
 

Abstract—The arrangement of abstract objects is a 

fundamental topic in mathematics. While the ordering of real 

numbers is well known, ordering elements in ℝⁿ is considerably 

more complex.  This paper explores the completeness of ℝⁿ when 

ordered lexicographically—a method analogous to how words 

are arranged in a dictionary, a process studied in lexicography. 

We establish the presence of a lexicographic order in ℝⁿ and 

introduce new definitions for inequalities, the Archimedean 

property, and the completeness property, along with several 

basic characteristics of these concepts in ℝⁿ. In practical 

applications, lexicographic order is critical for databases that 

sort records based on string values, as well as for programming 

algorithms and data structures—such as binary search trees—

that require efficient sorting. Consequently, a thorough 

understanding of lexicographic ordering is essential for 

professionals in language processing, data management, and 

software development. 

 
Index Terms — Data management, Lexicography, 

Programming, Software development. 

 

I.  INTRODUCTION 

EXICOGRAPHY is both the theory and practice behind 

creating dictionaries [1]. It entails systematically 

gathering, analyzing and presenting words along with their 

meanings, thereby reflecting not only the language but also 

the cultural and contextual background in which it is used.  

The term "lexicography" is derived from the Greek words 

"lexis" (word) and "grapho" (to write). This emphasis on both 

the words themselves and their definitions highlights the 

discipline's complexity and depth. 

Lexicography divides into two primary categories: 

theoretical and practical. Theoretical lexicography examines 

the underlying principles and frameworks of dictionary-

making, while practical lexicography deals with the actual 

creation of dictionaries. This practical aspect includes tasks 

such as selecting words, crafting definitions, and providing 

usage examples. A central concern in lexicography is the 

ordering of words. Although dictionaries usually arrange 

words alphabetically for easy access, lexicographers also 

consider methods for grouping related terms and addressing 

synonyms, antonyms, and subtle differences in meaning. In 

certain cases, specialized dictionaries may organize entries by 

themes or concepts. For further reading on lexicography, see 

[2]-[4]. 

A key aspect of practical lexicography is the ordering of 

words using lexicographic order. Also called dictionary 

order, it is a method that arranges words or entries based on 

the alphabetical sequence of their letters. This ordering 

method is widely used in dictionaries, glossaries, and indexes. 

The following principles guide lexicographic order: 

1. Alphabetical Sequence: Words are arranged from A to Z. 

For example, "apple" comes before "banana." 

2. Character Comparison: When comparing words, 

lexicographic order evaluates them character by 

character: 

• Compare the first letter of each word. The word with 

the earlier letter comes first. 

• If the first letters are the same, compare the second 

letters, and so on. 

3. Handling Ties: If two words share the same prefix, the 

longer word will come later. For instance, "bat" comes 

before "batter." 

4. Case Sensitivity: In some systems, case may matter. 

Typically, uppercase letters are treated as coming before 

lowercase letters, so "Apple" would come before "apple." 

5. Special Characters and Digits: When special characters 

(like hyphens or apostrophes) or numbers are involved, 

their positioning in the ASCII or Unicode table can 

influence order. For example, "apple" would come before 

"apple-pie" because the hyphen is considered. 

In addition to its application in dictionaries for easy word 

lookup, lexicographic order is also essential in databases for 

sorting records based on string values, and in programming 

for algorithms and data structures that require sorting, such as 

binary search trees. This may be found in some references 

such as [5]-[8]. Thus, understanding lexicographic order is 

crucial for anyone involved in language processing, data 

management, or software development. 

On the other hand, ordering abstract objects is also one of 

the interests of mathematics. The well-known ordering 

mathematical objects is ordering of real numbers. This 

confers ordering properties, which constitute one of the most 

fundamental attributes of the real number system. An elegant 

discussion about this, yet easily followed by beginners, may 

be found in [9]-[11]. The ordering properties characteristic of 

the real numbers can be formally stated as follows [9], [12], 
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[13], [14]: 

Ordering Properties of Real Numbers [9] 

Let 𝑃 denote a nonempty subset of ℝ, referred to as the set of 

positive real numbers, which satisfies the following axioms: 

(i) Closure under Addition: 

If 𝑎, 𝑏 ∈ 𝑃, then 𝑎 + 𝑏 ∈ 𝑃. 

(ii) Closure under Multiplication: 

If 𝑎, 𝑏 ∈ 𝑃, then 𝑎𝑏 ∈ 𝑃. 

(iii) Trichotomy Property: 

For any 𝑎 ∈ ℝ, exactly one of the following 

statements holds: 

𝑎 ∈ 𝑃,     𝑎 = 0,    − 𝑎 ∈ 𝑃. 
Completeness Axiom 

An ordered field F is said to be complete if every nonempty 

subset of F that is bounded above in F possesses a least upper 

bound (supremum) within F. This axiom is satisfied by the 

real number field R but not by the rational number field Q. 

Essentially, it asserts that there are no "gaps" in the set R. 

Consequently, R can be characterized as a complete ordered 

field. Moreover, this completeness property establishes a 

foundation that links the monotonicity properties of functions 

with extensions to the monotonicity of real matrix functions 

[15]-[17]. 

In this article we will generalize such properties in ℝ𝑛 by 

applying lexicographic order, then discuss the consequences 

of these properties in the space ℝ𝑛. We will start with the 

discussion of lexicographic order in ℝ2 and the consequences 

in this two-dimensional space. Next, we extent the discussion 

for ℝ𝑛. The potential applications of the proposed idea. 

II.  LEXICOGRAPHIC ORDER IN ℝ2 

A commonly order used in ℝ × ℝ is a partial order. 

Ghorpade and Limaye [18] introduced the pointwise order 

for  ℝ𝑛 : 

If 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ ℝ𝑛 then   
𝑥 ≤ 𝑦 ⇔ 𝑥𝑖 ≤ 𝑦𝑖 , for all 𝑖 = 1,2, . . . , 𝑛.         (1) 

 

Ghorpade and Limaye’s pointwise ordering is an example 

of a partial order. This means that some elements cannot be 

compared with each other using this order. In contrast, a total 

order allows any two elements to be compared. In ℝ𝑛, the 

pointwise order allows for vectors to be compared 

component-wise, but this does not guarantee that all vectors 

can be compared, making it a partial order rather than a total 

order. For example, we cannot compare which one is greater 

between (1,2) and (2,1). Also (1,1,2) cannot be compared to 

(2,2,1). However, pointwise orders are commonly used in 

mathematics and have produced so many theories that are 

developing today both in 𝑅2 and in general in ℝ𝑛 .  
In this article we will discuss a concept of such an order in 

ℝ𝑛,  particularly for ℝ × ℝ is totally ordered.  This order is 

called the lexicographic order:    

 If 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2 , … , 𝑦𝑛) ∈ ℝ𝑝 then   
 𝑥 ≤ 𝑦 ⇔ 𝑥1 < 𝑦1, or  𝑥𝑖 = 𝑦𝑖    for 𝑖 = 1,2,3, … , 𝑘 < 𝑛  

and 𝑥𝑘+1  ≤ 𝑦𝑘+1                             (2) 

 

Now, applying this definition, we can compare of two 

vectors, such as which one is greater between (1,2) and (2,1). 

Is (1,2) less then (2,1)? Also (1,1,2) can be compared to 

(2,2,1) which is (1,1,2) less then (2,2,1). Even (1,1,2) can be 

compared with (1,1,3). 

The completeness property in ℝ × ℝ by using 

lexicographic order has been presented by Cahya in [12], the 

result properties  ℝ2 motivated by the existing of properties 

in ℝ.  Some properties in ℝ were examined their 

enforceability in ℝ𝑛  under the total order, particularly in 

ℝ × ℝ. In  ℝ2  it has been shown the properties that are 

fulfilled by the lexicographic order, such as the existing of 

lexicographic order, inequality, modified Archimedean, 

completeness in ℝ × ℝ, and their influence to the properties 

of multivariable functions, such as monotonicity property.  

