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Lexicographic Ordering in n-dimensional Space:
Exploring Completeness Properties
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Abstract—The arrangement of abstract objects is a
fundamental topic in mathematics. While the ordering of real
numbers is well known, ordering elements in R" is considerably
more complex. This paper explores the completeness of R* when
ordered lexicographically—a method analogous to how words
are arranged in a dictionary, a process studied in lexicography.
We establish the presence of a lexicographic order in R" and
introduce new definitions for inequalities, the Archimedean
property, and the completeness property, along with several
basic characteristics of these concepts in R" In practical
applications, lexicographic order is critical for databases that
sort records based on string values, as well as for programming
algorithms and data structures—such as binary search trees—
that require efficient sorting. Consequently, a thorough
understanding of lexicographic ordering is essential for
professionals in language processing, data management, and
software development.

Index Terms — Data management,
Programming, Software development.

Lexicography,

1. INTRODUCTION

LEXICOGRAPHY is both the theory and practice behind
creating dictionaries [1]. It entails systematically
gathering, analyzing and presenting words along with their
meanings, thereby reflecting not only the language but also
the cultural and contextual background in which it is used.
The term "lexicography" is derived from the Greek words
"lexis" (word) and "grapho" (to write). This emphasis on both
the words themselves and their definitions highlights the
discipline's complexity and depth.

Lexicography divides into two primary categories:
theoretical and practical. Theoretical lexicography examines
the underlying principles and frameworks of dictionary-
making, while practical lexicography deals with the actual
creation of dictionaries. This practical aspect includes tasks
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such as selecting words, crafting definitions, and providing
usage examples. A central concern in lexicography is the
ordering of words. Although dictionaries usually arrange
words alphabetically for easy access, lexicographers also
consider methods for grouping related terms and addressing
synonyms, antonyms, and subtle differences in meaning. In
certain cases, specialized dictionaries may organize entries by
themes or concepts. For further reading on lexicography, see

[2]-[4].

A key aspect of practical lexicography is the ordering of
words using lexicographic order. Also called dictionary
order, it is a method that arranges words or entries based on
the alphabetical sequence of their letters. This ordering
method is widely used in dictionaries, glossaries, and indexes.
The following principles guide lexicographic order:

1. Alphabetical Sequence: Words are arranged from A to Z.
For example, "apple" comes before "banana."

2. Character Comparison: When comparing words,
lexicographic order evaluates them character by
character:

e Compare the first letter of each word. The word with
the earlier letter comes first.

o If the first letters are the same, compare the second
letters, and so on.

3. Handling Ties: If two words share the same prefix, the
longer word will come later. For instance, "bat" comes
before "batter."

4. Case Sensitivity: In some systems, case may matter.
Typically, uppercase letters are treated as coming before
lowercase letters, so "Apple" would come before "apple.”

5. Special Characters and Digits: When special characters
(like hyphens or apostrophes) or numbers are involved,
their positioning in the ASCII or Unicode table can
influence order. For example, "apple" would come before
"apple-pie" because the hyphen is considered.

In addition to its application in dictionaries for easy word
lookup, lexicographic order is also essential in databases for
sorting records based on string values, and in programming
for algorithms and data structures that require sorting, such as
binary search trees. This may be found in some references
such as [5]-[8]. Thus, understanding lexicographic order is
crucial for anyone involved in language processing, data
management, or software development.

On the other hand, ordering abstract objects is also one of
the interests of mathematics. The well-known ordering
mathematical objects is ordering of real numbers. This
confers ordering properties, which constitute one of the most
fundamental attributes of the real number system. An elegant
discussion about this, yet easily followed by beginners, may
be found in [9]-[11]. The ordering properties characteristic of
the real numbers can be formally stated as follows [9], [12],
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[13], [14]:
Ordering Properties of Real Numbers [9]
Let P denote a nonempty subset of R, referred to as the set of
positive real numbers, which satisfies the following axioms:
(1) Closure under Addition:
Ifa,b € P,thena+ b € P.
(i1) Closure under Multiplication:
Ifa,b € P, thenab € P.
(iii) Trichotomy Property:
For any a € R, exactly one of the following
statements holds:
a€P,
Completeness Axiom
An ordered field F is said to be complete if every nonempty
subset of F that is bounded above in F possesses a least upper
bound (supremum) within F. This axiom is satisfied by the
real number field R but not by the rational number field Q.
Essentially, it asserts that there are no "gaps" in the set R.
Consequently, R can be characterized as a complete ordered
field. Moreover, this completeness property establishes a
foundation that links the monotonicity properties of functions
with extensions to the monotonicity of real matrix functions
[15]-[17].

In this article we will generalize such properties in R™ by
applying lexicographic order, then discuss the consequences
of these properties in the space R™. We will start with the
discussion of lexicographic order in R? and the consequences
in this two-dimensional space. Next, we extent the discussion
for R™. The potential applications of the proposed idea.

a=0, —ac€P.

II. LEXICOGRAPHIC ORDER IN [R?

A commonly order used in R X R is a partial order.
Ghorpade and Limaye [18] introduced the pointwise order
for R™:

Ifx = (x1, %5, 0, %), ¥ = V1, V2, -, Vo) € R™ then

x<yex <y,foralli=12,...,n Y

Ghorpade and Limaye’s pointwise ordering is an example
of a partial order. This means that some elements cannot be
compared with each other using this order. In contrast, a total
order allows any two elements to be compared. In R", the
pointwise order allows for vectors to be compared
component-wise, but this does not guarantee that all vectors
can be compared, making it a partial order rather than a total
order. For example, we cannot compare which one is greater
between (1,2) and (2,1). Also (1,1,2) cannot be compared to
(2,2,1). However, pointwise orders are commonly used in
mathematics and have produced so many theories that are
developing today both in R? and in general in R™.

