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Abstract—The use of entomopathogenic nematodes in agri-
culture is not only an environmentally friendly option, but
also a sustainable pest management strategy that can help
promote the development of ecologically friendly agriculture.
The mathematical model of the biological control factors of
insect pathogenic nematodes with environmental tolerance of
pests is proposed and studied in this paper. Under certain
assumptions, the existence and types of possible equilibria are
discussed. In particular, it is found that when the system has
a unique positive equilibrium, it is an interesting degenerate
point, which is degenerate cusp with codimension 1 or the
saddle-node depending on the value of parameters. The saddle-
node bifurcation is further explored by use of the Sotomayor’s
theorem. The existence of a limit cycle is proved when the
system has two equilibria. Finally, we propose the optimal
control. While reducing the number of pests, the use of
pesticides should be minimized and the total cost is the lowest.

Index Terms—optimal control, limit cycle, bifurcation anal-
ysis, microbial insecticide model.

I. INTRODUCTION

CROP pest control is an important technical measure for
high and stable production. For a long time, chemical

pesticides have been used as an effective means of controlling
pests and ensuring crop yields due to their high efficiency
and rapid killing effects. However, with the widespread use
of chemical pesticides, a series of potential dangers and
disadvantages, such as increased pesticide residues, soil and
water pollution, accelerated pest resistance development and
resurgence of pests, have become increasingly apparent. In
order to meet the growing demand of human beings for a
good ecological environment and food safety, it is imperative
to develop new pest control measures.

Developing and applying biological control technology
can not only protect natural enemies but also reduce the
selective pressure of pesticides, build effective ways for
modern agricultural development and ecological governance,
and promote sustainable and high-quality agricultural de-
velopment. Deputy Director of the Sichuan Academy of
Agricultural Sciences, Professor Ren Guangjun said that
insect pathogenic nematodes are specialized parasitic natu-
ral enemies of insects, and are microbial insecticides with
the characteristics of both natural enemies and pathogenic
microorganisms. They are an important factor in insect
pest biological control and can efficiently control harmful
organisms while being safe for non-target organisms and
the environment. Therefore, they have great potential for
sustainable pest control.
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The entomopathogenic nematode and their symbiotic bac-
teria are a golden pair that neither can do without the other.
The two good brothers support and cooperate with each other
to explore the world and defeat enemies. The symbiotic
bacteria cannot survive alone in the soil but exist in the
intestines of the nematode. The nematode can protect the
symbiotic bacteria from the adverse effects of the external
environment. As a carrier, the nematode carries the symbiotic
bacteria into the target insect and then releases them into
the blood cavity of the host insect. During this process,
the nematode also needs to protect the symbiotic bacteria
from being recognized by the host’s immune response. So,
under the protection of its good brother, the symbiotic
bacteria began to show their capabilities. They multiplied
in large numbers in the insect’s blood cavity and produced
antibacterial substances and toxins, causing the insect to die
from sepsis. Symbiotic bacteria provide nutrient sources and
a favorable environment for the growth, development and
reproduction of nematodes by secreting various extracellular
enzymes and antibiotics. Thus, after several generations of
reproduction, the new nematode-symbiotic bacteria complex
emerges in a free state from the carcass of the host insect,
once again searching for a new insect host and embarking
on a new journey.

As the use of insect pathogenic nematodes becomes more
widespread, some studies suggest that nematodes play a
role in regulating insect populations and suppressing pests
in nature, and their commercial importance is increasing,
second only to bacteria. The biggest difference between
bacteria and nematodes is that bacteria cannot move, but
nematodes can. Famous bacterial insect-killing bacteria such
as Bacillus thuringiensis cannot move, so they can only kill
insects in the sprayed area, and insects outside the sprayed
area cannot be killed; nematodes can move, so they can
actively attack their hosts and can kill insects in a wider
range.

