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Abstract—In reliability theory, technical systems are often
modeled using Series-Parallel configurations, which provide a
structured framework to analyze the relationship between the
lifetimes of individual components and the overall system
reliability. These configurations build upon the foundational
concept of Parallel-Series systems and are widely used in
system design and optimization. Traditionally, system
optimization focuses on constraints such as cost. However,
additional factors like weight, volume, size, and space also play
critical roles, particularly in applications such as AC motor
control units. This paper investigates the impact of multiple
constraints on optimizing system reliability. We explore an
Integrated Redundant Reliability Parallel-Series configuration
system, specifically designed to address these multidimensional
constraints. The model is developed and solved using the
Lagrangean multiplier method (LMM), providing real-valued
solutions for critical parameters, including the number of
components, component reliability, stage reliability, and
overall system reliability. To ensure practical applicability,
integer solutions are derived by employing the Newton-
Raphson method during the analytical process. This
comprehensive approach facilitates a deeper understanding of
how multiple constraints influence system reliability and offers
valuable insights for optimizing complex technical systems.

Index Terms— Survival Theory, LMM Approach, IRR
Model, Parallel-Series, Newton-Raphson Approach, System
Efficiency.

I. INTRODUCTION

N classical reliability theory, the system and its
Iconstituent parts are constrained to exist in one of two

states: functional or failed. However, within the
framework of a multi-state system, a broader spectrum of
possibilities emerges. In this context, both the overall
system and its individual components can traverse a range of
states beyond the binary distinction of operational or non-
operational, introducing a more nuanced understanding of
reliability. Redundancy optimization is defined as an integer
programming problem with zero-one type variables,
according to Mishra, K. B. [1]. An algorithm credited to
Lawler and Bell are used to obtain the answer. Any arbitrary
function can serve as the objective function and the
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constraints. We take into consideration three distinct
iterations of the optimization issue. Using a digital
computer, the answer is convenient and the formulation is
simple. The number of restrictions does not limit the
magnitude of the problem that can be addressed. A
mathematical model was developed by Mishra, K. B. [2] to
optimize a system's dependability under specified linear
constraints. The system consists of multiple stages that are
connected in series, with parallel redundancy at each level to
increase reliability. Part | presents a novel application of
Lagrange multipliers to convert the model of constrained
optimization into a saddle point issue. The reliability
function is maximized under certain conditions, and the
resulting multidimensional nonlinear algebraic equations are
solved by Newton's method. enormous systems can use this
strategy since it avoids inverting the enormous Jacobian
matrices through additional modifications. In Part 1, the
model of restricted optimization is transformed into a
multistage decision process, and the optimal decision is
reached by applying the Maximum principle. It is simple to
create, implement, and program this strategy. The solution
not only offers a significant reduction in computing time but
may also be attained without the worry of non-convergence,
which was frequently seen with previous solutions.
Alternative designs are simple to think about.

To increase a structure's reliability, Agarwal, K. K. and
Gupta, J. S. [3], proposed an integrated redundant reliability
model. This model calls for additional resources and
incorporates  strategic  considerations like integrating
elements with higher reliability or incorporating redundant
units. Agarwal, K. K. et al. [4], introduced numerous
methods for assessing generic systems' reliability. Every
method’s benefit and drawback are examined. To compare
the amount of computational work required and the size of
the final derived dependability expression, an example is
solved using each method. Using a variation technique, Fan,
L. T. and Wang, T. [5], were able to determine the parallel
system's optimal redundancy. To optimize the system profit
is the goal function. Using this method, the optimum design
of the multistage parallel systems can be found with a
straightforward computational procedure. A pair of thorough
numerical examples are provided. An overview of the
approaches developed for solving different reliability
optimization problems, as well as applications of these
approaches to different kinds of design problems, heuristics,
exact methods, reliability-redundancy allocation, multi-
objective optimization, and assignment of interchangeable
components in reliability systems, were established by Kuo,
W., and Prasad, V. R. [6]. Like other applications, accurate
solutions for dependability optimization problems are not
always desirable due to their rarity and limited usefulness.
accurate solutions can be challenging to find. Creating
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heuristic and metaheuristic algorithms to solve optimal
redundancy-allocation problems constitutes most of the
work in this field.

