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Abstract—In this paper, we propose a new multiobjective
model for the Capacitated Vehicle Routing Problem with
a single depot. On one hand, the model aims to optimize
multiple conflicting objectives, such as minimizing the total
travel distance and reducing the number of vehicles used. On
the other hand, we develop a heuristic approach to effectively
solve the problem. The Vehicle Routing Problem is one of
the most widely studied combinatorial optimization problems,
particularly in logistics and supply chain management. It
encompasses numerous variants and is classified as NP-hard,
making exact methods impractical for large-scale instances.
Our proposed heuristic combines two well-known principles:
the Hungarian method, typically used for solving assignment
problems, and the Clarke-Wright savings algorithm, commonly
applied in VRP contexts. This hybridization operates in two
main stages: First, the Hungarian method is employed to
identify the shortest paths within the cost matrix, thereby
facilitating efficient pairing of nodes. Second, the Clarke-Wright
savings principle is applied to construct low-cost vehicle
routes. This combined approach enables us to achieve two
key objectives: minimizing the size of the vehicle fleet and
reducing the total distance traveled. A comparative study
based on several benchmark instances demonstrates that the
proposed method produces high-quality solutions, validating its
effectiveness and potential for practical application.

Index Terms—Combinatorial-Optimization,
Transportation-problems, Vehicle-routing, Efficient-solutions,
Multiobjective-optimization.

I. INTRODUCTION

COMBINATORIAL optimization problems form a
specific category of optimization problems. Their

particularity stems from the fact that the decision space is
composed of vectors with integer components. In general,
these problems admit a large number of feasible solutions,
and there is no universal method to solve them with
efficiently. They are classified as NP-hard problems [7]. The
Vehicle Routing Problem (VRP) has attracted significant
attention from researchers in recent years due to its wide
range of applications in various fields. It has several
variants including the Capacitated Vehicle Routing Problem
(CVRP), the Vehicle Routing Problem with Time-Windows
(VRPTW), and the Multi-Compartment Vehicle Routing
Problem (MCVRP).
Among combinatorial optimization problems, VRP is
one of the most extensively studied in the literature. It
addresses optimal logistics and distribution management
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issues that companies must resolve, particularly regarding
the transportation of raw materials and finished products.
This class of problems arises in a wide variety of real-world
applications, such as school bus routing, urban public
transportation planning, mail collection and distribution,
supply chain logistics, waste management, and many
other domains. In the scientific literature, exact methods
often struggle to provide efficient solutions for large-scale
instances due to the inherent computational complexity of
these problems, which are typically classified as NP-hard. As
a result, most of the existing approaches rely on heuristic and
metaheuristic algorithms, which are capable of producing
high-quality approximate solutions within reasonable
computation times. These methods offer a practical trade-off
between solution quality and computational efficiency,
making them particularly well-suited for addressing
complex and large-scale problem instances commonly
encountered in real-world applications. Building upon
this foundation, this paper draws inspiration from a wide
range of recent studies on the resolution of the VRP and
its many variants, aiming to propose novel approaches or
improvements that enhance both effectiveness and scalability
in practical settings. Several recent studies have explored
effective heuristic and metaheuristic approaches for solving
various complex variants of the VRP. For instance, Matijević
et al. [4] proposed a general Variable Neighbourhood Search
(VNS) approach for asymmetric VRP with time windows
and capacity constraints. Rosa et al. [17] addressed the VRP
with asymmetric costs and heterogeneous fleets, highlighting
the importance of fleet diversity in real-world applications.
In another study, Samira et al. [21] introduced a novel
method for tackling large-scale instances of the asymmetric
distance-constrained VRP, while Ha-Bang et al. [8] proposed
a hybrid metaheuristic tailored to the same problem variant,
achieving promising results in of solution quality and
computational applied to logistics optimization.
Yane Hou et al. [9] developed a hybrid local search
metaheuristic to solve the specifically designed for the
school bus routing problem, demonstrating its effectiveness
through extensive experimentation. Tan et al. [20] adapted
the Ant System algorithm to solve capacitated VRPs,
showing how bio-inspired heuristics can be effectively
applied to logistics optimization.
Similarly, Yan-e Hou et al. [2] proposed a hybrid
Max-Min Ant System algorithm (MMAS) for solving
the Electric Vehicle Routing Problem (EVRP), addressing
specific challenges related to battery range and charging
infrastructure. In another work, Yan-e Hou et al. [1]
investigated the multi-compartment VRP, proposing
innovative strategies to handle multiple product types within
a unified routing framework. Furthermore, Chunxiao Wang
et al. [3] presented a hybrid genetic algorithm for solving
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the multi-compartment VRP with time windows, combining
global exploration with local refinement technique to achieve
high-quality solutions. These contributions highlight the
growing interest in hybridization strategies that integrate
classical heuristics with advanced search mechanisms to
tackle increasingly complex VRP variants. Paolo et al.
[22] introduced mathematical models, relaxations, and
exact techniques aimed at addressing this challenging
combinatorial optimization problem. Shubhechyya et al.
[5] presented a unifying framework for the CVRP under
conditions of risk and ambiguity, highlighting the need
for robust approaches in incertain environments. Takwa
et al. [19] developed a hybrid metaheuristic tailored to
the distance-constrained CVRP, combining efficiency with
solution quality. In related work, Okitonymbe et al. (2015)
[14] extended the classical Clarke and Wright savings
heuristic into a multiobjective setting, using the concept
of referential dominance to handle multiple conflicting
objectives simultaneously. Originally introduced by Clarke
and Wright [25], this heuristic was designed to solve the
single-objective version of the VRP and has since become
a cornerstone in routing algorithms.
Another innovative approach based on the Cobweb
algorithm was proposed by Okitonymbe et al. [15], offering
an alternative clustering-based strategy for constructing
efficient vehicle routes. Additionally, Mohamed Haouari
et al. [24] reviewed state-of-the-art methods for solving
VRPs, with time constraints providing valuable insights into
current best practices and limitations. Despite the significant
progress made in solving various VRP variants, the
number of approaches specifically addressing multiobjective
formulations remains limited in the literature. This
highlights the relevance and timeliness of developing new
methodologies that can effectively tackle real-world routing
problems involving multiple, often competing, optimization
criteria.