Based on the advantages of insect pathogenic nematodes
in biological pest control, many scholars have conducted ex-
tensive research and discussion on their control mechanisms
and reproduction in recent years [1]-[13]. We studied insect
pathogenic nematodes through mathematical modeling based
on their feeding characteristics, and obtained certain research
results [14]-[17]. In this paper, we consider the case where
insects have an environmental carrying capacity and establish
the following mathematical model

dx

dt
= rx

(
1− x

k

)
− αxI,

dI

dt
= αxI2 − βI,

(1)

where x(t) and I(t) denote the densities of pests and the
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entomopathogenic nematode at time t, respectively; r > 0
and k > 0 describe the intrinsic growth rate and the carrying
capacity of pests, respectively; α > 0 is the attachment rate
of the entomopathogenic nematode, β > 0 is the death rate
of the entomopathogenic nematode.

II. ANALYSIS OF EQUILIBRIA OF SYSTEM (1)
According to the practical significance of system (1),

we only consider region x ≥ 0, I ≥ 0. It is easy to
see that system (1) takes the straight line x = 0 (I-
axis) and I =

r

α

(
1− x

k

)
as the vertical isoclines and the

straight line I = 0 (x-axis) and a hyperbola I =
β

α
· 1
x

as the horizontal isoclines. Among them, the hyperbola

y =
β

α
· 1
x

has the straight line I-axis and x-axis as the
straight and horizontal asymptotes, respectively. And the
right branch of the hyperbola intersects with the straight line
I =

r

α

(
1− x

k

)
at one point, two points or not at all within

the first quadrant, entirely depending on the range of values
for r, β, k. This leads to the situation that in system (1),
except for the coordinate origin O(0, 0) and the point A(k, 0)
as the equilibria, one, two positive equilibria or no positive
equilibrium may occur as the values of r, β, k change.

By calculating the positive equilibrium of the system (1),
it is obtained the following theorem.

Theorem 2.1 Let ∆ = r
(
r − 4β

k

)
, then

(i) When ∆ > 0, i.e. r > 4β
k , system (1) has two positive

equilibria Ni (xi, Ii) (i = 1, 2):

x1,2 =
k

2

(
1±

√
1− 4β

kr

)
and

I1,2 =
r

2α

(
1∓

√
1− 4β

kr

)
,

where xi is the two positive real roots of the algebraic
quadratic equation rx2 − krx+ βk = 0.

(ii) When ∆ = 0, i.e. r = 4β
k , system (1) has only one

positive equilibrium M
(

k
2 ,

2β
kα

)
.

(iii) There is no positive equilibrium for system (1) for all
other values of r, β, k except (i) and (ii).

Regarding the structure of the type of equilibrium of
system (1) in the first quadrant, it is easy to determine that the
coordinate origin O is a saddle and the boundary equilibrium
A is a stable node. The phase protrait is given in Fig.1.

Theorem 2.2 When ∆ = 0 (i.e., r = 4β
k ) and k ̸= 2, the

positive equilibrium M
(

k
2 ,

2β
kα

)
of system (1) is a saddle-

node. When k = 2, M is a degenerate cusp.
Proof Due to

q =

∣∣∣∣∣∣∣∣∣
−2β

k
−kα

2

4β2

k2α
β

∣∣∣∣∣∣∣∣∣ = 0, p = −
(
β − 2β

k

)
, (2)

it is easy to find the characteristic roots as λ1 = 0, λ2 =
β − 2β

k .

When k ̸= 2, it is obtained that λ1 = 0, λ2 = β− 2β
k ̸= 0.

Therefore, system (1) belongs to the case studied by Theorem
4.10 in the literature [18].
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Fig. 1: Two boundary equilibria: O is a saddle and A is a
stable node. The parameters are taken as r = 3, k = 4, α = 1
and β = 4, respectively.

Making the substitution x̄ = x − k
2 , Ī = I − 2β

kα reduces
the system (1) to:

dx̄

dt
= −2β

k
x̄− kα

2
Ī − r

k
x̄2 − αx̄Ī,

dĪ

dt
=

4β2

k2α
x̄+ βĪ +

kα

2
Ī2 +

4β

k
x̄Ī + αx̄Ī2.

