
 

  

Abstract— Regional tax revenue is the main source of local 

income for Sumedang Regency, supporting economic and 

social development. Accurate forecasting of regional tax 

revenue is critical for effective fiscal planning and public 

service provision at the local level. This study evaluates the 

performance of classical SARIMA and SARIMA State Space 

models in forecasting monthly tax revenue collected by the 

Regency Primary Tax Service Office. The dataset exhibits 

seasonal effects, an upward trend, and irregular fluctuations, 

necessitating a model capable of capturing these characteristics 

robustly. The SARIMA(0,1,1)(0,1,1)12 model was chosen based 

on AIC values and analysis of the residuals, and subsequently 

reformulated using a State Space approach to assess its 

structural advantages. While both models show similar 

accuracy (MAPE of 27.27% for SARIMA State Space and 

27.49% for ARIMA), the SARIMA State Space model yields 

lower RMSE and Theil’s U, and offers a more interpretable 

and modular structure for future extensions. These results 

highlight the potential of state space modeling for complex 

fiscal time series, providing a replicable and theoretically 

grounded approach to enhance revenue forecasting strategies 

at the regional level. 

 
Index Terms— Forecasting, SARIMA, State Space, Tax 

Revenue. 

 

I. INTRODUCTION 

HE decentralization policy in Indonesia was officially 

implemented in 2001, marked by the enactment of Law 

No. 22 on Regional Autonomy and Law No. 25 concerning 

the distribution of fiscal authority between central and local 

governments [1]. These regulations positioned Locally 

Generated Revenue (Pendapatan Asli Daerah, PAD) as a 

critical component in supporting regional government 

financing. PAD encompasses all revenue collected from 

local sources in accordance with applicable regulations [2]. 

In Sumedang Regency, regional tax revenue constitutes one 

of the primary contributors to PAD. Revenue from local 
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taxes can be obtained by local governments through three 

mechanisms: (1) directly collecting taxes, (2) imposing 

locally determined surcharges on taxes collected by higher 

levels of government, or (3) receiving fixed allocations from 

taxes collected by the central government [3]. Sumedang 

Regency generates tax revenue primarily by directly 

collecting local taxes through the Sumedang Regency 

Primary Tax Service Office. 
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Fig. 1. Time series of tax revenue collected by the Primary Tax Office of 

Sumedang Regency. 

 

Figure 1 presents the pattern of tax revenue collected by the 

Sumedang Regency Primary Tax Service Office, measured 

in billions of rupiah, from January 2012 to July 2023. The 

data exhibit seasonal fluctuations, with revenue typically 

peaking in December due to taxpayers' tendency to settle 

their obligations before the end of the fiscal year. In addition 

to the seasonal trend, a gradual increase in tax revenue is 

observed over time. However, a notable decline occurred in 

the latter half of 2019, likely resulting from the COVID-19 

pandemic and the associated implementation of social 

distancing measures. This decline contributed to missed 

revenue targets in both 2019 and 2020, prompting the local 

government to revise its revenue targets downward in the 

following years. 

In this context, forecasting tax revenue for the Sumedang 

Regency Primary Tax Service Office becomes essential for 

supporting policymakers in setting realistic and effective 

revenue targets. However, tax revenue forecasting poses 

considerable challenges due to its inherent uncertainty, non-

linear dynamics, and sensitivity to a range of external 

factors, such as macroeconomic conditions, public 

awareness of taxation, the rise of the digital economy, 

changes in government policies, and taxpayers' financial 

capacity [4]. Furthermore, historical tax revenue data exhibit 

extreme and irregular fluctuations driven by random events, 

policy shocks, and other unobserved influences. Such 

complexities frequently challenge the predictive 
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performance of traditional time series approaches, including 

ARIMA and SARIMA models. 

To overcome these limitations, the state space model 

offers a flexible and robust framework for modeling and 

forecasting interrelated time series data with complex 

dynamics [5]. This approach is particularly effective for 

analyzing data with seasonal patterns, trends, and structural 

changes that arise at unknown points in time. By embedding 

the SARIMA model within a state space framework, it 

becomes possible to capture and accommodate non-

linearities and abrupt fluctuations more effectively than 

using SARIMA alone. 

Therefore, this study applies the SARIMA model within a 

state space context to address the complex characteristics of 

tax revenue data in Sumedang Regency. This study aims to 

enhance the precision of forecasts while offering data-driven 

insights to support policy formulation in the fiscal sector. 