Cahya [12] in his researched for  ℝ × ℝ starting the prove 

by dividing ℝ × ℝ in such a way so that ℝ × ℝ splits into 

three disjoint subsets. Suppose K is a subset of  ℝ × ℝ ,  given 

by  

𝐾 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥 > 0} ∪ {(0, 𝑦) ∈ ℝ2: 𝑦 > 0}.         (3)

     

Through the set K we will divide the set ℝ × ℝ into three 

disjoint sub sets, i.e.  

 

𝐾 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥 > 0}  ∪  {(0, 𝑦) ∈ ℝ2: 𝑦 > 0},  
𝑂 = (0,0)𝑎𝑛𝑑  (𝐾 ∪ 𝑂)𝑐. 

 

Using the above definitions and the usual addition, 

subtraction and scalar multiplication operations that apply in 

ℝ2, then the set K possesses the following properties. 

 

Proposition 1 

Let  𝐾 ⊂ ℝ2, be the set defined in (3).  For every  𝑎, 𝑏 ∈ 𝐾,   
and 𝑐 > 0, 𝑐 ∈ ℝ we have: 

(𝑖).  𝑎 + 𝑏 ∈ 𝐾 
(𝑖𝑖). 𝑐𝑎 ∈ 𝐾  

 

However, the multiplication of two elements in ℝ2 that 

satisfy the closed property has not been specifically defined, 

although the ordinary two-point multiplication operation in 

ℝ2 and the Sets of Complex number already exists. 

The point wise product in ℝ2 is not closed in  K,  because  

(0,1)(1,0) = (0,0) ∉ 𝐾.   The multiplication of Complex 

number , i.e. (𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐)
 
is also not 

closed in K,  for example  (0,1)(1,0) = (−1,0) ∉ 𝐾. 
Therefore, it is not true that 𝑎, 𝑏 ∈ 𝐾 implies 𝑎𝑏 ∈ 𝐾.  

Under the lexicographic order in (2), the   Trichotomy 

property is valid in ℝ2, i.e. for every 𝑎 ∈ ℝ2 then either  

a ∈ K, or a = O, or -a ∈ K. 

When  𝑎 ∈ 𝐾, we write  𝑎 > 0 and a is called positive. When  

𝑎 ∈ 𝐾 ∪ 𝑂, we denote this by writing 𝑎 ≥ 0, and say that a is 

nonnegative. Conversely, if -a ∈ K, we denote this by 𝑎 <
0 and refer to a as negative. When  −𝑎 ∈ 𝐾 ∪ 𝑂, we write   

𝑎 ≤ 0, and a is called non positive. This is different with the 

concept of positive element in ℝ,  the positive element in ℝ2 

is 𝑎 = (𝑥, 𝑦), 𝑥 > 0  𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 𝑦 > 0. This means 𝑎 =
(𝑥, 𝑦) > 0 not only for 𝑥 > 0 𝑎𝑛𝑑 𝑦 > 0. This concept, 

implies to the definition of positive element in a bigger space, 

which is 𝑅𝑛. Thus, lexicographic order has an important role 

in defining inequality in ℝ𝑛, 𝑛 ≥ 2, 𝑛 ∈ ℕ. And then, the 

inequality of two points in ℝ2 is defined as follow. 

 

Definition 2 

Suppose 𝑝, 𝑞 ∈ ℝ2 . 
(𝑖).  If 𝑝 − 𝑞 ∈  𝐾, then we write 𝑝 > 𝑞 or 𝑞 < 𝑝. 

(𝑖𝑖). If 𝑝 −  𝑞 ∈  𝐾 ∪  𝑂, then we write   𝑝 ≥  𝑞 or 𝑞 ≤  𝑝. 
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For all 𝑝, 𝑞 in ℝ2 , the Trichotomy Law ensures that precisely 

one of these relations is true: 𝑝 > 𝑞,  𝑝 = 𝑞  𝑜𝑟 𝑝 < 𝑞. 
 

Therefore, if we have 𝑎 ≥  𝑏 and 𝑎 ≤  𝑏 then   𝑎 =  𝑏. 

Hence forward, 𝑎 ≥  𝑏 is meant as 𝑎 >  𝑏 𝑜𝑟 𝑎 =  𝑏. Just 

like in R, the inequality   𝑎 <  𝑏 <  𝑐 means   𝑎 <  𝑏 and 

𝑏 <  𝑐. The inequalities 𝑎 ≤  𝑏 <  𝑐, 𝑎 <  𝑏 ≤  𝑐, and 𝑎 ≤
𝑏 ≤  𝑐 can be interpreted similarly.  

 

We will give some interpretation of the inequalities.  Let 𝑎 =
(𝑎1, 𝑎2), 𝑏 = (𝑏1, 𝑏2) be in  ℝ2. 𝑎 − 𝑏 ∈ 𝐾  means  (𝑎1 −
𝑏1, 𝑎2 − 𝑏2) ∈ 𝐾. Furthermore, (𝑎1 − 𝑏1, 𝑎2 − 𝑏2) ∈ 𝐾 

means (𝑎1 − 𝑏1 > 0) or (𝑎1 − 𝑏1 = 0 and 𝑎2 − 𝑏2>0) or 

(𝑎1 > 𝑏1) or (𝑎1 = 𝑏1 and 𝑎2 > 𝑏2) . Consider the following 

example, (1,3) > (1,2) because (1,3) − (1,2) = (0,1) ∈ 𝐾. 
 

Finally, we can define the existing of lexicographic order in 

ℝ × ℝ as follow. 

 

Definition 3 

Suppose  𝑎 = (𝑎1, 𝑎2), 𝑏 = (𝑏1, 𝑏2) di ℝ2. We define 

             𝑎 < 𝑏 ⇔ 𝑎1 < 𝑏1 or 𝑎1 = 𝑏1 and 𝑎2 < 𝑏2         (4) 

Using the above definition, we have the following 

proposition. 

 

Proposition 4 

Suppose 𝑎, 𝑏, 𝑐 ∈ ℝ2 and 𝑘 ∈ ℝ .  
(i) If 𝑎 >  𝑏 𝑎𝑛𝑑 𝑏 >  𝑐 then 𝑎 >  𝑐. 

(ii) If 𝑎 >  𝑏 then 𝑎 +  𝑐 >  𝑏 +  𝑐. 

(iii) If 𝑎 >  𝑏 𝑎𝑛𝑑 𝑘 >  0 then 𝑘𝑎 >  𝑘𝑏. 

If 𝑎 >  𝑏 𝑎𝑛𝑑 𝑘 <  0 then 𝑘𝑎 <  𝑘𝑏. 
Furthermore, the modified Archimedian properties in R×R in 

[5], are also satisfied for R×R in the order (4).   

 

Proposition 5 (Modified Archimedean property, [18]) 

Suppose 𝑎, 𝑏 ∈ ℝ × ℝ with 𝑎 =  (𝑥, 𝑦), 𝑥 >  0, then there 
is 𝑘 ∈ ℕ such that 𝑘𝑎 >  𝑏. 

 

Proof. To prove the proposition, is enough to consider the 

case s > 0, and show that there is k ∈ N such that 𝑘𝑥 >  𝑠. It 

can be shown that the relation on (4), is a total order 

lexicographic order in ℝ × ℝ [18]. 

 

Consider the following example, lets 𝑎 = (2,1)  and 𝑏 =
(7,5), then there is  𝑘 = 4 ∈ 𝑁 such that 4(2,1) > (7,5). 

Similarly, for 𝑎 = (
1

2
, 1) 𝑎𝑛𝑑 𝑏 = (5,6) there is 𝑘 = 10 ∈ 𝑁 

such that 10 (
1

2
, 1) > (5,6). 