(3)

It is not difficult to find non-singular linear transformations
x̄ = −k2α

4β
ξ − kα

2β
η,

Ī = ξ + η,

(4)

and the time transformation dτ = β(k−2)
k dt, reducing (3) to

the form required by Theorem 4.10.



dξ

dτ
= k2α

β(k−2)2
ξ2 + k(6−k)α

β(k−2)2
ξη − (k2−2k−4)α

β(k−2)2
η2

+ k3α2

2β2(k−2)2
ξ3 + (k+1)k2α2

β2(k−2)2
ξ2η + (k+4)k2α2

2β2(k−2)2
ξη2

+ k2α2

β2(k−2)η
3 ∆
= Φ(ξ, η) ,

dη

dτ
= η − k3α

2β(k−2)2
ξ2 − kα(k+2)

β(k−2)2
ξη

+
(k3−4k2+4k−8)α

2β(k−2)2
η2 − k4α2

4β2(k−2)2
ξ3

−k3α2(k+1)

2β2(k−2)2
ξ2η − k3α2(k+4)

4β2(k−2)2
ξη2

− k3α2

2β2(k−2)2
∆
= η +Ψ(ξ, η) .

(5)
Solve for η = η (ξ) from the equation η +Ψ(ξ, η) = 0 and
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substitute into Φ(ξ, η) to get

Φ(ξ, η (ξ)) =
k2α

β (k − 2)
2 ξ

2 + o
(
ξ3
)
.

By comparison with Theorem 4.10 in literature [18], it can
be known that m = 2 and g = k2α

β(k−2)2
> 0(k ̸= 2).

Therefore, the point (0, 0) of system (3) is a saddle-node,
and thus M

(
k
2 ,

2β
kα

)
is known to be a saddle-node (here

k ̸= 2). The phase portrait is given in Fig.2.
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Fig. 2: Two boundary equilibria and a positive equilibrium:
O is a saddle, A is a stable node and M is a saddle-node.
The parameters are taken as r = 4, k = 4, α = 1 and β = 4,
respectively.

When k = 2, we have λ1 = λ2 = 0. System (1) belongs
to the case studied by Theorem 4.1 in the literature [19].

Let x̂ = x− 1, Î = I − β
α , System (1) is transformed into

(still noting x, I in terms of x̂, Î):
dx

dt
= −βx− αI − r

2
x2 − αxI,

dI

dt
=

β2

α
x+ βI + αI2 + 2βxI + αxI2.

(6)

Then let x1 = x, I1 = −βx−αI , the system (6) reduces to:
dx1

dt
= I1 +

(
β − r

2

)
x2
1 + x1I1,

dI1
dt

=
βr

2
x2
1 − I21 − βx1I1 − β2x3

1 − 2βx2
1I1 − x1I

2
1 .

(7)
When k = 2, ∆ = r2−2βr = 0, that is β =

r

2
. Substituting

into the above equation, we have
dx1

dt
= I1 + x1I1,

dI1
dt

= β2x2
1 − I21 − βx1I1 − β2x3

1 − 2βx2
1I1 − x1I

2
1 .

(8)

Making the substitution x2 = x1, I2 = I1 + x1I2 changes
(8) to:

dx2

dt
= I2,

dI2
dt

= β2x2
2

(
1− x2

2

)
− βx2I2 (1 + 2x2)−

x2

1 + x2
I22

∆
= Q2 (x2, I2) ,

(9)
where h (x2) = −x2

2, g (x2) = 2x2, f (x2, I2) = − x2

1 + x2
are analytic in the first quadrant, h(0) = g(0) = 0, r = 2,
ar = β2 ̸= 0 and n = 1 are natural number. From Theorem
4.1 of Chapter 7 of the literature [19], it follows that (0, 0)
of system (9) is a dual singularity. Also since bn = −β ̸= 0,
n = m = 1, then (0, 0) of (9) is a degenerate singularity.
Therefore, the positive equilibrium M

(
1, β

α

)
of system (1)

is a degenerate cusp when ∆ = 0 (i.e. r = 4β
k ) and k = 2.

The phase portrait is given in Fig.3.
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Fig. 3: Two boundary equilibria and a positive equilibrium:
O is a saddle, A is a stable node and M is a degenerate
cusp. The parameters are taken as r = 5, k = 2, α = 1 and
β = 2.5, respectively.

