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Abstract—This article study the dynamic characteristics of
a delayed HIV model with impaired CTL responses and
two transmission modes: virus-to-cell infection and cell-to-cell
transmission. Moreover, generalized functions are adopted to
characterize these two transmission modes. Two threshold
values, as well as the conditions governing the global dynamic
behavior of the model, are established. Additionally, local
stability of E0 and E1 is analyzed. Furthermore, it is proved
that the equilibria for E0, E1 and E2 is globally asymptotically
stable. The study examines how the CTL response impairment
and time delays impact the behavior of virus dynamics. Finally,
by numerical simulations, the results obtained from relevant
theoretical analysis are further illustrated.

Index Terms—Delayed viral infection model; CTL
impairment; Cell-to-cell transmission; Global stability;
Lyapunov functional.

I. INTRODUCTION

THE matter of AIDS infection has constantly been a
top global concern. Typically, the humoral immune

response gives rise to antibodies which counteract the virus.
On the other hand, the CTL immune response attacks
and destroys the cells invaded by the virus[1,2]. Multiple
scholars have suggested several models, factoring in cellular
immunity[1,3,4,12,15,17,20,23,26,27] as well as humoral
immunity[9,13,16,24].

Nevertheless, these investigations are limited to
virus-to-cell infection. Research in this area has indicated
that highly efficient virus-to-cell infection might cause
multiple virions to be passed on to cells that are not yet
infected[3]. The process of cell-to-cell spread not only
promotes the swift dissemination of the virus. It also
diminishes the effectiveness of neutralizing antibodies and
viral inhibitors as the virus evades the immune system[4].
So, numerous scholars have advanced AIDS infection
models[5-8,14,21,22,24] that factored in virus-to-cell and
cell-to-cell transmissions.

However, when there is an overwhelming load of
pathogens, some pathogens not only restrain the immune
response but can also lead to substantial destruction
of the immune system[8,9]. Even though scholars
have taken into account some models featuring CTL
impairment[10,11,13,17,19,20,23], existing research has
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overlooked the interactive effects of impaired CTL responses,
virus-to-cell infection and cell-to-cell transmission.

Motivated by the work in [16,18,19,22], a general delayed
HIV model with two transmission modes: virus-to-cell and
cell-to-cell transmissions, nonlinear incidence rate and CTL
immunity impairment is proposed in this paper:

dΓ(t)

dt
=N(Γ)− J1(Γ,Ω)− J2(Γ,Λ),

dΛ(t)

dt
=e−δ1τ1J1(Γ(t− τ1),Ω(t− τ1))

+ e−δ1τ1J2(Γ(t− τ1),Λ(t− τ1))

− µ1Q1(Λ)− ωQ1(Λ)Q3(Ψ),

dΩ(t)

dt
=κe−δ2τ2Q1(Λ(t− τ2))− µ2Q2(Ω),

dΨ(t)

dt
=γQ1(Λ)Q3(Ψ)− µ3Q3(Ψ)

− φQ1(Λ)Q3(Ψ),

(1)

where Γ, Λ, Ω and Ψ represent the densities of uninfected
target cells, infected cells, virus and CTL cells at time
t, respectively. N(Γ) denotes the intrinsic growth rate of
uninfected target cells. The typical forms are N(Γ) = λ−dΓ
and N(Γ) = λ − dΓ + γΓ(1 − Γ

K ), where λ, d, γ, K are
positive real numbers [5-7,10-21,24]. The general nonlinear
functions J1(Γ,Ω) and J2(Γ,Λ), which are satisfied the
following conditions:
(H1): N(Γ) is continuously differentiable. There exists

Γ̄ > 0 such that N(Γ̄) = 0 and N ′(Γ̄) < 0.
(H2): Ji(Γ, θ) is continuously differentiable; Ji(Γ, θ) > 0

for Γ ∈ (0,∞), θ ∈ (0,∞); Ji(Γ, θ) = 0 if and only if
Γ = 0 or θ = 0; Ji(Γ, θ) < Ji(Γ̄, θ) for Γ ∈ [0, x̄), θ > 0;
Ji(Γ, θ) is increasing with respect to θ for θ ∈ [0,∞), i =
1, 2.