Ultimately, this study contributes not only to the practical 

domain of regional tax management but also to the broader 

literature on forecasting complex time series data under 

structural uncertainty.  

II. DATA 

This study utilized secondary data obtained from the 

Regency Primary Tax Service Office. The variable analyzed 

was the tax revenue of the Sumedang Regency Primary Tax 

Service Office, measured in billions of rupiah. The dataset is 

a univariate time series consisting ofa total of 139 monthly 

data points, spanning from January 2012 through July 2023. 

III. METHODS 

A. Seasonal Autoregressive Integrated Moving Average 

(SARIMA) 

SARIMA is a type of time series model that builds upon 

the ARIMA framework by integrating seasonal components. 

This model is well-suited for time series that exhibit 

periodic patterns or recurring fluctuations over a specified 

seasonality cycle.  

The SARIMA formulation can be represented as: 

ARIMA(p,d,q)(P,D,Q)s      (1) 

where 𝑝, 𝑑, and 𝑞 refer to the non-seasonal AR, differencing, 

and MA orders; P, D, and Q indicate their seasonal 

counterparts; 𝑠 corresponds to the number of periods per 

season. The general equations of the SARIMA model are as 

follows: 

( ) ( )( ) ( ) ( ) ( )1 1
Dds s s

p P t q Q tB B B B Y B B   − − =   (2) 

where Yt denotes the time series value at time 𝑡; Φp(B) and 

θq(B) denote the AR and MA operators for the non-seasonal 

componen; ΦP (Bs) and ΘQ (Bs)  refer to the corresponding 

seasonal operators; (1−B)d and (1−Bs)D are the 

differencing operators. The mean of the series, denoted as 𝜇, 

is subtracted if 𝑑=0 or 𝐷=0. 

 

B. State Space Model 

The state space model represents an innovative approach 

for modeling and forecasting interrelated time series data, in 

which variables interact dynamically[5]. It is applicable to 

both forecasting and parameter estimation tasks [6]. The 

model comprises two primary equations: the measurement 

(or observation) equation and the state transition equation, 

which together describe the relationships among the 

system's input, output, and internal state variables [7].  The 

representation of the state space model is formulated as: 

Transition Equation: 

Xt = AXt−1+vt          (3) 

Measurement Equation: 

Zt = HXt+ wt          (4) 

Zt denotes the observed measurement vector at time 𝑡, Xt 

represents the unobserved state vector, 𝐻 is the 

measurement matrix, and 𝐴 is the transition matrix. The 

stochastic disturbances vt and wt are modeled as white noise 

processes, each having zero mean and associated covariance 

matrices 𝑄𝑡 and 𝑅𝑡, respectively. Moreover, wt and vt are 

assumed to be uncorrelated to ensure identifiability of the 

model structure. 

 

C. Stationary Test 

Stationarity is a fundamental assumption for numerous 

time series models. The Augmented Dickey–Fuller (ADF) 

test is applied to identify the presence of a unit root, 

indicating non-stationarity in the series. The hypotheses are 

formulated as:  

H0: δ=0 (data contain a unit root/non-stationary)  

H1: δ≠0 (data are stationary) 

The test statistic is calculated as: 

( )
t

SE





=            (5) 

where   is the estimated coefficient and SE( ) is its 

standard error, approximated by 
2

1 / n−  with 𝑛 being the 

sample size. The null hypothesis is rejected when the 

absolute test statistic surpasses the threshold value 𝑡𝛼,𝑛 or the 

p-value falls below the pre-specified significance level 𝛼. 

 

D. Box-Cox Transformation 

When the time series exhibits non-constant variance 

(heteroskedasticity), the Box–Cox transformation can be 

employed as a variance-stabilizing technique. The 

transformation is given by: 

( )
( )1 / , 0

, 0ln

t

t

t

Z
T Z

Z

  



 − =
= 



      (6)  

where λ serves as the transformation coefficient, 

determined by optimizing the log-likelihood function.  A 

time series is considered variance-stationary if the optimal λ 

is close to 1 and Zt values are positive. 
 

E. Differencing 

Differencing is applied when the time series demonstrates 

non-stationarity in its mean. The process stabilizes the mean 

by subtracting the observation of the previous period from 

the current period. Differencing of order 𝑑 is defined as: 

Zt
(d)=(1− B)d Zt        (7) 

Where B is the backshift operator and d denotes the 

differencing order. 