 

Next, we will utilize the concept of lexicographic order in 

solving inequalities in ℝ2. Suppose that inequality (𝑥, 𝑦) >
(𝑎, 𝑏), for some (𝑎, 𝑏) ∈ ℝ2.  We will look for a set of 

solutions to these inequalities. Write the inequality as 
(𝑥, 𝑦) − (𝑎, 𝑏) > 0 𝑖𝑡𝑠 𝑚𝑒𝑎𝑛 (𝑥 − 𝑎, 𝑦 − 𝑏) ∈ 𝐾. Then we 

have (𝑖). 𝑥 − 𝑎 > 0 or (𝑖𝑖). 𝑥 − 𝑎 = 0 𝑎𝑛𝑑 𝑦 − 𝑏 > 0. Or  
(𝑖). 𝑥 > 𝑎 or (𝑖𝑖). 𝑥 = 𝑎 𝑑𝑎𝑛 𝑦 > 𝑏. From (𝑖)𝑎𝑛𝑑 (𝑖𝑖) we 

have a set of solutions is 

 {(𝑥, 𝑦) ∈ ℝ2: 𝑥 > 𝑎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑎 ∈ ℝ} ∪ {(𝑥, 𝑦) ∈ ℝ2: 𝑥 =
𝑎 𝑎𝑛𝑑 𝑦 > 𝑏 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑎, 𝑏 ∈ ℝ}. 
 

Example 1 

We seek to determine the solution set of the given inequality  
(𝑥, 𝑦) > (2,4). As a first step, we reformulate the inequality 

in the following form  (𝑥, 𝑦) − (2,4) > 0 or equivalently 
(𝑥 − 2, 𝑦 − 4) ∈ 𝐾. This implies two possibilities:  (𝑖). 𝑥 −
2 > 0 𝑜𝑟  (𝑖𝑖). 𝑥 − 2 = 0 𝑎𝑛𝑑 𝑦 − 4 > 0. In other words, we 

obtain the conditions:  (𝑖). 𝑥 > 2 or (𝑖𝑖). 𝑥 = 2 𝑎𝑛𝑑 𝑦 > 4. 
Thus, the solution set is:  {(𝑥, 𝑦) ∈ ℝ2: 𝑥 > 2} ∪ {(𝑥, 𝑦) ∈
ℝ2: 𝑥 = 2 𝑎𝑛𝑑 𝑦 > 4}. Suppose that 𝐴 =  {(𝑥, 𝑦) ∈ ℝ2: 𝑥 =
2 𝑎𝑛𝑑 𝑦 > 4}   and 𝐵 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥 > 2}, then the set of 

solution is 𝐴 ∪ 𝐵, and illustrated as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, consider the inequality (𝑝, 𝑞) < (𝑥, 𝑦) < (𝑎, 𝑏), for 

some fixed (𝑝, 𝑞), (𝑎, 𝑏) ∈ ℝ2.  We can break this compound 

inequality into two separate parts:  (𝑝, 𝑞) <
(𝑥, 𝑦) 𝑎𝑛𝑑 (𝑥, 𝑦) < (𝑎, 𝑏). For the inequality (𝑥, 𝑦) <
(𝑎, 𝑏) we write it as (𝑎 − 𝑥, 𝑏 − 𝑦) ∈ 𝐾. Which implies either 

𝑎 − 𝑥 > 0 or 𝑎 − 𝑥 = 0 and 𝑏 − 𝑦 > 0 (𝑖. 𝑒. , 𝑥 =
 𝑎 and 𝑦 <  𝑏). Thus, the solution set for (𝑥, 𝑦)  <  (𝑎, 𝑏) is 

{(𝑥, 𝑦) ∈ ℝ2: 𝑥 < 𝑎 for some   𝑎 ∈ ℝ} ∪ {(𝑥, 𝑦) ∈ ℝ2: 𝑥 =
𝑎 and 𝑦 < 𝑏 for some  𝑎, 𝑏 ∈ ℝ}. Similarly, for the 

inequality  (𝑝, 𝑞) < (𝑥, 𝑦), we write it as (𝑥 − 𝑝, 𝑦 − 𝑞) ∈
𝐾, which implies either 𝑥 − 𝑝 > 0 or 𝑥 = 𝑝 and 𝑦 − 𝑞 > 0. 
Or 𝑥 > 𝑝 𝑜𝑟 𝑥 = 𝑝 𝑎𝑛𝑑 𝑦 > 𝑞. So the solution set for case 2 

is{(𝑥, 𝑦) ∈ 𝑅2: 𝑥 < 𝑎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒   𝑎 ∈ ℝ}∪ 
{(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥 = 𝑎 𝑎𝑛𝑑 𝑦 < 𝑏 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑎, 𝑏 ∈ ℝ}. The 

overall solution set for the inequality (𝑝, 𝑞)  <  (𝑥, 𝑦)  <
 (𝑎, 𝑏) is the intersection of the two solution sets above—

namely, those (𝑥, 𝑦) that satisfy both conditions 

simultaneously. 

 

Example 2 

Our goal is to determine all values that fulfill the inequality 

(1,2) < (𝑥, 𝑦) < (3,4). This means we need to find the 

intersection of the solution sets for (1,2) < (𝑥, 𝑦) and 

(𝑥, 𝑦) < (3,4). For  (1,2) < (𝑥, 𝑦), we write  as (𝑥 − 1, 𝑦 −
2) ∈ 𝐾, which implies either: 𝑥 > 1 that is 𝑥 = 1 and 𝑦 > 2. 
So the first solution is 𝑃 = {(𝑥, 𝑦): 𝑥 > 1} ∪ {(𝑥, 𝑦): 𝑥 =
1 𝑎𝑛𝑑 𝑦 > 2}. Similarly, for  (𝑥, 𝑦) < (3,4) then (3 − 𝑥, 4 −
𝑦) ∈ 𝐾. So we have 𝑥 < 3 𝑜𝑟 𝑥 = 3 and 𝑦 < 4. So the 

second solution is 𝑄 = {(𝑥, 𝑦): 𝑥 < 3} ∪ {(𝑥, 𝑦): 𝑥 =
3 and 𝑦 < 4}. So, the solution set is  

𝑃 ∩ 𝑄 = {(𝑥, 𝑦): 1 < 𝑥 < 3} ∪ {(𝑥, 𝑦): 𝑥 = 1 and 𝑦 > 2}
∪ {(𝑥, 𝑦): 𝑥 = 3 and 𝑦 < 4} 

= 𝐴 ∪ 𝐵 ∪ 𝐶, 
which  

𝐴 = {(𝑥, 𝑦): 1 < 𝑥 < 3}, 
𝐵 = {(𝑥, 𝑦): 𝑥 = 1 and 𝑦 > 2}, 
𝐶 = {(𝑥, 𝑦): 𝑥 = 3 and 𝑦 < 4}. 

See figure 2. 

 

 

 

Figure 1. 𝐴 ∪ 𝐵 is the set of solutions in Example 1 

Set 𝐵 

Set 𝐴 
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Completeness Property in ℝ × ℝ   

In this section, we discuss the general concept of 

boundedness in ℝ × ℝ, as well as the definitions of a 

modified supremum and infimum for sets within ℝ × ℝ. 

These definitions are adaptations of the ones presented in 

[18]. We have revised the existing notions because bounded 

subsets in ℝ differ from those in ℝ × ℝ, particularly when 

comparing the partially ordered structure described in [18] 

with the total order defined in (4). 

For instance, consider the set  𝑆 = {(𝑥, 𝑦) ∈ ℝ× ℝ: 0 <
𝑥 < 1}. Under the partial order defined in [18], S is not 

bounded because there is no element (𝑎, 𝑏) ∈ ℝ ×
ℝ that serves as an upper bound for every (𝑥, 𝑦) ≤
(𝑎, 𝑏) for every (𝑥, 𝑦) ∈ ℝ × ℝ. In contrast, when we use the 

lexicographic order defined in (4), S does have both an upper 

and a lower bound, even though it may lack a supremum and 

infimum. Thus, although S is an infinite set, it is considered 

bounded according to the lexicographic order.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This distinction affects the definitions of supremum and 

infimum. Under the partial order described in [18], the 

supremum and infimum of a set can lie far from the set’s 

elements. For instance, consider the set  𝑆 = {(𝑥, 𝑦): 𝑦 = 1 −
𝑥, 0 < 𝑥 < 1} . According to [18], Sup(S) = (1,1) and Inf(S) 

= (0,0). However, with the total order defined in (4), the 

supremum and infimum of S become (1,0) and (0,1), 

respectively. In fact, many open sets under the total order in 

𝑅 × 𝑅 lack a true supremum or infimum, even if they have 

upper and lower bounds. This example shows that the 

completeness property in ℝ × ℝ, when considered under the 

total order, is rather weak. Therefore, it is necessary to 

redefine the concepts of bounded sets, as well as the 

supremum and infimum, in ℝ × ℝ. 

