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Abstract—The use of entomopathogenic nematodes in agri-
culture is not only an environmentally friendly option, but
also a sustainable pest management strategy that can help
promote the development of ecologically friendly agriculture.
The mathematical model of the biological control factors of
insect pathogenic nematodes with environmental tolerance of
pests is proposed and studied in this paper. Under certain
assumptions, the existence and types of possible equilibria are
discussed. In particular, it is found that when the system has
a unique positive equilibrium, it is an interesting degenerate
point, which is degenerate cusp with codimension 1 or the
saddle-node depending on the value of parameters. The saddle-
node bifurcation is further explored by use of the Sotomayor’s
theorem. The existence of a limit cycle is proved when the
system has two equilibria. Finally, we propose the optimal
control. While reducing the number of pests, the use of
pesticides should be minimized and the total cost is the lowest.

Index Terms—optimal control, limit cycle, bifurcation anal-
ysis, microbial insecticide model.

I. INTRODUCTION

ROP pest control is an important technical measure for

high and stable production. For a long time, chemical
pesticides have been used as an effective means of controlling
pests and ensuring crop yields due to their high efficiency
and rapid killing effects. However, with the widespread use
of chemical pesticides, a series of potential dangers and
disadvantages, such as increased pesticide residues, soil and
water pollution, accelerated pest resistance development and
resurgence of pests, have become increasingly apparent. In
order to meet the growing demand of human beings for a
good ecological environment and food safety, it is imperative
to develop new pest control measures.

Developing and applying biological control technology
can not only protect natural enemies but also reduce the
selective pressure of pesticides, build effective ways for
modern agricultural development and ecological governance,
and promote sustainable and high-quality agricultural de-
velopment. Deputy Director of the Sichuan Academy of
Agricultural Sciences, Professor Ren Guangjun said that
insect pathogenic nematodes are specialized parasitic natu-
ral enemies of insects, and are microbial insecticides with
the characteristics of both natural enemies and pathogenic
microorganisms. They are an important factor in insect
pest biological control and can efficiently control harmful
organisms while being safe for non-target organisms and
the environment. Therefore, they have great potential for
sustainable pest control.

Manuscript received February 17, 2025; revised August 17, 2025. This
work is supported by the Fundamental Research Funds for the Central
Universities (Grant NO.2024JKF18).

T. Y. Wang is an associate professor of College of Information and Cyber
Security, People’s Public Security University of China, Beijing 100038
China (corresponding author to provide e-mail: wangtieying996@163.com).

The entomopathogenic nematode and their symbiotic bac-
teria are a golden pair that neither can do without the other.
The two good brothers support and cooperate with each other
to explore the world and defeat enemies. The symbiotic
bacteria cannot survive alone in the soil but exist in the
intestines of the nematode. The nematode can protect the
symbiotic bacteria from the adverse effects of the external
environment. As a carrier, the nematode carries the symbiotic
bacteria into the target insect and then releases them into
the blood cavity of the host insect. During this process,
the nematode also needs to protect the symbiotic bacteria
from being recognized by the host’s immune response. So,
under the protection of its good brother, the symbiotic
bacteria began to show their capabilities. They multiplied
in large numbers in the insect’s blood cavity and produced
antibacterial substances and toxins, causing the insect to die
from sepsis. Symbiotic bacteria provide nutrient sources and
a favorable environment for the growth, development and
reproduction of nematodes by secreting various extracellular
enzymes and antibiotics. Thus, after several generations of
reproduction, the new nematode-symbiotic bacteria complex
emerges in a free state from the carcass of the host insect,
once again searching for a new insect host and embarking
on a new journey.

As the use of insect pathogenic nematodes becomes more
widespread, some studies suggest that nematodes play a
role in regulating insect populations and suppressing pests
in nature, and their commercial importance is increasing,
second only to bacteria. The biggest difference between
bacteria and nematodes is that bacteria cannot move, but
nematodes can. Famous bacterial insect-killing bacteria such
as Bacillus thuringiensis cannot move, so they can only kill
insects in the sprayed area, and insects outside the sprayed
area cannot be killed; nematodes can move, so they can
actively attack their hosts and can kill insects in a wider
range.

