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Abstract—This study investigates impulsive synchronization
control in supply chain systems by proposing a distributed
cooperative strategy based on Lyapunov stability theory and
the analysis of the maximum Lyapunov exponent. A dynamic
supply chain model with time-varying characteristics is first
developed, in which impulsive differential equations are em-
ployed to mathematically describe the discretized information
interactions among nodal components. Parametric relationships
between impulse intensity and control timing are systematically
established. Utilizing the Lyapunov function method, sufficient
conditions for ensuring exponential synchronization are rigor-
ously derived through formal stability analysis. Furthermore,
the theoretical framework incorporates the computation of
the maximum Lyapunov exponent to quantify the system’s
sensitivity to initial perturbations, thereby offering quantitative
guidance for parameter optimization. The study concludes
with a numerical case study that empirically validates the
effectiveness of the proposed synchronization mechanism.

Index Terms—Supply chain; Impulsive synchronization;
Maximum Lyapunov exponent; Chaos

I. INTRODUCTION

SUPPLY chain systems are complex entities characterized
by diverse nonlinear behaviors arising from both exoge-

nous and endogenous influences. As defined by Ninlawan et
al. [1], traditional supply chain management (SCM) involves
“the coordination and administration of intricate network
activities required to deliver finished products to end users
or customers,” encompassing the complete lifecycle—from
resource extraction, manufacturing, utilization, reuse, and re-
cycling [2], to final disposal. Each operational phase imposes
significant environmental impacts.

Structurally, supply chains represent value-adding net-
works composed of raw material suppliers, manufacturers,
distributors, retailers, and end consumers, with processes
spanning demand-initiated product delivery cycles [3]. No-
tably, in supply chain finance contexts, the system architec-
ture often simplifies into a two-tier decision-making structure
between suppliers and retailers. Contract parameters (e.g.,
wholesale pricing, buyback rates) directly influence the credit
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risk assessments of financial institutions by affecting collat-
eral valuation. For example, retailers utilizing newsvendor-
model-based demand forecasts may leverage procurement
contracts to secure loans, while banks must dynamically
assess the impact of supply chain decisions, such as supplier
buyback policies, on residual collateral value in determining
loan-to-value ratios [4].

The paramount challenge in SCM lies in effectively inte-
grating activities across heterogeneous organizations within
the supply chain, especially when these activities involve
environmental externalities. Conventional linear management
frameworks often fail to capture such systemic dynamics
[5], [6]. For decades, mathematical modeling and analysis
of supply chain systems have attracted significant scholarly
attention. In particular, dynamic systems theory has proven
effective in studying the evolving behaviors of supply chain
systems [7], offering unique advantages in simulating nonlin-
ear phenomena such as resource flows, waste accumulation,
and environmental cost propagation.

In the domain of mathematical modeling, dynamic systems
theory provides a powerful paradigm for revealing intrinsic
behavioral patterns within supply chain networks. In re-
cent years, with the intensification of global supply chain
complexity, traditional static models have become inade-
quate for addressing the challenges of inventory coordination
and optimization in dynamic environments. Scholars such
as Thotappa and Ravindranath [8] have proposed integrat-
ing data mining and evolutionary algorithms into dynamic
modeling frameworks. By reconstructing temporal inventory
characteristics using the exponential moving average (EMA),
identifying inter-node inventory associations via association
rule mining, and optimizing inventory decision rules through
genetic algorithms, they demonstrated a data-driven approach
to dynamic inventory management.

Similarly, in supply chain finance models, the dynamic
adjustment of loan-to-value ratios by banks is seen as a
form of risk control. This is achieved by constructing closed-
loop optimization models based on game-theoretic interac-
tions between upstream and downstream entities—such as
suppliers’ wholesale pricing strategies and retailers’ ordering
decisions—thereby incorporating supply chain parameters
into core financial risk assessment frameworks [4]. These
methods demonstrate not only the efficacy of dynamic sys-
tems theory in modeling supply chain behavior but also es-
tablish a methodological foundation for managing inventory
oscillations under demand uncertainty through dynamic rule
iteration mechanisms [9].

