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SARIMA Modeling with a State Space
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Abstract— Regional tax revenue is the main source of local
income for Sumedang Regency, supporting economic and
social development. Accurate forecasting of regional tax
revenue is critical for effective fiscal planning and public
service provision at the local level. This study evaluates the
performance of classical SARIMA and SARIMA State Space
models in forecasting monthly tax revenue collected by the
Regency Primary Tax Service Office. The dataset exhibits
seasonal effects, an upward trend, and irregular fluctuations,
necessitating a model capable of capturing these characteristics
robustly. The SARIMA(0,1,1)(0,1,1)!> model was chosen based
on AIC values and analysis of the residuals, and subsequently
reformulated using a State Space approach to assess its
structural advantages. While both models show similar
accuracy (MAPE of 27.27% for SARIMA State Space and
27.49% for ARIMA), the SARIMA State Space model yields
lower RMSE and Theil’s U, and offers a more interpretable
and modular structure for future extensions. These results
highlight the potential of state space modeling for complex
fiscal time series, providing a replicable and theoretically
grounded approach to enhance revenue forecasting strategies
at the regional level.

Index Terms— Forecasting, SARIMA, State Space, Tax
Revenue.

I. INTRODUCTION

HE decentralization policy in Indonesia was officially

implemented in 2001, marked by the enactment of Law
No. 22 on Regional Autonomy and Law No. 25 concerning
the distribution of fiscal authority between central and local
governments [1]. These regulations positioned Locally
Generated Revenue (Pendapatan Asli Daerah, PAD) as a
critical component in supporting regional government
financing. PAD encompasses all revenue collected from
local sources in accordance with applicable regulations [2].
In Sumedang Regency, regional tax revenue constitutes one
of the primary contributors to PAD. Revenue from local
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taxes can be obtained by local governments through three
mechanisms: (1) directly collecting taxes, (2) imposing
locally determined surcharges on taxes collected by higher
levels of government, or (3) receiving fixed allocations from
taxes collected by the central government [3]. Sumedang
Regency generates tax revenue primarily by directly
collecting local taxes through the Sumedang Regency
Primary Tax Service Office.
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Fig. 1. Time series of tax revenue collected by the Primary Tax Office of
Sumedang Regency.

Figure 1 presents the pattern of tax revenue collected by the
Sumedang Regency Primary Tax Service Office, measured
in billions of rupiah, from January 2012 to July 2023. The
data exhibit seasonal fluctuations, with revenue typically
peaking in December due to taxpayers' tendency to settle
their obligations before the end of the fiscal year. In addition
to the seasonal trend, a gradual increase in tax revenue is
observed over time. However, a notable decline occurred in
the latter half of 2019, likely resulting from the COVID-19
pandemic and the associated implementation of social
distancing measures. This decline contributed to missed
revenue targets in both 2019 and 2020, prompting the local
government to revise its revenue targets downward in the
following years.

In this context, forecasting tax revenue for the Sumedang
Regency Primary Tax Service Office becomes essential for
supporting policymakers in setting realistic and effective
revenue targets. However, tax revenue forecasting poses
considerable challenges due to its inherent uncertainty, non-
linear dynamics, and sensitivity to a range of external
factors, such as macroeconomic conditions, public
awareness of taxation, the rise of the digital economy,
changes in government policies, and taxpayers' financial
capacity [4]. Furthermore, historical tax revenue data exhibit
extreme and irregular fluctuations driven by random events,
policy shocks, and other unobserved influences. Such
complexities  frequently  challenge the predictive
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performance of traditional time series approaches, including
ARIMA and SARIMA models.

To overcome these limitations, the state space model
offers a flexible and robust framework for modeling and
forecasting interrelated time series data with complex
dynamics [5]. This approach is particularly effective for
analyzing data with seasonal patterns, trends, and structural
changes that arise at unknown points in time. By embedding
the SARIMA model within a state space framework, it
becomes possible to capture and accommodate non-
linearities and abrupt fluctuations more effectively than
using SARIMA alone.