(H3): Qi(ξ) (i = 1, 2, 3) is strictly increasing on [0,∞);
limξ→∞Qi(ξ) = ∞; Qi(0) = 0; Q′

i(0) = 1 and there exists
ki > 0 such that Qi(ξ) ≥ kiξ for any ξ ≥ 0.
(H4):

J1(Γ,Ω)
Q2(Ω) is non-increasing with respect to Ω for Ω ∈

(0,∞) and J2(Γ,Λ)
Q1(Λ) is non-increasing with respect to Λ for

Λ ∈ (0,∞).

It is also assumed that the death rates of the infected cells,
viruses and CTL responses depend on their concentrations.
These rates are given by µ1Q1(Λ), µ2Q2(Ω) and µ3Q3(Ψ),
respectively. Let ωQ1(Λ)Q3(Ψ) and γQ1(Λ)Q3(Ψ) be the
removed rate of infected cells and activation rate of CTL
cells. The typical forms can be seen as ωΛΨ and γΛΨ
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[12,13,15,17,20,23,26].
For model (1), the probability of surviving the time period

from t− τ1 to t is e−δ1τ1 . e−δ2τ2 denotes the surviving rate
of virus during the delay period. In this paper, the purpose is
to explore the dynamical properties of model (1), including
the local and global stability of equilibria.

II. PRELIMINARIES

Let τ = max{τ1, τ2} and R4
+ = {(Γ1,Γ2,Γ3,Γ4) :

Γi ≥ 0, i = 1, 2, · · · , 4}. C([−τ, 0], R4
+) denotes the

space of continuous functions mapping interval [−τ, 0] into
R4

+ with norm ∥ϕ∥ = sup−τ≤t≤0{|ϕ(t)|} for any ϕ ∈
C([−τ, 0], R4

+).
The initial conditions of model (1) are:

(Γ(θ),Λ(θ),Ω(θ),Ψ(θ))
= (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ)),
ϕi(θ) ≥ 0, θ ∈ [−τ, 0), ϕi(0) > 0, i = 1, 2, 3, 4,

(2)

where (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ)) ∈ C([−τ, 0], R4
+). By the

fundamental theory of functional differential equation [25],
model (1) admits a unique solution (Γ(t),Λ(t),Ω(t),Ψ(t))
satisfying initial conditions (2).

Using an argument similar to [24], there is the following
result.

Theorem 2.1 Assume that assumptions (H1)-(H4) hold.
Let (Γ(t),Λ(t),Ω(t),Ψ(t)) be the solution of model (1) with
initial conditions (2), then (Γ(t),Λ(t),Ω(t),Ψ(t)) is positive
and ultimately bounded.

Next, The existence and uniqueness of equilibria of model
(1) are discussed. Also, any equilibrium E = (Γ,Λ,Ω,Ψ) of
model (1) is satisfied:

N(Γ)− J1(Γ,Ω)− J2(Γ,Λ) = 0,

e−δ1τ1J1(Γ,Ω) + e−δ1τ1J2(Γ,Λ)

− µ1Q1(Λ)− ωQ1(Λ)Q3(Ψ) = 0,

κe−δ2τ2Q1(Λ)− µ2Q2(Ω) = 0,

γQ2(Λ)Q3(Ψ)− µ2Q3(Ψ)− φQ1(Λ)Q3(Ψ) = 0.

(3)

It is clear from (3) that model (1) has a unique
infection-free equilibrium E0 = (Γ̄, 0, 0, 0). From (3),
there is N(Γ) = J2(Γ,Λ), e−δ1τ1J2(Γ,Λ) = µ1Q1(Λ) +
ωQ1(Λ)Q3(Ψ), Q1(Λ) = 0 and (γ − φ)Q1(Λ)Q3(Ψ) −
µ3Q3(Ψ) = 0 when Ω = 0. Solving these equations,
there is Γ = Γ̄, Ω = 0 and Ψ = 0. From (3), there is
s(Γ) = J1(Γ,Ω), e−δ1τ1J1(Γ,Ω) = 0, Q2(Ω) = 0 and
Q3(Ψ) = 0 when Λ = 0.

Therefore, besides equilibrium E0, model (1) only has the
following two possible equilibria: E1 = (Γ1,Λ1,Ω1, 0) and
E2 = (Γ2,Λ2,Ω2,Ψ2).

Define the basic reproduction number for viral infection

R0 =
κe−δ1τ1−δ2τ2

µ1µ2

∂J1(Γ̄, 0)

∂Ω
+
e−δ1τ1

µ1

∂J2(Γ̄, 0)

∂Λ
.