In the following discussion, we propose new definitions for 

bounded sets, supremum, and infimum in ℝ × ℝ. 

 

Definition 6 

Suppose 𝑆 ≠ ∅, 𝑆 ⊆ ℝ × ℝ.  S is right-bounded in ℝ × ℝ if 

there exists an interval 𝐼 that is bounded above in ℝ and a 

bounded interval J in ℝ such that 𝑆  ⊆  𝐼 ×  𝐽. The point 

(𝑎, 𝑏) in  ℝ × ℝ that satisfies  (𝑥, 𝑦)  ≤  (𝑎, 𝑏) for every 

(𝑥, 𝑦) ∈  𝑆 is called a right bound of S.  

 

Definition 7 

Suppose 𝑆 ⊆ ℝ × ℝ, 𝑆 ≠ ∅. We say that S is bounded on the 

left if there exists an interval I, bounded below in ℝ, and a 

bounded interval J in ℝ such that 𝑆  ⊆  𝐼 × 𝐽. The point 

(𝑎, 𝑏) in  ℝ × ℝ that satisfies  (𝑥, 𝑦)  ≥  (𝑎, 𝑏) for every 

(𝑥, 𝑦) ∈  𝑆 is referred to as a left bound of S. 

 

Definition 8 

Let 𝑆 ⊆ ℝ × ℝ, 𝑆 ≠ ∅. We say that S is totally bounded if S 

bounded in the left and the right in ℝ × ℝ.. 

 

Consequently, a set S is called totally bounded in  ℝ × ℝ if 

there are bounded intervals I and J in ℝ such that 𝑆 ⊆  𝐼 ×  𝐽. 

 

Example 3 

The set   

𝑆 = { (𝑥, 𝑥) ∣ 0 < 𝑥 < 1 } 

is totally bounded in ℝ × ℝ, because there are bounded 

intervals I = (-1, 2) and J = (-1,2) such that 𝑆 ⊆  𝐼 ×  𝐽. For 

any (𝑥, 𝑦) in S, we have x ∈ (0,1) ⊆ (-1,2) = I, y ∈ (0,1) ⊆ (-

1,2) = J.  

Moreover, since S is contained within the closed intervals 

[-1,2] and [-1,2] such that S ⊆ [-1.2]×[-1,2] and (𝑥, 𝑦)  ≤
 (2,2) for every (𝑥, 𝑦) in S, then (2,2) is a right bound for S. 

But is (1,1) ∈ 𝑆̅ a right bound as well? Yes—it turns out that 

there exist intervals [–1, 1] such that [-1.1] and [-1,1] such 

that 𝑆 ⊆  [−1.1] × [−1,1] and (𝑥, 𝑦)  ≤  (1,1) for every 

(𝑥, 𝑦) in S.  

According to Definition 8, assume that S is totally bounded 

in ℝ × ℝ . A point  (𝑝, 𝑞)  ∈ ℝ × ℝ  that satisfies  (𝑝, 𝑞) ≤
(𝑥, 𝑦) for every  (𝑥, 𝑦)  ∈  𝑆 is called a left bound of S.  

Conversely, a point (𝑎, 𝑏) ∈ ℝ × ℝ for which (𝑥, 𝑦) ≤ (𝑎, 𝑏) 

holds for every (𝑥, 𝑦) ∈ 𝑆 is called a right bound of S. 

In the following section, we will introduce the concepts of 

the least right bound and the greatest left bound of a set S in 

ℝ × ℝ, which emerge from our definitions of bounded sets 

and the total order on ℝ × ℝ. For any 𝑆 ⊆ ℝ × ℝ, we 

denote  𝑆̅ (closure of 𝑆) as the smallest closed set that contains 

𝑆. If 𝑆 is closed and totally bounded, then we called 𝑆 as 

compact set. Heine-Borel Theorem ensures that 𝑆 is compact 

set if and only if 𝑆 is closed and totally bounded. 

 

Definition 9 

Suppose 𝑆 ⊆ ℝ × ℝ, 𝑆 ≠ ∅. 
a. If S is right-bounded, then a point (𝑎, 𝑏) ∈ 𝑆̅  is called the 

optimal supremum of S if it satisfies the following 

conditions: 

1. (𝑎, 𝑏) is a right bound for S, and 

2. If (𝛼, 𝛽) ∈ 𝑆̅ is a right bound of S, then (𝑎, 𝑏)  ≤

(𝛼, 𝛽). 

b. If S is left-bounded, then a point (𝑠, 𝑡) ∈ 𝑆̅    is called the:  

optimal infimum of S if it satisfies: 

1. (𝑠, 𝑡) is a left bound for S, and 

2. If (𝛼, 𝛽) ∈ 𝑆̅ is a left bound of 𝑆, then (𝑠, 𝑡)  ≥  (𝛼, 𝛽). 

 

Lemma 10 

The optimal supremum of a set S is unique.  

 

Proof:  

Assume for contradiction that S has two distinct optimal 

suprema, say (𝑎, 𝑏) and (𝑠, 𝑡). If (𝑎, 𝑏) <  (𝑠, 𝑡) , then (𝑎, 𝑏) 

cannot be a right bound for S, contradicting its optimality. 

Conversely, if (𝑠, 𝑡)  <  (𝑎, 𝑏),  then  (𝑠, 𝑡) fails to serve as a 

right bound for S. Therefore, we must have (𝑎, 𝑏)  =  (𝑠, 𝑡). 
A similar argument establishes the uniqueness of the optimal 

infimum. 

Figure 2. 𝐴 ∪ 𝐵 ∪ 𝐶 is the set of solutions in Example 2 
 

Set 𝐴 

Set 𝐶 

Set 𝐵 
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In ℝ, the following statement is true. 

“A point 𝑢 ∈ 𝑆 is the supremum of a non-empty 𝑆 if and only 

if the following conditions are met: 

(1). 𝑠 ≤  𝑢 for all 𝑠 ∈  𝑆.  

(2). If  𝑣 < 𝑢, then there is  𝑠′ ∈ 𝑆 such that 𝑣 < 𝑠′.” 

But it is not true for optimal supremum in ℝ2, for example 

𝑆 = { (𝑥, 1) ∣ 0 < 𝑥 < 2 }. Choose 𝑢 = (2,1) and 𝑣 =
(2,0), but {𝑣 < (𝑥, 𝑦) < 𝑢} = ∅.  

 

Remark. Consider set 𝐴 = { (𝑥, 1) ∈ ℝ2 ∣∣ 0 < 𝑥 < 1 }, 𝑢 =
(2,0) is optimal supremum of 𝐴 and 𝑣 = (2,0) is right bound 

of 𝐴, but there is no (𝑥, 𝑦) ∈ 𝐴 such that 𝑣 < (𝑥, 𝑦) < 𝑢. 

Also, let 𝐵 = { 𝑥 ∈ ℝ ∣ 1 < 𝑥 < 3 or 𝑥 = 4 }, sup 𝐵 = 4, 

and 3
1

2
 is upper bound of 𝐵, but there is no 𝑥 ∈ 𝐵 such that 

3
1

2
< 𝑥 < 4. 

 

Example 4 

Consider the set  𝑆 = {(𝑥, 𝑦): 0 < 𝑥 < 1, 𝑦 = 1 − 𝑥} . This 

set is a totally bounded because it is contained within the 

rectangle [0,1] and [0,1]. Notice that (1,0) ∈ 𝑆̅, and every 

(𝑥, 𝑦) in S satisfies (𝑥, 𝑦)  ≤  (1, 0), which makes (1, 0) a 

right bound for S. Similarly, every (𝑥, 𝑦)  ∈  𝑆 satisfies 

(𝑥, 𝑦)  ≥  (0, 1), so (0, 1) is a left bound for S and (0, 1) ∈ 𝑆.̅   
Therefore (1,0) is the optimal supremum of S, and (0,1) is the 

optimal infimum of S.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5 

Consider a set 𝑇 = { (𝑥, 𝑦) ∈ ℝ2
∣∣ 𝑥 ∈ (0,1), 𝑦 ∈ {1,2} }. 