Therefore, this study applies the SARIMA model within a
state space context to address the complex characteristics of
tax revenue data in Sumedang Regency. This study aims to
enhance the precision of forecasts while offering data-driven
insights to support policy formulation in the fiscal sector.
Ultimately, this study contributes not only to the practical
domain of regional tax management but also to the broader
literature on forecasting complex time series data under
structural uncertainty.

II. DATA

This study utilized secondary data obtained from the
Regency Primary Tax Service Office. The variable analyzed
was the tax revenue of the Sumedang Regency Primary Tax
Service Office, measured in billions of rupiah. The dataset is
a univariate time series consisting ofa total of 139 monthly
data points, spanning from January 2012 through July 2023.

III. METHODS

A. Seasonal Autoregressive Integrated Moving Average
(SARIMA)

SARIMA is a type of time series model that builds upon
the ARIMA framework by integrating seasonal components.
This model is well-suited for time series that exhibit
periodic patterns or recurring fluctuations over a specified
seasonality cycle.

The SARIMA formulation can be represented as:

ARIMA(p,d.q) (PD,Q)* (1)
where p, d, and q refer to the non-seasonal AR, differencing,
and MA orders; B D, and @ indicate their seasonal
counterparts; s corresponds to the number of periods per
season. The general equations of the SARIMA model are as
follows:

4,(B)®,(B°)(1-B)' (1-B°) ¥, =6,(B)®, (B )a, (?)
where Y:denotes the time series value at time t; @p(5) and
84(B) denote the AR and MA operators for the non-seasonal
componen; @p(B) and Op (B) refer to the corresponding
seasonal operators; (1—F)9 and (1—-F5)? are the

differencing operators. The mean of the series, denoted as y,
is subtracted if d=0 or D=0.

B. State Space Model

The state space model represents an innovative approach
for modeling and forecasting interrelated time series data, in
which variables interact dynamically[5]. It is applicable to
both forecasting and parameter estimation tasks [6]. The
model comprises two primary equations: the measurement
(or observation) equation and the state transition equation,

which together describe the relationships among the

system's input, output, and internal state variables [7]. The
representation of the state space model is formulated as:
Transition Equation:

Xi = AXi- 14w, )
Measurement Equation:

Z, = HX:+ w 4)

Z, denotes the observed measurement vector at time t, X;
represents the unobserved state vector, H is the
measurement matrix, and A is the transition matrix. The
stochastic disturbances v, and w; are modeled as white noise
processes, each having zero mean and associated covariance
matrices Q: and R:, respectively. Moreover, w; and v, are
assumed to be uncorrelated to ensure identifiability of the
model structure.

C. Stationary Test

Stationarity is a fundamental assumption for numerous
time series models. The Augmented Dickey—Fuller (ADF)
test is applied to identify the presence of a unit root,
indicating non-stationarity in the series. The hypotheses are
formulated as:
Hy: 6=0 (data contain a unit root/non-stationary)
Hy: 6#0 (data are stationary)

The test statistic is calculated as:

(=2 5)

SE(5)
where ¢ is the estimated coefficient and SE(§) is its
standard error, approximated by +1—s"/, with n being the
sample size. The null hypothesis is rejected when the

absolute test statistic surpasses the threshold value ton or the
p-value falls below the pre-specified significance level a.

D. Box-Cox Transformation
When the time series exhibits non-constant variance
(heteroskedasticity), the Box—Cox transformation can be

employed as a variance-stabilizing technique. The
transformation is given by:
Z'=1)/A,A=0
T(Z,)= (2:-1) (©)
Inz ,A#0

where A serves as the transformation coefficient,
determined by optimizing the log-likelihood function. A
time series is considered variance-stationary if the optimal A
is close to 1 and Z; values are positive.

E. Differencing

Differencing is applied when the time series demonstrates
non-stationarity in its mean. The process stabilizes the mean
by subtracting the observation of the previous period from
the current period. Differencing of order d is defined as:

Z{d=(1— B) Z, @)

Where B is the backshift operator and d denotes the
differencing order.