Theorem 2.3 When ∆ > 0 (i.e., r > 4β
k ) and k ≥ 2, the

two positive equilibria N1 (x1, I1) of system (1) is a saddle
and N2 (x2, I2) is an unstable focus or node.

Proof Because at the equilibrium Ni(xi, Ii)(i = 1, 2), the
jacobian matrix of system (1) is

J (Ni) =

 r
(
1− xi

k

)
− r

k
xi − αIi −αxi

αI2i 2αxiIi − β

 .

(10)

Since detJ (N1) = −β

√
r
(
r − 4β

k

)
< 0, N1 is a sad-

dle. DetJ (N2) = β

√
r
(
r − 4β

k

)
> 0 and Tr (N2) =

x2
(k−2)r+kr

√
1− 4β

k

2k > 0(k ≥ 2), so N2 is an unstable focus
or node. The phase portrait is given in Fig.4.
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Fig. 4: Two boundary equilibria and two positive equilibria:
O is a saddle, A is a stable node, N1 is a saddle and N2

is an unstable focus or node. The parameters are taken as
r = 5, k = 4, α = 1 and β = 4, respectively.

III. THE EXISTENCE OF LIMIT CYCLES

Theorem 3.1 When r > 4β
k and k ̸= 2, system (1) has

one limit cycle around the positive equilibrium N2 (x2, I2).
Proof Under the condition of the theorem, the positive

equilibrium N2 (x2, I2) is an unstable focus or node, and
N1 (x1, I1) is a saddle. Construct a bounded region contain-
ing N2 (x2, I2) , whose boundary is bounded by N1DCBN1,
as shown in Figure 5. Assume that L1 and L2 are the
two dividing lines of saddle N1 (x1, I1). Depending on the
direction of the vector field of system (1), L1 must be above
the isocline r(1− x

k
) − αI = 0 and L2 must be below the

isocline αxI − β = 0.
Examine the line L3 : I+ bx− c = 0, where b > 0, c > 0,

there is
dL3

dt
|L3=0 = αb2x3 + (−2bcα− br

k
+ b2α)x2

+(αc2 + βb+ br − bcα)x− βc.

Let

G(x) = αb2x3 + (−2bcα− br

k
+ b2α)x2

+(αc2 + βb+ br − bcα)x− βc.

When x = 0, G(x) = −βc < 0, x → +∞, G(x) → +∞,
x → −∞, G(x) → −∞, the cubic curve G(x) = 0 may
have one, two or three positive roots. If G(x) = 0 has only
one positive root, then let it be x̄. If there are two or three
positive roots, then let the smallest of them be x̄. Let 0 <
x′ < min{x̄, x2}, then f(x′) < 0, that is dL3

dt |L3=0 < 0.
Point D is the intersection of the line L3 and L1, and point
C is the intersection of L3 and the curve αxI − β = 0.

For the line L4 : I − I ′ = 0, as t increases, we have

dL4

dt
|L4=0 = I ′(αxI ′ − β) < 0(x < x′).

Point B is the intersection point of the negative direction of
L2 and L4.

It can be seen from this that on BC and CD, when t
increases, the direction in which the trajectory of system (1)
passes is as shown in Fig.5, and BN1 and N1D are also
trajectories. That is to say, on the outer boundary line of the
circular domain, the trajectory of system (1) all point from
the outside to the inside towards the positive equilibrium
N2 (x2, I2) when t increases or part of the outer boundary
line is trajectory. So, by Poincare-Bendixson theorem [20],
it is known that there is at least one limit cycle around
N2 (x2, I2).

Fig. 5: Bounded domain.

IV. BIFURCATION

Theorem 4.1 Suppose that ∆ = 0 and k ̸= 2, then
the system (1) undergoes the saddle-node bifurcation at the
threhold r = r∗, here r∗ = 4β

k .
Proof We will verify the transversality condition for the

occurrence of saddle-node bifurcation at r = r∗ by use of
Sotomayor’s theorem [21]. Since det(JM ) = λ1λ2 = 0,
JM has one zero eigenvalue, that is λ1. Let Q1 and Q2

be eigenvectors corresponding to the eigenvalue λ1 for the
matrices JM and JT

M , respectively. We can obtain

Q1 =

(
Q11

Q12

)
=

(
1

− 4β

kα

)
,

Q2 =

(
Q21

Q22

)
=

 1
kα

2β

 .