The existence of immune-free equilibrium E1 = (Γ1,Λ1,
Ω1, 0) is equivalent to the existence of positive solution
(Γ1,Λ1,Ω1) of the following equations:

N(Γ) =J1(Γ,Ω) + J2(Γ,Λ) = µ1e
δ1τ1Q1(Λ)

=
µ1µ2e

δ1τ1+δ2τ2

κ
Q2(Ω).

By (H3), the inverse functions Q−1
1 (Λ) and Q−1

2 (Ω) exist.
Solving the above equilibrium equations for Λ and Ω yields

Λ =χ(Γ) = Q−1
1 (

e−δ1τ1N(Γ)

µ1
)

and

Ω = ψ(Γ) = Q−1
2 (

κe−δ1τ1−δ2τ2N(Γ)

µ1µ2
) (4)

with χ(Γ̄) = ψ(Γ̄) = 0. Define

J(x) = J1(Γ,Ω) + J2(Γ,Λ)−N(Γ).

Then it follows from (H2) that J(0) = −N(0) < 0
and J(Γ̄) = 0. Moreover, from (H2), it is observed that

Ji(Γ, 0) ≡ 0 and thus
∂Ji(Γ, 0)

∂Γ
≡ 0 for i = 1, 2. Since

Q′
i(0) = 1 for i = 1, 2, there are χ′(Γ̄) =

e−δ1τ1N ′(Γ̄)

µ1
and

ψ′(Γ̄) =
κe−δ1τ1−δ2τ2N ′(Γ̄)

µ1µ2
. Together with the expression

of R0, yields J ′(Γ̄) = N ′(Γ̄)(R0 − 1). Note that N ′(Γ̄) < 0
by (H1). Then J ′(Γ̄) < 0 if R0 > 1, which implies that
there exists Γ1 ∈ (0, Γ̄) such that J(Γ1) = 0. Therefore,
there exists a immune-free equilibrium E1 = (Γ1,Λ1,Ω1, 0)
with Λ1 = χ(Γ1), Ω1 = ψ(Γ1) if R0 > 1.

Next, it is show that E1 = (Γ1,Λ1,Ω1, 0) is a unique
immune-free equilibrium. Otherwise, there exists another
E∗

1 = (Γ∗
1,Λ

∗
1,Ω

∗
1, 0). Without of loss of generality, it is

assumed that Γ∗
1 < Γ1, then N(Γ∗

1) > N(Γ1). Meanwhile,
together with (4), yields Λ1 < Λ∗

1 and Ω1 < Ω∗
1. By (H3)

and (H4), we get

1 =
e−δ1τ1J2(Γ

∗
1,Λ

∗
1)

µ1Q1(Λ∗
1)

+
κe−δ1τ1−δ2τ2J1(Γ

∗
1,Ω

∗
1)

µ1µ2Q2(Ω∗
1)

≤e
−δ1τ1J2(Γ

∗
1,Λ1)

µ1Q1(Λ1)
+
κe−δ1τ1−δ2τ2J1(Γ

∗
1,Ω1)

µ1µ2Q2(Ω1)

<
e−δ1τ1J2(Γ1,Λ1)

µ1Q1(Λ1)
+
κe−δ1τ1−δ2τ2J1(Γ1,Ω1)

µ1µ2Q2(Ω1)
= 1.

This is a contradiction. Thus E1 is a unique immune-free
equilibrium.

Further, considering the existence of infection equilibrium
E2 = (Γ2,Λ2,Ω2,Ψ2) with antibody response. It is clear
that Λ2 = Q−1

2 ( µ3

γ−φ ) and Ω2 = Q−1
2 (κµ3e

−δ2τ2

µ2(γ−φ) ). Define
J(Γ) = N(Γ)− J1(Γ,Ω2)− J2(Γ,Λ2). By (H1) and (H2),
there is J ′(Γ) < 0. Since J(0) = N(0) > 0 and J(Γ̄) =
N(Γ̄) − J1(Γ̄,Ω2) − J2(Γ̄,Λ2) < 0, there exists a unique
Γ2 ∈ (0, Γ̄) such that J(Γ2) = 0.

