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Global Dynamics of Delayed HIV Model with
Two Transmission Modes, Nonlinear Incidence
Rate and CTL Immunity Impairment

Chengjun Kang

Abstract—This article study the dynamic characteristics of
a delayed HIV model with impaired CTL responses and
two transmission modes: virus-to-cell infection and cell-to-cell
transmission. Moreover, generalized functions are adopted to
characterize these two transmission modes. Two threshold
values, as well as the conditions governing the global dynamic
behavior of the model, are established. Additionally, local
stability of Fy and F, is analyzed. Furthermore, it is proved
that the equilibria for Fy, F; and E- is globally asymptotically
stable. The study examines how the CTL response impairment
and time delays impact the behavior of virus dynamics. Finally,
by numerical simulations, the results obtained from relevant
theoretical analysis are further illustrated.
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I. INTRODUCTION

HE matter of AIDS infection has constantly been a

top global concern. Typically, the humoral immune
response gives rise to antibodies which counteract the virus.
On the other hand, the CTL immune response attacks
and destroys the cells invaded by the virus[1,2]. Multiple
scholars have suggested several models, factoring in cellular
immunity[1,3,4,12,15,17,20,23,26,27] as well as humoral
immunity[9,13,16,24].

Nevertheless, these investigations are limited to
virus-to-cell infection. Research in this area has indicated
that highly efficient virus-to-cell infection might cause
multiple virions to be passed on to cells that are not yet
infected[3]. The process of cell-to-cell spread not only
promotes the swift dissemination of the virus. It also
diminishes the effectiveness of neutralizing antibodies and
viral inhibitors as the virus evades the immune system[4].
So, numerous scholars have advanced AIDS infection
models[5-8,14,21,22,24] that factored in virus-to-cell and
cell-to-cell transmissions.

However, when there is an overwhelming load of
pathogens, some pathogens not only restrain the immune
response but can also lead to substantial destruction
of the immune system[8,9]. Even though scholars
have taken into account some models featuring CTL
impairment[10,11,13,17,19,20,23], existing research has
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overlooked the interactive effects of impaired CTL responses,
virus-to-cell infection and cell-to-cell transmission.

Motivated by the work in [16,18,19,22], a general delayed
HIV model with two transmission modes: virus-to-cell and
cell-to-cell transmissions, nonlinear incidence rate and CTL
immunity impairment is proposed in this paper:

ar()

- =N(I) = A(1,Q) = L (T, A),
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— Q1 (A) — wQ1(A)Qs(T), (1)
m —,@e_‘s?T?Ql (A(t = 12)) — n2Q2(9),
d‘IL’TEt) Q1 (N)Qs(T) — 13Q3(T)

— »Q1(A)Qs(¥),

where I', A, (2 and W represent the densities of uninfected
target cells, infected cells, virus and CTL cells at time
t, respectively. N(I') denotes the intrinsic growth rate of
uninfected target cells. The typical forms are N (I") = A—dl’
and N(I') = A —dl' +9I'(1 — &), where A, d, v, K are
positive real numbers [5-7,10-21,24]. The general nonlinear
functions J1(I",€2) and Jo(T',A), which are satisfied the
following conditions:

(Hy): N(T') is continuously differentiable. There exists
[ > 0 such that N(I') = 0 and N'(T) < 0.

(Hs): J;(T, 0) is continuously differentiable; J;(T",6) > 0
for I' € (0,00), 6 € (0,00); J;(I',8) = 0 if and only if
IF'=0orf=0; J;(I,0) < J;([,0) for T € [0,Z),0 > 0;
Ji(T', 0) is increasing with respect to 6 for 0 € [0,00),7 =
1,2.

(H3): Qi(&) (¢ = 1,2,3) is strictly increasing on [0, 00);
lime 00 Q4(§) = 00; Q;(0) = 0; Q;(0) =1 and there exists
k; > 0 such that Q, §)>k§f0rany£>0

(Hy): Jéilzg? is non-increasing with respect to €2 for 2 €

(0,00) and Jé(llz}f\)) is non-increasing with respect to A for
A € (0,00).

It is also assumed that the death rates of the infected cells,
viruses and CTL responses depend on their concentrations.
These rates are given by p1Q1(A), u2Q2(2) and pusQs(0),

respectively. Let w@1(A)Q3(¥) and vQ1(A)Q3(T) be the
removed rate of infected cells and activation rate of CTL

cells. The typical forms can be seen as wAW¥ and YAV
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[12,13,15,17,20,23,26].