Based on the advantages of insect pathogenic nematodes
in biological pest control, many scholars have conducted ex-
tensive research and discussion on their control mechanisms
and reproduction in recent years [1]-[13]. We studied insect
pathogenic nematodes through mathematical modeling based
on their feeding characteristics, and obtained certain research
results [14]-[17]. In this paper, we consider the case where
insects have an environmental carrying capacity and establish
the following mathematical model

D

where z(t) and I(t) denote the densities of pests and the
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entomopathogenic nematode at time ¢, respectively; r > 0
and k£ > 0 describe the intrinsic growth rate and the carrying
capacity of pests, respectively; o > 0 is the attachment rate
of the entomopathogenic nematode, 5 > 0 is the death rate
of the entomopathogenic nematode.

II. ANALYSIS OF EQUILIBRIA OF SYSTEM (1)

According to the practical significance of system (1),
we only consider region x > 0,1 > 0. It is easy to

see that system (1) takes the straight line x = 0 (/-
r T
axis) and [ = — (1 — E) as the vertical isoclines and the
e
5 1

straight line I = 0 (z-axis) and a hyperbola I = — - —

as the horizontal isoclines. Among them, the hypgrboﬂ

y = é A has the straight line [-axis and z-axis as the
straigl?f ar:fd horizontal asymptotes, respectively. And the
right branch of the hyperbola intersects with the straight line
[T (1%
the first quadrant, entirely depending on the range of values
for r, 3, k. This leads to the situation that in system (1),
except for the coordinate origin O(0, 0) and the point A(k,0)
as the equilibria, one, two positive equilibria or no positive
equilibrium may occur as the values of r, 3, k change.

By calculating the positive equilibrium of the system (1),
it is obtained the following theorem.

Theorem 2.1 Let A =r (r — 7)

(i) When A > 0, ie. 7 > 7, system (1) has two positive
equilibria N; (z;,I;) (1 = 1,2):

k 48
$1,2—2<1:|: 1_k7">

r 43
Lo=—|1 1-——
12 =50 ( + kr)’

where x; is the two positive real roots of the algebraic
quadratic equation rz? — krz + Bk = 0.

(ii) When A =0, i.e. r = 4 , system (1) has only one
positive equilibrium M (27 %

(iii) There is no positive equilibrium for system (1) for all
other values of r, 3, k except (i) and (ii).

Regarding the structure of the type of equilibrium of
system (1) in the first quadrant, it is easy to determine that the
coordinate origin O is a saddle and the boundary equilibrium
A is a stable node. The phase protrait is given in Fig.1.

Theorem 2.2 When A =0 (i.e., r = 4/3) and k # 2, the
positive equilibrium M (2, = ) of system (1) is a saddle-

node. When k£ = 2, M is a degenerate cusp.
Proof Due to

at one point, two points or not at all within

then

and

_28 _ka
k 2 )
432
Pa P
it is easy to find the characteristic roots as A\; = 0, A2 =

p-3.

When k # 2, it is obtained that A\; = 0, Ao = 5 — % #0.
Therefore, system (1) belongs to the case studied by Theorem
4.10 in the literature [18].

Fig. 1: Two boundary equilibria: O is a saddle and A is a
stable node. The parameters are takenasr =3,k =4,a =1
and 8 = 4, respectively.

Making the substitution £ = x — g, I=1- % reduces
the system (1) to:

dx 28 ka

3)
al  4p? _
= = oo x+51+712+—6ﬂ+a512.

It is not difficult to find non-singular linear transformations

A )
I=¢+m,

and the time transformation dr = Wdt, reducing (3) to
the form required by Theorem 4.10.

dg _ k2o €2 4 k(6— k)gg (k2*2k*§)an2

dr B(k—2) B(k—2) B(k—2)
gt e 4 Liar g2y 4 (R0 g2
A 2R (Em),

e =

(K —4k®+4k—8)a o
28(k—2)2

E*a?