A general approach was proposed by Mettas, A. [7], to
estimate the lowest reliability requirement for numerous
components in a system that will result in the system's
desired dependability value. There are two components to
the model. The allocation problem is formulated using
nonlinear programming in the first section. A cost function
formulation for the nonlinear programming algorithm is
presented in the second section. For this matter, it is
assumed that the cost will behave generally as a function of
the reliability of a component. Next, the cost of the system is
lowered by finding an ideal component reliability that meets
the dependability objective need of the system. Upon
estimating the reliability required for every component, the
choice of achieving this reliability through fault tolerance or
fault avoidance can be made. The model can be applied to
any kind of system, simple or complicated, and for a variety
of distributions. It has produced highly positive results. This
paradigm has the advantage of being very adaptable and
requiring very little processing time. Sankaraiah, G., et al.
[8], tried to investigate how different limitations affect
system reliability. To conduct analysis, an integrated
redundant reliability system is taken into consideration,
modeled, and solved using a Lagrangian multiplier that
yields a real-valued solution for the system's number of
components as well as for each component's dependability
at each stage. An integer solution is presented after the
problem is further examined using a heuristic algorithm and
an integer programming technique, which are validated by
sensitivity analysis. Chunping Li and Huibing Hao [9],
proposed an innovative reliability evaluation model that
incorporates dependencies between two performance
parameters through copula theory, enhancing accuracy
compared to conventional methods that presume
independence. The analysis of train wheel wear data
indicates that disregarding PC dependencies might result in
erroneous reliability findings, highlighting the necessity of
dependency-aware methodologies in reliability engineering.

Sridhar Akiri etal. [10], conducted a comprehensive
study, design, analysis, and optimization of an integrated
coherent redundant reliability design that has not been
reported in the literature. The system under investigation is
initially designed and assessed using the Lagrangean
multiplier, which provides a solution that is authentically
accepted for the number of units, unit, and phase
reliabilities, and thereby for the design's reliability.

An integer solution is derived to ensure the system's
practical applicability. The system is analyzed while the
design reliability is optimized using the integer and dynamic
programming techniques. The swiftly expanding application
areas of systems and software modeling, such as intelligent
synthetic characters, human-machine interface, menu
generators, user acceptance analysis, picture archiving, and
software systems, were presented by Sridhar Akiri et.al.
[11].

The book will be advantageous to students, research
scholars, academicians, scientists, and industry practitioners,
as it offers enhanced perspectives on contemporary global
trends, issues, and practices. Offers optimization,
simulation, and modeling of software reliability Provides

practical applications, tools, and methodologies for resource
allocation and reliability modeling. Demonstrates the
optimization and cost modeling processes that are associated
with intricate systems.

Chunping Li, Haiging Zhao, and Huibing Hao [12],
formulated novel partial dependency dependability models
for intricate systems utilizing copula functions, offering
explicit formulations for series and parallel configurations
under diverse dependence scenarios. They proposed
techniques to enhance system reliability through comparison
analysis, including altering component dependencies,
adjusting the number of dependent components, or building
new dependent structures, supported by numerical examples
illustrating these improvements.