Define the constant

R1 =
κe−δ1τ1−δ2τ2

µ1µ2

J1(Γ2,Ω2) + J2(Γ2,Λ2)

Q2(Ω2)
,

which is called the CTL response reproductive number of
model (1). If R1 > 1, solving z2 from (3), there is:

z2 =Q−1
3

(e−δ1τ1J1(Γ2,Ω2) + e−δ1τ1J2(Γ2,Λ2)

ωQ1(Λ2)

− µ1Q1(Λ2)

ωQ1(Λ2)

)
=Q−1

3

(µ1(R1 − 1)

ω

)
> 0.
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Therefore, E2 exists and is unique if R1 > 1.

III. STABILITY ANALYSIS

To state the global stability on E0, an additional
assumption is needed:

(H5): The supremum of lim
Λ→0

J2(Γ,Λ)

Q1(Λ)
/ lim
Ω→0

J1(Γ,Ω)

Q2(Ω)
on

(0, Γ̄] is achieved at Γ = Γ̄.
Define

J11(Γ) = lim
Ω→0

J1(Γ,Ω)

Q2(Ω)
, J21(Γ) = lim

Λ→0

J2(Γ,Λ)

Q1(Λ)

Assumptions (H2)-(H3) imply that

J11(Γ) =
∂J1(Γ, 0)

∂Ω
> 0,

and
J21(Γ) =

∂J2(Γ, 0)

∂Λ
> 0 for any Γ > 0.

Theorem 3.1 (a) If R0 ≤ 1, infection-free equilibrium E0

is globally asymptotically stable.
(b) If R0 > 1, E0 is unstable.
Proof: Consider conclusion (a). Define a Lyapunov

functional V1(t) as follows:

V1(t) =Γ(t)−
∫ Γ(t)

Γ̄

lim
Ω→0

J1(Γ̄,Ω)

J1(θ,Ω)
dθ + eδ1τ1Λ(t)

+
1

µ2
lim
Ω→0

J1(Γ̄,Ω)

Q2(Ω)
Ω(t) +

ωeδ1τ1

γ − φ
Ψ(t)

+

∫ 0

−τ1

(J1(Γ(t+ s),Ω(t+ s)) ds

+

∫ 0

−τ1

(J2(Γ(t+ s),Λ(t+ s)) ds

+
κe−δ2τ2

µ2
lim
Ω→0

J1(Γ̄,Ω)

Q2(Ω)

∫ 0

−τ2

Q1(Λ(t+ s)) ds.

Calculating the time derivative of V1(t), there is:

dV1(t)

dt
=N(Γ)(1− lim

Ω→0

J1(Γ̄,Ω)

J1(Γ,Ω)
)

+ lim
Ω→0

J1(Γ̄,Ω)

J1(Γ,Ω)

(
J1(Γ,Ω)

− lim
Ω→0

J1(Γ,Ω)

Q2(Ω)
·Q2(Ω)

)
+ µ1e

δ1τ1Q1(Λ)
(e−δ1τ1

µ1

× lim
Ω→0

J1(Γ̄,Ω)

J1(Γ,Ω)
· lim
Λ→0

J2(Γ,Λ)

Q1(Λ)

+
κe−δ1τ1−δ2τ2

µ1µ2
lim
Ω→0

J1(Γ̄,Ω)

Q2(Ω)
− 1

)
− ωµ3e

δ1τ1

γ − φ
Q3(z).

Assumption (H4) implies that

J1(Γ,Ω) ≤ lim
Ω→0

J1(Γ,Ω)

Q2(Ω)
·Q2(Ω),

J2(Γ,Λ) ≤ lim
Λ→0

J2(Γ,Λ)

Q1(Λ)
·Q1(Λ).

From assumption (H5) yields

J1(Γ̄,Ω)

J1(Γ,Ω)
· J2(Γ,Λ)
Q1(Λ)

≤ J21(Γ)/J11(Γ)

J21(Γ̄)/J11(Γ̄)
· J21(Γ̄) ≤ J21(Γ̄)

for Γ ≤ Γ̄. Assumptions (H1)-(H2) imply that N(Γ)(1 −
limΩ→0

J1(Γ̄,Ω)
J1(Γ,Ω) ) ≤ 0. It follows that

dV1(t)

dt
≤ µ1e

δ1τ1Q1(Λ)(R0 − 1).