F. ACF and PACF

In SARIMA modeling, the autocorrelation function
(ACF) helps identify the moving average (MA) components,
while the partial autocorrelation function (PACF) assists in
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detecting the autoregressive (AR) structure. The sample
ACF at lag k is computed as [5]:

> (2-2)(2.4-2) ©)
>ri(z-2)

where Z; and Z;+ are the observed values at times ¢and £k,

Pr=

respectively, and Z is the sample mean.
The PACEF at lag k is calculated using [5]:

cov [(Z, ~Z )(Zz+k ~Zun )J

\/VS.I’(Z[ —Z)var(ZM —Z+k)

10
Py = ( )

G. SARIMA Model Parameter Estimation and Testing

The SARIMA model parameters ¢, 6, @, and @ are
estimated using the Maximum Likelihood Method (MLM).
The residuals a: assumed to follow a white noise process
characterized by a distribution (0, o4?), the log-likelihood
function is expressed as:
B S'¢,€,(D,®,O'5 (11)

207

The parameters that have been estimated, then tested for
significance to find out whether these parameters can be
included in the model or not.

The hypotheses are:
Ho: The parameter has no effect (value equals zero).
Hi: The parameter is significant (value differs from zero).

The following test statistic is applied:

__P (12)
5¢(s]

where g is the estimated parameter value and SE( ) is its

a

(a|¢,9,®,®,0§)=—gln(2ﬁ02)

V4

standard error. The null hypothesis Hy is rejected if |&|=
tz/zar or if the p-value is less than the significance level a,
with degrees of freedom df=n—k.

H. SARIMA Model Diagnostic Checking

The diagnostic checking of the SARIMA model involves
two essential conditions: the residuals must behave as white
noise and follow a normal distribution [5]. White noise
implies that the residuals are uncorrelated (i.e., non-
autocorrelated) and exhibit constant variance
(homoskedasticity).

1) Residual Normality Test
In this study, the Kolmogorov—Smirnov (K-S) test was
utilized to assess whether the model residuals follow a
normal distribution. This method is appropriate for large
samples, specifically those with more than 30 observations.
The hypotheses are:
Hy: The residuals follow a normal distribution.
H: The residuals deviate from normality.
The test statistic is:

D=max|F,(a,)-S,(a,)| (13)

where Fy (a;) is the cumulative distribution function under
Hy and S, (@) is the empirical cumulative distribution
function. The null hypothesis is rejected if D=>D-am) or if
the p-value is less than a.
2) Non-Autocorrelation Test

The Q-Ljung Box test is used to verify that residuals are

not autocorrelated. The hypotheses are:
Hy: Residuals are not autocorrelated.
H: Residuals are autocorrelated.

The test statistic is:
2

an(n-’-z)ZkKl#

where K is the maximum lag and pi is the sample

(14)

autocorrelation at lag k. The null hypothesis is rejected if
0= 42 orifthe p-value is less than .

3) Homoskedasticity Test

Homokedasticity means the residuals have constant
variance. The squared residuals are tested using a similar Q-
Ljung Box statistic applied to . The hypotheses are:
Hy: Residual variance is homogeneous.
H,: Residual variance is heterogeneous.

The test statistic is identical to (14), but applied to
squared residuals. The null hypothesis is rejected if
0= 4., orif the p-value is less than .

1. Selection of SARIMA Models
The best model based on the in-sample is selected based
on the Akaike Information Criterion (AIC), computed as:

AIC(M) =n1n(ai)+2M (15)

where ai denotes the residual variance estimated through
maximum likelihood, M indicates the number of model
parameters, and n represents the total number of
observations [5]. The model with the smallest AIC value is
considered the optimal model.