Srinivasa Rao Velampudi et. al. [13], conducted a review
of the literature on system reliability optimization with
redundancy and integrated reliability models with
redundancy, and they recommend additional enhancements.
This investigation explores the optimization of structural
reliability while considering resource constraints, including
the price, weight, and volume of components. Although
reliability is typically evaluated in terms of component
price, real-world scenarios demonstrate the significant
impact of other constraints, such as component weight and
volume, resulting in a unique enhancement in structural
reliability. The investigation examines a refined over-
reliability model, navigating through numerous constraints
to optimize the recommended configuration. The objective
of Srinivasa Rao Velampudi et. al. [14], was to investigate
and evaluate the influence of supplementary concealed
restraints on the enhancement of structure reliability. The
analysis is conducted with the integration of extraneous
reliability from the structured structure. The Lagrangian
multiplier method provides a solution for the reliability of
elements, phases, and structures. Furthermore, The Dynamic
programming method was implemented by employing a
heuristic algorithm that generates an integer solution that is
nearly optimal but not closed-bounded. The results obtained
are illustrated by a numerical example. To optimize the
efficiency of the system, Srinivasa Rao Velampudi et. al.
[15], proposed an additional system that considers the
number of factors in each phase, the efficiencies of the
factors, and the various constraints. The authors utilized a
variety of Lagrangean methods to ascertain the reliabilities
of the phase and the numbers and efficiency of the factors
under various parameters, including cost, size, and burden,
to improve the efficiency of the system. The dynamic
programming approach and simulation method have been
modified to produce an integer result and to visualize the
values as real.

The numerous proposed methods of system reliability
evaluation of the consecutive-k-out-of-n: G systems were
summarized by L Zhou et. al. [16], Nevertheless, these
approaches are predicated on the premise that all
components are identical and independent. Subsequently,
we evaluate the system reliability of the linear consecutive-
k-out-of-n: G system when the tenure of components is not
required to be identical, and we introduce a domination
method. A novel approach to evolutionary multi-task
optimization in the reliability redundancy allocation
problem was reported by R Nath et. Al. [17]. This approach
leverages the concepts of the widely used multi-factorial
evolutionary algorithm (MFEA). To optimize the overall
performance of the system, Srinivasa Rao Velampudi et. al.
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[18], developed a case study on the Muffle Box Furnace
machine. The study employed Lagrangean methods to
calculate the price-component, weight-component, and
volume-component  associated with  various  system
configurations. This investigation concludes with the
development of a United Reliability Model (URM) that
addresses variables such as unknown elements (t,;),
component-reliability (r;), and stage-reliability (Rsg) at
specific points. The integration of value constraints into IRR
Models, which establishes a fixed relationship between the
price of components and their reliability, is emphasized in
the existing literature. The superfluous reliability system for
the parallel-series structure composition is shaped and
elevated by a novel approach that incorporates intended
considerations of component's weight and component's
volume as additional constraints alongside component’s
price.

The authors provided a comprehensive examination of the
evolution and design of parallel-series systems as a
component of the IRR Models research contribution, with a
particular emphasis on redundant reliability configurations.
Furthermore, the authors explore the design components of a
redundant reliability system that is integrated. Additionally,
their research encompasses a thorough case study, as
demonstrated. Collectively, these contributions enhance our
comprehension of parallel-series configuration by providing
insights into their growth patterns, design considerations,
and integrated reliability models. This corpus of work is a
valuable contribution to the field of engineering applications
and reliability theory.

The authors of this paper focus on the application of the
regular Lagrangean multipliers method to derive real-valued
solutions, both with and without rounding-off. The
"Newton-Raphson" method is a novel scientific approach
that is employed to derive integer values. This method is
implemented to compare the solutions obtained through the
Lagrangean method and to obtain scientifically sound
solutions, thereby guaranteeing the retention of the
necessary number of components (t,;) in each stage.

Concurrently, this methodology contributes to the
improvement of the overall system reliability (Rsg).

Il. METHODS

A. Consideration Symbols

Uniformity is assumed among elements within each stage,
signifying that all elements share an equivalent level of
reliability. Statistical independence is attributed to all
elements, implying that the failure of one element exerts no
influence on the functionality of other elements within the
structure.
R g = System-Reliability
R,; = Reliability of Phase 'j', 0 <Rg;<1
r,; = Reliability of each component in phase ',
Where 0 <%ai <1
tg; = Number of components in phase ‘o’
CP,= Component’s-Price factor for each element in the
phase aj’
WP, = Component’s-Weight factor for each element in the
phase ‘aj’

VP, = Component’s-Volume factor for each element in the
phase ‘aj’

C.o = Maximum permissible system—Component’s-Price
W, = Maximum permissible system-Component’s-Weight
V0 = Maximum permissible system-Component’s-Volume
LMM Lagrangean Multiplier Method

NRMA Newton-Raphson Method Approach

IRRM Integrated Redundant Reliability Model

by, £ iy, dg, B, Qe are Constants.