3
B 4/32(16—2)2g

_KPoP(k+1) p2 o KPP (k44) o 2
2/@’2(k—2)2£ 4[3"’(k—2)2g

342 A
—2[5216(,67,2)2:774"1’(5,77)-

4)
Solve for 7 = 7 (§) from the equation n + ¥ (¢,n) = 0 and
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substitute into @ (£, n) to get

2

O (E,n(€) = 56 +0(€%).

e
B(k—2)

By comparison with Theorem 4.10 in literature [18], it can
be known that m = 2 and g = ﬁ > 0(k # 2).
Therefore, the point (0,0) of system (3) is a saddle-node,
and thus M (%, % is known to be a saddle-node (here

k # 2). The phase portrait is given in Fig.2.

Fig. 2: Two boundary equilibria and a positive equilibrium:
O is a saddle, A is a stable node and M is a saddle-node.
The parameters are taken as 1 = 4,k =4, =1 and 5 =4,
respectively.

When k£ = 2, we have A\; = A = 0. System (1) belongs
to the case studied by Theorem 4.1 in the literature [19].

Letz=ax—-1, I=1- g, System (1) is transformed into
(still noting x, I in terms of Z, I):

dx r 9
E_—ﬁx—af—ix —axl,
, (6)
dl
o — £m+51+a12+25x1+amf2.
a

Then let 1 = x, I; = —fx — al, the system (6) reduces to:

dxq r

ﬁ =1+ (ﬁ— 5) l‘%"‘rl’lll,

dI

WP B gy — B0~ 28030, — i .

(7
When k = 2, A = 12— 28r = 0, that is 8 = g Substituting
into the above equation, we have

d(El

— =17 I

at 1+ 211,

ﬂ 2.2 52 02,3 27 2
7 Bzl — If — Bxr Ly — Boxy — 2Bx1 — 2117

®)

Making the substitution o = 1, Is = I1 + 211> changes
(8) to:

dlEQ

&2
dt 25
dls 2 9 9 T2 2
E :B Ty (1—372) —B$212(1+2$2)— m 2
A
= Q2 (72, 12),
NO

where h (z2) = fxg,g(xz) = 229, f (x2,I2) = —

are analytic in the first quadrant, h(0) = ¢g(0) = 0, r :x22,
a, = 32 # 0 and n = 1 are natural number. From Theorem
4.1 of Chapter 7 of the literature [19], it follows that (0, 0)
of system (9) is a dual singularity. Also since b,, = — # 0,
n = m = 1, then (0,0) of (9) is a degenerate singularity.
Therefore, the positive equilibrium M (1, g) of system (1)

is a degenerate cusp when A =0 (i.e. 7 = %) and k = 2.
The phase portrait is given in Fig.3.

Fig. 3: Two boundary equilibria and a positive equilibrium:
O is a saddle, A is a stable node and M is a degenerate
cusp. The parameters are taken as » = 5,k = 2, = 1 and
B = 2.5, respectively.

Theorem 2.3 When A > 0 (i.e., r > %) and k > 2, the
two positive equilibria Ny (z1, [1) of system (1) is a saddle
and Ns (z2, I5) is an unstable focus or node.

Proof Because at the equilibrium N;(z;, I;)(i = 1, 2), the
jacobian matrix of system (1) is

(-3

O[IZQ QOéI,L'I,L' - ﬁ

OLIZ'

—Qx;

(10)
Since detJ (N1) = —f/r (r= %) < 0, Ny is a sad-

dle. DetJ (Ny) = 5\/@

—2)r r —48 :
962% > 0(k > 2), so Ny is an unstable focus

or node. The phase portrait is given in Fig.4.

> 0 and Tr(N2) =
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Fig. 4: Two boundary equilibria and two positive equilibria:
O is a saddle, A is a stable node, N; is a saddle and N,
is an unstable focus or node. The parameters are taken as
r=>5k=4,a=1 and [ = 4, respectively.

III. THE EXISTENCE OF LIMIT CYCLES

Theorem 3.1 When r > % and k # 2, system (1) has
one limit cycle around the positive equilibrium Ny (22, I5).