In this paper, we propose a new multiobjective model
for the CVRP, with the dual objectives of minimizing both
the total travel distance and the number of vehicles used.
The problem under consideration involves the distribution
of goods from a single depot to a set of geographically
dispersed customers, a typical scenario in logistics and
supply chain management. A key feature of our model is
the dynamic integration of new customers into the routing
process, which increases the complexity of path construction
as the number of potential routes grows significantly. To
address this variant efficiently, we propose a novel hybrid
heuristic approach that combines two well-known methods:
the Hungarian method, an exact algorithm widely used for
solving assignment problems, and the Clarke-Wright savings
method, a classical heuristic for constructing cost-effective
vehicle routes. This hybridization leverages the strengths
of both techniques: the Hungarian method is first applied
to identify optimal pairings of customers based on cost
efficiency, while the Clarke-Wright method is then used to
merge these pairings into feasible and economical routes. The
proposed approach aims to achieve high-quality solutions
in terms of both fleet size minimization and total travel
cost reduction. The Hungarian method, originally developed
by Harold W. Kuhn [28], is employed in this study to

identify the shortest pairwise distances that are prioritized
during route construction. In combination with this, the
Clarke-Wright savings algorithm is used to generate optimal
vehicle tours by merging routes based on cost-saving
principles. After presenting the theoretical foundation and
step-by-step description of the proposed hybrid method, we
illustrate its application through a didactic example. This
is followed by its implementation on a set of benchmark
test problems to evaluate and validate its performance. To
enhance readability and facilitate understanding, the rest of
this paper is structured as follows: Section II introduces the
preliminaries and necessary background concepts. Section
III presents the main contributions and results of this work.
Finally, Section IV concludes the paper with a summary.

