nevertheless, these 

approaches are predicated on the premise that all 

components are identical and independent. Subsequently, 

we evaluate the system reliability of the linear consecutive-

k-out-of-n: G system when the tenure of components is not 

required to be identical, and we introduce a domination 

method. A novel approach to evolutionary multi-task 

optimization in the reliability redundancy allocation 

problem was reported by R Nath et. Al. [17]. This approach 

leverages the concepts of the widely used multi-factorial 

evolutionary algorithm (MFEA). To optimize the overall 

performance of the system, Srinivasa Rao Velampudi et. al. 
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[18], developed a case study on the Muffle Box Furnace 

machine. The study employed Lagrangean methods to 

calculate the price-component, weight-component, and 

volume-component associated with various system 

configurations. This investigation concludes with the 

development of a United Reliability Model (URM) that 

addresses variables such as unknown elements ( ), 

component-reliability ( ), and stage-reliability ( ) at 

specific points. The integration of value constraints into IRR 

Models, which establishes a fixed relationship between the 

price of components and their reliability, is emphasized in 

the existing literature. The superfluous reliability system for 

the parallel-series structure composition is shaped and 

elevated by a novel approach that incorporates intended 

considerations of component's weight and component's 

volume as additional constraints alongside component’s 

price. 

 The authors provided a comprehensive examination of the 

evolution and design of parallel-series systems as a 

component of the IRR Models research contribution, with a 

particular emphasis on redundant reliability configurations. 

Furthermore, the authors explore the design components of a 

redundant reliability system that is integrated. Additionally, 

their research encompasses a thorough case study, as 

demonstrated. Collectively, these contributions enhance our 

comprehension of parallel-series configuration by providing 

insights into their growth patterns, design considerations, 

and integrated reliability models. This corpus of work is a 

valuable contribution to the field of engineering applications 

and reliability theory.  

The authors of this paper focus on the application of the 

regular Lagrangean multipliers method to derive real-valued 

solutions, both with and without rounding-off. The 

"Newton-Raphson" method is a novel scientific approach 

that is employed to derive integer values. This method is 

implemented to compare the solutions obtained through the 

Lagrangean method and to obtain scientifically sound 

solutions, thereby guaranteeing the retention of the 

necessary number of components (   in each stage. 

Concurrently, this methodology contributes to the 

improvement of the overall system reliability ( . 

II. METHODS 

A. Consideration Symbols 

Uniformity is assumed among elements within each stage, 

signifying that all elements share an equivalent level of 

reliability. Statistical independence is attributed to all 

elements, implying that the failure of one element exerts no 

influence on the functionality of other elements within the 

structure. 

 = System-Reliability  

 = Reliability of Phase  , 0 < < 1 

= Reliability of each component in phase  ;  

Where 0 <   < 1 

 = Number of components in phase  

 =  Component’s-Price factor for each element in the 

phase  

 = Component’s-Weight factor for each element in the 

phase   

 

 = Component’s-Volume factor for each element in the 

phase   

 = Maximum permissible system–Component’s-Price 

 = Maximum permissible system-Component’s-Weight 

= Maximum permissible system-Component’s-Volume 

LMM Lagrangean Multiplier Method 

NRMA  Newton-Raphson Method Approach 

IRRM    Integrated Redundant Reliability Model 

, , , , ,  are Constants. 

 

B. Mathematical Examination 

The system's dependability concerning the given value 

function 

             (1) 

The subsequent correlation between value and efficiency is 

employed to determine the value coefficient of each unit in 

the phase  

                      (2) 

Therefore              (3) 

Similarly,              (4) 

                      (5) 

Since component’s-price is linear in ,  

                               (6) 

Similarly, component’s-weight and component’s-volume are 

also linear in  

                               (7) 

                               (8) 

Substituting (2) in (3) 

             (9) 

           (10) 

           (11)    

The transformed equation through the relation 

                                       (12) 

Where           (13) 

Subject to the constraints 

           (14) 

              (15) 

              (16) 

Positivity restrictions  

A Lagrangean function is defined as  

                                                                                          (17) 

Utilizing the Lagrangean function enables the 

identification of the optimal point and its separation by  , 

, ℰ1, ℰ2 and ℰ3. 