 

F. ACF and PACF 

In SARIMA modeling, the autocorrelation function 

(ACF) helps identify the moving average (MA) components, 

while the partial autocorrelation function (PACF) assists in 
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detecting the autoregressive (AR) structure. The sample 

ACF at lag 𝑘 is computed as [5]: 

( )( )

( )
1

2

1

n k

t t kt

k n k

tt

Z Z Z Z

Z Z


−

+=

−

=

− −
=

−





      (9) 

where Zt and Zt+k are the observed values at times t and t+k, 

respectively, and Z is the sample mean. 

The PACF at lag 𝑘 is calculated using [5]: 

( )( )

( ) ( )

cov

var var

t t kt t k

kk

t t kt t k

Z Z Z Z

Z Z Z Z


++

++

 − −
 =

− −

     (10) 

 

G. SARIMA Model Parameter Estimation and Testing 

The SARIMA model parameters 𝜙, θ, Φ, and Θ are 

estimated using the Maximum Likelihood Method (MLM). 

The residuals 𝑎𝑡 assumed to follow a white noise process 

characterized by a distribution (0, 𝜎𝑎
2), the log-likelihood 

function is expressed as: 

( ) ( )
2

2 2

2

, , , ,
| , , , , ln 2

2 2

a
a a

a

Sn
a

  
   



  
  = − −   (11) 

The parameters that have been estimated, then tested for 

significance to find out whether these parameters can be 

included in the model or not.  

The hypotheses are: 

H0: The parameter has no effect (value equals zero). 
H1: The parameter is significant (value differs from zero). 

The following test statistic is applied:   

( )
pt

SE




=         (12) 

where   is the estimated parameter value and 𝑆𝐸(  ) is its 

standard error. The null hypothesis H0 is rejected if |tp|≥ 
t𝛼/2,df  or if the p-value is less than the significance level α, 

with degrees of freedom df=n−k. 
 

H. SARIMA Model Diagnostic Checking 

The diagnostic checking of the SARIMA model involves 

two essential conditions: the residuals must behave as white 

noise and follow a normal distribution [5]. White noise 

implies that the residuals are uncorrelated (i.e., non-

autocorrelated) and exhibit constant variance 

(homoskedasticity).  

 

1) Residual Normality Test 

In this study, the Kolmogorov–Smirnov (K–S) test was 

utilized to assess whether the model residuals follow a 

normal distribution. This method is appropriate for large 

samples, specifically those with more than 30 observations.  

The hypotheses are: 

H0: The residuals follow a normal distribution. 
H1: The residuals deviate from normality. 

The test statistic is:  

( ) ( )0max t n tD F S = −      (13) 

where F0 (αt) is the cumulative distribution function under 

H0 and Sn (αt) is the empirical cumulative distribution 

function. The null hypothesis is rejected if D≥D(1-α;n) or if 

the p-value is less than 𝛼. 

2) Non-Autocorrelation Test 

The Q-Ljung Box test is used to verify that residuals are 

not autocorrelated. The hypotheses are: 

H0: Residuals are not autocorrelated. 
H1: Residuals are autocorrelated. 

The test statistic is:   

( )
( )

2

1
2

K k

k
Q n n

n k


==

= +
−

      (14) 

where K is the maximum lag and 
2

k  is the sample 

autocorrelation at lag k. The null hypothesis is rejected if 

Q≥ 2

,K p q − −
or if the p-value is less than α. 

 

3) Homoskedasticity Test 

Homokedasticity means the residuals have constant 

variance. The squared residuals are tested using a similar Q-

Ljung Box statistic applied to αt
2. The hypotheses are: 

H0: Residual variance is homogeneous. 
H1: Residual variance is heterogeneous. 

The test statistic is identical to (14), but applied to 

squared residuals. The null hypothesis is rejected if 

Q≥ 2

,K p q − −
or if the p-value is less than α. 

 

I. Selection of SARIMA Models 

The best model based on the in-sample is selected based 

on the Akaike Information Criterion (AIC), computed as: 

( )
2

( ) ln 2AIC M n M= +     (15) 

where 
2

  denotes the residual variance estimated through 

maximum likelihood, M indicates the number of model 

parameters, and n represents the total number of 

observations [5]. The model with the smallest AIC value is 

considered the optimal model. 