II. PRELIMINARIES

A. Vehicle routing problem

The classical CVRP addressed in this study involves
determining a set of routes with minimal total travel
distance for delivering goods from a central depot to a
group of geographically dispersed customers. In the standard
formulation of the problem, the vehicle fleet is assumed
to be homogeneous and based at a single depot, which
holds sufficient inventory to satisfy all customer demands.
Each vehicle has a maximum capacity of Qunits, and
each customer i has a known demand qi that must be
fulfilled exactly once. The distance cij between each pair
of customers (i, j) is considered to be symmetric and
deterministic [16]. When all input data such as customer
demands, the number of available vehicle, and travel
distances are known and constant, the problem is classified
as a deterministic the vehicle routing problem.

The goal is to determine the minimum number of
vehicles required to serve all customers while simultaneously
minimizing the total distance traveled by the fleet. In general
terms, the CVRP can be described as the problem of routing
a set of capacitated vehicles, stationed at a central depot, to
supply a set of customers, each with a specific demand. Each
customer must be visited exactly once, and each vehicle must
complete its route without exceeding its capacity. A variety of
models for CVRP have been proposed in the literature, with
the most widely adopted being an integer linear programming
(ILP) formulation that employs binary variables to represent
route assignments [6], [10], [15], [23]. Before presenting the
mathematical model, we first define the key parameters and
notations used throughout this work.

• U = {1, 2, . . . , n} denotes the set of customers to be
visited;

• K is the number of objectives of the problem;
• xijk is the binary variable defined that xijk = 1, if vehicle
k which customer i for customer j and xijk = 0 if not.

• ”di”, is the request expressed by the customer i another
customer ”i”.

• Q is the capacity of each vehicle;
• cij is the distance between customer i and customer j.
• 0 is the depot, the starting point of any tour. One of the

most common formulations of this problem in the literature
is the following:
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min

n∑
i=1

n∑
j=1

m∑
k=1

cij .
txijk t = 1, 2, ...,K.

sc :



n∑
j=0

m∑
k=1

xijk = 1, i = 1, . . . , n. (a)

n∑
l=0

xijk =

n∑
j=0

xjlk, l = 1, . . . , n,

k = 1, . . . ,m. (b)
n∑

j=1

x0jk = 1, k = 1, . . . ,m. (c)

n∑
i=0

xi0k = 1, k = 1, . . . ,m. (d)

n∑
i=1

n∑
j=0

di.xijk ≤ Q, k = 1, . . . ,m. (e)

∑
i∈U

∑
j∈U

xijk ≥
n∑

j=1

xijk, U ⊂ {1, 2, . . . , n},

l ∈ U ; k = 1, . . . ,m. (f)

xijk ∈ {0, 1}, 0 ≤ i, j ≤ n, i ̸= j, 0 ≤ k ≤ m.

where:
i) Constraint (a) ensures that each customer i is visited

exactly once across all vehicle routes.
ii) Constraint (b) guarantees that if a vehicle k arrives at a

customer location, it must also depart from that location,
preserving route continuity.

iii) Constraints (c) and (d) enforce that each vehicle which
departs from the central depot must eventually return to
it, ensuring closed routes.

iv) Constraint (e) imposes the capacity restriction on each
vehicle k, requiring that the total demand of all
customers assigned to a route does not exceed the
vehicle’s maximum capacity Q.

v) Constraint (f) eliminates sub-tours, thereby ensuring
that the solution forms a single connected tour for
each vehicle and avoids disconnected cycles that do not
include the depot.