Proof Under the condition of the theorem, the positive
equilibrium Nj (22, I5) is an unstable focus or node, and
Nj (x1, 1) is a saddle. Construct a bounded region contain-
ing Ns (x2, I3) , whose boundary is bounded by Ny DC BNy,
as shown in Figure 5. Assume that L; and Lo are the
two dividing lines of saddle Ny (z1,I;). Depending on the
direction of the vector field of system (1), L; must be above
the isocline (1 — E) —al =0 and Lo must be below the
isocline axl — 5 = 0.

Examine the line Lz : I +bx —c =0, where b > 0,¢ > 0,

there is
dL b
d—;|L3:0 = ab?z3 + (—2bca — % + b? o)z

+(ac? + Bb+ br — bea)x — Be.
Let

G(z) = ab*z® + (—2bca — b% + b%a)z?

+(ac® + Bb + br — bea)x — Be.

When = = 0,G(x) = —fc < 0, z = +00,G(z) = +00,
xr — —00,G(z) — —oo, the cubic curve G(z) = 0 may
have one, two or three positive roots. If G(z) = 0 has only
one positive root, then let it be z. If there are two or three
positive roots, then let the smallest of them be z. Let 0 <
' < min{Z, z2}, then f(z’) < 0, that is %‘ngo < 0.
Point D is the intersection of the line L3 and L;, and point
C is the intersection of L3 and the curve azl — 8 = 0.

For the line Ly : I — I' = 0, as t increases, we have

dL4

W|L4:O =I'(azl' — B) < 0(x < 2').

Point B is the intersection point of the negative direction of
L2 and L4.

It can be seen from this that on BC' and C'D, when t
increases, the direction in which the trajectory of system (1)
passes is as shown in Fig.5, and BN; and N;D are also
trajectories. That is to say, on the outer boundary line of the
circular domain, the trajectory of system (1) all point from
the outside to the inside towards the positive equilibrium
Ny (29, 1) when t increases or part of the outer boundary
line is trajectory. So, by Poincare-Bendixson theorem [20],
it is known that there is at least one limit cycle around
N 2 (xg, I 2).

In

A
’ N

Fig. 5: Bounded domain.

IV. BIFURCATION

Theorem 4.1 Suppose that A = 0 and k£ # 2, then
the system (1) undergoes the saddle-node bifurcation at the
threhold r = r*, here r* = %.

Proof We will verify the transversality condition for the
occurrence of saddle-node bifurcation at » = r* by use of
Sotomayor’s theorem [21]. Since det(Jps) = A2 = 0,
Jyr has one zero eigenvalue, that is A;. Let (1 and Qo
be eigenvectors corresponding to the eigenvalue \; for the

matrices Jy; and J1;, respectively. We can obtain

o-(3)- ()

1
QQ — ( Q21 > _ ko
QQZ ﬁ

Q11
Q12

In addition, we get

F.(M,r*) =

D2F<M7 ’I"*)(Q17Q]_> =
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8F 02F 02 F
1C211 t255] alellQl? + 3121
02 Fy N PR, R
ox? 2 gwar Ytz T gm On (M,r+)
0
| em2(k-2) |’
k2

where Fy(z,1) = rx (1 — £) —azl, Fy(z,I) = axI? — 1.
We can calculate that ()1 and Qo gratify the transversality
conditions

QTR0 =1 20,

QI F(M (@1, Q)] = PE=2 g

in the case of saddle-node bifurcation at M when r = r*.
Accordingly, when the parameter r change, the equilibrium
of system (1) changes from one to two.

V. OPTIMAL CONTROL

In this section, we present the optimal control problem,
which consists of exploring how to actually spray pesticides
over a certain period of time to reduce the number of pests
at the lowest intervention cost. On the basis of system
(1), we consider adding time-dependent interventions, that
is, spraying pesticides wq(t). Spraying pesticides will kill
pests, thereby reducing the number of pests. Then system
(1) become

dx T
priaki (1 - E) —axl —u(t)x,
(11)
dr
i axl? — BI,

where u; € ) is the control strategy variable and is a
bounded Lebesgue production function, where the set €2
satisfies

Q:{U1|OSU1 <1,te [O,T]},

Our goal is to reduce the number of pests while minimiz-
ing the use of pesticides, which is necessary to reduce the
opportunities for further pest development and minimize the
overall control costs. The objective function under consider-
ation is:

T
1
P = / [alx +eol + 57‘116% dt 12)
0

where ¢;(i = 1;2) are the weight constants of the number of
pests and parasites. 7 is the relative cost of u; interventions.
We represent the integrand A = g1z + ol + %ﬁu? to find
the optimal control function u* such that

O(u*) = min @(u),u € Q.