For model (1), the probability of surviving the time period
from ¢ — 7 to t is e~ 9171, ¢=%272 denotes the surviving rate
of virus during the delay period. In this paper, the purpose is
to explore the dynamical properties of model (1), including
the local and global stability of equilibria.

II. PRELIMINARIES
Let 7 = maX{Tl,TQ} and Ri = {(F17F27F37F4) :
I, > 0,i = 1,2,---,4}. C([-7,0],RY) denotes the
space of continuous functions mapping interval [—7, 0] into
R with norm [|¢| = sup_,<,<o{[6(t)|} for any ¢ €

C([ 7,0], R}).
The initial conditions of model (1) are:
('(0), A(6), () ()
= (¢1(0), #2(0), ¢3(0), 94(0)), 2
d)z()z NS [ )7 ¢z()>0,i:1727374a

where (¢1 (9)7 P2 (9)7 ?3 (0)’ ¢4<9)) € C([_Tv 0]7 Ri) By the
fundamental theory of functional differential equation [25],
model (1) admits a unique solution (I'(¢), A(t), Q(t), ¥(¢))
satisfying initial conditions (2).

Using an argument similar to [24], there is the following
result.

Theorem 2.1 Assume that assumptions (H;)-(Hy) hold.
Let (T'(¢), A(t), Q(t), U(t)) be the solution of model (1) with
initial conditions (2), then (I'(t), A(¢), Q(¢), U(t)) is positive
and ultimately bounded.

Next, The existence and uniqueness of equilibria of model
(1) are discussed. Also, any equilibrium E =
model (1) is satisfied:

N(F) - J1<FaQ) - JQ(FaA) =0,

e T (T, Q) + e (T, A)

— mQ1(A) —w@1(A)Q3(¥) =0, 3)
re” 2 Q1(A) = p2Q2(R) = 0

1Q2(A)Q3(¥) — p2@Q3(V) — pQ1(A)Qs(¥) =

It is clear from (3) that model (1) has a unique
infection-free equilibrium Ey, = (T,0,0,0). From (3),
there is N(I') = Jo(T,A), e 0™ Jo(T,A) = 11 Q1(A) +
wQ1(M)Q3(T), Qi(A) = 0 and (v — ©)Q1(A)Qs(¥) —
usQs3(¥) = 0 when Q = 0. Solving these equations,
there is I' = T, @ = 0 and ¥ = 0. From (3), there is
s(T) = J1(T,Q), —‘51“J( Q) =0, Q2(2) = 0 and
Q3(¥) =0 when A = 0.

Therefore, besides equilibrium Fj, model (1) only has the
following two possible equilibria: F; = (I'y, A1,4,0) and
E2 = (F27A27QQ7\I’2).

Define the basic reproduction number for viral infection

ke~ 01T =%2T2 97 (T,0) e %7 9Jy(T,0)
1 42 o0 1 OA

The existence of immune-free equilibrium E; = (T'1, Ay,
24,0) is equivalent to the existence of positive solution
(T'1,A1,Q4) of the following equations:

N(T) =Jy ([, Q) + Jo (T, A) = p1e27 Q1 (A)
_M1M26517'1+52T2

Q2(%).

Ry =

KR

(T, A, Q, U) of

By (Hs3), the inverse functions Q;'(A) and Q5 *(Q) exist.
Solving the above equilibrium equations for A and €2 yields

“amN(T
A=) = g (N,
M1
and —01T1—02T; N(F)
_ _ 1 Ke 171 272 4
Q=9pI) =y ( i ) @)
with x(I') = ¢(T") = 0. Define
J(x) = J1(I', Q) + Jo(I', A) — N(I').
Then it follows from (H) that J(0) = —N(0) < 0

and J(I') = 0. Moreover, from (H>), it is observed that
i(L, . .
Ji(T',0) = 0 and thus 9J,(L,0) = 0 for ¢ = 1,2. Since

or
_ —0171 N’ f
Q}(0) =1 for i = 1,2, there are x'(T') = e MmN
M1

_ —61T1—527’2N/ 1:\
P'(T) = e ( ) Together with the expression

of Ry, yields J’(ﬁft‘l)ﬂz2 N'(I')(Rg — 1). Note that N’(I') < 0
by (Hy). Then J'(I') < 0 if Ry > 1, which implies that
there exists I'y € (0,I') such that J(T'y) = 0. Therefore,
there exists a immune-free equilibrium E; = (T'1, Ay, 4, 0)
with Ay = X(Fl); 0 = ’(/)(Fl) if Rp > 1.