In this article we will discuss a concept of such an order in
R", particularly for R X R is totally ordered. This order is
called the lexicographic order:

Ifx = (x1, %3, 00, %), ¥ = (¥1, V2, -, Vi) € RP then

x<yex<y,orx; =y fori=123,..,k<n

and Xy 41 < Yit1 (2)

Now, applying this definition, we can compare of two
vectors, such as which one is greater between (1,2) and (2,1).
Is (1,2) less then (2,1)? Also (1,1,2) can be compared to
(2,2,1) which is (1,1,2) less then (2,2,1). Even (1,1,2) can be
compared with (1,1,3).

The completeness property in R X Rby using
lexicographic order has been presented by Cahya in [12], the
result properties R? motivated by the existing of properties
in R. Some properties in R were examined their
enforceability in R™ under the total order, particularly in
R x R. In R? it has been shown the properties that are
fulfilled by the lexicographic order, such as the existing of
lexicographic order, inequality, modified Archimedean,
completeness in R X R, and their influence to the properties
of multivariable functions, such as monotonicity property.

Cahya [12] in his researched for R X R starting the prove
by dividing R X Rin such a way so that R X R splits into
three disjoint subsets. Suppose K is a subset of R X R, given
by
K ={(x,y) € R%:x >0} U {(0,y) € R%:y > 0}. 3)

Through the set K we will divide the set R X R into three
disjoint sub sets, i.e.

K ={(x,y) eR%x >0} U {(0,y) ER%y >0},
0 = (0,0)and (K U 0)°.

Using the above definitions and the wusual addition,
subtraction and scalar multiplication operations that apply in
R?, then the set K possesses the following properties.

Proposition 1

Let K © R?, be the set defined in (3). For every a,b € K,
and ¢ > 0,c € R we have:

(i). a+beK

(ii).ca €K

However, the multiplication of two elements in R? that
satisfy the closed property has not been specifically defined,
although the ordinary two-point multiplication operation in
R? and the Sets of Complex number already exists.

The point wise product in R? is not closed in X, because
(0,1)(1,0) = (0,0) € K. The multiplication of Complex
number , i.e. (a,b)(c,d) = (ac — bd,ad + bc) is also not
closed in K, for example (0,1)(1,0) =(-1,0) € K.
Therefore, it is not true that a, b € K implies ab € K.

Under the lexicographic order in (2), the Trichotomy
property is valid in R?, i.e. for every a € R? then either

a €K ora=0,or-a €K

When a € K, we write a > 0 and a is called positive. When
a € K U 0, we denote this by writing a > 0, and say that a is
nonnegative. Conversely, if -a € K, we denote this by a <
0 and refer to a as negative. When —a € K U O, we write
a < 0, and a is called non positive. This is different with the
concept of positive element in R, the positive element in R2
isa=(x,v),x>0 orx=0andy > 0. This means a =
(x,y) >0 not only for x > 0andy > 0. This concept,
implies to the definition of positive element in a bigger space,
which is R™. Thus, lexicographic order has an important role
in defining inequality in R®,n > 2,n € N. And then, the
inequality of two points in R? is defined as follow.

Definition 2

Suppose p,q € R?%.

(i). Ifp —q € K,thenwe writep >qorq <p.

(ii). Ifp — q € K U O, thenwe write p = qorq < p.
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For all p, q in R? , the Trichotomy Law ensures that precisely
one of these relations is true: p > q, p =q orp < q.

Therefore, if we have a = b and a < b then a = b.
Hence forward, a = b is meant as a > bora = b. Just
like in R, the inequality a < b < c¢means a < band
b < c.Theinequalitiesa < b < c,a < b < c,anda <
b < c can be interpreted similarly.

We will give some interpretation of the inequalities. Let a =
(as,a3),b = (by,b;) be in R% a—b € K means (a; —
by,a, —b,) € K. Furthermore, (a; —by,a, —by) EK
means (a; —b; > 0) or (a; — b, = 0and a, — b,>0) or
(a; > by) or (a; = by and a, > b,) . Consider the following
example, (1,3) > (1,2) because (1,3) — (1,2) = (0,1) € K.

Finally, we can define the existing of lexicographic order in
R X R as follow.

Definition 3

Suppose a = (a,a,), b = (by, by) di R?. We define
a<b&a <bjora; =b;anda, < b, 4)

Using the above definition, we have the following

proposition.

Proposition 4
Suppose a,b,c € R? and k € R.
(1) Ifa > band b > cthena > c.
(i1) Ifa > bthena + ¢ > b + c.
(iii) Ifa > band k > 0thenka > kb.
Ifa > band k < Othenka < kb.

Furthermore, the modified Archimedian properties in RxR in
[5], are also satisfied for RxR in the order (4).

Proposition 5 (Modified Archimedean property, [18])
Suppose a,b € RX R with a = (x,y),x > 0, then there
is k € N such that ka > b.

Proof. To prove the proposition, is enough to consider the
case s > 0, and show that there is k¥ € N such that kx > s. It
can be shown that the relation on (4), is a total order
lexicographic order in R x R [18].

Consider the following example, lets a = (2,1) and b =
(7,5), then there is k =4 € N such that 4(2,1) > (7,5).

Similarly, fora = (3,1) and b = (5,6) there isk = 10 € N
such that 10 (3, 1) > (5,6).

Next, we will utilize the concept of lexicographic order in
solving inequalities in R?. Suppose that inequality (x,y) >
(a,b), for some (a,b) € R, We will look for a set of
solutions to these inequalities. Write the inequality as
(x,y) —(a,b) > 0 its mean (x —a,y — b) € K. Then we
have (i). x —a>0or (ii). x —a=0andy —b > 0. Or
(i).x > a or (ii).x =adany > b. From (i)and (ii) we
have a set of solutions is
{(x,y) ER%:x > a for some a € R} U {(x,y) € R?%:x =
aandy > b for some a,b € R}.