The model (11) is rewritten as:

o-[1]-

B rfc(l—?)faa?[fulx
e = | 0B
(13)

Theorem 5.1 For a given initial value and objective
function ® of the control system (11), there exists an optimal
control u* € Q such that ®(u*) = min ®(u).

Proof According to the definition of €2, the control set 2
and the corresponding state variables are non-empty, and (2
is convex closed.

Let ] € (0,1) and d,v € £, we have

A(t,€(t), (L= Dd+1lv) — (1 = 1)A(t,&(¢),d)

—IA(t,&(t),v)

_ Ty 242, 72,2 B
= 2[(1 D*d® + I"v*° + 21(1 — 1)dv] (14)
Ti T;
21 = Dd?= 212
2( d 2[1}
= %(52 —)(d—v)? <0,
which implies A is convex.
Then, we have
IN(&1) = N (&)
= |rz1(1 — %) —ax ]y —ujzy —ras(l — %)

— BI, — axoI3 + BI,|
< (r+w)|ze — 21| + BlI2 — L.
Let v = min(r + uy, 8), we obtain
IN(§1) = N (&) < (r +w) |2 — 21| + B |l2 — L]
<v(lee — 1|+ |2 — Ll).

+axols +uire + oz:vllf

Thus, the right-hand side of the proposed model is bound-
ed by a linear function in control variables and the state.
Finally, we have

1 1
1z + 62[—&—5711@ > iTlu% > hy|ul” — ha,

:E,pZQ,h2>O.

where hq 5

Theorem 5.1 can be proved from the above discussion.
In the following, we will use Pontryagin’s Maximum
Principle to formulate the Hamiltonian function:
1 2
H(t, & ) = ez + 521+§nu$ +) AN
j=1
There exists a non-trivial vector function A = (A1, \2)
satisfying the following equalities:
%_8H(t,§,/\,u) 0= H<t3§7)‘7u)
dt O T ou ’
ax OH (t,&, A\, u)

e~ o¢
Theorem 5.2 Suppose two optimal control w; and (x*, I*)
are optimal state solutions. There exists adjoint variables A;
and Ao satisfying:

dA 2r

cTtl =—c1—-MN (r— kx—a]—m) — Xoaul?,
dA

d7t2 = —e3 — Aaax — Ay (2axl — f3),

15)

Volume 55, Issue 10, October 2025, Pages 3152-3157



TAENG International Journal of Applied Mathematics

- -Llli[] H

. - -ulzo

X 1F 4
08F J
0sF . ]

04r RN 1

Time(hours)

Fig. 6: The mechanisms of bacterial resistance.

and the terminal conditions A\ (T) = 0,A2(7T) = 0. The
optimal control can be obtained by calculating:

uy (%) :maX{O,min{)\lx,l}}.
1

VI. CONCLUSION

In summary, the ecological significance of the system can
be explained. When r > % and k # 2, the system (1) has
one limit cycle around the positive equilibrium N (23, I3).
If the limit cycle is stable, all trajectory in the region tend
to the stable cycle and achieve dynamic balance. If the limit
cycle is unstable or the economic threshold is lower than
the equilibrium region, we implement optimal control. While
reducing the number of pests, the amount of pesticides used
is minimized to minimize the total cost. In order to analyze
the influence of the control strategy u; on pests and explore
the effectiveness of the control strategy, we use the forward
backward iterative algorithm to simulate the optimal control
problem. The results of simulations without any control
measures show a gradual increase in the number of pests.
However, after the addition of insecticide, the number of
pests dropped dramatically, as shown in Fig.6.
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