Next, it is show that F; = (I'y,A1,€4,0) is a unique
immune-free equilibrium. Otherwise, there exists another
Ef = (T'7,A1,9Q5,0). Without of loss of generality, it is
assumed that I'f < T'y, then N(T'f) > N(I';). Meanwhile,
together with (4), yields A; < A} and ©Q; < QF. By (H3)
and (Hy), we get

e~ Jo(T'F, AY)

and

ke~ 0110272 I (TF Q)

b= Q1 (A7) 1 p2Q2(827)
_e (1A | ke B8 g (T, )
- M1Q1(A1) p1p2Q2(21)
e N Jy(Ty, Ay) ke =022 1 (T Q) .
p1Q1 (A1) pp2Q2(21) -

This is a contradiction. Thus F; is a unique immune-free
equilibrium.

Further, considering the existence of infection equilibrium
Ey = (FQ,AQ,QQ,\PQ) with antibody responsg:. It is clear
that Ay = Q7'(£2) and Q0 = Q5 (22 2%) Define
J(I) = N(I) = J1(I',Q2) — Jo(I', Ag). By (H1) and (Ha),
there is J'(I") < 0. Since J(0) = N(0) > 0 and J(I') =
N(T) — Ji(T, Q) — J2(T, A2) < 0, there exists a unique
I'y € (0,T) such that J(I'y) = 0.

Define the constant

R ke 0110272 Jl(r2792) + JQ(FQ,AQ)
! 1 2 Q2(202) ’

which is called the CTL response reproductive number of
model (1). If Ry > 1, solving 2o from (3), there is:

:Q_l (67617—1 Jl (FQ, QQ) + 6761T1 JQ(FQ, Ag)
8 wQ1(A2)
_ M1Q1(A2)>
wQ1(A2)
:le (w) > 0.

w
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Therefore, 5 exists and is unique if R > 1.

IITI. STABILITY ANALYSIS

To state the global stability on FEj, an additional
assumption is needed:
B(TA), . A(T,Q)
/lim on

—0 Ql( ) Q—0 QQ( )

(Hs): The supremum of h
(0,T] is achieved at I' =T.

Define
J(T,9Q) _ Jo(T, A)

PO =0 Gy 0 = 10

Assumptions (Hs)-(Hj3) imply that
8.,(T,0)
Ju( ) 90 >0,
and 0.15(1, 0
Jo1 () = 26(A )>OforanyF>0.

Theorem 3.1 (a) If Ry < 1, infection-free equilibrium Ey
is globally asymptotically stable.

(b) If Ry > 1, Ey is unstable.

Proof: Consider conclusion (a).
functional V7 (t) as follows:

Define a Lyapunov

o M do + e‘slTlA(t)

Vi(t) =I(t) — /F 7@, 9)
1 Ji (f‘7 Q) we517'1
P i Qa0 S0

+ /0 (J1(T(t+ ), Q(t + 5))ds

0

o

ke 0272 J (T, Q) [°

+ lim A(t+s))ds.

A0, ) Qi(A(t +s))
Calculating the time derivative of Vj(t), there is:
avi(t) AT

=ND)(1 - lim ————=

dt I L S ATHDL

(J2(D(t+ s), A(t +s))ds

« lim Ji(T, Q) i J2(T', A)
Q-0 Jy (T, Q) A—=0 Qq(A)

. Jl(faﬂ)
S 0 _1)

ke 01T1—0272

H1p2

wlu3€517'1

Y=
Assumption (H,4) implies that

Ji(1,9)
NQ) = Jim S50y

Q3(2)-

' QQ(Q)a

o 2@ A)
A—>0 Q1(A)

From assumption (H5) yields

A(T,Q) ST A) _ Jn(D)/Jn (L)
J(T,9Q) QiA) T Jan(T)/Ju(T)
for T' < I'. Assumptions (H;)-(Hz) imply that N(T)(1 —

limg_,q ﬁ) < 0. It follows that

ST, A) < - Q1(A).