 

J. ARIMA Representation in State Space Form 

The conventional ARIMA model can be reformulated into 

a state space representation by expressing the autoregressive 

process through state and observation equations. This 

representation provides a structured framework for 

modeling dynamic systems [8]. Based on Equations (3) and 

(4), the ARIMA model in state space form, with 

r=max(p,q+1), is defined as follows  [8]: 

State transition equation:  

1 2 1

1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

r r t

t t

    −

−

   
   
   
   = +
   
   
      

X X
       (16) 

Measurement/observation equation: 

 1 2 11t r t t   −= +Z X w                  (17) 

 

K. Kalman Filter 

The Kalman Filter is applied in the SARIMA model to 

allow time-varying parameters, thereby enhancing the 

model’s adaptability to changes in the system's dynamics 

and improving the forecasting accuracy. The filter algorithm 

comprises the following steps: 

Initialization stage 

The process begins by setting the initial estimate of the 
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state vector and the initial error covariance matrix: 

0
00 0,xP P x x= =        (18) 

 

Time Update (Prediction Step) 

This stage estimates the current state using the previous 

time step's information. The predicted state and its error 

covariance are calculated as follows:  

1t t

−

−=x Ax         (19) 

1

T

t t

−

−= +P AP A Q        (20) 

In Equation (19), t

−

x is the predicted (a priori) state vector at 

time t, A is the state transition matrix, 1t−x is the estimated 

(a posteriori) state vector from the previous time step. 

Equation (20) provides the predicted error covariance 

matrix
t

−
P , where 

1t−P  is the error covariance at the 

previous time, A⊤ denotes the transpose of matrix A, and Q 

is the covariance matrix of the process noise. 

 

Measurement Update (Correction Stage) 

The correction stage improves the prediction by 

incorporating the current measurement through a 

measurement model. The estimation error is minimized 

using the Kalman Gain matrix [9].   
1( ( ))t t

t t t

− − −= +K P H HP H R      (21) 

( )t t tt t

− −

= + −x x K z Hx      (22) 

( )t t t

−= −P I K H P         (23) 

In Equation (21), Kt refers to the Kalman Gain at time t, H 

represents the observation matrix, and R denotes the 

covariance matrix of the measurement noise. Equation (22) 

computes the updated state estimate tx , where Zt 

corresponds to the observed value at time t, and t

−

x is the 

predicted state. Finally, Equation (23) updates the error 

covariance matrix Pt, where I denotes the identity matrix. 

 

L. Model Evaluation 

In this study, MAPE (Mean Absolute Percentage Error) is 

employed to evaluate the forecasting performance of the 

model. It measures the average magnitude of prediction 

errors in percentage terms and is defined as [10]: 

1

1
100%

n tt

t
t

Y Y
MAPE

n Y=

−
=      (24) 

A lower MAPE value indicates better forecasting 

accuracy. Based on the classification proposed in the 

literature [11], forecasting accuracy can be categorized as 

follows: 

 
TABLE I 

FORECASTING ACCURACY CATEGORIES BASED ON MAPE 

MAPE Values Accuracy of Forecasting 

<10% High accuracy 

10% - 20% Good accuracy 
20% - 50% Fair accuracy 

0% Poor accuracy 

IV. RESULTS 

A. Data Exploration 

The monthly tax revenue data collected by the Sumedang 

Regency Primary Tax Service Office from January 2012 to 

July 2023 exhibit both seasonal and trending behavior. 

Recurrent peaks are typically observed in December, likely 

due to the tendency of taxpayers to settle their obligations 

before the fiscal year ends. In contrast, lower revenues tend 

to occur during the early months of the year. A temporary 

decline is also noticeable during the second half of 2019, 

which can be attributed to the economic impact of the 

COVID-19 pandemic and the accompanying mobility 

restrictions.  

Descriptive statistics of the observed tax revenue are 

summarized in Table 1. The average monthly revenue was 

approximately IDR 44.33 billion, with a median of IDR 

42.44 billion. The values range from a minimum of IDR 

11.29 billion to a third quartile of IDR 52.25 billion, 

indicating a slightly right-skewed distribution. This pattern 

reflects the presence of seasonal peaks, particularly during 

year-end periods, which justify the application of variance-

stabilizing transformations during model development. 