To better characterize the dynamic behavior of multi-
tier supply chain coordination, recent research has pro-
posed refined mathematical models grounded in dynamic
systems theory. These models define differential equations
across supply chain echelons to quantitatively capture the
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nonlinear coupling among inventory fluctuations, production
delays, and demand feedback. Particularly in addressing
multi-echelon inventory optimization, the models require
joint consideration of vertical material transmission delays
across hierarchical levels and horizontal decision interaction
effects among network nodes. For instance, when supplier
production is regulated by downstream distributor orders,
the configuration of production threshold parameters (r) and
safety stock coefficients (b) critically determines the system’s
resilience to demand perturbations. At the same time, the
dynamic alignment between distributor delivery coefficients
(m) and retailer demand fulfillment rates (n) influences the
magnitude of the bullwhip effect across the supply chain.
These nonlinear interdependencies not only validate the
classification of supply chains as complex adaptive systems
but also lay a structural foundation for subsequent stability
analyses and the design of effective control strategies [10].

Let x1, x2, x3 denote, respectively, the quantity demanded
by the retailer, the quantity supplied by the distributor,
and the quantity produced in the current period based on
received orders. The parameters are defined as follows:
m represents the distributor’s delivery coefficient, n is the
retailer’s customer demand satisfaction rate, r denotes the
production threshold, and b is the manufacturer’s safety stock
factor. Anne, Chedjou, and Kyamakya [11] proposed a three-
echelon supply chain model, which can be formulated as:


ẋ1 = mx2 − (n+ 1)x1,

ẋ2 = x1(r − x3)− x2,

ẋ3 = x1x2 + (b− 1)x3,

(1.1)

As noted by Peng et al. [17], the supply chain system
described by (1.1) exhibits complex dynamic behavior and
is highly sensitive to external disturbances.
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Fig. 1: Some chaotic attractors of supply chain system (1.3).
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Fig. 2: Some chaotic attractors of supply chain system (1.3).

Taking into account the fact that product demand does
not increase monotonically with rising inventory levels,
Mondal [15] proposed an improved supply chain model,
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expressed as follows:


ẋ1 =

mx2
1 + ax2

− (n+ 1)x1,

ẋ2 = x1(r − x3)−
px2

1 + ax2
,

ẋ3 = x1x2 + (b− 1)x3,

(1.2)

where the parameter a characterizes the saturation rate of de-
mand as inventory increases, and p represents the sensitivity
of inventory to demand fluctuations. The author also analyzed
the synchronization behavior of two coupled identical supply
chain models under both unidirectional and bidirectional
coupling schemes.

However, system (1.2) exhibits a singularity when x2 =
− 1

a , and the second equation is considered physically un-
reasonable, as pointed out by Anne, Chedjou, and Kya-
makya [11]. To address this issue, Peng et al. [17] proposed
a revised supply chain model that combines the formulations
of systems (1.1) and (1.2), resulting in the following system:


ẋ1 =

mx2√
1 + a2x22

− (n+ 1)x1,

ẋ2 = x1(r − x3)− x2,

ẋ3 = x1x2 + (b− 1)x3,

(1.3)

It is noteworthy that when a = 0, system (1.3) reduces to
system (1.1), preserving the structure of the original model
proposed by Anne et al. Furthermore, when choosing the
parameters m = 10, n = 3, r = 18, b = 3

7 , a = 0.3,
system (1.3) exhibits chaotic behavior. The chaotic dynamics
of the system under the initial condition (x1, x2, x3)

T =
(10, 10, 10)T are illustrated in Figure 3.
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Fig. 3: Time series of supply chain system (1.3).

Synchronization is a critical strategy for mitigating the
adverse effects of uncertainties and disruptions within sup-
ply chains. Peng [17] presented a sufficient condition for
impulsive synchronization of the supply chain system (1.3).
For a more comprehensive understanding of the impulsive
synchronization method and its associated benefits, readers
are encouraged to refer to [12], [13], [16], [18], [19], [20]
and the references cited therein.

In this paper, we propose a novel impulsive synchro-
nization strategy for the supply chain system (1.3), based
on Lyapunov stability theory and the maximum Lyapunov
exponent. The paper concludes with a numerical example
demonstrating the effectiveness of the proposed approach.