J. ARIMA Representation in State Space Form

The conventional ARIMA model can be reformulated into
a state space representation by expressing the autoregressive
process through state and observation equations. This
representation provides a structured framework for
modeling dynamic systems [8]. Based on Equations (3) and
(4), the ARIMA model in state space form, with
r=max(p,q+1), is defined as follows [8]:
State transition equation:

—¢1 ¢2 ¢r—l ¢r a,
r o0 - 0 O 0
X=[0 1 - 0 o|x, +o0| U9
100 - 1 0] 1 0]
Measurement/observation equation:
Z =1 6 6, 01X, +w, (17)

K. Kalman Filter

The Kalman Filter is applied in the SARIMA model to
allow time-varying parameters, thereby enhancing the
model’s adaptability to changes in the system's dynamics
and improving the forecasting accuracy. The filter algorithm
comprises the following steps:
Initialization stage

The process begins by setting the initial estimate of the
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state vector and the initial error covariance matrix:

(18)

' :Px("xO = Xo

Time Update (Prediction Step)

This stage estimates the current state using the previous
time step's information. The predicted state and its error
covariance are calculated as follows:

x; = AX/-
P, =AP_A"+Q

19)
(20)

In Equation (19), X; is the predicted (a priori) state vector at

time ¢, A is the state transition matrix, X;-11s the estimated
(a posteriori) state vector from the previous time step.
Equation (20) provides the predicted error covariance

where P is the error covariance at the

matrix P, o
previous time, AT denotes the transpose of matrix A, and Q

is the covariance matrix of the process noise.

Measurement Update (Correction Stage)

The correction stage improves the prediction by
incorporating the current measurement through a
measurement model. The estimation error is minimized
using the Kalman Gain matrix [9].

K, =(P/H'(HP H'+R))" @1
x =x; +K,(z, —Hx, ) (22)
P =(I-KH)P (23)

In Equation (21), K refers to the Kalman Gain at time ¢, H
represents the observation matrix, and R denotes the
covariance matrix of the measurement noise. Equation (22)

computes the updated state estimate X:, where Z;

corresponds to the observed value at time ¢, and X: is the
predicted state. Finally, Equation (23) updates the error
covariance matrix P, where I denotes the identity matrix.

L. Model Evaluation

In this study, MAPE (Mean Absolute Percentage Error) is
employed to evaluate the forecasting performance of the
model. It measures the average magnitude of prediction
errors in percentage terms and is defined as [10]:

Y=Y 100% (24)

1 n
MAPE:ZZZ1
t
A lower MAPE wvalue indicates better forecasting
accuracy. Based on the classification proposed in the
literature [11], forecasting accuracy can be categorized as
follows:

IV. RESULTS

A. Data Exploration

The monthly tax revenue data collected by the Sumedang
Regency Primary Tax Service Office from January 2012 to
July 2023 exhibit both seasonal and trending behavior.
Recurrent peaks are typically observed in December, likely
due to the tendency of taxpayers to settle their obligations
before the fiscal year ends. In contrast, lower revenues tend
to occur during the early months of the year. A temporary
decline is also noticeable during the second half of 2019,
which can be attributed to the economic impact of the
COVID-19 pandemic and the accompanying mobility
restrictions.

Descriptive statistics of the observed tax revenue are
summarized in Table 1. The average monthly revenue was
approximately IDR 44.33 billion, with a median of IDR
42.44 billion. The values range from a minimum of IDR
11.29 billion to a third quartile of IDR 52.25 billion,
indicating a slightly right-skewed distribution. This pattern
reflects the presence of seasonal peaks, particularly during
year-end periods, which justify the application of variance-
stabilizing transformations during model development.

TABLE II
SUMMARY STATISTICS OF MONTHLY TAX REVENUE (IN IDR BILLION)
Min Median Max Mean 1% Quartile 3" Quartile
11.29 42.44 147.93 44.33 28.74 52.25

TABLEI
FORECASTING ACCURACY CATEGORIES BASED ON MAPE
MAPE Values Accuracy of Forecasting
<10% High accuracy
10% - 20% Good accuracy

20% - 50% Fair accuracy
0% Poor accuracy

Figure 1 displays the original time series of monthly tax
revenue, while Figure 2 illustrates its decomposition into
trend, seasonal, and residual components. The
decomposition reveals strong seasonal effects and a clear
upward trend, reinforcing the need for a modeling
framework that can adequately capture such dynamics.
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Fig. 2. Seasonal-trend decomposition of monthly tax revenue collected by
the Sumedang Regency Primary Tax Service Office.