In addition, we get

Fr(M, r∗) =

 x− x2

k
0


(M,r∗)

=

(
k

4
0

)
,

D2F (M, r∗)(Q1, Q1) =
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
∂2F1

∂x2
Q2

11 + 2
∂2F1

∂x∂I
Q11Q12 +

∂2F1

∂I2
Q2

12

∂2F2

∂x2
Q2

11 + 2
∂2F2

∂x∂I
Q11Q12 +

∂2F2

∂I2
Q2

12


(M,r∗)

=

 0

16β2(k − 2)

k2α

 ,

where F1(x, I) = rx
(
1− x

k

)
−αxI, F2(x, I) = αxI2−βI .

We can calculate that Q1 and Q2 gratify the transversality
conditions

QT
2 Fr(M, r∗) =

k

4
̸= 0,

QT
2 [D

2F (M, r∗)(Q1, Q1)] =
8β(k − 2)

k
̸= 0,

in the case of saddle-node bifurcation at M when r = r∗.
Accordingly, when the parameter r change, the equilibrium
of system (1) changes from one to two.

V. OPTIMAL CONTROL

In this section, we present the optimal control problem,
which consists of exploring how to actually spray pesticides
over a certain period of time to reduce the number of pests
at the lowest intervention cost. On the basis of system
(1), we consider adding time-dependent interventions, that
is, spraying pesticides u1(t). Spraying pesticides will kill
pests, thereby reducing the number of pests. Then system
(1) become

dx

dt
= rx

(
1− x

k

)
− αxI − u1(t)x,

dI

dt
= αxI2 − βI,

(11)

where u1 ∈ Ω is the control strategy variable and is a
bounded Lebesgue production function, where the set Ω
satisfies

Ω = {u1|0 ≤ u1 ≤ 1, t ∈ [0, T ]} ,

Our goal is to reduce the number of pests while minimiz-
ing the use of pesticides, which is necessary to reduce the
opportunities for further pest development and minimize the
overall control costs. The objective function under consider-
ation is:

Φ =

∫ T

0

[
ε1x+ ε2I +

1

2
τ1u

2
1

]
dt (12)

where εi(i = 1; 2) are the weight constants of the number of
pests and parasites. τ1 is the relative cost of u1 interventions.
We represent the integrand Λ = ε1x + ε2I + 1

2τ1u
2
1 to find

the optimal control function u∗ such that

Φ(u∗) = minΦ(u), u ∈ Ω.

The model (11) is rewritten as:

ξt =

[
ẋ

İ

]
= N(t, ξ, u) =

[
rx
(
1− x

k

)
− αxI − u1x

αxI2 − βI

]
(13)

Theorem 5.1 For a given initial value and objective
function Φ of the control system (11), there exists an optimal
control u∗ ∈ Ω such that Φ(u∗) = minΦ(u).

Proof According to the definition of Ω, the control set Ω
and the corresponding state variables are non-empty, and Ω
is convex closed.

Let l ∈ (0, 1) and d, v ∈ Ω, we have

Λ(t, ξ(t), (1− l)d+ lv)− (1− l)Λ(t, ξ(t), d)

−lΛ(t, ξ(t), v)

=
τi
2
[(1− l)2d2 + l2v2 + 2l(1− l)dv]

−τi
2
(1− l)d2−τi

2
lv2

=
τi
2
(l2 − l)(d− v)2 < 0,

(14)

which implies Λ is convex.
Then, we have

|N(ξ1)−N(ξ2)|

= |rx1(1−
x1

k
)− αx1I1 − u1x1 − rx2(1−

x2

k
)

+αx2I2 + u1x2 + αx1I
2
1 − βI1 − αx2I

2
2 + βI2|

≤ (r + u1)|x2 − x1|+ β|I2 − I1|.

Let v = min(r + u1, β), we obtain

|N(ξ1)−N(ξ2)| ≤ (r + u1) |x2 − x1|+ β |I2 − I1|

≤ v (|x2 − x1|+ |I2 − I1|) .