II. IMPULSIVE SYNCHRONIZATION OF SUPPLY CHAIN
SYSTEM (1.3)

By decomposing the linear and nonlinear components of
the system in (1.3), it can be reformulated as follows:

Ẋ = AX + ϕ (X) ,

where

A =

 −n− 1 0 0
r −1 0
0 0 b− 1

 , X =

 x1
x2
x3


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and

ϕ (X) =


mx2√
1+a2x2

2

−x1x3
x1x2

 .

Suppose that system (1.3) is the driving system and the
driven system is defined as{

dY

dt
= AY + ϕ (Y ) , t ̸= τk,

∆Y = Be, t = τk, k = 1, 2, · · · ,
(2.1)

where Y = (y1, y2, y3)
T and B is impulsive control gain

matrix. The symbol e denotes system errors and e =
(e1, e2, e3)

T
= (y1 − x1, y2 − x2, y3 − x3)

T . There will be
a jump in system (2.2) when t = τk and t0 = τ0 < τ1 <
τ2 < · · · , lim

k→∞
τk = ∞.

System (2.1) minus system (1.3), we get{
de

dt
= Ae+ ψ (X,Y ) , t ̸= τk,

∆e = Be, t = τk, k = 1, 2, · · · ,
(2.2)

where ψ (X,Y ) = ϕ(Y )− ϕ(X).
Next, we present a sufficient condition for the stability of

error system (2.2).
Theorem 2.1 Let λ be the largest eigenvalues(
I +BT

)
(I +B). Supposed that L is the maximum

Lyapunov exponent of system (2.1). If

τk − τk−1 < 1/L,

τk − τk−1 < − log λ
2L ,

hold for all k = 1, 2, · · · , then the origin of impulsive
synchronization error system (2.2) is asymptotically stable.
Proof. It is shown in [14] that the maximum predictable time
of chaotic motion is 1/L. Therefore, the impulsive control in-
terval τk−τk−1, k = 1, 2, · · · must satisfy τk−τk−1 < 1/L.

If system (2.2) operates without control, then after a short
period of time, we have√

eT (t)e(t) = ∥e(t)∥ ≤ ∥e(t0)∥eL(t−t0).

Let us consider the following Lyapunov function:

V (e(t)) = eT (t)e(t) = ∥e(t)∥2.

For t ∈ [t0, τ1), it follows that

V (e(t)) = ∥e(t)∥2

≤ ∥e(t0)∥2e2L(t−t0)

= V (e(t0))e
2L(t−t0).

(2.3)

When t = τ1, it follows from system (2.2) and inequal-
ity (2.3) that

V (e(τ1)) =
(
(I +B)e(τ−1 )

)T
(I +B)e(τ−1 )

= eT (τ−1 )(I +BT )(I +B)e(τ−1 )

≤ λ eT (τ−1 )e(τ−1 )

≤ λV (e(t0))e
2L(τ1−t0).

(2.4)

Similarly, for t ∈ [τ1, τ2), we have

V (e(t)) ≤ V (e(τ1))e
2L(t−τ1). (2.5)

It then follows from (2.4) and (2.5) that

V (e(t)) ≤ λV (e(t0))e
2L(t−t0). (2.6)

When t = τ2, by the same method used to derive
inequalities (2.4) and (2.6), we obtain

V (e(τ2)) ≤ λV (e(τ−2 ))

≤ λ2V (e(t0))e
2L(τ2−t0),

which implies

V (e(t)) ≤ V (e(τ2))e
2L(t−τ2)

≤ λ2V (e(t0))e
2L(τ2−t0)e2L(t−τ2)

= λ2V (e(t0))e
2L(t−t0), t ∈ [τ2, τ3).

(2.7)

By the repeatability of the proof process, we know that
for t ∈ [τk−1, τk), we have

V (e(t)) ≤ λk−1V (e(t0))e
2L(t−t0)

= V (e(t0))e
2L(t−t0)e(k−1) log λ

= V (e(t0))e
log λ+2L(τ1−t0)elog λ+2L(τ2−τ1)

· · · e2L(t−τk−1).