Example 1
We seek to determine the solution set of the given inequality
(x,y) > (2,4). As a first step, we reformulate the inequality

in the following form (x,y) —(2,4) > 0 or equivalently
(x — 2,y — 4) € K. This implies two possibilities: (i).x —
2>0o0r (ii).x —2=0andy — 4 > 0. In other words, we
obtain the conditions: (i).x > 2 or (ii).x = 2 and y > 4.
Thus, the solution set is: {(x,y) € R%:x > 2} U {(x,y) €
R2:x = 2 and y > 4}. Suppose that A = {(x,y) € R%:x =
2andy >4} and B = {(x,y) € R%:x > 2}, then the set of
solution is A U B, and illustrated as follows.

Yy
SetA A

Set B

1
1
i
<+ l
_I—’ T
2
Figure 1. A U B is the set of solutions in Example 1

Next, consider the inequality (p, q) < (x,y) < (a, b), for
some fixed (p, q), (a, b) € R%?. We can break this compound
inequality into two separate  parts: (p,q) <
(x,y) and (x,y) < (a,b). For the inequality (x,y) <
(a,b) we writeitas (a — x, b —y) € K. Which implies either
a—x>0or a—x=0 and b-y>0(.e,x =
aandy < b). Thus, the solution set for (x,y) < (a,b) is
{(x,y) e R%:x < aforsome a € R}U{(x,y) € R%:x =
aandy < b for some a,b € R}.  Similarly, for the
inequality (p,q) < (x,y), we write it as (x —p,y —q) €
K, which implies either x —p > 0orx =pandy —q > 0.
Or x > porx =pandy > q.So the solution set for case 2
is{(x,y) € R?>:x < a for some a € R}U
{(x,y) ER?: x =aandy < b for some a,b € R}. The
overall solution set for the inequality (p,q) < (x,y) <
(a, b) is the intersection of the two solution sets above—
namely, those (x,y) that satisfy both conditions
simultaneously.

Example 2

Our goal is to determine all values that fulfill the inequality
(1,2) < (x,¥) < (3,4). This means we need to find the
intersection of the solution sets for (1,2) < (x,y) and
(x,¥) < (3,4). For (1,2) < (x,y), we write as (x — 1,y —
2) € K, which implies either: x > 1 thatisx = land y > 2.
So the first solution is P = {(x,y):x > 1} U {(x,y):x =
1 and y > 2}. Similarly, for (x,y) < (3,4) then (3 — x,4 —
y) €EK. So we have x <3orx=3andy <4. So the
second solution is Q ={(x,y):x <3}U{(x,y):x =
3 and y < 4}. So, the solution set is

PNnQ={C,y):1<x<3}U{(x,y):x=1andy > 2}
U{(x,y):x =3andy < 4}

=AUBUC,
which
A={(x,y):1<x<3}
B ={(x,y):x =1andy > 2},
C={(x,y):x=3andy < 4}.
See figure 2.
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Completeness Property in R X R
In this section, we discuss the general concept of
boundedness in R X R, as well as the definitions of a
modified supremum and infimum for sets within R X R.
These definitions are adaptations of the ones presented in
[18]. We have revised the existing notions because bounded
subsets in R differ from those in R X R, particularly when
comparing the partially ordered structure described in [18]
with the total order defined in (4).

For instance, consider the set S = {(x,y) ERXR:0 <
x <1}. Under the partial order defined in [18], S is not
bounded because there is no element (a,b) € R X
R that serves as an upper bound for every (x,y) <
(a, b) for every (x,y) € R X R. In contrast, when we use the
lexicographic order defined in (4), S does have both an upper
and a lower bound, even though it may lack a supremum and
infimum. Thus, although S is an infinite set, it is considered
bounded according to the lexicographic order.

Set B <~ '
~— 1 Set A
af---- -9/7
2t-0

F 9
SRR vy
\ci

A

v A 4

Figure 2. AU B U C is the set of solutions in Example 2

This distinction affects the definitions of supremum and
infimum. Under the partial order described in [18], the
supremum and infimum of a set can lie far from the set’s
elements. For instance, consider the set S = {(x,y):y =1 —
x,0 < x < 1} . According to [18], Sup(S) = (1,1) and Inf(S)
= (0,0). However, with the total order defined in (4), the
supremum and infimum of S become (1,0) and (0,1),
respectively. In fact, many open sets under the total order in
R X R lack a true supremum or infimum, even if they have
upper and lower bounds. This example shows that the
completeness property in R X R, when considered under the
total order, is rather weak. Therefore, it is necessary to
redefine the concepts of bounded sets, as well as the
supremum and infimum, in R X R.

In the following discussion, we propose new definitions for
bounded sets, supremum, and infimum in R X R.

Definition 6

Suppose S # @, S € R X R. Sisright-bounded in R X R if
there exists an interval I that is bounded above in R and a
bounded interval J in R such that S & I X J. The point
(a,b) in R X R that satisfies (x,y) < (a,b) for every
(x,y) € Sis called a right bound of S.

Definition 7

Suppose S € R X R, S # @. We say that S is bounded on the
left if there exists an interval /, bounded below in R, and a
bounded interval Jin R such that S € I X J. The point

(a,b) in R X R that satisfies (x,y) = (a,b) for every
(x,y) € S isreferred to as a left bound of S.

Definition 8
Let S S R X R,S # 0. We say that S is totally bounded if S
bounded in the left and the right in R X R..

Consequently, a set S is called totally bounded in R X R if
there are bounded intervals I and J in R such thatS € [ X .

Example 3
The set

S={(,x)I0<x<1}
is totally bounded in R X R, because there are bounded
intervals [ = (-1, 2) and J = (-1,2) such that S < I X J. For
any (x,y) in S, we have x € (0,1) € (-1,2) =1,y € (0,1) S (-
1,2)=1.