Since it is contained within [0,1] × [1,2] then it is a totally 

bounded set. Points (1,1) and (1,2) are right bounds for 𝑇, 

and elements of  𝑇̅ = { (𝑥, 𝑦) ∈ ℝ2
∣∣ 𝑥 ∈ [0,1], 𝑦 ∈ {1,2} }. 

The set of all right bounds of 𝑇 in  𝑇̅ is 𝐴 = {(1,1), (1,2)}. 
So, the optimal supremum is the smallest element in 𝐴, that 

is (1,1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the set of all left bound of 𝑇 in  𝑇̅ is 𝐵 =
{(0,1), (0,2)}, so the optimal infimum is the largest element 

in 𝐵, that is (0,2). Although, for any 𝑡 < 1, (1, 𝑡) < (1,1) 

and (1, 𝑡) is a right bound of 𝑇, we should notice that it is not 

an element of  𝑇̅, so it is not in our consideration. Similarly, 

for any 𝑠 > 2, (0, 𝑠) > (0,2) and a left bound of 𝑆, but 

(0, 𝑠) ∉ 𝑇̅.  

 

Example 6 

Consider set 𝑈 = { (𝑥, 𝑦) ∣∣ 0 ≤ 𝑥 ≤ 1, 𝑦 ∈ {1,2} }. Notice 

that 𝑈 = 𝑈, and the only right bound of 𝑈 in  𝑈 is (1,2), so 

(1,2) is the optimal supremum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, although for any 𝑡 > 2, (1, 𝑡) is a right bound of 𝑈, 

we will not consider it since it is not in  𝑈. Similarly, (0,1) is 

the optimal infimum of 𝑈. 

 

Example 7 

Consider a set  

𝑈 = { (𝑥, 𝑦) ∣∣ 0 < 𝑥 < 1, 𝑦 ∈ {1,2,3} } ∪ {(0,2), (1,2)}. 

We have   

𝑈 = { (𝑥, 𝑦) ∣∣ 0 ≤ 𝑥 ≤ 1, 𝑦 ∈ {1,2,3} } 

and the set of all right bounds of 𝑈 is 𝑃 =
{ (𝑥, 𝑦) ∈ ℝ2 ∣∣ (𝑥, 𝑦) ≥ (1,2) }, therefore the set of all right 

bounds of 𝑆 in  𝑈 is 𝐶 = 𝑃 ∩ 𝑈 = {(1,2), (2,3)}. So, the 

optimal supremum is the smallest element in 𝐶, that is (1,2).  

 

 

 

Figure 3 Illustrative representation of set S in Example 4. 

Figure 5. 𝑈 = 𝑈̅. (1,2) is the only right bound of 𝑈 in  𝑈̅ 

Figure 6.  𝑈̅ and right bound set of 𝑈. 

Set 𝑆 

Figure 4. A,B are the sets of all right and left bounds of T in 𝑇̅ 
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Figure. 8. Another example of 𝑆 and 𝑎 + 𝑆 

On the other hand, the set of all left bounds of 𝑈 is 𝑄 =
{ (𝑥, 𝑦) ∈ ℝ2 ∣∣ (𝑥, 𝑦) ≤ (0,2) }, therefore the set of all left 

bounds of 𝑆 in  𝑈 is 𝐷 = 𝑄 ∪ 𝑈 = {(0,1), (0,2)}. So, the 

optimal infimum is the largest element in 𝐷, that is (0,2). 

 

Let 𝑆 ⊆ ℝ × ℝ is compact set. Since  𝑆 is closed and 

bounded, then the existence of optimal supremum and 

optimal infimum should be guaranteed. Here (𝑎∗, 𝑏∗) is the 

candidate of the optimal supremum of compact set 𝑆, 

𝑎∗ = sup { 𝑥 ∈ ℝ ∣∣ (𝑥, 𝑦) ∈ 𝑆̅ } 

and  

𝑏∗ = sup{ 𝑦 ∈ ℝ ∣∣ (𝑎∗, 𝑦) ∈ 𝑆̅ }. 
Similarly, the candidate for optimal infimum is (𝑎∗, 𝑏∗) which 

𝑎∗ = inf { 𝑥 ∈ ℝ ∣∣ (𝑥, 𝑦) ∈ 𝑆̅ } 

and  

𝑏∗ = inf{ 𝑦 ∈ ℝ ∣∣ (𝑎∗, 𝑦) ∈ 𝑆̅ }. 
 

Proposition 11 

Let 𝑆 ⊂ ℝ × ℝ is compact set, then  (𝑎∗, 𝑏∗) ∈ 𝑆. 

 

Proof:  

Since 𝑆 = 𝑆̅, then we just need to prove (𝑎∗, 𝑏∗) ∈ 𝑆̅, that is 

by verifying 𝐵((𝑎∗, 𝑏∗), 𝑟) ∩ 𝑆̅ ≠ ∅ for any 𝑟 > 0. By 

contradiction, suppose that there exists a 𝑟0 > 0 such that 

𝐵((𝑎∗, 𝑏∗), 𝑟0) ∩ 𝑆̅ = ∅. By definition of 𝑏∗, we have 

(𝑎∗, 𝑏∗) ≥ (𝑎∗, 𝑦) ∀(𝑎∗, 𝑦) ∈ 𝑆̅. 
Since 

𝐵((𝑎∗, 𝑏∗), 𝑟0) ∩ 𝑆̅ = ∅, 

then 𝑏∗ − 𝑟0 ≥ 𝑦 for any (𝑎∗, 𝑦) ∈ 𝑆̅, implies 𝑏∗ −
𝑟0

2
> 𝑦. 

Therefore 

(𝑎∗, 𝑏∗ −
𝑟0

2
) > (𝑎∗, 𝑦)  ∀(𝑎∗, 𝑦) ∈ 𝑆̅. 

Contradict with the definition of 𝑏∗. The proof is complete. 

 

The following theorem shows that (𝑎∗, 𝑏∗) is the optimal 

supremum of a compact set 𝑆. 

 

Proposition 12 

Let 𝑆 ⊂ ℝ × ℝ is a compact set, then  (𝑎∗, 𝑏∗), which 

𝑎∗ = sup { 𝑥 ∈ ℝ ∣∣ (𝑥, 𝑦) ∈ 𝑆̅ } 

and  

𝑏∗ = sup{ 𝑦 ∈ ℝ ∣∣ (𝑎∗, 𝑦) ∈ 𝑆̅ }, 
is the optimal supremum of 𝑆. 

Proof. Since S is compact, then 𝑆 = 𝑆̅. Since 𝑎∗ ≥ 𝑥 for any 

(𝑥, 𝑦) ∈ 𝑆̅, then (𝑎∗, 𝑦) ≥ (𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝑆̅. Since 

𝑏∗ ≥ 𝑦 for any (𝑎∗, 𝑦) ∈ 𝑆̅, then (𝑎∗, 𝑏∗) ≥ (𝑎∗, 𝑦) for any 

(𝑎, 𝑦) ∈ 𝑆̅. Therefore, (𝑎∗, 𝑏∗) ≥ (𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝑆̅. 
This shows that (𝑎, 𝑏) is right bound for   𝑆̅, which implies a 

right bound for 𝑆. Since (𝑎∗, 𝑏∗) is right bound of  𝑆 and 

(𝑎∗, 𝑏∗) ∈ 𝑆 (previous proposition), then (𝑎, 𝑏) is smallest 

right bound for  𝑆̅ = 𝑆. So, (𝑎, 𝑏) is optimal supremum of S. 