Note that dV1(t)
dt = 0 if and only if Γ(t) = Γ̄, Ω(t) =

0, Ψ(t) = 0 and Λ(t) = 0. So, the maximal compact
invariant set in {(Γ,Λ,Ω,Ψ) ∈ R4

+ : dV1(t)
dt = 0} is

singleton {E0}. By the LaSalle’s invariance principle [25],
E0 is globally asymptotically stable.

Next, considering conclusion (b). the characteristic
equation of the linearization system of model (1) at E0 is

(λ+ µ3)(λ−N ′(Γ̄))φ1(λ) = 0,

where

φ1(λ) =λ
2 +

(
µ1 + µ2 − e−(δ1+λ)τ1

∂J2(Γ̄, 0)

∂Λ

)
λ

+ µ2

(
− e−(δ1+λ)τ1

∂J2(Γ̄, 0)

∂Λ
+ µ1

)
− κe−(δ1+λ)τ1e−(δ2+λ)τ2

∂J1(Γ̄, 0)

∂Ω
.

When R0 > 1, φ1(0) = µ1µ2(1 − R0) < 0 and
limλ→+∞ φ1(λ) = +∞ are obtained. Hence, there is a
λ∗ > 0 such that φ1(λ

∗) = 0. Therefore, when R0 > 1,
E0 is unstable.

IV. STABILITY OF EQUILIBRIUM E1

Firstly, one lemma which will be used in the proof of
theorem.

Lemma 3.1. Suppose that (H1)-(H4) hold and R0 > 1.

Let Γ2 and Ω2 satisfy Q1(Λ2) =
µ3

γ−φ , Q2(Ω2) =
κµ3e

−δ2τ2

µ2(γ−φ)

and S(Γ2) = J1(Γ2,Ω2)+J2(Γ2,Λ2). Then for equilibrium
E1 = (Γ1,Λ1,Ω1, 0), sign(Γ2 − Γ1) = sign(Λ1 − Λ2) =
sign(Ω1 − Ω2) = sign(R1 − 1).
Proof: Since S(Γ1) = J1(Γ1,Ω1) + J2(Γ1,Λ1), there is:

S(Γ2)− S(Γ1)

=(J1(Γ2,Ω2)− J1(Γ1,Ω2))

+ (J1(Γ1,Ω2)− J1(Γ1,Ω1))

+ (J2(Γ2,Λ2)− J2(Γ1,Λ2))

+ (J2(Γ1,Λ2)− J1(Γ1,Λ1)).

By (H1) and (H2), there is sign(Γ2−Γ1) = sign(Ω1−Ω2).
Using

κe−δ1τ1−δ2τ2

µ1µ2

J1(Γ1,Ω1) + J2(Γ1,Λ1)

Q2(Ω1)
= 1,

there is:

R1 − 1 =
κe−δ1τ1−δ2τ2

µ1µ2

(J1(Γ2,Ω1)− J1(Γ1,Ω1)

Q2(Ω1)

+
J1(Γ2,Ω2)

Q2(Ω2)
− J1(Γ2,Ω1)

Q2(Ω1)

)
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+
e−δ1τ1

µ1

(J2(Γ2,Λ1)− J2(Γ1,Λ1)

Q1(Λ1)

+
J2(Γ2,Λ2)

Q1(Λ2)
− J2(Γ2,Λ1)

Q1(Λ1)

)
.

By (H2) and (H4), it follows sign(R1−1) = sign(Γ2−Γ1).
The following condition is needed to guarantee the global
stability of the immune-free equilibrium E1.

(H6) :
( Q1(Λ)

Q1(Λi)
− J1(Γi,Ωi)J2(Γ,Λ)

J1(Γ,Ωi)J2(Γi,Λi)

)
×

(J1(Γ,Ωi)J2(Γi,Λi)

J1(Γi,Ωi)J2(Γ,Λ)
− 1

)
≤ 0

for Γ ∈ [0, Γ̄],Λ > 0, i = 1, 2.
Theorem 3.2 Assume that the condition (H6) is satisfied.
(a) If R1 ≤ 1 < R0, then immune-free equilibrium E1 is
globally asymptotically stable.
(b) If R1 > 1, then E1 is unstable.
Proof: Consider conclusion (a). Denote H(ξ) = ξ−1− ln ξ
with ξ ∈ R+. Define a Lyapunov functional V2(t) as follows

V2(t) = Γ(t)−
∫ Γ(t)