B. SARIMA Modeling

This section outlines the modeling process using the
Seasonal Autoregressive Integrated Moving Average
(SARIMA) framework to forecast monthly tax revenue. The
procedure includes testing for stationarity, identifying model
structure, estimating parameters, and conducting residual
diagnostics to ensure the model’s validity and forecasting
suitability.

1) Stationarity Checking
To assess variance stationarity, the Box—Cox
transformation was applied. The initial lambda () value was
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Fig. 3. Autocorrelation and partial autocorrelation plots of the stationary tax revenue series: (a) ACF (b) PACF

0.1977, indicating non-stationary  variance.  After
transformation, the A value increased to 0.9937, suggesting
that the data became variance-stationary.

Mean stationarity was evaluated using the ADF test. The
non-seasonal component returned a p-value of 0.001473,
which is below the 0.05 threshold, confirming that the mean
is stationary. However, the seasonal component produced a
p-value of 0.99, indicating the need for seasonal
differencing.

Following the application of seasonal differencing (D=1),
the ADF test conducted at lag 12 yielded a p-value of
0.0363, suggesting that the seasonal component had become
stationary. To account for remaining trend elements, a first-

on standard t-tests. These candidate models include various
combinations of non-seasonal AR and MA terms, as well as
seasonal AR and MA components.

To determine the adequacy of each candidate model, three
diagnostic tests were conducted: the Kolmogorov—Smirnov
test for residual normality, the Q-Ljung Box test for
autocorrelation, and the Breusch-Pagan test for
homoskedasticity. A model was considered statistically
acceptable if it passed all three diagnostic checks. The
complete parameter estimates and their significance levels
are summarized in Table III, while the diagnostic test results
are reported in Table IV.

order non-seasonal differencing (d=1) was also applied. The TABLEIII
PARAMETER ESTIMATES AND SIGNIFICANCE TESTS FOR SELECTED
final ADF test, evaluated at both lag 1 and lag 12, returned a SARIMA MODELS
p-value of 0.01, confirming that the time series is fully Model Parameter Estimate p-value
stationary in both the seasonal and non-seasonal dimensions. ARIMA(1,1,0)(0,1,1)" o -0.4375 1x10°
o, -0.7418 2.25x10®
12 _ -13
1) Model Identification ARIMAQ,LOYO.L1) g' 8'233; 2331287
. . 2 =U. B
To determine the appropriate SARIMA model order, the o, 20.6735 7781010
ACF and PACEF plots of the stationary series were analyzed. ARIMA(1,1,0)(1,1,0)"2 1o -0.4373 9.57¢7
The PACF, shown in Figure 3(b), displays a cut-off at lag 4, D -0.4940 1.74x10”
ndicatine . th ¢ 1 aut 4 ARIMA(2,1,0)(1,1,0)2 & -0.6481 2.08%10713
indicating the presence of non-seasonal autoregressive > 04701 2.6x10°
components up to AR(4). Spikes at lags 12 and 24 also @ -0.5185 2.03x10°10
suggest possible seasonal AR terms, including SAR(1) and ~ ARIMA(0,1,1)(0,1,1)" 6 -0.8118 2.08x10°¢
6, -0.5944 3.24x10
SAR(2). . o o ARIMA(0,1,1)(1,1,0)"2 o, -0.7999 9.95x1038
Meanwhile, the ACF plot in Figure 3(a) exhibits a cut-off & -0.4552 1.28%107
at lag 2, which implies the inclusion of non-seasonal moving
average components such as MA(1) or MA(2). A distinct TABLEIV
Spike at 1ag 12 indicates the need fOf a seasonal MA term, SUMMARY OF DIAGNOSTIC TESTS FOR SARIMA CANDIDATE MODELS
otentially SMA(1). Residual  Residual Non- Residual
p y M) Model Normality Autocorrelation Homoskedasticity
(p-value) (p-value) (p-value)
2) Estimation and Diagnostics ARIMA(1,1,0)(0,1,1)>  0.7773 0.0365 1.006x10°
Based on the identified differencing orders (d=1 dan ARIMAE%LO;(OJJ;Z 0.0297 0.8601 0.109
_ . ARIMA(1,1,0)(1,1,0 0.3616 0.0243 0.0004
D=1) and a sea§0na1 period .of 12, a total of 62 SARIMA ARIMA(2.1.0)(1.1.0)2  0.5584 0.7046 0.5675
model specifications were estimated. From these, six models ARIMA(0,1,1)(0,1,1)'>  0.5584 0.9853 0.1789
were found to have statistically significant parameters based ARIMA(0,L1)(1,1L,O)"?  0.162 0.8597 0.6706
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The Kolmogorov—Smirnov test indicated that all models
satisfied the residual normality assumption, with the
exception of ARIMA(2,1,0)(1,1,0)!2. The Q-Ljung Box test
revealed residual independence for all models except
ARIMA(0,1,1)(0,1,1)"? and ARIMA(1,1,0)(1,1,0)"2.
Furthermore, the homoskedasticity test indicated that only
ARIMAC(1,1,0)(0,1,1)'? and ARIMA(1,1,0)(1,1,0)'? failed to
meet the constant variance assumption.