B. Mathematical Examination

The system's dependability concerning the given value
function
Maximize Rgg=1— []%=4[1— [T&1Rq) 1)
The subsequent correlation between value and efficiency is
employed to determine the value coefficient of each unit in
the phase ‘o’

1
r, = tanh™! (%)d“ )
Therefore C, = by tanh [ry] % @)
Similarly, L, = f,tanh [r,] %= (4)
Sz = Pgtanh [rg] 9= ®)
Since component’s-price is linear in ‘aj’,
E&;L Cc-:'tc-: = CaU (6)

Similarly, component’s-weight and component’s-volume are
also linear in 'aj’.

Z&=l Lu:-:'tc-: = Wao (7)

&=l St-:'tt-: = VCtU (8)
Substituting (2) in (3)

&:1 bl:-:[tanh(ru:)]dx-tu: = CctU (9)
E&:l IEn:-: [tanh(ru:)] gx-tu: = wctﬂ (10)
E&=l pl:-:[tanh(ru:)] t1”c-tc-: = VctU (11)
The transformed equation through the relation

_ logR,, (12)
" logr,,
Where Ry = [[5=4[1 — (1 —1g)%] (13)
Subject to the constraints
n_ b, [tanh(r,)]d= '”gf —Co=0 (14)
1f [tanh(r, )]8 "’g—f Weo <0 (15)
1 Pe[tanh(r, )], '”g“ ~ V=0 (16)
Posmwty restrictions cx] :i 0
A Lagrangean function is defined as
L=R, +¢g [E“_lb [tanh(r, )]dx.::'i}:”‘— Cao] +
) [Eﬂ—lf [tanh(r, )]&=. IOER a[‘l} +
u B,
£z [Zu:-:—l P tanhlir )] 1 if Vao}
(17
Utilizing the Lagrangean function enables the

identification of the optimal point and its separation by R,

Ctl’ éal, & and &s.
—=1+¢g [Em_lb [tanh(r, )]%=. Iogrj +

gR,,

1
£ [EF 1 £, [tanh(r, )]8= e
(] [E&:J. pux[tanhﬁr“f)] . R.logr,

(18)
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L n d, logR, sechgi'rx)_
Br,, &1 [(Eu::lbu: [tanh(r,)]%. Iogrx) [tanh('rxj
1 n B logR,, sechgi'rx)_
rxlogrj t e [( =1 fo [tan (e )] Iogrx) [tanht'rxj
1 n q, 108R sech®(r,)
rxlogIT—I T & [( 'Izlpt':[tanh(r'x)] ' Iogrx) [taﬂh('rx)
1
rxlogIT—I
gL logR (19)
Of R
3o = i1 byftanh(r)] =28 — Cg (20)
aL logR,,
5o = Zh=y £ ftanh(r) 8= 25 — W
gL logR (21)
0| o
F Bo1Pg[tanh(r,)]%. Iozr,,. — Vo,
(22)

Where £, &, and £; are Lagrangean multipliers.

C. Case Problem

In the pursuit of utilizing optimization techniques [9] to
derive various parameters for a specific mechanical system,
this research incorporates assumptions where factors such as
component’s- price, component’s-weight, and component’s-
volume are presumed to be directly proportional to system
reliability. It is important to note that this assumption may
not hold true for electronic systems. Consequently, the
assessment of maximum component’s-reliability (rg;),
stage-reliability (R;), quantity of elements per stage (t,;),
and structure accuracy (Rgg) is applicable to any given
mechanical system [10]. This research specifically centers
on assessing the structural accuracy [13] of a dedicated
apparatus engineered for assembling single-phase industrial
AC motor control circuits.