 
TABLE II 

SUMMARY STATISTICS OF MONTHLY TAX REVENUE (IN IDR BILLION) 

Min Median Max Mean 1st Quartile 3rd Quartile 

11.29 42.44 147.93 44.33 28.74 52.25 

 

Figure 1 displays the original time series of monthly tax 

revenue, while Figure 2 illustrates its decomposition into 

trend, seasonal, and residual components. The 

decomposition reveals strong seasonal effects and a clear 

upward trend, reinforcing the need for a modeling 

framework that can adequately capture such dynamics. 

 

 
Fig. 2. Seasonal-trend decomposition of monthly tax revenue collected by 

the Sumedang Regency Primary Tax Service Office. 

 

B. SARIMA Modeling 

This section outlines the modeling process using the 

Seasonal Autoregressive Integrated Moving Average 

(SARIMA) framework to forecast monthly tax revenue. The 

procedure includes testing for stationarity, identifying model 

structure, estimating parameters, and conducting residual 

diagnostics to ensure the model’s validity and forecasting 

suitability. 

 

1) Stationarity Checking 

To assess variance stationarity, the Box–Cox 

transformation was applied. The initial lambda (λ) value was  
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(a) 

 
(b) 

Fig. 3. Autocorrelation and partial autocorrelation plots of the stationary tax revenue series: (a) ACF (b) PACF 

 

0.1977, indicating non-stationary variance. After 

transformation, the λ value increased to 0.9937, suggesting 

that the data became variance-stationary. 

Mean stationarity was evaluated using the ADF test. The 

non-seasonal component returned a p-value of 0.001473, 

which is below the 0.05 threshold, confirming that the mean 

is stationary. However, the seasonal component produced a 

p-value of 0.99, indicating the need for seasonal 

differencing.  

Following the application of seasonal differencing (D=1), 

the ADF test conducted at lag 12 yielded a p-value of 

0.0363, suggesting that the seasonal component had become 

stationary. To account for remaining trend elements, a first-

order non-seasonal differencing (d=1) was also applied. The 

final ADF test, evaluated at both lag 1 and lag 12, returned a 

p-value of 0.01, confirming that the time series is fully 

stationary in both the seasonal and non-seasonal dimensions. 

 

1) Model Identification 

To determine the appropriate SARIMA model order, the 

ACF and PACF plots of the stationary series were analyzed. 

The PACF, shown in Figure 3(b), displays a cut-off at lag 4, 

indicating the presence of non-seasonal autoregressive 

components up to AR(4). Spikes at lags 12 and 24 also 

suggest possible seasonal AR terms, including SAR(1) and 

SAR(2). 

Meanwhile, the ACF plot in Figure 3(a) exhibits a cut-off 

at lag 2, which implies the inclusion of non-seasonal moving 

average components such as MA(1) or MA(2). A distinct 

spike at lag 12 indicates the need for a seasonal MA term, 

potentially SMA(1). 

 

2) Estimation and Diagnostics  

Based on the identified differencing orders (d=1 dan 

D=1) and a seasonal period of 12, a total of 62 SARIMA 

model specifications were estimated. From these, six models 

were found to have statistically significant parameters based 

on standard t-tests. These candidate models include various 

combinations of non-seasonal AR and MA terms, as well as 

seasonal AR and MA components. 

To determine the adequacy of each candidate model, three 

diagnostic tests were conducted: the Kolmogorov–Smirnov 

test for residual normality, the Q–Ljung Box test for 

autocorrelation, and the Breusch–Pagan test for 

homoskedasticity. A model was considered statistically 

acceptable if it passed all three diagnostic checks. The 

complete parameter estimates and their significance levels 

are summarized in Table III, while the diagnostic test results 

are reported in Table IV. 