                   (18)      
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                                                                      (19) 

                        (20)

                                                                                                                                 

           

                                                                                    (21) 

          

                                                                                       (22) 

Where are Lagrangean multipliers. 

 

C. Case Problem 

In the pursuit of utilizing optimization techniques [9] to 

derive various parameters for a specific mechanical system, 

this research incorporates assumptions where factors such as 

component’s- price, component’s-weight, and component’s-

volume are presumed to be directly proportional to system 

reliability. It is important to note that this assumption may 

not hold true for electronic systems. Consequently, the 

assessment of maximum component’s-reliability ( ), 

stage-reliability ( ), quantity of elements per stage ( ), 

and structure accuracy ( ) is applicable to any given 

mechanical system [10]. This research specifically centers 

on assessing the structural accuracy [13] of a dedicated 

apparatus engineered for assembling single-phase industrial 

AC motor control circuits. 

In the context of this analysis, the AC motor is used to 

assemble a power generator with 3 to 5 foundational 

elements. The machine, valued at approximately $750, 

represents the structure's component’s-price, while the 

component’s-weight, it bears is 650 pounds, constituting the 

structural component’s-weight. Additionally, the 

component’s-volume occupied by the machine volume to 

750 , signifying the dimension of the component or 

overall structure size. To engage authors originating in 

diverse backgrounds, hypothetical numbers are employed, 

offering flexibility for adjustment based on varying 

environmental considerations. The schematic diagram of the 

AC motor control circuits in Figure 1.  

 

D. Parameters 

Tables below showcase the efficacy of individual factors, 

phases, the number of factors in each stage, and the overall 

structural effectiveness [2, 3]. The information needed for 

the parameters relevant to the case problem is presented in 

the table I.  

 

E. Utilizing the Lagrangean multiplier method (LMM) 

without rounding off to address component-price constraints 

with precision. 

The efficiency design related to values is outlined in the 

table II.  

 

F. Utilizing the Lagrangean multiplier method without 

rounding off to address component-weight constraints with 

precision 

The equivalent results for the load are shown in the Table 

III.  

 

G. Utilizing the Lagrangean multiplier method without 

rounding off to address component-volume constraints with 

precision 

The equivalent results for size are described in the table 

IV.  

 

Structure Efficiency ( ), devoid of rounding-off, 

remains directly proportional to the individual components 

of component’s-price, component’s-weight, and 

component’s volume with a constant of proportionality set 

at 0.8934.  

 

TABLE I 
PRE-FIXED COMPONENTS VALUES 

Phase 
Price and Its 
Reliability 

Weight and 
Its Reliability 

Volume and Its 
Reliability 

       

1 80 0.85 100 0.92 90 0.94 

2 55 0.88 60 0.88 75 0.89 

3   65 0.91 75 0.91 105 0.86 

TABLE II 

ANALYZING PRICE CONSTRAINTS FOR COMPONENTS THROUGH THE LAGRANGE MULTIPLIER METHOD 

Phase          

01 80 0.85 0.9452 -0.0245 0.8424 -0.0745 3.0408 68 206.9240 

02 55 0.88 0.9574 -0.0189 0.8243 -0.0839 4.4392 48.4 214.8186 

03 65 0.91 0.9654 -0.0153 0.8353 -0.0782 5.1111 59.15 302.3036 

Final Component’s-price 
724.0462 
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TABLE III 

ANALYZING WEIGHT CONSTRAINTS FOR COMPONENTS THROUGH THE LAGRANGE MULTIPLIER METHOD 

Phase           

01 100 0.92 0.8741 -0.0584 0.6777 -0.1690 2.8938 92 265.2296 

02 60 0.88 0.8445 -0.0734 0.6487 -0.1880 2.5613 52.8 135.2366 

03 75 0.91 0.8456 -0.0728 0.5461 -0.2627 3.6085 68.25 246.1914 

Final Component’s-weight 
647.6576 

 
 