 

Definition 13 

For any set 𝑆 ⊆ ℝ2 and any point 𝑎 ∈ ℝ2, we define the 

translated set as: 

                           𝑎 + 𝑆 = {𝑎 + 𝑥 ∶ 𝑥 ∈ 𝑆}  

 

Example 8  

Suppose that 𝑆 = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1}, 𝑎 = (2,2). 
Then 𝑎 + 𝑆 = {(2 + 𝑥, 2 + 𝑦): 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1} =
{(𝑥, 𝑦): 2 ≤ 𝑥 ≤ 3,2 ≤ 𝑦 ≤ 3} .  

The optimal supremum of S is (1,1) and its optimal infimum 

is (0,0). Consequently, the optimal supremum of 𝑎 + 𝑆 =
(3,3) = (2,2) + (1,1) = 𝑎 + optimal supremum of 𝑆 and 

the optimal infimum of  𝑎 + 𝑆 = (2,2) = (2,2) + (0,0) =
𝑎 + optimal infimum of 𝑆.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 14 

Suppose 𝑆 ⊆ ℝ2 is totally bounded, 𝑎𝑛𝑑  𝑎 ∈ ℝ2.  
Then 𝑠𝑢𝑝 𝑜𝑝(𝑎 + 𝑆) = 𝑎 + 𝑠𝑢𝑝 𝑜𝑝 (𝑆) and 𝑖𝑛𝑓 𝑜𝑝(𝑆) =
𝑎 + 𝑖𝑛𝑓 𝑜𝑝 (𝑆). 
Note: 𝑠𝑢𝑝 𝑜𝑝 (𝑆)  = the optimal supremum of S and  

𝑖𝑛𝑓 𝑜𝑝 (𝑆)  = the optimal infimum of S. 

 

Example 9 

Consider that 𝑆 = {(𝑥, 𝑦): 0 < 𝑥 < 1, 𝑦 = 1 − 𝑥} and 

𝑎 = (2,1). See Fig. 5. 

 

Consider that  

𝑎 + 𝑆 = {𝑎 + 𝑠 ∶ 𝑠 ∈ 𝑆}  

= {(2,1) + (𝑥, 𝑦): 0 < 𝑥 < 1, 𝑦 = 1 − 𝑥} 

= {(2 + 𝑥, 1 + 𝑦): 2 < 𝑥 + 2 < 3, 𝑦 = 1 − 𝑥} 

= {(𝑥′, 𝑦′): 2 < 𝑥′ < 3, 𝑦′ − 1 = 1 − (𝑥′ − 2)} 

= {(𝑥, 𝑦): 2 < 𝑥 < 3, 𝑦 = 4 − 𝑥} 

 

Then 𝑆𝑢𝑝 𝑂𝑝(𝑆)  =  (1,0) dan 𝐼𝑛𝑓 𝑜𝑝(𝑆)  =  (0,1). 

𝑆𝑢𝑝 𝑜𝑝(𝑎 + 𝑆) = (3,1) = (2,1) + (1,0) = 𝑎 + 𝑆𝑢𝑝 𝑜𝑝(𝑆) 

𝐼𝑛𝑓 𝑜𝑝(𝑎 + 𝑆) = (2,2) = (2,1) +  (0,1) = 𝑎 +  𝐼𝑛𝑓 𝑜𝑝(𝑆) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 7. 𝑆 and 𝑎 + 𝑆 

Set 𝑎 + 𝑆 

Set 𝑆 
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MONOTONIC FUNCTIONS 

 

The study of monotone real functions has inspired research 

into monotone matrix functions [15]-[17]. Naturally, 

extending the notion of single-variable monotonicity to 

multivariable functions is a logical step. This article presents 

preliminary findings from our project aimed at generalizing 

monotone matrix functions to their multivariable 

counterparts. 

In this section, we discuss the concept of monotonicity for 

real functions of two variables—a definition that differs from 

that in [18] and aligns with the total order we are employing. 

 

Definition 15 

Suppose 𝐷 ⊆ ℝ2 and  𝑓: 𝐷 → ℝ be any function, and let I 

and J be intervals in ℝ such that 𝐼 × 𝐽 ⊆ 𝐷. We say  

(i) 𝑓 is strictly increasing on 𝐼 × 𝐽 if for every 

(𝑥1, 𝑦1) and (𝑥2, 𝑦2) in  𝐼 × 𝐽, we have                              

𝑖𝑓 (𝑥1, 𝑦1) < (𝑥2, 𝑦2) 𝑡ℎ𝑒𝑛  

(1) 𝑓(𝑥1, 𝑦1) < 𝑓(𝑥2, 𝑦1) or  

       𝑓(𝑥1, 𝑦2) < 𝑓(𝑥2, 𝑦2) if  𝑥1 < 𝑥2  or 

(2) 𝑓(𝑥1, 𝑦1) < 𝑓(𝑥2, 𝑦2) if  𝑥1 = 𝑥2, 𝑦1 < 𝑦2   

(ii) 𝑓 is strictly decreasing on  𝐼 × 𝐽 if for every 

(𝑥1, 𝑦1) and (𝑥2, 𝑦2) in  𝐼 × 𝐽,  we have 

If (𝑥1, 𝑦1) < (𝑥2, 𝑦2) 𝑡ℎ𝑒𝑛  

(1) 𝑓(𝑥1, 𝑦1) > 𝑓(𝑥2, 𝑦1) or  

       𝑓(𝑥1, 𝑦2) > 𝑓(𝑥2, 𝑦2) if 𝑥1 < 𝑥2 or 

(2) 𝑓(𝑥1, 𝑦1) > 𝑓(𝑥2, 𝑦2) if  𝑥1 = 𝑥2, 𝑦1 < 𝑦2                             

(iii) 𝑓 is strictly monotone on  𝐼 × 𝐽 𝑖𝑓 𝑓 𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 

 increasing or strictly decreasing on  𝐼 × 𝐽. 

(iv) 𝑓 is increasing on  𝐼 × 𝐽 if for every  (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2) in  𝐼 × 𝐽, we have if  (𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2) 𝑡ℎ𝑒𝑛  

(1) 𝑓(𝑥1, 𝑦1) ≤ 𝑓(𝑥2, 𝑦1) or 𝑓(𝑥1, 𝑦2)

≤ 𝑓(𝑥2, 𝑦2) if 𝑥1 < 𝑥2 or 

(2) 𝑓(𝑥1, 𝑦1) ≤ 𝑓(𝑥2, 𝑦2) if 𝑥1 = 𝑥2, 𝑦1 < 𝑦2   

(v) 𝑓 is decreasing on  𝐼 × 𝐽 if for every  (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2)  in  𝐼 × 𝐽,  we have if   (𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2)𝑡ℎ𝑒𝑛 

(1) 𝑓(𝑥1, 𝑦1) ≥ 𝑓(𝑥2, 𝑦1) or 𝑓(𝑥1, 𝑦2) ≥ 𝑓(𝑥2, 𝑦2)  

 if  𝑥1 < 𝑥2or 

(2) 𝑓(𝑥1, 𝑦1) ≥ 𝑓(𝑥2, 𝑦2) if  𝑥1 = 𝑥2, 𝑦1 < 𝑦2                             

(vi) 𝑓 is monotone on  𝐼 ×  if 𝑓 is increasing or decreasing  

on 𝐼 × 𝐽. 

 

Example 10 

The functions 𝑓(𝑥, 𝑦) = 𝑥3 and 𝑓(𝑥, 𝑦) = 𝑦3are increasing 

on  ℝ × ℝ, meanwhile the function 𝑓(𝑥, 𝑦) = 𝑦3 + 𝑥3 is 

strictly increasing on ℝ × ℝ.  

 

Next, we consider a special class of two variables functions, 

and we discuss their relation with monotonicity of functions. 

 

Proposition 16 

Suppose 𝐼 ≠ ∅, 𝐽 ≠ ∅, I, J are intervals in ℝ. For any 

functions 

𝜇: 𝐼 → ℝ, and  𝜗: 𝐽 → ℝ,  define  𝑓: 𝐼 × 𝐽 → ℝ  and 

ℎ: 𝐼 × 𝐽 → 𝑅 by 𝑓(𝑥, 𝑦) = 𝜇(𝑥) + 𝜗(𝑦) and  ℎ(𝑥, 𝑦) =
𝜇(𝑥)𝜗(𝑦)  for every (𝑥, 𝑦) ∈ 𝐼 × 𝐽. Then: 

(1) f is strictly increasing on  𝐼 × 𝐽  and only if μ is 

strictly increasing on I and ϑ is strictly increasing 

on J. 