 
TABLE III 

PARAMETER ESTIMATES AND SIGNIFICANCE TESTS FOR SELECTED 

SARIMA MODELS 

Model Parameter Estimate p-value 

ARIMA(1,1,0)(0,1,1)12 𝜙1 -0.4375 1×10-6 

Θ1 -0.7418 2.25×10-8 

ARIMA(2,1,0)(0,1,1)12 𝜙1 -0.6482 7.34×10-13 

𝜙2 -0.4488 6.43×10-7 

Θ1 -0.6735 7.78×10-10 

ARIMA(1,1,0)(1,1,0)12 𝜙1 -0.4373 9.57e-7 

Φ1 -0.4940 1.74×10-9 

ARIMA(2,1,0)(1,1,0)12 𝜙1 -0.6481 2.08×10-13 

𝜙2 -0.4701 8.6×10-8 

Φ1 -0.5185 2.03×10-10 

ARIMA(0,1,1)(0,1,1)12 θ1 -0.8118 2.08×10-36 

Θ1 -0.5944 3.24×10-7 

ARIMA(0,1,1)(1,1,0)12 θ1 -0.7999 9.95×10-38 

Φ1 -0.4552 1.28×10-7 

 
TABLE IV 

SUMMARY OF DIAGNOSTIC TESTS FOR SARIMA CANDIDATE MODELS 

Model 

Residual 

Normality 

(p-value) 

Residual Non-

Autocorrelation 

(p-value) 

 Residual 

Homoskedasticity 

(p-value) 

ARIMA(1,1,0)(0,1,1)12 0.7773 0.0365 1.006×10-5 

ARIMA(2,1,0)(0,1,1)12 0.0297 0.8601 0.109 
ARIMA(1,1,0)(1,1,0)12 0.3616 0.0243 0.0004 

ARIMA(2,1,0)(1,1,0)12 0.5584 0.7046 0.5675 

ARIMA(0,1,1)(0,1,1)12 0.5584 0.9853 0.1789 
ARIMA(0,1,1)(1,1,0)12      0.162 0.8597 0.6706 
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The Kolmogorov–Smirnov test indicated that all models 

satisfied the residual normality assumption, with the 

exception of ARIMA(2,1,0)(1,1,0)12. The Q–Ljung Box test 

revealed residual independence for all models except 

ARIMA(0,1,1)(0,1,1)12 and ARIMA(1,1,0)(1,1,0)12. 

Furthermore, the homoskedasticity test indicated that only 

ARIMA(1,1,0)(0,1,1)12 and ARIMA(1,1,0)(1,1,0)12 failed to 

meet the constant variance assumption.  

 

3) SARIMA Model Selection 

Based on the diagnostic tests above, three models were 

deemed statistically appropriate for forecasting: 

ARIMA(2,1,0)(1,1,0)12, ARIMA(0,1,1)(0,1,1)12, and 

ARIMA(0,1,1)(1,1,0)12. To determine the best-fitting model, 

Akaike Information Criterion (AIC) values were compared, 

as presented in Table V. 

 
TABLE V 

AIC VALUES OF SELECTED SARIMA MODELS 

Model AIC Value 

ARIMA(2,1,0)(1,1,0)12 160.7793 

ARIMA(0,1,1)(0,1,1)12 154.6360 
ARIMA(0,1,1)(1,1,0)12 157.4833 

 

Among the three models, ARIMA(0,1,1)(0,1,1)12 yielded 

the lowest AIC value and was therefore selected as the most 

suitable model for forecasting monthly tax revenue. 

 

 
Fig. 4. Residual series of the selected SARIMA(0,1,1)(0,1,1)12 model from 
January 2012 to July 2023. 

 

To further validate the adequacy of this model, the 

residual series was plotted over the training period (see 

Figure 4). The residuals oscillate around zero without any 

discernible trend or seasonal structure, suggesting that the 

model effectively captures both short- and long-term 

dynamics in the data. Although minor fluctuations occur, 

particularly during mid-2016 and late 2019, the variance 

remains relatively stable throughout the series. These visual 

patterns are consistent with the diagnostic test results 

reported earlier, supporting the suitability of the selected 

SARIMA model for forecasting purposes. 

The selected SARIMA model can be expressed by the 

following equations: 

(1−B)(1−B12)Yt = θ1(B )Θ1(B 12) t 

(1−B−B12+B13) Yt = (1− θ1B )(1− Θ1B 12) t 

Yt −Yt−1−Yt−12−Yt−13 = t− θ1 t−1− Θ1 t−12− Θ1 t−13 

Yt = Yt−1+Yt−12+Yt−13 + t− θ1 t−1− Θ1 t−12− Θ1 t−13 (25) 

Based on the parameter estimates presented in Table III, the 

final forecasting equation becomes: 

Yt = Yt−1+Yt−12+Yt−13 + t− 0.8181 t−1− 

0.5944 t−12− 0.4825 t−13  
(26) 

 