- Jn(T) < Jo(T)

dvi(t
% < e Q1(A)(Ro — 1)
Note that dvl(t) = 0 if and only if I'(t) = T, Q) =

0, ¥(t) =0 and A(t) = 0. So, the maximal compact
invariant set in {(I',A,Q,¥) € R} dv(}t(t) = 0} is
singleton {Ey}. By the LaSalle’s invariance principle [25],
Ejy is globally asymptotically stable.

Next, considering conclusion (b). the characteristic
equation of the linearization system of model (1) at Ej is

A+ p3)(A = N'(T))p1(N) = 0,
where
- dJ2(T',0)
=)\? — et Nm T2 1Y)
1N =N+ (1 + 2 — e o)
_ dJ5(T,0)
_ (81427 Y241, Y)
+ia( e o )
~ e BN —(52+A)T2w
on
When Ry > 1, ¢1(0) = ppe(l — Rg) < 0 and

limy 400 ©1(A) = 400 are obtained. Hence, there is a
A* > 0 such that ¢1(\*) = 0. Therefore, when Ry > 1,
Ej is unstable.

IV. STABILITY OF EQUILIBRIUM E;

Firstly, one lemma which will be used in the proof of
theorem.
Lemma 3.1. Suppose that (Hy)-(H.

Let I'; and €25 satisfy Q1(Ag) = L2
and S(T'y) =
Ey = (T'1,A1,91,0), sign(Ty — T'y) = sign(Aq
sign(Qq — Qo) = sign(Ry — 1).
Proof: Since S(T'1) = J1(T'1, Q1) +
S(I2) = S(I')
=(J1(T2,Q2) — J1(T'1,Q2))
+ (J1(I'1, Q2) — J1(T'1, 1))
+ (J2(T'2, Ag) — J2(I'1, Ag))
+ (Jo(T'1, Ag) = Ji(T'1, Av)).

By (H1) and (Hs), there is sign(T's —T'1) = sign(Q1 —Qs).

4) hold and Ry > 1.

Kpge 0272
> @a$h) = T00—0r
J1 (g, Qo)+ Jo(Ty, Ag) Then for equilibrium
—Ay) =

J2(T1, A1), there is:

Using
Ke—617'1—627'2 Jl (1"1791) + J2(1"17A1) _q
1 fh2 Q2() ’
there is:
Ri—1 :K€_6171_627—2 (Jl(FQ,Ql) — Jl(Fl,Ql)
1 2 Q2()
Ji(T2, Q) Jl(F2791))
Q2(€2) Q2()
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e~ 1 Jy(Tg, Ay) — Jo(T'y, Ay)
M M1 ( Ql(Al)
Jo(T2,Ao) JQ(FQ,A1)>

Q1(A2) Qi(Ar) /-

By (Hs) and (H,), it follows sign(R1—1) = sign(T2—T').
The following condition is needed to guarantee the global
stability of the immune-free equilibrium FE;.

QA (T Q) (T, A)
(Hﬁ)'(Ql( 8 AT, ) (T A))
Ji(T, Q) o (Ts, A

X(Jll(FZ,Q)?]g(FA 1) <0

for I' € [0,T],A > 0,i=1,2.

Theorem 3.2 Assume that the condition (Hg) is satisfied.
(a) If Ry <1 < Ry, then immune-free equilibrium F; is
globally asymptotically stable.

(b) If Ry > 1, then E; is unstable.

Proof: Consider conclusion (a). Denote H(§) =& —1—1n¢
with £ € R,. Define a Lyapunov functional V5(¢) as follows

I'(t)

Va(t) = T(#) —/F mde
i A Q1 (M)
+ef (A(t) - a® de)

we‘slﬁ Jl(FlaQI)
T p2Q2(€21)
Q(t)
o[ 45
Qi(A(t+0

+ Jl(l“th)/O H(

-T2

Qu(A) V) as

0

H(Jl(F(t +0),Q(t + 9))) 10

+J1(F1,Ql)/ T (00,

.
0
Jo(T(E+6),At+6))
Jo(T'1, A H( ! )de.
{0 1)/ Jo(I'1, Av)
Calculating the derivative of V5 (t) along solutions of model
(1), there is:

dVa(t)
dt

—T1

Jl(rlagl))
J1(T, )
Q2(21)Q1(A(t — 7))
Q1(A1)Q2(%2)
Jl(Fle)) Q2(2)J1(I', )
J1(T, Q1) Q2( )Jl(F,Q)
Q1(A) 1 (Tt —7), Q(t - Tl)))>
Ql(y)ch(Fl,Ql)