B. Clarke-Wright heuristics

1) Principle: The Clarke-Wright heuristic is one of the
earliest and most influential heuristics introduced by G.
Clarke et al. [11], [25] for solving vehicle routing problems.
The core idea of this method is to construct cost-effective
routes by merging elementary tours, aiming to minimize the
total travel distance — hence its designation as an ”economic
heuristic”.Consider two customers, i and j, both requiring
service from the depot located at node 0. If each customer
is served individually using a separate vehicle, the resulting
routes are 0 − i − 0 and 0 − j − 0. Under the assumption
of symmetric distances, the total distance traveled in this
scenario is given by [13]:

D1 = 2.d(0, i) + 2.d(0, j) (1)

However, if both customers i and j are served sequentially
by a single vehicle, the resulting route becomes 0− i−j−0.
Under the same assumption of symmetric distances, the total
distance traveled in this case is given by [13]:

D2 = d(0, i) + d(i, j) + d(j, 0). (2)

The distance saved by including both customers i and j in
the same route is expressed by the following formula [13],

[14], [16]:

δij = 2.d(0, i) + 2.d(0, j)− d(0, i)− d(0, j)− d(i, j)
= d(0, i) + d(0, j)− d(i, j).

(3)
This quantity, known as the savings value, represents the
reduction in total travel distance achieved by merging the
two individual routes into a single one. The condition δij > 0
holds due to the triangle inequality, which ensures that the
direction path between any two points is always shorter than
or equal to any detour [14], [16]. Graphically, this merging
process can be visualized as illustrated in Figure 1. First,
Clarke and Wright construct a distance matrix to represent
the travel distances between all pairs of customer locations
and the depot. For two customers i and j with respective
geographic coordinates (xi, yi) and (xj , yj), the Euclidean
distance between them is computed using the following
formula [11], [18]:

d(i, j) =
√
(xi − xj)2 + (yi − yj)2. (4)

Based on this distance matrix, Clarke and Wright proposed
two strategies for constructing distribution routes: the parallel
version and the sequential version. In the parallel approach,
multiple routes are built simultaneously by merging several
customer pairs at each iteration. In contrast, the sequential
approach constructs one route at a time until all customers
are included in a vehicle route.

2) Algorithm: According to Ulungu et al., the sequential
version of the Clarke-Wright algorithm typically produces a
solution relatively quickly, but it often lacks overall efficiency
due to its greedy nature and limited exploration of route
combinations. In contrast, the parallel version requires more
computational effort and multiple iterations, but it generally
yields higher-quality solutions with greater total distance
savings. Therefore, it can be concluded that the parallel
version prioritizes efficiency, while the sequential version
emphasizes effectiveness in terms of speed. The primary
objective in designing vehicle routes using this method is
to maximize the reduction in total travel distance through
optimal route merging. The Clarke-Wright (C-W) algorithm
can be summarized as follows [12]:

Algorithm 1 Algorithm C-W
1. Compute the savings matrix δij = d(0, i)+d(0, j)−d(i, j)

for all customer pairs.
2. Sort the savings values in descending order.
3. Starting from the top of the list, attempt to merge routes

associated with the highest savings, provided that:
• The customers involved are not already part of another

route,
• The total demand of the merged route does not exceed

the vehicle capacity Q,
• No sub-tours are formed.

4. Repeat step 3 until no more feasible merges can be
performed, or all customers are routed.

C. The Hungarian method

1) The Hungarian method principle: The Hungarian
method is one of the most effective techniques for solving
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Fig. 1. C-W heuristic principle

assignment problems. It was first developed in 1955 by the
American mathematician Harold. W. Kuhn [28], who drew
inspiration from the earlier works of Dénes Köing and Jenö
Egerváry. This method is specifically designed for cases
where the number of tasks to be assigned is equal to the
number of available resources. Due to its effectiveness, the
method has been widely extended by researchers. Ford and
Fulkerson [26] just like James Munkres [27] adapting it to
solve a transportation problem.

2) The Hungarian method algorithm: The Hungarian
algorithm can be summarized in the following five steps:

Algorithm 2 Hungarian method algorithm
1. Subtract row minimums

For each row, subtract the smallest element in that row
from all elements in the same row

2. Subtract column minimums
For each column, subtract the smallest element in that
column from all elements in the same column.