Moreover, since S is contained within the closed intervals
[-1,2] and [-1,2] such that S € [-1.2]x[-1,2] and (x,y) <
(2,2) for every (x,y) in S, then (2,2) is a right bound for S.
Butis (1,1) € S a right bound as well? Yes—it turns out that
there exist intervals [—1, 1] such that [-1.1] and [-1,1] such
that S € [-1.1] x[-1,1] and (x,y) < (1,1) for every
(x,y)in S.

According to Definition 8, assume that S is totally bounded
in RXR.Apoint (p,q) € RX R that satisfies (p,q) <
(x,y) for every (x,y) € Sis called a left bound of S.
Conversely, a point (a, b) € R X R for which (x,y) < (a, b)
holds for every (x,y) € S is called a right bound of S.

In the following section, we will introduce the concepts of
the least right bound and the greatest left bound of a set S in
R X R, which emerge from our definitions of bounded sets
and the total order on R X R. For any S C RX R, we
denote S (closure of S) as the smallest closed set that contains
S. If S is closed and totally bounded, then we called S as
compact set. Heine-Borel Theorem ensures that S is compact
set if and only if S is closed and totally bounded.

Definition 9
Suppose SC RX R, S # @.

a. If S is right-bounded, then a point (a, b) € S is called the
optimal supremum of S if it satisfies the following
conditions:

1. (a,b) is a right bound for S, and
2. If (a,B) €S is a right bound of S, then (a,b) <
(a,B).
b. IfSis left-bounded, then a point (s,t) € S is called the:
optimal infimum of S if it satisfies:
1. (s,t)isa left bound for S, and
2. If(a,B) € Sisaleftbound of S, then (s,t) = (a,pB).

Lemma 10
The optimal supremum of a set S is unique.

Proof:

Assume for contradiction that S has two distinct optimal
suprema, say (a, b) and (s, t). If (a,b) < (s,t) , then (a, b)
cannot be a right bound for S, contradicting its optimality.
Conversely, if (s,t) < (a,b), then (s,t) fails to serve as a
right bound for S. Therefore, we must have (a,b) = (s,t).
A similar argument establishes the uniqueness of the optimal
infimum.
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In R, the following statement is true.

“A point u € S is the supremum of a non-empty S if and only
if the following conditions are met:

(1).s < uforalls € S.

(2). If v < u, then there is s' € S such thatv <s'.”

But it is not true for optimal supremum in R?, for example
S={(x,1)10<x<2} Chooseu =(2,1) andv =
(2,0), but {v < (x,y) <u} = 0.

Remark. Consider set A = {(x, ) ER? |0<x <1}, u=
(2,0) is optimal supremum of A and v = (2,0) is right bound
of A, but there is no (x,y) € A such that v < (x,y) < u.
Also, let B={xeR|1<x<3orx=4}, supB =4,

and 3% is upper bound of B, but there is no x € B such that
3% <x <4

Example 4

Consider the set S ={(x,¥):0<x <1,y =1-—x}. This
set is a totally bounded because it is contained within the
rectangle [0,1] and [0,1]. Notice that (1,0) € S, and every
(x,y) in S satisfies (x,y) < (1,0), which makes (1,0) a
right bound for S. Similarly, every (x,y) € S satisfies
(x,y) = (0,1),s0(0,1) is aleft bound for S and (0, 1) € S.
Therefore (1,0) is the optimal supremum of S, and (0,1) is the
optimal infimum of S.

Yy

1 Set S

A
8

v 1

Figure 3 Illustrative representation of set S in Example 4.

Example 5

Consider a set T ={(x,y) € R?|x € (0,1), y € {1,2}}.
Since it is contained within [0,1] X [1,2] then it is a totally
bounded set. Points (1,1) and (1,2) are right bounds for T,
and elements of T ={(x,y) € R? | x € [0,1], ¥ € {1,2}}.
The set of all right bounds of T in T is 4 = {(1,1), (1,2)}.
So, the optimal supremum is the smallest element in A, that
is (1,1).

F ;
[
[
2 @—9
1 W set T
: W Set A
1 §—@ B SetB
1
[
[
l >
1

Figure 4. A,B are the sets of all right and left bounds of T in T

On the other hand, the set of all left bound of T in T is B =
{(0,1), (0,2)}, so the optimal infimum is the largest element
in B, that is (0,2). Although, for any t < 1, (1,t) < (1,1)
and (1, t) is a right bound of T, we should notice that it is not
an element of T, so it is not in our consideration. Similarly,
for any s > 2, (0,s) > (0,2) and a left bound of S, but
(0,s) eT.

Example 6

Consider set U ={(x,y)|0<x <1,y € {1,2}}. Notice
that U = U, and the only right bound of U in U is (1,2), so
(1,2) is the optimal supremum.

B sctv=0

~

Figure 5. U = U. (1,2) is the only right bound of U in U

Again, although for any t > 2, (1,t) is a right bound of U,
we will not consider it since it is not in U. Similarly, (0,1) is
the optimal infimum of U.

Example 7
Consider a set

U={(xy)|0<x<1y€e{123}}u{(0:2),(1,2)}
We have

U={(xy)|0<x<1ye€{123}}

and the set of all right bounds of U is P =
{(x,y) € R? | (x,y) = (1,2) }, therefore the set of all right
bounds of S in U is C=PnT ={(1,2),(2,3)}. So, the
optimal supremum is the smallest element in C, that is (1,2).

Y
3
2 R
|
1 || Right bounds set of U
|
1 Pl
|
1
|
< & > x
1
v

Figure 6. U and right bound set of U.