=(N(1) = N(T1)(1 -

— J(Ty, ) (H( )

+ H( + H( )

+ H(

J1(F1791))
J1(T, )

Ji(, Q1) Jo (T, Al)Ql(A))
J1(T1, Q1) Jo (T, A)Q1 (A1)

- Jg(Fl,Al)(H(

+ H(

Q1(A1)Jo(T'(t — 11), A(t — 71)))>
Q1(A)Jo(T'y, Ay)
+ we ™ (Q1(A1) — Q1(A2))Q3(T)

@2(2) (Jl(Fvﬂ) _ )
Q2() N1 (T, )
Q2(21)  Ji(T', )
% (QZ(Q) N Jl(F,Q))
Q1(A) Ji(I'1, Q) J2(I', A)
+ JQ(Fl’A1)<Q1(A1) - JI(F,Ql)JQ(I‘l,Al))

(Jl(F, Ql)J2(Fla Al) _ 1)
J1 (Fl, Ql)JQ(P7 A)

) and (Hs), there are:

+ H(

+ Ji(T'1, Q)

By (H;
J(T1,4)
~J(T, Q) )<

J(T,Q) Q2(2 J(T,
(J((F,Ql) -1)( Q22(Q)) - J(F,Q))) =0

(N(I') = N (') (1

and

<Q1(A) _ J1(F1,91)J2(Fa/\))
Qi(Ar)  Ji(T, ) J2(T, Ay)

% <J1(P,91)J2(F17A1) B 1)
Ji(Ty, 1) J2(T, A)

<0.

Lemma 3.1 implies that 3 < Qs if Ry < 1. There is
Walt) < 0, and 220 — 0 if and only if [(t) = I'y, A(t) =
Ay,Q(t) = Q@ and ¥(¢) = 0. From LaSalle’s invariance
principle [25], equilibrium FE; is globally asymptotically
stable when Ry <1 < Ry.

Next, considering conclusion (b).

By computing, the characteristic equation of the
linearization system of model (1) at Ej is

©1(A)p2(A) =0,

where 1(A) = A+ p3 — (v — »)Q1(A1) and
a1 BJQ%“XIM) 8Jl(§é’ﬂl)
902()\) = | a2 a2 a3 )
0 —ne_(52+)‘)T2Q’1(A1) A+ u@h(24)
where
0J1(T'1,8)
=\A—N'(T R R
aip =X\ (') + ar
0J2(T'1, Aq)
T
_ - 0J1(T1,Q
agp = — e~ 1+ 171(811“ )
_ o= rtnyn 022 A1)
or ’
0J>(T'q,
azs =X+ Q1 (A1) — ~(O+ )T 72(8/1\ )

~@nm 041, )
o0 '

a23
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When Ry > 1, we have ¢1(0) = p3(Q1(A2)—Q1(A1)) < Noting that
0 and limy_, 4 o ¢1(A) = +00. Hence, there is also a positive J(Da, Q)
root A\* such that h1(A*) = 0. Therefore, when Ry > 1, Ey (N(I) = N(T'2))(1 - J(Fi}))
ik

is unstable. o) 0a(@ .0
J(T, J(L,
s )G - )

J(T, Q) @:(Q)  J(I,Q)

) <0,

V. STABILITY OF EQUILIBRIUM F
Theorem 3.3 Assume that the condition (Hg) is satisfied.

If Ry > 1, then CTL immune response equilibrium Fs is <0

globally asymptotically stable. and

Proof: Define a Lyapunov functional V3(¢) as follows ( Qi (A) STz, 2) (I A) )
Q1(A2)  Ji(T,Q2)J2(I2, Ag)