TABLE IV 
ANALYZING VOLUME CONSTRAINTS FOR COMPONENTS THROUGH THE LAGRANGE MULTIPLIER METHOD 

Phase          

01 90 0.94 0.8741 -0.0584 0.6777 -0.1690 2.8938 84.6 244.8155 

02 75 0.89 0.8445 -0.0734 0.6487 -0.1880 2.5613 66.75 170.9668 

03 105 0.86 0.8456 -0.0728 0.5461 -0.2627 3.6085 90.3 325.8476 

Final Component’s-volume 741.6299 

III. OPTIMIZATION OF EFFICIENCY THROUGH THE 

APPLICATION THE LAGRANGEAN MULTIPLIER METHOD 

The design efficiency [11] compiles the values of  as 

integers, rounding each  value to the nearest whole 

number. Tables delineate the permissible results for, 

component’s-price, component’s-weight, and component’s-

volume. The task at hand involves computing variances 

attributable to component’s-price, component’s-weight, 

component’s-volume, and examining construction capacity, 

both with ' ' rounded to the nearest integer and in its 

original form, to extract comprehensive insights. 

 

A. Designing Efficiency Through LMM Considering 

Components-Price, Components-Weight, and Components-

Volume with Rounding Precision 

The equivalent results for price, weight, size, and system 

reliability are described in the Table V. and the following 

are the variations due to component’s-price, components-

weight, components-volume 

Mutation in Component’s-price = 04.56% 

Mutation in Component’s-weight = 09.16% 

Mutation in Component’s-volume = 10.03% 

Mutation in Structure Efficiecy = 05.85%  

IV. NEWTON-RAPHSON APPROACH 

    Employing the Lagrangean technique [5], which      

possesses several drawbacks, including the requirement to 

specify the quantity of components needed at each stage 

(αj) in real numbers, can prove challenging to implement. 

The conventional practice of rounding down values may 

lead to alterations in component’s-price, component’s-

weight, and component’s-volume, influencing system 

reliability and significantly impacting the efficiency design 

of the model. Recognizing this limitation, the author 

proposes an alternative empirical approach that employs the 

Newton-Raphson method to derive an integer solution. This 

method utilizes the solutions generated by the Lagrangean 

approach as parameters for the proposed Newton-Raphson 

technique. 

A. Newton-Raphson Method (NRM) 

        The graph of   crosses the  at the 

point R corresponding to the equation  (Fig 4.1). 

Suppose the current approximation to the root is  in the rth 

iteration. Let p be the corresponding point on the curve. The 

tangent to the curve at p cuts the  at T, where 

, say giving us the next approximate to the required 

root. 

Let                                                               (23) 

and                                                        (24) 

so that the slope of the tangent at p  is 

)                         (25) 

Therefore, 

                                                         (26) 

i.e.,                             (27) 

The process can be continued till the absolute value of the 

difference between two successive approximations, say   

and  is less than the prescribed degree of accuracy Q. 

i.e.,                                                     (28) 

    In this method, slide down a tangent line along the curve 

y=f(t), But when the slope of a tangent corresponding to an 

approximate root in one of the iterations is zero (parallel to 

the x-axis) or numerically very small, Newton’s method 

fails to give the solution. 

 

B.  Convergence of Newton’s Method 

The sequence of approximate solutions obtained 

by the Newton -Raphson formula converges except in few 

situations, quite rapidly to the actual solution. Suppose 

 is the actual root of the equation  so that 

. If    is an approximation obtained in the nth 

iteration, let us write,                                     (29) 

Where  is small when  is close to a. Now from the 

Newton-Raphson formula, we have 

                                                      (30) 

Using the above two equations 

                                            (31) 

From Taylor’s theorem 
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                                                                                          (32) 

  
                                                                                          (33) 

(Since  and using the binomial theorem) 

  
                                                                                          (34) 

                                                              (35) 

Therefore, 

                                                      (36) 

                                                  (37) 

i.e.,                                                    (38) 

Thus, the Newton’s iteration formula is a second order 

process which means that the solution is the one of 

quadratic convergence. 