In the context of this analysis, the AC motor is used to
assemble a power generator with 3 to 5 foundational
elements. The machine, valued at approximately $750,
represents the structure's component’s-price, while the
component’s-weight, it bears is 650 pounds, constituting the
structural component’s-weight. Additionally, the

component’s-volume occupied by the machine volume to
750 cm?, signifying the dimension of the component or
overall structure size. To engage authors originating in
diverse backgrounds, hypothetical numbers are employed,
offering flexibility for adjustment based on varying
environmental considerations. The schematic diagram of the
AC motor control circuits in Figure 1.

D. Parameters

Tables below showcase the efficacy of individual factors,
phases, the number of factors in each stage, and the overall
structural effectiveness [2, 3]. The information needed for
the parameters relevant to the case problem is presented in
the table I.

E. Utilizing the Lagrangean multiplier method (LMM)
without rounding off to address component-price constraints
with precision.

The efficiency design related to values is outlined in the
table 11.

F. Utilizing the Lagrangean multiplier method without
rounding off to address component-weight constraints with
precision

The equivalent results for the load are shown in the Table
1.

G. Utilizing the Lagrangean multiplier method without
rounding off to address component-volume constraints with
precision

The equivalent results for size are described in the table
\VA

Structure Efficiency (Rsg), devoid of rounding-off,
remains directly proportional to the individual components
of component’s-price, component’s-weight, and
component’s volume with a constant of proportionality set
at 0.8934.

TABLEI
PRE-FIXED COMPONENTS VALUES

Phase Price and Its Weight and Volume and Its

Reliability Its Reliability Reliability

bej Faj  iaj dexf gaj getj

1 80 085 100 0.92 90 0.94

2 55 0.88 60 0.88 75 0.89

3 65 091 75 0.91 105  0.86

TABLE 11
ANALYZING PRICE CONSTRAINTS FOR COMPONENTS THROUGH THE LAGRANGE MULTIPLIER METHOD
Phase  baj  faj rj Logrog Raj LogRaj taj CPa CPux. torj

01 80 085 0.9452 -0.0245 0.8424  -0.0745  3.0408 68 206.9240
02 55 088 0.9574 -0.0189 0.8243 -0.0839 4.4392 484 214.8186
03 65 091 09654 -0.0153 0.8353 -0.0782 51111 59.15  302.3036
724.0462

Final Component’s-price
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ANALYZING WEIGHT CONSTRAINTS FOR COMPOTI\IIAEBNL'II'ESUI!HROUGH THE LAGRANGE MULTIPLIER METHOD
Phase Fi ki rj Logreg Ruj LogReg =+ 5] WPe WPa.txj
01 100 092 08741 -0.0584 0.6777 -0.1690 2.8938 92 265.2296
02 60 0.88 0.8445 -0.0734 0.6487 -0.1880 25613 52.8  135.2366
03 75 091 08456 -0.0728 0.5461 -0.2627 3.6085 68.25 246.1914
Final Component’s-weight 647.6576
TABLE IV
ANALYZING VOLUME CONSTRAINTS FOR COMPONENTS THROUGH THE LAGRANGE MULTIPLIER METHOD
Phase  #j qj roj Lograj Raj LogRaj torj VPa VPt
01 90 094 08741 -0.0584 0.6777 -0.1690 2.8938 84.6  244.8155
02 75 089 08445 -0.0734 0.6487 -0.1880 2.5613 66.75  170.9668
03 105 0.86 0.8456 -0.0728 0.5461 -0.2627 3.6085 90.3  325.8476
Final Component’s-volume 741.6299

I1l. OPTIMIZATION OF EFFICIENCY THROUGH THE
APPLICATION THE LAGRANGEAN MULTIPLIER METHOD

The design efficiency [11] compiles the values of ‘e’ as
integers, rounding each ‘e;" value to the nearest whole
number. Tables delineate the permissible results for,
component’s-price, component’s-weight, and component’s-
volume. The task at hand involves computing variances