3) SARIMA Model Selection

Based on the diagnostic tests above, three models were
deemed  statistically  appropriate  for  forecasting:
ARIMA(2,1,0)(1,1,0)!2, ARIMA(0,1,1)(0,1,1)'2, and
ARIMA(0,1,1)(1,1,0)!2. To determine the best-fitting model,
Akaike Information Criterion (AIC) values were compared,
as presented in Table V.

TABLE V
AIC VALUES OF SELECTED SARIMA MODELS
Model AIC Value
ARIMA(2,1,0)(1,1,0)" 160.7793
ARIMA(0,1,1)(0,1,1)" 154.6360
ARIMA(0,1,1)(1,1,0)" 157.4833

Among the three models, ARIMA(0,1,1)(0,1,1)"? yielded
the lowest AIC value and was therefore selected as the most
suitable model for forecasting monthly tax revenue.

-
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Time

Fig. 4. Residual series of the selected SARIMA(0,1,1)(0,1,1)'> model from
January 2012 to July 2023.

To further validate the adequacy of this model, the
residual series was plotted over the training period (see
Figure 4). The residuals oscillate around zero without any
discernible trend or seasonal structure, suggesting that the
model effectively captures both short- and long-term
dynamics in the data. Although minor fluctuations occur,
particularly during mid-2016 and late 2019, the variance
remains relatively stable throughout the series. These visual
patterns are consistent with the diagnostic test results
reported earlier, supporting the suitability of the selected
SARIMA model for forecasting purposes.

The selected SARIMA model can be expressed by the
following equations:

(1-B)(1-B2)Y, = 6(B) 61(B D),

(1—B—B+B") Y, = (1- 6.B)(1— B,

Y1 = Y1 Y-~ Yi-13 = Q— 6iQ-1— O1Q-12— 61Q1-13

Yi = Yie1+ Y2+ Vo3 +Q— 610 1— O1Q—1— G113 (25)

Based on the parameter estimates presented in Table III, the
final forecasting equation becomes:

Yi=Y—1+Yi-12+ Y13 +a— 0.8181a-1— 26)
0.5944a.-1,— 0.4825a-13

C. SARIMA State Space

The optimal SARIMA model selected in the previous
section is reformulated into its state space representation
based on Equations (17) and (18). This formulation consists
of a system of equations describing the transition of latent
states over time and their relation to the observed data. The
state space representation comprises the following
equations:
Transition Equation:
Xi = AX—1+w ;
(100000000001 —1] :
100000000000
010000000000
001000000000
000100000000
000010000000 0O
000001000000 0
000000100000 0
000000010000 0
000000001000 0O
000000000100 0
000000000010 0 !
| 000000000001 0 a