 

C.  Algorithm of Newton’s Method 

Step 1:  Choose a trail solution   ,         

                                                                                          (39) 

Step 2:  Next approximation  is obtained from    

                                                     (40) 

Step 3: Follow the above procedure to find successive 

approximation , using the formula   

                               (41) 

Step 4:   stop when                                 (42) 

Where Q is the prescribed accuracy. 

The author applied a Newton-Raphson approach to 

compute the new phase reliability ( , resulting in values 

of 0.8424, 0.8243, and 0.8353 for stage reliability ( . 

Employing the NRM, the study presents the outcomes for 

the mathematical function presented successively in tables 

6, 7, and 8, facilitating the derivation of necessary 

conclusions. 

V. RESULTS 

 

The implementation of the LMM has yielded a solution in 

real numbers for the proposed Comprehensive. Redundant 

Reliability Systems in the mathematical models 

investigated, fulfilling the need for an integer solution. 

 

A. Elaboration on the Constraints of Component’s-Price, 

Component’s-Weight, and Component’s-Volume Utilizing 

the Newton’s Raphson Method (NRM).  

The component’s-price, component’s-weight and 

component’s-volume related efficiency design is described 

in the Table V and VI. 

 

B. Comparison of Optimization of Integrated Redundant 

Reliability Parallel-Series Systems (IRRPS) – LMM with 

rounding-off and NRM Approach for Component’s-Price. 

The comparison between the LMM with rounding-off and 

NRM for components of price-related efficiency design is 

presented in Table VII. 

 

C. Analyzing the Optimal Enhancement of IRRPS – LMM 

with rounding-off and NRM approach for Component’s-

Weight. 

The comparison between the LMM with rounding-off and 

NRM for components of weight related efficiency design in 

Table VIII. 

 

D. Analyzing the optimal enhancement of IRRPS using the 

LMM with rounding-off and NRM for component volume. 

The comparison between the LMM with rounding-off and 

NRM for components of volume-related efficiency design is 

presented in Table IX. 

VI. DISCUSSION 

 

The authors have undertaken a comprehensive analysis of 

the components involved in an AC motor control unit, 

specifically focusing on the rectifier, inverter, and DC link. 

By employing the Integrated Redundant Reliability Model, 

the study successfully identifies the number of components, 

the reliability of each component, the reliability at various 

stages, and the overall system reliability through a parallel-

series configuration. The ensuing discussion details the 

performance metrics of the AC motor control unit in relation 

to these critical components. 

This research presents a novel reliability model designed 

specifically for a parallel-series configuration system with 

multiple efficiency criteria. When data is presented in real 

numbers, the LMM is employed to ascertain the values of 

components ( ), component’s-reliability ( , stage-

reliability ( , and system-reliability ( . The resulting 

component-efficiencies (  are 0.9452, 0.9574, and 

0.9654, stage-reliabilities ( , are 0.8424, 0.8243, and 

0.8353, and structure-reliability (  is 0.9457.  

For practical implementation, the Newton’s Raphson 

method is employed to obtain integer-solutions, leading to 

component-reliabilities (  of 0.9551, 0.9638, and 0.9952, 

stage reliabilities (  of 0.8849, 0.8482, and 0.8461, and 

system reliability (  of 0.9672 These integer solutions 

are derived using inputs derived from the Lagrangean 

method, ensuring the applicability of the model in practical 

scenarios. 

The analysis reveals that variations in component’s-price, 

component’s-weight, and component’s-volume are evident, 

although minor. However, these fluctuations, when 

juxtaposed with stage reliability, exert a positive influence 

on overall system reliability. The developed Integrated 

Reliability Model (IRM) demonstrates significant utility, 

particularly in practical situations demanding the 

incorporation of redundancy by reliability engineers within a 

parallel-series configuration. This proves particularly 

advantageous when the system's intrinsic value is on the 

lower side. In forthcoming studies, the authors propose 

investigating an innovative methodology that imposes 

constraints on reliability values at both the lower and upper 

bounds of components while simultaneously maximizing 

system dependability. Leveraging existing heuristic 

processes, the aim is to formulate analogous IRMs. 
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TABLE V 
EFFICIENCY DESIGN RELATING TO COMPONENT’S-PRICE, COMPONENT’S-WEIGHT, AND COMPONENT’S-VOLUME, THE TABLE 