A. Newton-Raphson Method (NRM)

The graph of y = f(t) crosses the x —axis at the
point R corresponding to the equation f(t) =0 (Fig 4.1).
Suppose the current approximation to the root is ¢, in the rt"
iteration. Let p be the corresponding point on the curve. The
tangent to the curve at p cuts the x —axis at T, where
t = t,,q, Say giving us the next approximate to the required
root.

attributable to component’s-price, component’s-weight, Let PM =Ff (t.) (23)
component’s-volume, and examining construction capacity, and TM = t.— t,.., (24)
both with 'e;' rounded to the nearest integer and in its SO that_t_h_e slope of the tangent at p (t = ¢,.) is
original form, to extract comprehensive insights. tanP TM = f(t,) = f(t.)/(t, — trin) (25)
Therefore,
A. Designing Efficiency Through LMM Considering fit,)
Components-Price, Components-Weight, and Components- ~ tr+1 —&r = — (t.)
. . g [t (26)

Volume with Rounding Precision ) Fie)

The equivalent results for price, weight, size, and system Voo L=t o } =123,.... @7)

reliability are described in the Table V. and the following
are the variations due to component’s-price, components-
weight, components-volume

Mutation in Component’s-price = 04.56%

Mutation in Component’s-weight = 09.16%

Mutation in Component’s-volume = 10.03%

Mutation in Structure Efficiecy = 05.85%

IV. NEWTON-RAPHSON APPROACH

Employing the Lagrangean technique [5], which
possesses several drawbacks, including the requirement to
specify the quantity of components needed at each stage
(oj) in real numbers, can prove challenging to implement.
The conventional practice of rounding down values may
lead to alterations in component’s-price, component’s-
weight, and component’s-volume, influencing system
reliability and significantly impacting the efficiency design
of the model. Recognizing this limitation, the author
proposes an alternative empirical approach that employs the

The process can be continued till the absolute value of the
difference between two successive approximations, say t,
and t,,.4 is less than the prescribed degree of accuracy Q.

e, |tn+l - tn| =q (28)

In this method, slide down a tangent line along the curve
y=f(t), But when the slope of a tangent corresponding to an
approximate root in one of the iterations is zero (parallel to
the x-axis) or numerically very small, Newton’s method
fails to give the solution.

B. Convergence of Newton’s Method

The sequence of approximate solutions T, T, T; obtained
by the Newton -Raphson formula converges except in few
situations, quite rapidly to the actual solution. Suppose
T = a is the actual root of the equation f(t) =0 so that
fla) =0. If t, is an approximation obtained in the n®"
iteration, let us write, €n = @ — Iy (29)
Where &, is small when t, is close to a. Now from the
Newton-Raphson formula, we have

t
Newton-Raphson method to derive an integer solution. This  ¢,., =t, — ftn)
method utilizes the solutions generated by the Lagrangean _ [t ) (30)
approach as parameters for the proposed Newton-Raphson  Using the above two equations
; (a-gg)
technique. they=(a—g,)— ;;;_EE ~.] (31)

From Taylor’s theorem
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f(@) — £, f (@) +5 €2 f'(a) —
b= (Q - En) B - 1 -
f@—enf(@+5 ek f(@)—
(32)
_ fe fl@
=a—&,+ &, [1—§snf.ml ...... Hl—l—s f[) ...... l
(33)
(Since f(a) = 0 and using the binomial theorem)
1L @ @
=a—E,+ &, [1—5 enm—l—enm—iﬂ- .........
(34)
. 5 "(a)
&oa 4 > En f'iﬂi' (35)
Therefore,
1 f"iﬂ)
Lpy1 ™ Q+— 62 ftal (36)
. 1 f (a)
a—ty 1=
e " fla@ (37)
A 2 f "(a)
i€, €01 = el o) (38)

Thus, the Newton s iteration formula is a second order
process which means that the solution is the one of
quadratic convergence.