27

Xi= Xi—1+

Observation Equation:

Zt = HX‘{‘ Wt

Z=[16,0000000000 0] X+ w (28)
This state space structure forms the basis for recursive

forecasting using the Kalman filter. Before parameter

estimation, the model requires initialization, including the

specification of the initial state vector and the initial error

covariance matrix. In this study, the estimation process

focuses on the moving average parameters from the

ARIMA(0,1,1)(0,1,1)'2 model:

MA(1) lag 1 parameter :0=-0.812

SMA(1) lag 12 parameter : &= —0.737

D. Model Performance Evaluation and Comparative
Analysis

The predictive performance of both the classical
SARIMA model and its state space reformulation was
evaluated on the test dataset. Several commonly used
accuracy metrics were calculated and are summarized in
Table VI

TABLE VI
FORECAST ACCURACY METRICS ON TEST DATA
Metric SARIMA SARIMA State Space
MAPE 27.49% 27.27%
RMSE 18.020 16.216
MAE 13.599 12.853
Theil’s U 0.6697 0.6368

Volume 55, Issue 10, October 2025, Pages 3135-3143



TAENG International Journal of Applied Mathematics

The SARIMA State Space model demonstrates superior
performance across most error metrics. In particular, it
yields lower RMSE, MAE, and Theil’s U values, indicating
improved accuracy and a better ability to track data
fluctuations. Meanwhile, the MAPE values for both models
are nearly identical, suggesting that both models exhibit
comparable relative forecasting error in percentage terms.

A visual comparison of the predicted values and actual
observations is provided in Figure 5.
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Revenue (IDR Billion)

50

2022 2023

Time
— Actual Data --

(a)

SARIMA Forecast

150
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— Actual Data -- SARIMA State Space Forecast

(b)
Fig. 5. Forecast Comparison on the Test Dataset: (a) SARIMA model (b)
SARIMA State Space model.

Figure 5 shows that both models successfully replicate the
overall patterns in the observed data. While the differences
between the two forecasts are not pronounced, the SARIMA
State Space model exhibits a marginally better fit,
particularly in capturing short-term variations. This result
aligns with the quantitative evaluation, confirming the
advantage of incorporating the state space approach in
forecasting.

In addition to point forecast comparisons, the absolute
forecast errors of both models were plotted to assess their
temporal performance more closely. Figure 6 displays the
evolution of one-step-ahead absolute forecast errors for each
model during the test period from July 2021 to July 2023.

The SARIMA State Space model generally exhibits
smaller forecast errors across most periods, particularly
during high-variance months such as December 2022 and
January 2023. This indicates better adaptability in capturing
sudden fluctuations in tax revenue, likely due to its recursive
filtering structure.
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Fig. 6. Absolute forecast errors of the SARIMA and SARIMA State Space
models over the test period (July 2021-July 2023).

To statistically assess the difference in forecast accuracy,
a Diebold—Mariano (DM) test was conducted using the
squared error loss function. The test yielded a statistic of
1.5783 with a p-value of 0.1282, indicating that the
difference in predictive performance between the two
models is not statistically significant at the 5% level.
Nonetheless, the visual patterns and consistent reduction in
error magnitude observed in Figure 6 suggest practical
advantages offered by the state space formulation.

E. Forecasting

Based on the model evaluation in the previous section, the
SARIMA State Space model was selected as the final
forecasting model for monthly tax revenue at the Sumedang
Regency Primary Tax Service Office. The forecasts cover
the period from August 2023 to December 2025. The results
are summarized in Table VII, with values expressed in
billion Rupiah.

TABLE VII
FORECASTED MONTHLY TAX REVENUE FOR THE SUMEDANG REGENCY
PRIMARY TAX SERVICE OFFICE (IN IDR BILLION)

Month 2023 2024 2025

January - 40.36461 42.28570
February - 35.02723 36.74261
March - 40.92048 42.86267
April - 53.48575 55.89110
May - 49.11951 51.36668
June - 47.03937 4921021
July - 48.80438 51.04003
August 44.47180 44.47180 46.54746
September 46.48206 46.48206 48.63233
October 50.48502 50.48502 52.78196
November 57.17818 59.71529 62.34193
December 106.91922 111.10273 115.41656

Figure 7 presents a time series plot of the historical and
forecasted monthly revenue, including the 95% confidence
intervals. The projected pattern indicates recurring seasonal
peaks in December, in line with previous observations.
Additionally, the overall trajectory reflects a consistent
increasing trend throughout the forecast horizon.