Thus, we obtain the following expression:

V (e(t)) = λ−1V (e(t0))e
log λ+2L(τ1−t0)elog λ+2L(τ2−τ1) · · ·

· · · elog λ+2L(t−τk−1). (2.8)

Since the supply chain system (1.3) is chaotic, we have
L > 0, and therefore

V (e(t)) ≤ λ−1V (e(t0))e
∑k

i=1(log λ+2L(τi−τi−1)).

Hence, if log λ + 2L(τk − τk−1) < 0, for k = 1, 2, · · · ,
then V (e(t)) → 0. This completes the proof.

III. SIMULATION EXPERIMENTS

This paper concludes with a numerical example that illus-
trates the effectiveness of our method. As stated in Section
1, when m = 10, n = 3, r = 18, b = 3

7 , and a = 0.3,
system (1.3) exhibits chaotic behavior.

The initial values for the driving and driven systems are
chosen as (x1, x2, x3)

T
= (10, 10, 10)

T and (y1, y2, y3)
T
=

(11, 12, 13)
T , respectively. A small calculation shows that

the maximum Lyapunov exponent of system (1.3) is L =
0.4296.

In accordance with Theorem 2.1, through straightforward
calculations, we can determine that if the intensity and
time interval of the impulsive control satisfy the following
inequalities:

τk − τk−1 <
1

0.4296
= 2.3277,

τk − τk−1 < − log λ

2× 0.4296
,

(3.1)

then the perturbed operational state will return to the desired
trajectory after the application of appropriate impulsive con-
trol. To satisfy the inequality above, we select the impulsive
control gain matrix B = −0.7I . Thus, we have:

τk − τk−1 <
1

0.4296
= 2.3277,

τk − τk−1 < − log (0.09)

2× 0.4296
= 2.8025,

(3.2)

which implies that the time interval of regulation must satisfy
τk − τk−1 < 2.3277. Suppose that τk − τk−1 = 1.000. The
numerical simulation results are shown in Figure 4.
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Fig. 4: Impulsive synchronization of supply chain system
(1.3).

The experimental results demonstrate that when the pulse
intensity and time interval satisfy Theorem 2.1, specifically
Equation (3.1), the production quantity, distribution volume,
and sales volume within the supply chain system can be
restored to their expected states at t = 3 , thereby achieving
synchronization of the supply chain system (Figure 4(bcd)).
The error plots further reveal that at t = 6 , the errors of
all components within the supply chain system converge to
0 (Figure 4(a)).

To satisfy inequality (3.3), we select the impulsive control
gain matrix as B = −0.1I . Thus, we obtain the following
conditions:

τk − τk−1 <
1

0.4296
= 2.3277,

τk − τk−1 < − log(0.81)

2× 0.4296
= 0.2453,

(3.3)

which implies that the time interval between successive
impulses must satisfy τk − τk−1 < 0.2453. Suppose that
τk − τk−1 = 1.000. The numerical simulation results under
this condition are presented in Figure 5.
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Fig. 5: Impulsive synchronization of supply chain system
(1.3).

The experimental results indicate that when the pulse
intensity and time interval do not satisfy Theorem 2.1,
namely when Equation (3.2) is not fulfilled, the production

quantity, distribution volume, and sales volume within the
supply chain system fail to return to their expected states
(Figure 5(bcd)). As clearly illustrated in the error plots, the
deviations of each component in the supply chain system
begin to increase from t = 4 onward and continue to fluctuate
within a certain range (Figure 5(a)).

As evidenced by the experimental results, failure to com-
ply with the theorem’s constraints on both the impulsive
control intensity and the timing interval leads to subopti-
mal control performance. Under such conditions, all state
variables exhibit stochastic divergence from their predefined
equilibrium points, indicating a breakdown in deterministic
convergence.

IV. CONCLUSION

On the other hand, according to the result presented in
[17], we know that if

τk − τk−1 < − log λ

98.3069
,

then the perturbed operational state will return to the desired
trajectory after the application of appropriate impulsive con-
trol. Figure 5 illustrates the stability region corresponding to
different values of λ.
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Fig. 6: The estimation of boundaries of stable region with
different λ.

From Figure 6 we know that we get a larger stable region
for supply chain system (1.3).
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