3. Cover all zeros with a minimum number of Lines
Try to cover all zeros in the matrix using the minimum
number of horizontal and vertical lines.
If the number of lines equals n, an optimal assignment is
possible. If not, proceed to Step 4.

4. Adjust the matrix
Find the smallest uncovered element, then: subtract it
from all uncovered elements add it to all elements covered
twice leave elements covered once unchanged, Return to
Step 3.

5. Make the optimal assignment
Select a zero per row and per column.

Steps 1 and 2 identify the lowest costs and create zeros
in the matrix. If the assignment is acceptable at the end
of this stage, it will be the minimum-cost assignment. If
no admissible assignment is found, zeros will be added in
subsequent stages (Echelon 2, 3, etc.) until an admissible
assignment is obtained. We use and adapt this principle in
our approach to facilitate selecting customers to integrate into
an elementary tour.

Remark 1: The Hungarian method is one of the most
effective methods for solving assignment problems, and it
has been adapted to solve transportation problems. However,
it is not suitable for solving vehicle tour problems because
tours must be constructed based on vehicle capacities before
vehicles can be assigned to them. Furthermore, since a
vehicle is assigned to a route that includes a customer, the
method does not respect the principle of classical assignment,
which establishes a bijection between two sets of the same
cardinality.

III. MAIN RESULTS

A. Multiobjective CVRP model

The previous formulation of the multiobjective vehicle
routing problem did not account for minimizing the number
of vehicles. The constraint (b) states that a vehicle k arriving
at a customer’s location must leave again. However, in this
formulation, the depot visited at the end of the tour is treated
as a customer. In reality, a vehicle that arrives at the depot
does not leave again because it is supposed to complete only
one tour. This discrepancy led us to propose an alternative
formulation in the form of a linear program to address the
issue. This model includes two objective functions. The first
objective function is defined as follows:

Z1 =
n∑

i=0

n∑
j=0

m∑
k=1

cij .xijk k = 1, . . . ,m (5)

This function translates the total distance traveled by the
deployed fleet. The second equation defined by

Z2 =

n∑
j=1

m∑
k=1

x0jk k ∈ 1, . . . ,m (6)

This function counts the number of vehicles deployed. This
program is as follows:
min(Z1, Z2)

sc :



n∑
i=0

m∑
k=1

xijk = 1, j = 1, . . . , n (i)

n∑
j=1

xijk =

n∑
j=1

xjℓk, ℓ = 1, . . . , n,

k = 1, . . . ,m (ii)
n∑

j=1

x0jk =

n∑
i=1

xi0k = 1, k = 1, . . . ,m (iii)

n∑
i=0

n∑
j=0

di.xijk ≤ Q, k = 1, . . . ,m (iv)

∑
i∈U

∑
j∈U

xijk ≥
n∑

j=1

xℓjk, U ⊂ {1, 2, . . . , n},

ℓ ∈ U, k = 1, . . . ,m (v)

xijk ∈ {0, 1}, 0 ≤ i, j ≤ n, i ̸= j, 1 ≤ k ≤ m

Where the relationship :
(i) stipulates that a customer ”j” is visited once and only

once,
(ii) stipulates that a ”k” vehicle arriving at a customer’s

premises will leave again,
(iii) stipulates that each vehicle leaving the depot returns

to it,
(iv) stipulates that the sum of requests from customers

visited by a vehicle ”k” must be less than or equal
to the vehicle’s capacity,

(v) eliminates sub-tours to guarantee tour connectivity.
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B. Resolution approach