C. SARIMA State Space 

The optimal SARIMA model selected in the previous 

section is reformulated into its state space representation 

based on Equations (17) and (18). This formulation consists 

of a system of equations describing the transition of latent 

states over time and their relation to the observed data. The 

state space representation comprises the following 

equations: 

Transition Equation: 

Xt = AXt−1+vt 

 

 

 

 

 

 

 

 

Xt =                                                       Xt−1+ 
 
 
 
 
 
 

 

(27) 

Observation Equation: 

Zt = HXt+ wt 

Zt = [ 1 θ1 0 0 0 0 0 0 0 0 0 0 Θ1 ] Xt+ wt (28) 

This state space structure forms the basis for recursive 

forecasting using the Kalman filter. Before parameter 

estimation, the model requires initialization, including the 

specification of the initial state vector and the initial error 

covariance matrix. In this study, the estimation process 

focuses on the moving average parameters from the 

ARIMA(0,1,1)(0,1,1)12 model:  

MA(1) lag 1 parameter : θ1 = −0.812 

SMA(1) lag 12 parameter : Θ1= −0.737 

 

D. Model Performance Evaluation and Comparative 

Analysis 

The predictive performance of both the classical 

SARIMA model and its state space reformulation was 

evaluated on the test dataset. Several commonly used 

accuracy metrics were calculated and are summarized in 

Table VI. 

 
TABLE VI 

FORECAST ACCURACY METRICS ON TEST DATA 

Metric SARIMA SARIMA State Space 

MAPE 27.49% 27.27% 

RMSE 18.020 16.216 
MAE 13.599 12.853 

Theil’s U 0.6697 0.6368 
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The SARIMA State Space model demonstrates superior 

performance across most error metrics. In particular, it 

yields lower RMSE, MAE, and Theil’s U values, indicating 

improved accuracy and a better ability to track data 

fluctuations. Meanwhile, the MAPE values for both models 

are nearly identical, suggesting that both models exhibit 

comparable relative forecasting error in percentage terms. 

A visual comparison of the predicted values and actual 

observations is provided in Figure 5.  

 

 
(a) 

 
(b) 

Fig. 5. Forecast Comparison on the Test Dataset: (a) SARIMA model (b) 
SARIMA State Space model. 

 

Figure 5 shows that both models successfully replicate the 

overall patterns in the observed data. While the differences 

between the two forecasts are not pronounced, the SARIMA 

State Space model exhibits a marginally better fit, 

particularly in capturing short-term variations. This result 

aligns with the quantitative evaluation, confirming the 

advantage of incorporating the state space approach in 

forecasting. 

In addition to point forecast comparisons, the absolute 

forecast errors of both models were plotted to assess their 

temporal performance more closely. Figure 6 displays the 

evolution of one-step-ahead absolute forecast errors for each 

model during the test period from July 2021 to July 2023. 

The SARIMA State Space model generally exhibits 

smaller forecast errors across most periods, particularly 

during high-variance months such as December 2022 and 

January 2023. This indicates better adaptability in capturing 

sudden fluctuations in tax revenue, likely due to its recursive 

filtering structure. 

 
Fig. 6. Absolute forecast errors of the SARIMA and SARIMA State Space 
models over the test period (July 2021–July 2023). 

 

To statistically assess the difference in forecast accuracy, 

a Diebold–Mariano (DM) test was conducted using the 

squared error loss function. The test yielded a statistic of 

1.5783 with a p-value of 0.1282, indicating that the 

difference in predictive performance between the two 

models is not statistically significant at the 5% level. 

Nonetheless, the visual patterns and consistent reduction in 

error magnitude observed in Figure 6 suggest practical 

advantages offered by the state space formulation. 

 

E. Forecasting 

Based on the model evaluation in the previous section, the 

SARIMA State Space model was selected as the final 

forecasting model for monthly tax revenue at the Sumedang 

Regency Primary Tax Service Office. The forecasts cover 

the period from August 2023 to December 2025. The results 

are summarized in Table VII, with values expressed in 

billion Rupiah. 