Γ1

J1(Γ1,Ω1)

J1(θ,Ω1)
dθ

+ eδ1τ1
(
Λ(t)−

∫ Λ(t)

Λ1

Q1(Λ1)

Q1(θ)
dθ

)
+
ωeδ1τ1

γ − φ
Ψ(t) +

J1(Γ1,Ω1)

µ2Q2(Ω1)

×
(
Ω(t)−

∫ Ω(t)

Ω1

Q2(Ω1)

Q2(θ)
dθ

)
+ J1(Γ1,Ω1)

∫ 0

−τ2

H
(Q1(Λ(t+ θ))

Q1(Λ1)

)
dθ

+ J1(Γ1,Ω1)

∫ 0

−τ1

H
(J1(Γ(t+ θ),Ω(t+ θ))

J1(Γ1,Ω1)

)
dθ

+ J2(Γ1,Λ1)

∫ 0

−τ1

H
(J2(Γ(t+ θ),Λ(t+ θ))

J2(Γ1,Λ1)

)
dθ.

Calculating the derivative of V2(t) along solutions of model
(1), there is:

dV2(t)

dt

=(N(Γ)−N(Γ1))
(
1− J1(Γ1,Ω1)

J1(Γ,Ω1)

)
− J1(Γ1,Ω1)

(
H(

Q2(Ω1)Q1(Λ(t− τ2))

Q1(Λ1)Q2(Ω)
)

+H(
J1(Γ1,Ω1)

J1(Γ,Ω1)
) +H(

Q2(Ω)J1(Γ,Ω1)

Q2(Ω1)J1(Γ,Ω)
)

+H(
Q1(Λ1)J1(Γ(t− τ1),Ω(t− τ1))

Q1(y)J1(Γ1,Ω1)
)
)

− J2(Γ1,Λ1)
(
H(

J1(Γ1,Ω1)

J1(Γ,Ω1)
)

+H(
J1(Γ,Ω1)J2(Γ1,Λ1)Q1(Λ)

J1(Γ1,Ω1)J2(Γ,Λ)Q1(Λ1)
)

+H(
Q1(Λ1)J2(Γ(t− τ1),Λ(t− τ1))

Q1(Λ)J2(Γ1,Λ1)
)
)

+ ωeδ1τ1(Q1(Λ1)−Q1(Λ2))Q3(Ψ)

+ J1(Γ1,Ω1)
Q2(Ω)

Q2(Ω1)

( J1(Γ,Ω)

J1(Γ,Ω1)
− 1

)
×
(Q2(Ω1)

Q2(Ω)
− J1(Γ,Ω1)

J1(Γ,Ω)

)
+ J2(Γ1,Λ1)

( Q1(Λ)

Q1(Λ1)
− J1(Γ1,Ω1)J2(Γ,Λ)

J1(Γ,Ω1)J2(Γ1,Λ1)

)
×
(J1(Γ,Ω1)J2(Γ1,Λ1)

J1(Γ1,Ω1)J2(Γ,Λ)
− 1

)
.

By (H1) and (H6), there are:

(N(Γ)−N(Γ1))(1−
J(Γ1,Ω1)

J(Γ,Ω1)
) ≤ 0,

( J(Γ,Ω)

J(Γ,Ω1)
− 1

)(Q2(Ω1)

Q2(Ω)
− J(Γ,Ω1)

J(Γ,Ω)

)
≤ 0,

and ( Q1(Λ)

Q1(Λ1)
− J1(Γ1,Ω1)J2(Γ,Λ)

J1(Γ,Ω1)J2(Γ1,Λ1)

)
×

(J1(Γ,Ω1)J2(Γ1,Λ1)

J1(Γ1,Ω1)J2(Γ,Λ)
− 1

)
≤ 0.

Lemma 3.1 implies that Ω1 ≤ Ω2 if R1 ≤ 1. There is
dV2(t)

dt ≤ 0, and dV2(t)
dt = 0 if and only if Γ(t) = Γ1,Λ(t) =

Λ1,Ω(t) = Ω1 and Ψ(t) = 0. From LaSalle’s invariance
principle [25], equilibrium E1 is globally asymptotically
stable when R1 ≤ 1 < R0.