Volume 55, Issue 10, October 2025, Pages 3231-3241



TAENG International Journal of Applied Mathematics

On the other hand, the set of all left bounds of U is Q =
{(x,y) € R? | (x,y) < (0,2)}, therefore the set of all left
bounds of S in U is D =Q u U = {(0,1),(0,2)}. So, the
optimal infimum is the largest element in D, that is (0,2).

Let S S R X R is compact set. Since S is closed and
bounded, then the existence of optimal supremum and
optimal infimum should be guaranteed. Here (a*, b*) is the
candidate of the optimal supremum of compact set S,

a*=sup{x €ER| (x,y) €S}
and
b* =sup{y € R| (a*,y) €S}
Similarly, the candidate for optimal infimum is (a,, b,) which
a, =inf{x €R| (x,y) €S}
and
b, =inf{y eR| (a*,y) €S}.

Proposition 11
Let S € R X R is compact set, then (a*,b*) € S.

Proof:
Since S = S, then we just need to prove (a*,b*) € S, that is
by verifying B((a*,b*),r)NS#® for any r>0. By
contradiction, suppose that there exists a 1, > 0 such that
B((a",b*),15) N S = @. By definition of b*, we have
(a*,b*) = (a*,y) V(a*,y) € S.
Since
B((a",b"), 1) NS =0,
then b* — 1, >y for any (a*,y) € S, implies b* —Tz—" > y.
Therefore
Ty _

(a*,b* —E) > (a*,y) V(a*,y) €S.

Contradict with the definition of b*. The proof is complete.

The following theorem shows that (a*, b*) is the optimal
supremum of a compact set S.

Proposition 12
Let S © R X R is a compact set, then (a*, b*), which
a*=sup{x €R| (x,y) €S}
and
b*=sup{y ER| (a",y) €S},
is the optimal supremum of S.
Proof. Since S is compact, then S = §. Since a* = x for any
(x,y) €S, then (a*,y) = (x,y) for any (x,y) € S. Since
b* >y for any (a*,y) € S, then (a*,b*) = (a*,y) for any
(a,y) € S. Therefore, (a*,b*) = (x,y) for any (x,y) € S.
This shows that (a, b) is right bound for S, which implies a
right bound for S. Since (a*,b*) is right bound of S and
(a*,b*) € S (previous proposition), then (a,b) is smallest
right bound for § = S. So, (a, b) is optimal supremum of S.

Definition 13
For any set S € R? and any point a € R?, we define the
translated set as:

a+S={a+x:x€S}

Example 8

Suppose that S = {(x,y):0<x <1,0<y < 1},a = (2,2).
Thena+S={2+x2+y):0<x<10<y<1}=
{(e,y)2<x<32<y<3}.

The optimal supremum of S is (1,1) and its optimal infimum
is (0,0). Consequently, the optimal supremum of a + S =
3,3) =(2,2) + (1,1) = a + optimal supremum of S and
the optimal infimum of a + S = (2,2) = (2,2) + (0,0) =
a + optimal infimum of S.

a+ S

[y

F 3
v
8

Figure 7.Sanda + S

Proposition 14

Suppose S € R? is totally bounded, and a € R2.

Then supop(a+S)=a+supop (S) and inf op(S) =
a+inf op (S).

Note: sup op (S) = the optimal supremum of S and

inf op (S) = the optimal infimum of S.

Example 9
Consider that S = {(x,y):0 < x <1,y =1 —x} and
a = (2,1). See Fig. 5.

Consider that

a+S={a+s:s€eS}

={2,D)+ (xy)0<x<ly=1-x}
={Q+x1+y)2<x+2<3,y=1-x}
={(x",y')2<x' <3,y —-1=1-("-2)}
={(x,y):2<x<3,y=4—x}

Then Sup Op(S) = (1,0) dan Inf op(S) = (0,1).
Supop(a+S)=(31)=(21)+ (1,0) = a + Sup op(S)
Infopla+S)=022)=021)+ (0,1) =a + Inf op(S)

Yy

F N

Seta+ S

.} [Ipep——

1
Set S €—_

v
8

Figure. 8. Another example of S and a + S
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MONOTONIC FUNCTIONS

The study of monotone real functions has inspired research
into monotone matrix functions [15]-[17]. Naturally,
extending the notion of single-variable monotonicity to
multivariable functions is a logical step. This article presents
preliminary findings from our project aimed at generalizing
monotone matrix functions to their multivariable
counterparts.

In this section, we discuss the concept of monotonicity for
real functions of two variables—a definition that differs from
that in [18] and aligns with the total order we are employing.

Definition 15

Suppose D € R?and f:D — R be any function, and let 1
and J be intervals in R such that I X ] € D. We say

(1) f is strictly increasing on I X ] if for every

(x1,y1) and (x,,y,) in I X J, we have
if (x1,y1) < (x2,y;) then
(D) f(x1,¥1) < f(xz,y1) or

f(x1,y2) < fxz,¥2) if %3 <x; or
(2) f(x, 1) < f(2,p2) if X1 =%, 01 <2
f is strictly decreasing on I X ] if for every
(x1,y1) and (x5, y,) in I X J, we have
If (%1, y1) < (x2,¥;) then
(D f(x1,31) > f(xz,¥1) or

f(x1,y2) > f(x,y2) if X3 <x0r
(2) f(x, 1) > [, ¥2) if X1 =%, 01 <2
f is strictly monotone on [ X ] if f is strictly
increasing or strictly decreasingon I X J.
f isincreasing on I X J if for every (x;,y;) and
(x3,¥,)in I X J, we have if (xq,y,) < (x5, y,) then
(D) f(x, 1) < f(x2,¥1) or f(xq,¥7)

< f(xy,y,) ifxy < x,0r
(2) f(x, 1) < f(x2,y2) if Xy =%, 01 <2
f is decreasing on [ X ] if for every (x,,y;) and
(x2,¥,) in I X ], we haveif (xq,y7) < (x3,v,)then
(D) f(xy,y1) = f(xz,y1) or f(x1,¥2) = f(x2,¥2)
if x; < x,0r

(2) f(xp,y1) = fxa,y2) if % = 25,1 <,
f is monotone on [ X if f is increasing or decreasing
onl XJ.