1) Description: This approach is based on identifying the
shortest distances in the cost matrix and constructing routes
based on these minimum costs. These minimum costs are
marked with ”0”. Since the distances are symmetrical, the
cost matrix is also symmetrical. For calculation purposes,
we focus on the upper triangular part of the matrix. We use
the principle of the Hungarian method to identify the ”0”s.
For each row and column of the cost matrix (i.e., distances),
we determine the smallest cost and subtract it from all other
elements in the same row or column. This process allows
us to locate the minimum costs (i.e., the ”0”s in echelon 1)
and build routes using the Clarke-Wright savings heuristic
whenever possible. If a set of admissible routes that includes
all customers cannot be constructed, additional ”0”s are
created by subtracting the smallest non-zero element from
each non-zero element of the row (resulting in 0s of echelon
2). Then, we attempt to build the routes using the heuristic
again, giving preference to the smallest echelon ”0”s. If
this is still not possible, we create ”0”s of echelon 3 and
so on until route construction is feasible. In our approach,
when building routes using the Clarke-Wright heuristic, we
ensure that capacity constraints are satisfied and prioritize
integrating customers that offer the greatest distance savings,
i.e., those closest to the current route.

2) Algorithm of our approach: The algorithm of our
approach, which we call the hybrid algorithm, is as follows:

Algorithm 3 Hybrid algorithm
Input: n, C Upper triangular matrix of order n with positive
values
Output: (Eligible tours)
1. For j from 1 to n do

αj ←− min(C(1 : j, j))
C(1 : j, j)←− C(1 : j, j)− αj

End of for
2. For i from 1 to n do

βi ←− min(C(i, i : n))
C(i, i : n)←− C(i, i : n)− βi

End of for
3. If possible build tours
4. Otherwise do

For i from 1 to n do
δi ←− min(C(i, i : n)) > 0
C(i, i : n)←− C(i, i : n)− δi
End of for

5. Return to step 3.

Clarke and Wright [14], [16] proposed two versions
of their cost-based algorithm for constructing distribution
routes: the sequential version and the parallel version.

a. Sequential version: routes are constructed one at a
time.

b. Parallel version: routes are constructed
simultaneously.

In our approach, whether sequential or parallel, we ensure
that the next customer to be included in a route is the
closest (i.e., the one offering the greatest savings) so that
the vehicle’s capacity constraint is respected.

Distances matrix

Matrix reduction

Can we create
itineraries for
all customers?

Find the smallest
non zero element
in each line, then
subtract it from
the other non
zero elements

in the line.

Build tours
using Clarke
and Wright’s

economic heuristic

Solutions

No

Yes

Fig. 2. Approach flowchart

This approach belongs to the class of heuristics and has
been successfully applied to a test problem.

3) Approach flowchart: The flowchart for this approach
is shown in Figure 2.

4) Didactic example: All that has been said is illustrated
in a didactic example. This example is one of the frequently
encountered test problems in the literature [14], [16].

A. Statement of problem

A pharmaceutical company needs to distribute its products to
15 customers. The demand di of each customer, along with
the in table I. The company operates from a single warehouse
and has access to a fleet of vehicles, each with a capacity of
8 tonnes. The distances from the warehouse to each customer
are listed in the first row of Table I. Customers are ranked in
descending order of priority. The company aims to organize
its distribution with two main objectives:

1. Minimize the total distance traveled,
2. Minimize the number of vehicles used, while

ensuring that all customer priorities are respected and
vehicle capacities are not exceeded.

The cost associated with transportation is 25 UM per
kilometer, and the fixed cost of using a vehicle is 2500 UM.

B. Reduction of the distance matrix

Matrix reduction consists of generating echelon zeros within
it. After the reduction, we obtain Table II, in which 0i

corresponds to a zero of echelon i. The echelon indicates
the order in which the zero appears.