Thus, the right-hand side of the proposed model is bound-
ed by a linear function in control variables and the state.

Finally, we have

ε1x+ ε2I+
1

2
τ1u

2
1 ≥ 1

2
τ1u

2
1 ≥ h1|u|ρ − h2,

where h1 =
τ1
2
, ρ = 2, h2 > 0.

Theorem 5.1 can be proved from the above discussion.
In the following, we will use Pontryagin’s Maximum

Principle to formulate the Hamiltonian function:

H(t, ξ, λ, u) = ε1x+ ε2I+
1

2
τ1u

2
1 +

2∑
j=1

λjNj.

There exists a non-trivial vector function λ = (λ1, λ2)
satisfying the following equalities:

dξ

dt
=

∂H(t, ξ, λ, u)

∂λ
, 0 =

∂H(t, ξ, λ, u)

∂u
,

dλ

dt
= −∂H(t, ξ, λ, u)

∂ξ
.

Theorem 5.2 Suppose two optimal control u1 and (x∗, I∗)
are optimal state solutions. There exists adjoint variables λ1

and λ2 satisfying:
dλ1

dt
= −ε1 − λ1

(
r − 2r

k
x− αI − u1

)
− λ2αI

2,

dλ2

dt
= −ε2 − λ2αx− λ2 (2αxI − β) ,

(15)
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Fig. 6: The mechanisms of bacterial resistance.

and the terminal conditions λ1(T ) = 0, λ2(T ) = 0. The
optimal control can be obtained by calculating:

u∗
1 (t) = max

{
0,min

{
λ1x

τ1
, 1

}}
.

VI. CONCLUSION

In summary, the ecological significance of the system can
be explained. When r > 4β

k and k ̸= 2, the system (1) has
one limit cycle around the positive equilibrium N2 (x2, I2).
If the limit cycle is stable, all trajectory in the region tend
to the stable cycle and achieve dynamic balance. If the limit
cycle is unstable or the economic threshold is lower than
the equilibrium region, we implement optimal control. While
reducing the number of pests, the amount of pesticides used
is minimized to minimize the total cost. In order to analyze
the influence of the control strategy u1 on pests and explore
the effectiveness of the control strategy, we use the forward
backward iterative algorithm to simulate the optimal control
problem. The results of simulations without any control
measures show a gradual increase in the number of pests.
However, after the addition of insecticide, the number of
pests dropped dramatically, as shown in Fig.6.
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[2] H. Erdoğan et al., “Precision application of the entomopathogenic
nematode Heterorhabditis bacteriophora as a biological control agent
through the Nemabot,” Crop Protection, vol. 174, no. 12, pp. 106429,
Sep. 2023. DOI:10.1016/j.cropro.2023.106429.

[3] E. Tarasco et al., “Entomopathogenic nematodes and their symbiotic
bacteria: from genes to field uses,” Frontiers in Insect Science, vol. 3,
pp. 1195254, Aug. 2023. DOI:10.3389/finsc.2023.1195254.

[4] S. Wu et al., “Novel formulations improve the environmental tolerance
of entomopathogenic nematodes,” Biological Control, vol. 186, no. 1,
pp. 105329, Aug. 2023. DOI:10.1016/j.biocontrol.2023.105329.

[5] M. M. Abd-Elgawad, “Optimizing Entomopathogenic Nematode Ge-
netics and Applications for the Integrated Management of Horti-
cultural Pests,” Horticulturae, vol. 9, no. 8, pp. 865, Jul. 2023.
DOI:10.3390/horticulturae9080865.

[6] J. Toledo et al., “Can Entomopathogenic Nematodes and Their
Symbiotic Bacteria Suppress Fruit Fly Pests? A Review,”
Microorganisms, vol. 11, no. 7, pp. 1682-1699, Jun. 2023.
DOI:10.3390/microorganisms11071682.

[7] J. C. Ogier et al., “The endosymbiont and the second bacterial circle
of entomopathogenic nematodes,” Trends in Microbiology, vol. 31, no.
6, pp. 629-643, Jun. 2023. DOI:10.1016/j.tim.2023.01.004.

[8] T. C. Ulu and H. Erdoğan, “Field application of
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