(i)

(1i1)

(iv)

V)

(vi)

Example 10

The functions f(x,v) = x3 and f(x,vy) = y3are increasing
on R X R, meanwhile the function f(x,y) =y3+x3 is
strictly increasing on R X R.

Next, we consider a special class of two variables functions,
and we discuss their relation with monotonicity of functions.

Proposition 16

Suppose I = @,] # @, I, J are intervals in R. For any
functions

wl—-R and 9:] -» R, define f:I1xX] > R and

h:1x] = Rby f(x,y) = u(x) +9(y) and h(x,y) =
u(x)9(y) forevery (x,y) €I X J. Then:

(1) fis strictly increasing on I X J and only if p is
strictly increasing on I and § is strictly increasing
onJ.

(2) Ifu(x) >0 and9(y) >0 forallx eland y €
J. Then # is strictly increasing on [ X J if only if
U is strictly increasing on 7 and 9 is strictly
increasing on J

Proof.
Both parts follow directly from the definitions.

A similar statement holds for decreasing functions. These
propositions, along with the next one, provide a foundation
for constructing various examples of monotonic functions.

Proposition 17
Suppose I # @,] # @,1, J are intervals in R. Theset! + J: =
{x + y:x € Iand y € J} is interval in R. Further, let ¢: I +
J = R be any function and consider /> [ X | — R defined by
f(x,y):=@(x +y)for (x,y) € x]. Then:
1. ¢isincreasingon/ +J = fisincreasingon [ X J
2. @is decreasing on / + ] = fis decreasing on [ X J
Proof. First, one shows that [ 4+ ] is an interval in R (see
[18, p. 16]). Then the result follows from the definition (14).

The properties we have established in R? have inspired this
study. We examine certain properties in R2—such as various
inequality relations, the modified Archimedean property, and
the modified completeness property—and assess their
validity in R™ under the total order. In this research, we
employ analytical methods to extend the concept of
lexicographic order from R%*to R™, and we have obtained
several promising results.

IV. EXTENSION TO LEXICOGRAPHIC ORDER IN R"

In this section, we will expand on the foundational concept of
lexicographic order in R™, building upon the ideas developed
in [12] to clearly demonstrate its extension to higher
dimensions. We begin with the following definition of
lexicographic order in R™ (another results about
Lexicographic in R™ can be found in [19]-[23]).

Definition 18

If X = (x1'x2 ,x3,...,xn),y = (}/1,}/2,}’3,---,yn) € ]Rn
then x<yox; <y, or x;=y; for i=123,..,k<
n and Xpqq < Yisq, (5)

Next, we partition R"™ into three distinct subsets whose
union is R™, similar to how R? is divided into three disjoint
subsets.
Specifically, for any x = (xq, x5, ..., x,) € R™, and K; is a set
of all element in R™ such that first elements which is not zero
is the i*" element and is a real positive. For examples of set
K; = {(0,0,x3, x4, ..., Xp) € R™: x5 > 0}. Next, define
—-K; = {(0,0, w0, =%, = Xj4q, ...,—xn) € R™: xj > 0}, and
let K = UTK; c R™ (6)
Using the set K, we can partition R" into three disjoint
subsets, i.e K, 0, —K with 0 = {(0,0, ...,0)} such R* = K U
OuU—K.

Under the standard operations of addition and scalar
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multiplication in R™ the set K satisfies the following
properties.

Proposition 19
Let K < R"™ be the set defined in (6). For every a,b €
K,and c > 0, c € R, the following properties hold:

DDa+b €K

2)ca €K

Note that the pointwise product in R™ is not closed in K. for
example (0,1,0, ...,0)(1,0,0, ...,0) = (0,0,..,0) € K. Thus,
it is not true that a, b € K implies that ab € K.
Under the lexicographic order defined in (1), the Trichotomy
property holds in R", i.e. for any vector a € R™ exactly one
of the following is true:

a € K,ora = 0,or —a € K

When a € K, we denote this by writing a > O and call a
positive. Ifa € KU 0, we write a = O, and say that a is
nonnegative. Similarly, when —a € K, we write a < O,
and say that a is negative, and if —a € K U O, we write
a < 0, and say that a is non positive.

With these definitions, the ordering of two points in R™ is
established.

Definition 20

Leta, b € R,

(i). Ifa — b € K, then we write a > b (or equivalently,
b < a).

(ii).Ifa — b € K U O, thenwewrite a = b(orb < a).

By the trichotomy property, for any two vectors a and b in

R™, exactly one of the following holds: a > b,ora =

bor a < b. Consequently, if botha > band a < b then

a = b. Henceforth, a = b is understood to mean either

a > bora = b. Just like in R, the notationa < b < ¢

means a < band b < ¢, and similarly, the compound

inequalitiecsa < b < c,a < b < c,anda < b < care

interpreted in the same way.

To illustrate these inequalities, consider vectors a and b in
R™. The condition a,b € R", then a — b € K means a, —
by >00ra;—b;=0,i=123,...,k<nand ay,, —
bry1 > 0.

Example 11
(2,3,..,6) > (1,2,...,9) because (2,3,...,6)
- (12....9 = (L1,...,-3) € K.
2,3,...,1) > (2,2,...,0)because (2,3,...,1) — (2,2, ...,0)
= (0,1,...,.1) € K,

The order relation " < " as defined in (5) for R" satisfies
the properties of a total order.

Proposition 21
The relation of < in (5) is the totally order.