Next, considering conclusion (b).
By computing, the characteristic equation of the

linearization system of model (1) at E1 is

φ1(λ)φ2(λ) = 0,

where φ1(λ) = λ+ µ3 − (γ − φ)Q1(Λ1) and

φ2(λ) =

∣∣∣∣∣∣∣∣
a11

∂J2(Γ1,Λ1)
∂Λ

∂J1(Γ1,Ω1)
∂Ω

a21 a22 a23

0 −κe−(δ2+λ)τ2Q′
1(Λ1) λ+ uQ′

2(Ω1)

∣∣∣∣∣∣∣∣ ,
where

a11 =λ−N ′(Γ1) +
∂J1(Γ1,Ω1)

∂Γ

+
∂J2(Γ1,Λ1)

∂Γ
,

a21 =− e−(δ1+λ)τ1
∂J1(Γ1,Ω1)

∂Γ

− e−(δ1+λ)τ1
∂J2(Γ1,Λ1)

∂Γ
,

a22 =λ+ µ1Q
′
1(Λ1)− e−(δ1+λ)τ1

∂J2(Γ1,Λ1)

∂Λ
.

a23 =− e−(δ1+λ)τ1
∂J1(Γ1,Ω1)

∂Ω
.
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When R1 > 1, we have φ1(0) = µ3(Q1(Λ2)−Q1(Λ1)) <
0 and limλ→+∞ φ1(λ) = +∞. Hence, there is also a positive
root λ∗ such that h1(λ∗) = 0. Therefore, when R1 > 1, E1

is unstable.

V. STABILITY OF EQUILIBRIUM E2

Theorem 3.3 Assume that the condition (H6) is satisfied.
If R1 > 1, then CTL immune response equilibrium E2 is
globally asymptotically stable.
Proof: Define a Lyapunov functional V3(t) as follows

V3(t) =Γ(t)−
∫ Γ(t)

Γ2

J1(Γ2,Ω2)

J1(θ,Ω2)
dθ

+ eδ1τ1
(
Λ(t)−

∫ Λ(t)

Λ2

Q1(Λ2)

Q1(θ)
dθ

)
+
J1(Γ2,Ω2)

µ2Q2(Ω2)

(
Ω(t)−

∫ Ω(t)

Ω2

Q2(Ω1)

Q2(θ)
dθ

)
+
ωeδ1τ1

γ − φ

(
Ψ(t)−

∫ Ω(t)

Ψ2

Q3(Ψ2)

Q3(θ)
dθ

)
+ J1(Γ2,Ω2)

∫ 0

−τ1

H
(J1(Γ(t+ θ),Ω(t+ θ))

J1(Γ2,Ω2)

)
dθ

+ J2(Γ2,Λ2)

∫ 0

−τ1

H
(J2(Γ(t+ θ),Λ(t+ θ))

J2(Γ2,Λ2)

)
dθ

+ J1(Γ2,Ω2)

∫ 0

−τ2

H
(Q1(Λ(t+ θ))

Q1(Λ2)

)
dθ.

Calculating the derivative of V3(t) along solutions of model
(1), there is:

dV3(t)

dt
=(N(Γ)−N(Γ2))

(
1− J1(Γ2,Ω2)

J1(Γ,Ω2)

)
− J1(Γ2,Ω2)

(
H(

Q2(Ω2)Q1(Λ(t− τ2))

Q1(Λ2)Q2(Ω)
)

+H(
J1(Γ2,Ω2)

J1(Γ,Ω2)
) +H(

Q2(Ω)J1(Γ,Ω2)

Q2(Ω2)J1(Γ,Ω)
)

+H(
Q1(Λ2)J1(Γ(t− τ1),Ω(t− τ1))

Q1(Λ)J1(Γ2,Ω2)
)
)

− J2(Γ2,Λ2)
(
H(

J1(Γ2,Ω2)

J1(Γ,Ω2)
)

+H(
J1(Γ,Ω2)J2(Γ2,Λ2)Q1(Λ)

J1(Γ2,Ω2)J2(Γ,Λ)Q1(Λ2)
)

+H(
Q1(Λ2)J2(Γ(t− τ1),Λ(t− τ1))

Q1(Λ)J2(Γ2,Λ2)
)
)

+ J1(Γ2,Ω2)
Q2(Ω)

Q2(Ω2)

( J1(Γ,Ω)

J1(Γ,Ω2)
− 1

)
×
(Q2(Ω2)

Q2(Ω)
− J1(Γ,Ω2)

J1(Γ,Ω)

)
+ J2(Γ2,Λ2)

( Q1(Λ)

Q1(Λ2)
− J1(Γ2,Ω2)J2(Γ,Λ)

J1(Γ,Ω2)J2(Γ2,Λ2)

)
×
(J1(Γ,Ω2)J2(Γ2,Λ2)

J1(Γ2,Ω2)J2(Γ,Λ)
− 1

)
.