BELOW ILLUSTRATES CONSTRAINT ANALYSIS USING THE LAGRANGE MULTIPLIER METHOD, INCORPORATING THE ROUNDING OFF 

PROCESS 
 

 

 
 

 

TABLE VI 

EFFICIENCY DESIGN RELATING TO COMPONENT’S-PRICE, COMPONENT’S-WEIGHT, AND COMPONENT’S-VOLUME, CONSTRAINT 

ANALYSIS BY USING NEWTON’S RAPHSON METHOD IS SHOWN IN THE FOLLOWING  

Phase            

01 0.9551 0.8849 3 66 198 3 91 273 3 83 249 

02 0.9638 0.8482 4 47 188 3 50 150 3 67 201 

03 0.9952 0.8461 4 55 220 4 64 256 4 88 352 

Total unit’s - price, unit’s - weight, unit’s - volume                          606                           679                                802 

System Reliability (RSE)                              0.9672 

 

TABLE VII 
 FINDINGS FROM LAGRANGE MULTIPLIER METHOD WITH ROUNDED VALUES AND NEWTON’S RAPHSON METHOD APPROACH FOR 

COMPONENT’S-PRICE 

 LMM With Rounding Off Newton’s Raphson Method 

Phase          

01 3 0.9452 0.8424 68 204 0.9551 0.8849 66 198 

02 4 0.9574 0.8243 48 192 0.9638 0.8482 47 188 

03 5 0.9654 0.8353 59 295 0.9952 0.8461 55 220 

Final Unit’s Price                                                   691                                                  606 

System Reliability Applying the LMM (RSE) 0.9457 Applying the NRM (RSE) 0.9672 

 

TABLE VIII 

FINDINGS FROM THE LAGRANGE MULTIPLIER METHOD WITH ROUNDING-OFF TECHNIQUE AND NEWTON’S RAPHSON METHOD 
APPROACH FOR COMPONENT’S-WEIGHT 

 LMM With Rounding Off Newton’s Raphson Method 

Phase          

01 3 0.9452 0.8424 92 276 0.9551 0.8849 91 273 

02 3 0.9574 0.8243 53 159 0.9638 0.8482 50 150 

03 4 0.9654 0.8353 68 272 0.9952 0.8461 64 256 

Final Unit’s Weight                                                707                                                  679 

System Reliability Applying the LMM (RSE) 0.9457 Applying the NRM (RSE) 0.9672 

TABLE IX 
 FINDINGS FROM THE LAGRANGE MULTIPLIER METHOD WITH ROUNDING-OFF TECHNIQUE AND NEWTON’S RAPHSON METHOD 

FOR COMPONENT’S-VOLUME 

 LMM With Rounding Off Newton’s Raphson Method 

Phase          

01 3 0.9452 0.8424 85 255 0.9551 0.8849 83 249 

02 3 0.9574 0.8243 67 201 0.9638 0.8482 67 201 

03 4 0.9654 0.8353 90 360 0.9952 0.8461 88 352 

Final Unit’s Volume                                                                   816                                                                  802 

System Reliability Applying the LMM (RSE) 0.9457 Applying the NRM (RSE) 0.9672 

Phase            

1 0.9452 0.8424 3 68 204 3 92 276 3 85 255 

2 0.9574 0.8243 4 48 192 3 53 159 3 67 201 

3 0.9654 0.8353 5 59 295 4 68 272 4 90 360 

Total Component’s-price, Component’s-
weight, Component’s-volume 

                         691                          707                                816 

                                                   System Reliability ( )                               0.9457 
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Mutation in Component’s-price = 14.02% 

Mutation in Component’s-weight = 04.12% 

Mutation in Component’s-volume = 04.75% 

Mutation in Structure Efficiecy = 02.22%  
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Fig. 1. AC Motor control units 
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