Different with properties of the order that we know, which is

foraand binR", a <b < a; <b; @)
Relation < in (7) is the partial order of R™, because the three
condition of partial order is satisfied. But < is not the total

order in R™, because not every element g, b in R" satisfies a
<bora=>b. To illustrate the basic properties of our order and
their implications for inequalities, we conclude the result as
follow.

Proposition 22
Suppose a,b,c € R" and k € R.

(1) Ifa>band b > cthena > c.
(i1) Ifa>bthena+c>b+c.
(iii) If a > b and k > 0 then ka > kb.

Ifa > b and k < 0 then ka < kb.
Proof

(i).Ifa—beKandb—c€ Kthena—c=(a—b) +
(b —¢) € K. We conclude that a > c.

(ii). fa—be€eKthena — b+0 = (a — b) + (c —
c)=(a+c)+(-b—-¢c)=(@+¢c)—(b+
c¢) € K (because ofifa € Kthena + O = a € K).
We conclude thata + ¢ > b + c.

(iii). fa — b € K, thena, > byora; =b;,i =
1,23,...,p<n and apy; > by -

There are two cases. The first, if a; — b; > 0 and k >

0,k € R then ka; — kb; = k( a; — b;). We conclude, ka —
kbe K. The second, ifa; = b; ,i = 1,2,3,...,p <

n and a1 > bpyq then k(apyq — bpyq) > 0for k>0
such that kay ., — kbyy,) > 0 witha; = b;,i =
1,2,3,...,p <n. Weconclude, ka — kb € K or ka > kb.
The similar proof, can be used for case k < 0.

COMPLETENESS PROPERTY IN R"

In this section, we introduce the definition of a bounded set
in R™ and extend the concepts of supremum and infimum for
sets in R?, building on the definitions presented in [12].

Definition 23

Suppose S # @, S € R™. Sisright-bounded in R™ if there
exists an interval I; in R that is bounded above, along with
bounded intervals I,k = 2,...,n in R such that S €
L X, X..xIL, A point s € R" that satisfies s > x for
every x € S is called a right bound of S.

Definition 24

Suppose S # @, S € R™. Sis left-bounded in R" if there is
an interval I; in R that is bounded below, along with bounded
intervals I, k = 2,...,n in RsuchthatS € I; X I, X ..X I,.
A point s € R" that satisfies s < x for every x € S is called
a left bound of S.

Definition 25
Let S € R™", S # 0. We say that Sis totally bounded if S
bounded in the left and the right in R™.

Equivalently, S is totally bounded if there exist bounded
intervals I}, k = 1,2, ...,n in Rsuchthat S S [; X [, X ... X
L.

Next, we will discuss the concept of the smallest right
bound and the largest left bound of a set S in R"® as a

Volume 55, Issue 10, October 2025, Pages 3231-3241



TAENG International Journal of Applied Mathematics

consequence of our definitions of bounded sets and the
lexicographic order on R™. The definitions of supremum and
infimum will be presented as extensions of the corresponding
definitions in [12].

Definition 26
Suppose S # @, S € R", and S is its closure.
a. If S is bounded right, a point a € S is called the optimal
supremum of S if it satisfies the conditions:
i) a is aright bound for S (that is, a > x for every x €
S), and
ii) a is the smallest right bound of S, meaning that for
any right bound t € S of S, we havea < ¢ .

b. If S is left bounded, a point u € S is called the optimal
infimum of S if:
i) u is a left bound for S,
ii) u is the greatest left bound for S, meaning that for any
left bound w € S of S, we have u > w.

Part (a)(ii) ensures that a is the minimal right bound, while
part (b)(ii) guarantees that u is the maximal left bound. In
what follows, the optimal supremum of S is denoted by
sup op(S) and optimal infimum by inf op(S).). LetS € R"*
is totally is compact set. Since S is closed and bounded, then
the existence of optimal supremum and optimal infimum
should be guaranteed. Following previous studies, the
candidate for optimal supremum is (aj, a3, -, a;,), which

a; = sup {xl ER | (x11x2'x31'”1xn) € 5};

a; = Sup{xz ER | (a;'x21x3' ---,xn) € 5}1

a; = Sup{x3 ER | (a;'a;'x& ""xn) € 5};

a;, =sup{x, € R| (a;,a;, a3, ,a,_1,x,) €ES}.
Similarly, the candidate for optimal infimum is
(al*, a,,, ---,an*), which

a;, = sup {x; € R| (xq,%p,%3,+,%,) €S},

,X%n) €S},
,X%,) € S}

a,, = sup{x, € R| (aj,x;,x3,
a3* = Sup{x3 € R | (a;l a;'x3;”'

a,, = sup{x, € R| (a;,a3,a3,,a,_1,%,) €S}

Proposition 27
Let S ¢ R™ is a compact set, then
(a3, a3, ,a;) and (al*,az*, ~-',an*) €S.

Proof:
Mimic the proof of Proposition 11.

Proposition 28
Let S © R X R is a compact set, then (a*, b*) is the optimal
supremum of S.

Proof:
Mimic the proof of Proposition 12.

An analogous condition holds for the optimal infimum.
Example 12

Consider the set S = {(x,y,2) ER3: x+y+2z<4,x>
0,y > 0,z > 0}(as illustrated in Fig. 9).

This set is totally bounded in R? because there exist
bounded intervals I, = [0,5],1, = [0,5],and I5 = [0,3],
such that § € I; X I, X I5. In this case, for any (x,y,z) €
S,then x € (0,4] < [0,5]=1,,y € (0,4] € [0,5] = I,
z€(02] € [0,3] = I.

The point (4,0,0) € S, and serves as a right bound of S,
since for every (x,y,z) € S satisfies (x,y,z) < (4,0,0). To
see that (4,0,0) is the smallest right bound, assume there
exists another right bound (p,q,r) such that (p,q,r) <
(4,0,0). If p = 4 then necessarily g < 0, which contradicts
the condition y > 0. If y > 0 then (p,q,r) € S. Thus, (4, 0,
0) is the optimal supremum of S. Similarly, one can show that
the optimal infimum of S is (0, 0, 0).

z
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Fig. 9. Illustrative representation of set S in Example 12

Lemma 29
The optimal supremum of any nonempty set S is unique.