C. Tours construction

Routes are constructed using the parallel version, which
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TABLE I
MATRIX OF DISTANCES AND DEMANDS

N° 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 - 15 28 30 22 27 21 22 20 36 63 120 22 63 12 27
1 - 21 32 32 41 35 32 22 48 25 37 18 25 22 22
2 - 18 30 46 47 50 42 45 54 40 45 54 18 20
3 - 18 36 43 52 20 24 42 56 49 42 40 36
4 - 18 27 40 40 21 12 43 38 12 30 45
5 - 16 33 42 15 51 72 45 51 38 37
6 - 18 30 32 23 65 40 23 58 40
7 - 15 35 53 37 39 53 30 46
8 - 28 52 38 40 52 32 43
9 - 43 25 42 43 39 61

10 - 40 53 35 64 65
11 - 62 26 42 37
12 - 33 33 38
13 - 62 25
14 - 36

dj - 3 3 4 2 4 2 3 4 5 3 4 2 5 4 3

Priority - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

TABLE II
REDUCED MATRIX

N° 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 - 01 05 07 04 03 02 04 02 08 09 7 04 09 04 06

1 - 01 04 04 06 05 04 02 13 03 2 01 03 02 02

2 - 01 03 04 1 5 05 06 9 04 06 9 01 02

3 - 03 04 06 10 02 03 06 14 17 06 05 05

4 - 01 03 11 11 02 01 13 8 01 04 15
5 - 01 02 05 01 06 08 07 06 04 03

6 - 01 03 04 02 28 05 02 18 05

7 - 01 03 14 04 05 10 02 15
8 - 01 05 03 04 10 02 3
9 - 01 05 03 04 02 16
10 - 02 03 04 02 1
11 - 04 01 03 02

12 - 01 01 02

13 - 02 01

14 - 01

dj - 3 3 4 2 4 2 3 4 5 3 4 2 5 4 3

converges faster than the sequential version. During the
construction process, we prioritize the zeros with the
lowest echelon, as they yield the greatest savings. After
construction, the admissible tours obtained are presented in
Table III. There are several admissible solutions given by
the set of these tours. The admissible solutions we obtain
are dominated by the following: (0-4-9-0), (0-6-11-12-0),
(0-13-15-0), (0-1-10-0), (0-8-14-0), (0-5-7-0), (0-2-3-0). The
total distance traveled is 689 km, priority is 120, and the
fleet size is 7 vehicles.

D. Comment

Our approach yielded the solution (689, 120, 7). In 2015,
Okkitonumbe et al. addressed the same issue using a hybrid
approach based on Clarke and Wright’s heuristic, referred to
as the Dominance Preference Benchmark Method (DPBM).
They obtained the following outcomes: (750, 120, 7) for

the sequential version and (725, 120, 8) for the parallel
version. The same team suggested a hybrid method based
on the spider-web algorithm and Clarke and Wright’s savings
heuristic [15]. When this method was applied to the same test
problem, the result was (723, 120, 7). These results are the
best we have seen in the literature thus far. A comparison
of our results with those of the aforementioned authors is
presented in Table IV.

TABLE IV
COMPARATIVE TABLE OF SOLUTIONS

Method Solutions Version Cost

MRPD
(750,120,7) Sequential 36250UM
(725,120,8) Parallel 38125UM

Cobweb Heuristic (723,120,7) Sequential 35575UM

Our hybrid method (689,120,7) Parallel 34725UM
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TABLE III
ELIGIBLE TOURS

N° Tour Distance (km) Priority (T)