C. Algorithm of Newton’s Method
Step 1: Choose a trail solution ¢, find f(t,) and f'(ty)
(39)
Step 2: Next approximation x; is obtained from
t=ty—f(to)/ fty) (40)
Step 3: Follow the above procedure to find successive
approximation Eri1 using the formula
to =t —;‘t” =123 ......
Step 4. stopwhen |t —t.]< @,
Where Q is the prescribed accuracy.
The author applied a Newton-Raphson approach to
compute the new phase reliability (R.;), resulting in values
of 0.8424, 0.8243, and 0.8353 for stage reliability (R.;).
Employing the NRM, the study presents the outcomes for
the mathematical function presented successively in tables
6, 7, and 8, facilitating the derivation of necessary
conclusions.

(41)
(42)

V. RESULTS

The implementation of the LMM has yielded a solution in
real numbers for the proposed Comprehensive. Redundant
Reliability Systems in the mathematical models
investigated, fulfilling the need for an integer solution.

A. Elaboration on the Constraints of Component’s-Price,
Component’s-Weight, and Component’s-Volume Ultilizing
the Newton’s Raphson Method (NRM).

The  component’s-price, component’s-weight  and
component’s-volume related efficiency design is described
in the Table V and V1.

B. Comparison of Optimization of Integrated Redundant
Reliability Parallel-Series Systems (IRRPS) — LMM with
rounding-off and NRM Approach for Component ’s-Price.

The comparison between the LMM with rounding-off and
NRM for components of price-related efficiency design is
presented in Table VII.

C. Analyzing the Optimal Enhancement of IRRPS — LMM
with rounding-off and NRM approach for Component’s-
Weight.

The comparison between the LMM with rounding-off and
NRM for components of weight related efficiency design in
Table VIII.

D. Analyzing the optimal enhancement of IRRPS using the
LMM with rounding-off and NRM for component volume.

The comparison between the LMM with rounding-off and
NRM for components of volume-related efficiency design is
presented in Table IX.

VI. DISCUSSION

The authors have undertaken a comprehensive analysis of
the components involved in an AC motor control unit,
specifically focusing on the rectifier, inverter, and DC link.
By employing the Integrated Redundant Reliability Model,
the study successfully identifies the number of components,
the reliability of each component, the reliability at various
stages, and the overall system reliability through a parallel-
series configuration. The ensuing discussion details the
performance metrics of the AC motor control unit in relation
to these critical components.

This research presents a novel reliability model designed
specifically for a parallel-series configuration system with
multiple efficiency criteria. When data is presented in real
numbers, the LMM is employed to ascertain the values of
components  (t;), component’s-reliability (ry;), stage-
reliability (Rg;), and system-reliability (Rsg). The resulting
component-efficiencies (ry;) are 0.9452, 0.9574, and
0.9654, stage-reliabilities (R;), are 0.8424, 0.8243, and

0.8353, and structure-reliability (Rgg) is 0.9457.

For practical implementation, the Newton’s Raphson
method is employed to obtain integer-solutions, leading to
component-reliabilities (r;) of 0.9551, 0.9638, and 0.9952,
stage reliabilities (R ;) of 0.8849, 0.8482, and 0.8461, and

system reliability (Rgg) of 0.9672 These integer solutions
are derived using inputs derived from the Lagrangean
method, ensuring the applicability of the model in practical
scenarios.

The analysis reveals that variations in component’s-price,
component’s-weight, and component’s-volume are evident,
although minor. However, these fluctuations, when
juxtaposed with stage reliability, exert a positive influence
on overall system reliability. The developed Integrated
Reliability Model (IRM) demonstrates significant utility,
particularly in practical situations demanding the
incorporation of redundancy by reliability engineers within a
parallel-series configuration. This proves particularly
advantageous when the system's intrinsic value is on the
lower side. In forthcoming studies, the authors propose
investigating an innovative methodology that imposes
constraints on reliability values at both the lower and upper
bounds of components while simultaneously maximizing
system dependability. Leveraging existing heuristic
processes, the aim is to formulate analogous IRMs.