This forecasted growth is in line with the recent initiatives
introduced by the Sumedang Regency Primary Tax Service
Office, such as taxpayer education, compliance monitoring,
and administrative restructuring. The anticipated operational
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improvements, including the construction of a new office
facility, are expected to contribute positively to tax revenue
performance in the upcoming years.
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Fig. 7. Forecasted Tax Revenue for for the period August 2023 to
December 2025.

V. DISCUSSION

The empirical findings of this study offer important
implications for understanding and forecasting regional tax
revenue, particularly within the context of the Regency
Primary Tax Service Office. The identification of
SARIMA(0,1,1)(0,1,1)!? as the optimal baseline model
confirms the strong presence of seasonal patterns and non-
stationary trends, which are typical characteristics in fiscal
time series data. This finding is consistent with previous
studies that observed seasonal peaks in tax revenue during
the third and fourth quarters, coinciding with periods of
heightened economic activity such as increased
consumption and investment [12].

Transforming the SARIMA model into a state space
framework not only preserves its temporal structure but also
enhances its flexibility for handling latent components and
enabling recursive estimation. While the reduction in MAPE
from 27.49% to 27.27% may appear limited, the
improvements in RMSE, MAE, and Theil’s U demonstrate
the practical advantage of the state space model in
generating more stable forecasts. These gains are especially
relevant for fiscal data, which often exhibit reporting lags,
administrative noise, and seasonal disbursement schedules.
State space models have been effectively utilized in
macroeconomic forecasting to handle variables affected by
policy changes and administrative irregularities [13].

In contrast to traditional models used in earlier literature,
such as exponential smoothing or basic ARIMA models, the
SARIMA State Space model allows for a more robust
decomposition of signal and noise components. It also
supports extensions such as intervention modeling, time-
varying parameters, or multivariate specifications. Such
adaptability is crucial for fiscal forecasting under
macroeconomic uncertainty, as multivariate state space
models have been shown to better capture complex
interactions among economic variables [14].

However, several limitations should be acknowledged.
The dataset used spans only eleven years and pertains to a
single local tax office, limiting the generalizability of the
findings. Moreover, the assumption of normally distributed
and linearly related residuals may not fully reflect real-

world tax collection dynamics, especially during periods of
disruption or regulatory transition. In such cases, the
application of non-Gaussian models has been suggested to
better handle volatility and irregular patterns in fiscal data
[15].

Despite these limitations, the results illustrate the value of
SARIMA State Space models as analytical tools for regional
fiscal management. Future research could explore spatial
hierarchies, cross-sectional dependencies, or the integration
of real-time compliance indicators to extend the model's
applicability.

VI. CONCLUSION

This study confirms that incorporating a SARIMA model
within a state space framework enhances the accuracy and
robustness of regional tax revenue forecasting. The model
effectively captures the observed seasonality, trend, and
irregular variation in the monthly tax revenue data, offering
a statistically coherent and operationally feasible approach
for local fiscal planning.

Although the improvement in MAPE is relatively minor,
the consistent reductions in RMSE, MAE, and Theil’s U
indicate that the state space specification provides more
stable and reliable forecasts. This is particularly important
for local governments that rely on timely and accurate
revenue projections to design effective budgetary policies.

In addition to its forecasting capability, the state space
approach provides a flexible foundation for incorporating
external covariates and policy interventions, making it a
promising avenue for future research and a valuable tool for
public financial management. Therefore, this study not only
contributes to the growing literature on time series modeling
in the public sector but also underscores the importance of
methodological innovation in achieving more effective
revenue governance.
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