()
Va(t) =T(t) - /F (T3, Q)

do J1(T,22)J2(T2, Ag)
. N02) X ( J1(Ta, Q) Jo (T, A) 1)
A(t)
+emm (A - / %((Ae"’)) a9) <0.
A 1
’ ) Therefore, d‘s”t(t) <0, and %t(t) =0 if and only if I'(t) =
Jl(anﬁz)( _/ Q2() de) Ty, A(t) = Ay, Q(t) = Qy and U(t) = U,. From LaSalle’s
p2Q2(822) 0, @200 invariance principle [25], F is globally asymptotically stable
when R{ > 1.
n we517'1 (\I/(t> B /Q(f) Qg(\ll2> de)
TT¢ 2 Qs(0) VI. NUMERICAL SIMULATIONS
0
Ji(T(t +0),Q(t + 6)) In model (1)) N(I) = X — dI(t), Ji([,Q) =
+ J1(T2,Q / H do .
1( 2 2) -7 ( Jl (FQ,QQ) ) 7611_{0((?3(%), JQ(F,A) = 7‘12_5(’5?:(%) and Qz(f) = f (’L =

0 1,2,3). It can easily verify that (H;)-(Hg) hold. Taking
+J2(F2’A2)/ H(J2(F(t+9)vf\(t+9)))d9 A =10, d = 01, a; = ay = 002, § = 6, =

-1 Jo(T2, Az) 0.01, p3 = 0.5, w = 0.04, po = 6 and kK = 2.9, choose
51, B2, us, 7y, p as free parameter.

+ Jl(FQ,QQ)/O H(W) do.

—T2

700

Calculating the derivative of V3(t) along solutions of model -

(1), there is:
dva(t)
dt

Q2(92)Q1(A(t _7'2))) 100k
@ (A2)Q2 (Q) ° 200 400 600 800 1000

Jl(F2,92)) (Qz(Q)Jl(RQz)) ()
J1(T, Q) Q2(02) 1 (T, Q)

Q1(A2) L(I'(t — 1), Qt — Tl))))
Q1(A)J1(T'2,Q2)

JI(F27Q2)) =
Ji(T, Qo) 10
J1(I',Q2) J2(I'2, A2)Q1(A) 5
T1(T2, 22) 12(T, 1) Q1 (M) N

Q1(A2) o(T(t — 1), At — 1)) )) ° 200 400 600 800 1000
Ql(A)J2(F2,A2)

Q) / Ji(T,Q 12
322((93) (5 ((r, QQ)) -1)

Q J(T,Q
% (%22((92)) N Jll((f, 92)))

Qi(h) Jl(rg,Qz)JQ(r,A))
Qi(A2)  Ji(T',92)J2(T2, Ag)
<J1(F,Q2)J2(F2’A2) - 1) o 200 400 ) 600
71 (T2, 22) Ja(T, A)

-~ Jl(rQ,Qg)(H(

+ H(

+ H(

_ JQ(FQ,AQ)(H(

+ H(

+ H(

+ Jl(l_‘2592)

+ Jo (g, A2)<

800 1000
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300
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(d)
Fig.1. Taking 51 = 0.001, B2 = 0.01, pus = 0.3, v =
0.1, o = 0.01, 7 = 8 and » = 0.1. Ry = 0.9677 < 1 and
Ey = (10,0,0,0) is globally asymptotically stable.
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Fig.2. Taking 51 = 0.1, B2 = 0.01, pu3 = 0.3, v =0.01, ¢ =
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Fig.3. Taking 1 = 0.1, fo = 0.1, pus = 1.2, v = 1.5, o =
0.3, n =8 and 72 = 0.1. Rgp = 13.6884 > 1, Ry = 5.4766 > 1
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1000

VII. DISCUSSION

This study explored the global dynamics of delayed HIV
model incorporating CTL impairment, intracellular delay 7,
virus replication delay 7, and two transmission mechanisms
are involved, namely virus-to-cell infection and cell-to-cell
transmission. Under conditions (H1)-(Hg), this model allows
for general target-cell dynamics N(I') which containing
J1(I', ) and J3(T", A), discrete delays and state-dependent
removal functions Q;(i = 1,2, 3).

By the analysis, it is obtained that when Ry < 1, Ly
is globally asymptotically stable. When R; < 1 < Ry,
E; is globally asymptotically stable. As respect to the
analysis of Ey, when R, > 1, E» is globally asymptotically
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stable, which implies susceptible cells, infected cells, free
virus and CTL immune response coexist in vivo. The
global stability of the three equilibria has been proved
by constructing suitable Lyapunov functions and applying
LaSalle’s invariance principle. Our findings indicate that
during viral infection, CTL dysfunction triggers a cascade
of immunological events, a reduction in CTL cell count
directly correlates with an elevation in viral load, establishing
a critical immunological threshold for disease progression.
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