(2) If 𝜇(𝑥) > 0  and 𝜗(𝑦) > 0   for all 𝑥 ∈ 𝐼 and  𝑦 ∈

𝐽.  Then h is strictly increasing on 𝐼 × 𝐽 if only if 

𝜇 is strictly increasing on I and ϑ is strictly 

increasing on J 

 

Proof.  

Both parts follow directly from the definitions. 

 

A similar statement holds for decreasing functions. These 

propositions, along with the next one, provide a foundation 

for constructing various examples of monotonic functions. 

 

Proposition 17 

Suppose 𝐼 ≠ ∅, 𝐽 ≠ ∅, I, J are intervals in ℝ.  The set 𝐼 + 𝐽: =
{𝑥 + 𝑦: 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝐽} is interval in ℝ. Further, let 𝜑: 𝐼 +
𝐽 → 𝑅  be any function and consider f: 𝐼 × 𝐽 → ℝ  defined by 
𝑓(𝑥, 𝑦): = 𝜑(𝑥 + 𝑦) for (𝑥, 𝑦) ∈ 𝐼 × 𝐽. Then: 

1. φ is increasing on 𝐼 + 𝐽   f is increasing on 𝐼 × 𝐽 

2. φ is decreasing on 𝐼 + 𝐽  f is decreasing on 𝐼 × 𝐽 

Proof. First, one shows that 𝐼 + 𝐽  is an interval in ℝ (see 

[18, p. 16]). Then the result follows from the definition (14). 

 

The properties we have established in ℝ2 have inspired this 

study. We examine certain properties in ℝ2—such as various 

inequality relations, the modified Archimedean property, and 

the modified completeness property—and assess their 

validity in ℝ𝑛 under the total order. In this research, we 

employ analytical methods to extend the concept of 

lexicographic order from ℝ2to ℝ𝑛, and we have obtained 

several promising results. 

IV.  EXTENSION TO LEXICOGRAPHIC ORDER IN ℝ𝑛 

In this section, we will expand on the foundational concept of 

lexicographic order in ℝ𝑛, building upon the ideas developed 

in [12] to clearly demonstrate its extension to higher 

dimensions. We begin with the following definition of 

lexicographic order in ℝ𝑛 (another results about 

Lexicographic in ℝ𝑛 can be found in [19]-[23]).  

 

Definition 18 

If 𝑥 = (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛 ), 𝑦 = (𝑦1 , 𝑦2 , 𝑦3 , … , 𝑦𝑛 ) ∈ ℝ𝑛 

then 𝑥 < 𝑦 ⟺ 𝑥1 < 𝑦1, 𝑜𝑟  𝑥𝑖 = 𝑦𝑖, for 𝑖 = 1,2,3, … , 𝑘 <

𝑛  and 𝑥𝑘+1 < 𝑦𝑘+1,              (5) 

 

Next, we partition ℝ𝑛 into three distinct subsets whose 

union is ℝ𝑛, similar to how ℝ2 is divided into three disjoint 

subsets. 

Specifically, for any 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛, and 𝐾𝑖 is a set 

of all element in ℝ𝑛 such that first elements which is not zero 

is the 𝑖𝑡ℎ element and is a real positive. For examples of set 

𝐾3 = {(0,0, 𝑥3, 𝑥4, … , 𝑥𝑛) ∈ 𝑅𝑛:  𝑥3 > 0}. Next, define 

−𝐾𝑗 = {(0,0, … ,0, −𝑥𝑗 , −𝑥𝑗+1, … , −𝑥𝑛) ∈ ℝ𝑛:  𝑥𝑗 > 0} , and 

let 𝐾 = ⋃ 𝐾𝑖
𝑛
1  ⊂ ℝ𝑛.        (6) 

Using the set K, we can partition ℝ𝑛 into three disjoint 

subsets, i.e 𝐾, 𝑂, −𝐾  with  𝑂 = {(0,0, … ,0)} such  ℝ𝑛 = 𝐾 ∪
𝑂 ∪ −𝐾. 

Under the standard operations of addition and scalar 
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multiplication in ℝ𝑛 the set K satisfies the following 

properties. 

 

Proposition 19 

Let  𝐾 ⊂ ℝ𝑛 be the set defined in (6).  For every 𝑎, 𝑏 ∈
𝐾, 𝑎𝑛𝑑 𝑐 > 0, 𝑐 ∈ 𝑅, the following properties hold: 

1) 𝑎 + 𝑏 ∈ 𝐾 

2) 𝑐𝑎 ∈ 𝐾 

 

Note that the pointwise product in ℝ𝑛 is not closed in K. for 

example (0,1,0, … ,0)(1,0,0, … ,0) = (0,0, . . ,0) ∉ 𝐾.   Thus, 

it is not true that 𝑎, 𝑏 ∈ 𝐾 implies that 𝑎𝑏 ∈ 𝐾.  
Under the lexicographic order defined in (1), the Trichotomy 

property holds in ℝ𝑛, i.e. for any vector a ∈ ℝ𝑛 exactly one 

of the following is true: 

𝑎 ∈  𝐾, 𝑜𝑟 𝑎 =  𝑂, 𝑜𝑟 − 𝑎 ∈  𝐾 

 

When 𝑎 ∈  𝐾, we denote this by writing 𝑎 >  𝑂 and call a 

positive. If 𝑎 ∈  𝐾 ∪  𝑂, we write   𝑎 ≥  𝑂, and say that a is 

nonnegative. Similarly, when −𝑎 ∈  𝐾, we write 𝑎 <  𝑂, 

and say that a is negative, and if −𝑎 ∈  𝐾 ∪  𝑂, we write  

 𝑎 ≤  𝑂, and say that a is non positive. 

With these definitions, the ordering of two points in ℝ𝑛 is 

established. 

 

Definition 20 

Let 𝑎, 𝑏 ∈ ℝ𝑛 , 
(i).  If 𝑎 −  𝑏 ∈  𝐾, then we write 𝑎 >  𝑏 (or equivalently,    

       𝑏 <  𝑎). 

(ii). If 𝑎 −  𝑏 ∈  𝐾 ∪  𝑂, then we write   𝑎 ≥  𝑏 (or 𝑏 ≤  𝑎). 

 

By the trichotomy property, for any two vectors 𝑎 and 𝑏 in 

ℝ𝑛, exactly one of the following holds: 𝑎 >  𝑏, 𝑜𝑟 𝑎 =
 𝑏 𝒐𝒓 𝑎 <  𝑏. Consequently, if both 𝑎 ≥  𝑏 and 𝑎 ≤  𝑏 then   

𝑎 =  𝑏. Henceforth, 𝑎 ≥  𝑏 is understood to mean either 

𝑎 >  𝑏 𝑜𝑟 𝑎 =  𝑏. Just like in ℝ, the notation 𝑎 <  𝑏 <  𝑐 

means 𝑎 <  𝑏 and 𝑏 <  𝑐, and similarly, the compound 

inequalities 𝑎 ≤  𝑏 <  𝑐, 𝑎 <  𝑏 ≤  𝑐, and 𝑎 ≤  𝑏 ≤  𝑐 are 

interpreted in the same way. 

To illustrate these inequalities, consider vectors 𝑎 and 𝑏 in 

ℝ𝑛. The condition 𝑎, 𝑏 ∈ ℝ𝑛 , then 𝑎 − 𝑏 ∈ 𝐾 means 𝑎1 −
𝑏1 > 0 𝑜𝑟 𝑎𝑖 − 𝑏𝑖 = 0 , 𝑖 = 1,2,3, … , 𝑘 < 𝑛 𝑎𝑛𝑑 𝑎𝑘+1 −
𝑏𝑘+1 > 0. 

 

Example 11 

(2,3, … ,6) >  (1,2, … ,9) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 (2,3, . . . ,6)  
− (1,2, . . . ,9)  =  (1,1, . . . , −3)  ∈  𝐾. 