1 (0-1-6-10-0) 136 31 8

2 (0-1-10-6-0) 84 30 8

3 (0-1-10-0) 103 21 6

4 (0-1-10-0) 103 21 6

5 (0-1-2-4-0) 88 41 8

6 (0-1-8-0) 57 23 7

7 (0-1-14-0) 49 17 7

8 (0-1-12-0) 55 19 7

9 (0-1-8-0) 57 23 7

10 (0-1-14-0) 37 17 7

11 (0-1-4-10-0) 122 33 8

12 (0-2-3-0) 76 27 7

13 (0-2-14-0) 46 16 7

14 (0-4-5-6-0) 77 35 8

15 (0-4-6-0) 70 22 4

16 (0-4-6-7-0) 89 31 7

17 (0-4-6-10-0) 135 28 7

18 (0-4-9-0) 79 19 7

19 (0-5-14-0) 77 13 8

20 (0-5-7-0) 82 20 7

21 (0-5-4-6-0) 93 34 8

21 (0-5-11-12-0) 183 20 8

22 (0-5-6-0) 64 21 6

23 (0-6-11-12-0) 170 19 8

24 (0-7-9-0) 93 16 8

25 (0-7-1-12-0) 94 27 8

26 (0-7-8-0) 57 17 7

27 (0-7-14-0) 52 11 7

28 (0-8-14-0) 64 10 8

29 (0-8-12-0) 80 12 6

30 (0-8-11-0) 178 13 8

31 (0-12-14-0) 67 6 6

32 (0-12-13-0) 118 7 7

33 (0-13-15-0) 115 4 8

34 (0-14-15-0) 52 3 7

This is the most economical method in the table. It offers
a 3.4% reduction compared to the Cobweb method and a
9.4% reduction compared to the MRPD sequential version.
Although it results in costs of 689 instead of 723 or 750, the
fleet size remains at 7. The cost of our solution shows that
the solution we have found is better than the others.

E. Other results and discussion

To validate our method, we applied it to other test
problems described in the Table V.
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Fig. 3. Representation of the Solution

TABLE V
DESCRIPTION OF TEST PROBLEMS

N° Benchmark Instance n Q

1 Set A (Augerat, 1995) A-n32-k5 32 100
2 Set A (Augerat, 1995) A-n33-k5 33 100
3 Set A (Augerat, 1995) A-n33-k6 33 100
4 Set A (Augerat, 1995) A-n34-k5 34 100
5 Set A (Augerat, 1995) A-n36-k5 36 100
6 Set E (Christofides and Eilon, 1969) E-n13-k4 12 6000
7 Set E (Christofides and Eilon, 1969) E-n22-k4 21 6000
8 Set P (Augerat, 1995) P-n16-k8 15 35
9 Set P (Augerat, 1995) P-n19-k2 18 160
10 Set P (Augerat, 1995) P-n22-k8 21 3000

Where n is the number of customers and Q is the capacity
of each vehicle.

TABLE VI
COMPARISON OF OUR SOLUTIONS WITH SOURCE SOLUTIONS

Instance
Our solution Source solution
k Distance k Best-distance

A-n32-k5 5 784 5 784
A-n33-k5 5 661 5 661
A-n33-k6 5 742 5 742
A-n34-k5 5 778 5 778
A-n36-k5 5 799 5 799
E-n13-k4 4 296 4 247
E-n22-k4 4 381 4 375
P-n16-k8 8 450 8 450
P-n19-k2 2 212 2 212
P-n22-k8 8 603 8 603

Where k denotes the number of routes. Out of the ten test
problems to which we applied our method, we obtained eight
exact solutions and two approximate solutions. Our method
belongs to the category of heuristic methods and allows for
quickly finding a near-optimal or optimal solution.
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However, we observe that when vehicle capacity is high
and customer demand is low, our method does not yield
the exact solution, but rather an approximate one. This is
due to the fact that the number of potential routes increases
dramatically under these conditions, making it difficult for
the method to converge efficiently.

We therefore conclude that our method is less effective in
cases where vehicle capacity is high and individual customer
demand is low.

IV. CONCLUSION

In this paper, we proposed a hybrid approach to solve the
Capacitated Vehicle Routing Problem (CVRP). The method
combines Clarke and Wright’s savings heuristic with the
Hungarian algorithm to improve the efficiency of route
construction. The routes are built using the parallel version
of Clarke and Wright’s method. Indeed, after multiple tests,
the parallel version proved to be more efficient and faster
than the sequential version.

Experimental results on classical benchmark instances
show that the proposed approach provides competitive
solutions, outperforming certain existing heuristics in specific
cases. However, convergence difficulties were observed when
vehicle capacities were very high and customer demands
were low. This limitation is mainly due to a combinatorial
explosion in the number of feasible routes, which increases
computational complexity.
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