Noting that

(N(Γ)−N(Γ2))(1−
J(Γ2,Ω2)

J(Γ,Ω2)
) ≤ 0,

( J(Γ,Ω)

J(Γ,Ω2)
− 1

)(Q2(Ω2)

Q2(Ω)
− J(Γ,Ω2)

J(Γ,Ω)

)
≤ 0

and ( Q1(Λ)

Q1(Λ2)
− J1(Γ2,Ω2)J2(Γ,Λ)

J1(Γ,Ω2)J2(Γ2,Λ2)

)
×

(J1(Γ,Ω2)J2(Γ2,Λ2)

J1(Γ2,Ω2)J2(Γ,Λ)
− 1

)
≤ 0.

Therefore, dV3(t)
dt ≤ 0, and dV3(t)

dt = 0 if and only if Γ(t) =
Γ2, Λ(t) = Λ2, Ω(t) = Ω2 and Ψ(t) = Ψ2. From LaSalle’s
invariance principle [25], E2 is globally asymptotically stable
when R1 > 1.

VI. NUMERICAL SIMULATIONS

In model (1), N(Γ) = λ − dΓ(t), J1(Γ,Ω) =
β1Γ(t)Ω(t)
1+α1Ω(t) , J2(Γ,Λ) = β2Γ(t)Λ(t)

1+α2Λ(t) and Qi(ξ) = ξ (i =

1, 2, 3). It can easily verify that (H1)-(H6) hold. Taking
λ = 10, d = 0.1, α1 = α2 = 0.02, δ1 = δ2 =
0.01, µ1 = 0.5, ω = 0.04, µ2 = 6 and κ = 2.9, choose
β1, β2, µ3, γ, φ as free parameter.
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Fig.1. Taking β1 = 0.001, β2 = 0.01, µ3 = 0.3, γ =

0.1, φ = 0.01, τ1 = 8 and τ2 = 0.1. R0 = 0.9677 < 1 and
E0 = (10, 0, 0, 0) is globally asymptotically stable.
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Fig.2. Taking β1 = 0.1, β2 = 0.01, µ3 = 0.3, γ = 0.01, φ =

0.001, τ1 = 8 and τ2 = 0.1. R0 = 5.3804 > 1, R1 = 0.2212 < 1

and E1 = (20.1388, 7.3721, 3.5596, 0) is globally asymptotically
stable.
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Fig.3. Taking β1 = 0.1, β2 = 0.1, µ3 = 1.2, γ = 1.5, φ =

0.3, τ1 = 8 and τ2 = 0.1. R0 = 13.6884 > 1, R1 = 5.4766 > 1

and E2 = (40.6732, 1, 0.4829, 111.9140) is globally asymptotical-
ly stable.

VII. DISCUSSION

This study explored the global dynamics of delayed HIV
model incorporating CTL impairment, intracellular delay τ1,
virus replication delay τ2 and two transmission mechanisms
are involved, namely virus-to-cell infection and cell-to-cell
transmission. Under conditions (H1)-(H6), this model allows
for general target-cell dynamics N(Γ) which containing
J1(Γ,Ω) and J2(Γ,Λ), discrete delays and state-dependent
removal functions Qi(i = 1, 2, 3).

By the analysis, it is obtained that when R0 ≤ 1, E0

is globally asymptotically stable. When R1 ≤ 1 < R0,
E1 is globally asymptotically stable. As respect to the
analysis of E2, when R1 > 1, E2 is globally asymptotically
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stable, which implies susceptible cells, infected cells, free
virus and CTL immune response coexist in vivo. The
global stability of the three equilibria has been proved
by constructing suitable Lyapunov functions and applying
LaSalle’s invariance principle. Our findings indicate that
during viral infection, CTL dysfunction triggers a cascade
of immunological events, a reduction in CTL cell count
directly correlates with an elevation in viral load, establishing
a critical immunological threshold for disease progression.
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