 
TABLE VII 

FORECASTED MONTHLY TAX REVENUE FOR THE SUMEDANG REGENCY 

PRIMARY TAX SERVICE OFFICE (IN IDR BILLION) 

Month 2023 2024 2025 

January - 40.36461 42.28570 

February - 35.02723 36.74261 

March - 40.92048 42.86267 

April - 53.48575 55.89110 

May - 49.11951 51.36668 

June - 47.03937 49.21021 

July - 48.80438 51.04003 

August 44.47180 44.47180 46.54746 

September 46.48206 46.48206 48.63233 

October 50.48502 50.48502 52.78196 

November 57.17818 59.71529 62.34193 

December 106.91922 111.10273 115.41656 

 

Figure 7 presents a time series plot of the historical and 

forecasted monthly revenue, including the 95% confidence 

intervals. The projected pattern indicates recurring seasonal 

peaks in December, in line with previous observations. 

Additionally, the overall trajectory reflects a consistent 

increasing trend throughout the forecast horizon. 

This forecasted growth is in line with the recent initiatives 

introduced by the Sumedang Regency Primary Tax Service 

Office, such as taxpayer education, compliance monitoring, 

and administrative restructuring. The anticipated operational 
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improvements, including the construction of a new office 

facility, are expected to contribute positively to tax revenue 

performance in the upcoming years. 

 

 
Fig. 7. Forecasted Tax Revenue for for the period August 2023 to 

December 2025. 

 

V. DISCUSSION 

The empirical findings of this study offer important 

implications for understanding and forecasting regional tax 

revenue, particularly within the context of the Regency 

Primary Tax Service Office. The identification of 

SARIMA(0,1,1)(0,1,1)12 as the optimal baseline model 

confirms the strong presence of seasonal patterns and non-

stationary trends, which are typical characteristics in fiscal 

time series data. This finding is consistent with previous 

studies that observed seasonal peaks in tax revenue during 

the third and fourth quarters, coinciding with periods of 

heightened economic activity such as increased 

consumption and investment [12]. 

Transforming the SARIMA model into a state space 

framework not only preserves its temporal structure but also 

enhances its flexibility for handling latent components and 

enabling recursive estimation. While the reduction in MAPE 

from 27.49% to 27.27% may appear limited, the 

improvements in RMSE, MAE, and Theil’s U demonstrate 

the practical advantage of the state space model in 

generating more stable forecasts. These gains are especially 

relevant for fiscal data, which often exhibit reporting lags, 

administrative noise, and seasonal disbursement schedules. 

State space models have been effectively utilized in 

macroeconomic forecasting to handle variables affected by 

policy changes and administrative irregularities [13]. 

In contrast to traditional models used in earlier literature, 

such as exponential smoothing or basic ARIMA models, the 

SARIMA State Space model allows for a more robust 

decomposition of signal and noise components. It also 

supports extensions such as intervention modeling, time-

varying parameters, or multivariate specifications. Such 

adaptability is crucial for fiscal forecasting under 

macroeconomic uncertainty, as multivariate state space 

models have been shown to better capture complex 

interactions among economic variables [14]. 

However, several limitations should be acknowledged. 

The dataset used spans only eleven years and pertains to a 

single local tax office, limiting the generalizability of the 

findings. Moreover, the assumption of normally distributed 

and linearly related residuals may not fully reflect real-

world tax collection dynamics, especially during periods of 

disruption or regulatory transition. In such cases, the 

application of non-Gaussian models has been suggested to 

better handle volatility and irregular patterns in fiscal data 

[15]. 

Despite these limitations, the results illustrate the value of 

SARIMA State Space models as analytical tools for regional 

fiscal management. Future research could explore spatial 

hierarchies, cross-sectional dependencies, or the integration 

of real-time compliance indicators to extend the model's 

applicability. 

 

VI. CONCLUSION 

This study confirms that incorporating a SARIMA model 

within a state space framework enhances the accuracy and 

robustness of regional tax revenue forecasting. The model 

effectively captures the observed seasonality, trend, and 

irregular variation in the monthly tax revenue data, offering 

a statistically coherent and operationally feasible approach 

for local fiscal planning. 

Although the improvement in MAPE is relatively minor, 

the consistent reductions in RMSE, MAE, and Theil’s U 

indicate that the state space specification provides more 

stable and reliable forecasts. This is particularly important 

for local governments that rely on timely and accurate 

revenue projections to design effective budgetary policies.  

In addition to its forecasting capability, the state space 

approach provides a flexible foundation for incorporating 

external covariates and policy interventions, making it a 

promising avenue for future research and a valuable tool for 

public financial management. Therefore, this study not only 

contributes to the growing literature on time series modeling 

in the public sector but also underscores the importance of 

methodological innovation in achieving more effective 

revenue governance. 
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