Volume 55, Issue 10, October 2025, Pages 3104-3111



TAENG International Journal of Applied Mathematics

TABLEV
EFFICIENCY DESIGN RELATING TO COMPONENT’S-PRICE, COMPONENT’S-WEIGHT, AND COMPONENT’S-VOLUME, THE TABLE
BELOW ILLUSTRATES CONSTRAINT ANALYSIS USING THE LAGRANGE MULTIPLIER METHOD, INCORPORATING THE ROUNDING OFF

PROCESS
Phase T Ruaj toj CPa CPomtaj taj WPa WPautaj toj VPale VP toj
1 0.9452 0.8424 3 68 204 3 92 276 3 85 255
2 0.9574 0.8243 4 48 192 3 53 159 3 67 201
3 0.9654 0.8353 5 59 295 4 68 272 4 90 360
Total Co_mponent’s-price: Component’s- 691 707 816
weight, Component’s-volume
System Reliability (£5E) 0.9457
TABLE VI

EFFICIENCY DESIGN RELATING TO COMPONENT’S-PRICE, COMPONENT’S-WEIGHT, AND COMPONENT’S-VOLUME, CONSTRAINT
ANALYSIS BY USING NEWTON’S RAPHSON METHOD IS SHOWN IN THE FOLLOWING

Phase reej Raj toj CPa CPmtaj toj WPa WPa.taj taj VPalsj VPa.taj
01 0.9551 0.8849 3 66 198 3 91 273 3 83 249
02 0.9638 0.8482 4 47 188 3 50 150 3 67 201
03 0.9952 0.8461 4 55 220 4 64 256 4 88 352
Total unit’s - price, unit’s - weight, unit’s - volume 606 679 802
System Reliability (RSE) 0.9672
TABLE VII

FINDINGS FROM LAGRANGE MULTIPLIER METHOD WITH ROUNDED VALUES AND NEWTON’S RAPHSON METHOD APPROACH FOR
COMPONENT’S-PRICE

LMM With Rounding Off

Newton’s Raphson Method

Phase o rocj Raj CPax CPmtaj recj Raj CPa CPotaj
01 3 0.9452  0.8424 68 204 0.9551 0.8849 66 198
02 4 0.9574 0.8243 48 192 0.9638 0.8482 47 188
03 5 0.9654  0.8353 59 295 0.9952 0.8461 55 220
Final Unit’s Price 691 606
System Reliability ~ Applying the LMM (RSE) 0.9457 Applying the NRM (RSE) 0.9672
TABLE VIII

FINDINGS FROM THE LAGRANGE MULTIPLIER METHOD WITH ROUNDING-OFF TECHNIQUE AND NEWTON’S RAPHSON METHOD
APPROACH FOR COMPONENT’S-WEIGHT

LMM With Rounding Off Newton’s Raphson Method

Phase torj ro Ruj WPa WPa.taj roc Raj WPa WPo.toj
01 0.9452  0.8424 92 276 0.9551 0.8849 91 273
02 0.9574  0.8243 53 159 0.9638 0.8482 50 150
03 4 0.9654  0.8353 68 272 0.9952 0.8461 64 256

Final Unit’s Weight 707 679
System Reliability Applying the LMM (RSE) 0.9457 Applying the NRM (RSE) 0.9672

TABLE IX
FINDINGS FROM THE LAGRANGE MULTIPLIER METHOD WITH ROUNDING-OFF TECHNIQUE AND NEWTON’S RAPHSON METHOD
FOR COMPONENT’S-VOLUME

LMM With Rounding Off

Newton’s Raphson Method

Phase =+ 4 ro Ruxj VPa VPa.taj ro Ruj FPa VPa.toj
01 3 0.9452 0.8424 85 255 0.9551 0.8849 83 249
02 3 0.9574 0.8243 67 201 0.9638 0.8482 67 201
03 4 0.9654 0.8353 90 360 0.9952 0.8461 88 352

Final Unit’s Volume 816 802

System Reliability Applying the LMM (RSE) 0.9457 Applying the NRM (RSE) 0.9672
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Mutation in Component’s-price = 14.02%
Mutation in Component’s-weight = 04.12%
Mutation in Component’s-volume = 04.75%
Mutation in Structure Efficiecy = 02.22%
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