Proof:

Assume that S has two optimal suprema, say x and y. If x <
y, then, given that y is the optimal supremum, x cannot serve
as a right bound for S. Conversely, if y < x, then x cannot be
the optimal supremum. Therefore, we must have x = y. A
similar argument establishes the uniqueness of the optimal
infimum.

An analogous condition holds for the optimal infimum.

Proposition 30

For any S # @, S € R? that is right bounded has an optimal
supremum in R2. Similarly, for any S # @, S € R? that is
left bounded has an optimal infimum in RZ.

Proof:

Let D be a nonempty, right-bounded subset of R2. Then there
exists an interval I; in R that is bounded above and an interval
I, in RsuchthatD € I; X I,. Define M; = {x;/(x;,x;) €
D}. M; < I, is bounded above, M; has a supremum, say o, in
R; similarly, M: is bounded. Three cases rise:

Case (1), if @ € M; then (a,y) =supop D with y =
sup{x,/(a, x,) € D} or y is the only element in di M, then
(a,y) € D. Case (2), if a ¢ M; then (a,y) = sup op D with
y = inf{x,/(a,x,) € D}ED} ory is the only element in M,
then (a,y) € D. Case (3), if @« € M; at once a & M;(D is
combination of several subsets in R?), a similar analysis
applies as in the previous cases.
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A similar line of reasoning shows that every left-bounded
subset D of R? has an optimal infimum. This framework can
be extended to subsets of R™.

Proposition 31
Forany S # @, S € R" that is right bounded has an optimal
supremum in R™. Likewise, for any S # @, S € R" that is
left bounded has an optimal infimum in R™. In conclusion,
any totally bounded set in R® possesses both an optimal
supremum and an optimal infimum.

In what follows, we extend the translation operation
defined in Definition 12 to R™.

Definition 32
For any subset S € R", and any point a € R", define
a+S={a+x:x€R"}

Example 13

LetS ={(x,7,2):0<x<10<y<10<z<
1}andleta = (2,2,2). Thena+S ={2+x,2+y,2 +
z):0<x<1,0<y<1,0<z<1}={(x,y,2):12<x <
3,2<y<3,2<z<3}.

Given that the optimal supremum of S is Sup Op(S) =
(1,1,1) and the optimal infimum is Inf op(S) = (0,0,0), it
follows that Supop(a+S5)=(333)=(222)+
(1,1,1) = a + Sup op(S), and Inf op(a+S) = (2,2,2) =
(2,2,2) + (0,0,0) =a + Inf op(S)

Example 14

Consider the set S={(x,y,z) ER3: 3x+2y+2z<
6,x >0,y >0,z>0}and let a = (2,2,2) (see Fig. 2). S is
totally bounded in R3 since there exist bounded intervals I; =
[0,3],1, = [0,4],and I; = [0,4], such that S € I; X I, X I5.
In particular, for every (x,y,z) € S, we have x € (0,2] <
[03]=1,,y€ (03] c[04] =1,,z€ (03] €[04] =I5.
The point (2,0,0) € S,and is a right bound of S because
every (x,y,z) € S satisfies(x,y,z) < (2,0,0). To show that
(2,0,0) is the smallest right bound, assume there exists
another right bound(p, q,7) such that (p,q,r) < (2,0,0). If
p = 2 then g < 0, this is the opposite of y > 0 hypothesis. If
y>0 then (p,q,v) €S. Thus, (2,0,0) is the optimal
supremum of S. Then Sup op(a +S) = a+ Sup op(S) =
(2,2,2) + (2,0,0) = (4,2,2). Or by direct calculation
a+S={222)+(x,y,z) ER®: 3x+2y+2z<
6,x>0y>0z>0}={2+x,2+y,2+2z) ER3:
3x+2y+2z<6,x>0,y>0,z>0}={",y,2) €
R¥: 3(x' —2)+2(y' —=2)+2(z -2)<6,x' -2 >
0,y—2>0,z—2>0}={(x,y,z) ER®: 3x+2y+
22 <20,x>2,y>2,z> 2}

Seta+ S

Figure 10. Sand a + S in R3

Proposition 33

Suppose S € R" is totally bounded, and a € R™.

Then supop(a+S)=a+supop (S) and inf op(S) =
a+ inf op (S).

Proof-

Letm = sup op (S), so that for every Vx € S,x < m. Then,
for every x € S,we have a + x < a + m, implying that a +
m is the right bound for a + S. Hence, sup op(a +S) < a +
m = a + sup op (S). Conversely, if v is any right bound of
a+S, then a+x <v,Vx €S. So that v —a is the right
bound of S. Hence w = sup op (S) < v — a, which implies
that a + w < v. Since v is an arbitrary right bound of a + S
it follows that a + supop (S) =a +w < supop(a + S).

V. DISCUSSION AND CONCLUSION

We have presented the properties of lexicographic order in
R™. In general, there exist no conventional order of elements
in R™. We introduced a lexicographic order, motivated by
ordering of words in dictionary, which is non-quantitative
data. Moreover, we generate mathematical theory to the
elements of R™ regarding the order dan the properties. This
mathematical theory might be a potential to be applied in non-
quantitative data management and programming such as [24]
—[27].

In paper, we have started by presenting the properties of
lexicographic order in R?. Applying ordering properties and
completeness axiom of real number R we have constructed
theory of lexicographic order of R?. Starting from this, we
have continued to generalize the properties of lexicographic
order established in R? to higher order space R™. These
extended properties encompass the nature of inequality, the
modified Archimedean property, and the modified
completeness property in R™.
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