(2,3, … ,1) >  (2,2, … ,0)𝑏𝑒𝑐𝑎𝑢𝑠𝑒 (2,3, … ,1) −  (2,2, … ,0) 

 =  (0,1, . . . ,1)  ∈  𝐾, 

 

The order relation " ≤ " as defined in (5) for ℝ𝑛 satisfies 

the properties of a total order. 

 

Proposition 21 

The relation of ≤ in (5) is the totally order. 

 

Different with properties of the order that we know, which is 

𝑓𝑜𝑟 𝑎 𝑎𝑛𝑑 𝑏 𝑖𝑛 ℝ𝑛 , 𝑎 ≤ 𝑏 ⟺ 𝑎𝑖  ≤ 𝑏𝑖  (7) 

Relation ≤ in (7) is the partial order of ℝ𝑛, because the three 

condition of partial order is satisfied. But ≤ is not the total 

order in ℝ𝑛, because not every element a, b in ℝ𝑛 satisfies a 

≤ b or a ≥ b. To illustrate the basic properties of our order and 

their implications for inequalities, we conclude the result as 

follow. 

 

Proposition 22 

Suppose 𝑎, 𝑏, 𝑐 ∈ ℝ𝑛 and 𝑘 ∈ ℝ. 
(i)  If a > b and b > c then a > c. 

(ii) If a > b then a + c > b + c. 

(iii) If a > b and k > 0 then ka > kb. 

 If a > b and k < 0 then ka < kb. 

Proof 

(i). If a – b ∈ K and b – c ∈ K then 𝑎 − 𝑐 = (𝑎 − 𝑏) +

      (𝑏 − 𝑐) ∈ 𝐾.  We conclude that a > c. 

  (ii). If a – b ∈ K then 𝑎 −  𝑏 + 𝑂 =  (𝑎 −  𝑏)  + (𝑐 −
 𝑐)  =  (𝑎 +  𝑐) + (− 𝑏 −  𝑐)  =  (𝑎 +  𝑐)  − (𝑏 +
𝑐)  ∈  𝐾  (because of if a ∈ K then 𝑎 +  𝑂 =  𝑎 ∈ 𝐾). 

We conclude that 𝑎 +  𝑐 > 𝑏 +  𝑐. 

(iii). If 𝑎 − 𝑏 ∈ 𝐾, 𝑡ℎ𝑒𝑛 𝑎1 > 𝑏1 𝑜𝑟 𝑎𝑖 = 𝑏𝑖  , 𝑖 =
1,2,3, … , 𝑝 < 𝑛  𝑎𝑛𝑑   𝑎𝑝+1 > 𝑏𝑝+1 .  

There are two cases. The first, if 𝑎1 − 𝑏1 > 0 𝑎𝑛𝑑 𝑘 >
0, 𝑘 ∈ ℝ  then 𝑘𝑎1 − 𝑘𝑏1 = 𝑘( 𝑎1 − 𝑏1). We conclude, ka – 

kb∈ K. The second, if 𝑎𝑖 = 𝑏𝑖  , 𝑖 = 1,2,3, … , 𝑝 <
𝑛  𝑎𝑛𝑑 𝑎𝑝+1 > 𝑏𝑝+1  then 𝑘(𝑎𝑝+1 − 𝑏𝑝+1) > 0 for k > 0 

such that 𝑘𝑎𝑝+1 − 𝑘𝑏𝑝+1) > 0  with 𝑎𝑖 = 𝑏𝑖  , 𝑖 =

1,2,3, … , 𝑝 < 𝑛.  We conclude, 𝑘𝑎 −  𝑘𝑏 ∈  𝐾 or 𝑘𝑎 >  𝑘𝑏. 

The similar proof, can be used for case k < 0. 

COMPLETENESS PROPERTY IN ℝ𝑛 

In this section, we introduce the definition of a bounded set 

in ℝ𝑛 and extend the concepts of supremum and infimum for 

sets in ℝ2, building on the definitions presented in [12].  

 

Definition 23  

Suppose 𝑆 ≠ ∅, 𝑆 ⊆ ℝ𝑛.  S is right-bounded in ℝ𝑛 if there 

exists an interval 𝐼1 in ℝ that is bounded above, along with 

bounded intervals 𝐼𝑘 , 𝑘 = 2, … , 𝑛   in ℝ such that 𝑆 ⊆
𝐼1 × 𝐼2 × … × 𝐼𝑛. A point 𝑠 ∈ ℝ𝑛 that satisfies 𝑠 ≥ 𝑥 for 

every 𝑥 ∈ 𝑆 is called a right bound of S.  

 

Definition 24 

Suppose 𝑆 ≠ ∅, 𝑆 ⊆ ℝ𝑛.  S is left-bounded in ℝ𝑛 if there is 

an interval 𝐼1 in ℝ that is bounded below, along with bounded 

intervals 𝐼𝑘 , 𝑘 = 2, … , 𝑛  in  ℝ such that 𝑆 ⊆ 𝐼1 × 𝐼2 × … × 𝐼𝑛. 

A point 𝑠 ∈ ℝ𝑛 that satisfies 𝑠 ≤ 𝑥 for every 𝑥 ∈ 𝑆 is called 

a left bound of S. 

 

Definition 25 

Let 𝑆 ⊆ ℝ𝑛 , 𝑆 ≠ ∅. We say that S is totally bounded if S 

bounded in the left and the right in ℝ𝑛. 

 

Equivalently, S is totally bounded if there exist bounded 

intervals 𝐼𝑘, 𝑘 = 1,2, … , 𝑛  in ℝ such that  𝑆 ⊆ 𝐼1 × 𝐼2 × … ×

𝐼𝑛. 

Next, we will discuss the concept of the smallest right 

bound and the largest left bound of a set S in ℝ𝑛   as a 
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consequence of our definitions of bounded sets and the 

lexicographic order on ℝ𝑛. The definitions of supremum and 

infimum will be presented as extensions of the corresponding 

definitions in [12]. 

 

Definition 26 

Suppose 𝑆 ≠ ∅, 𝑆 ⊆ ℝ𝑛, and 𝑆̅ is its closure. 

a. If S is bounded right, a point 𝑎 ∈ 𝑆̅ is called the optimal 

supremum of S if it satisfies the conditions: 

i) a is a right bound for S (that is, 𝑎 ≥ 𝑥 for every 𝑥 ∈

 𝑆), and 

ii)  a is the smallest right bound of S, meaning that for 

any right bound 𝑡 ∈ 𝑆̅ of 𝑆, we have 𝑎 ≤ 𝑡 . 

b.  If S is left bounded, a point 𝑢 ∈ 𝑆̅   is called the optimal 

infimum of S if: 

i)  𝑢 is a left bound for 𝑆, 

ii) 𝑢 is the greatest left bound for 𝑆, meaning that for any 

left bound 𝑤 ∈ 𝑆̅ of 𝑆, we have 𝑢 ≥ 𝑤. 

 

Part (a)(ii) ensures that a is the minimal right bound, while 

part (b)(ii) guarantees that u is the maximal left bound. In 

what follows, the optimal supremum of S is denoted by 

𝑠𝑢𝑝 𝑜𝑝(𝑆) and optimal infimum by 𝑖𝑛𝑓 𝑜𝑝(𝑆). ). Let 𝑆 ⊆ ℝ𝑛 

is totally is compact set. Since  𝑆 is closed and bounded, then 

the existence of optimal supremum and optimal infimum 

should be guaranteed. Following previous studies, the 

candidate for optimal supremum is (𝑎1
∗, 𝑎2

∗ , ⋯ , 𝑎𝑛
∗ ), which 

𝑎1
∗ = sup { 𝑥1 ∈ ℝ ∣∣ (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛) ∈ 𝑆̅ } , 

𝑎2
∗ = sup{ 𝑥2 ∈ ℝ ∣∣ (𝑎1

∗, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛) ∈ 𝑆̅ } , 
𝑎3

∗ = sup{ 𝑥3 ∈ ℝ ∣∣ (𝑎1
∗, 𝑎2

∗ , 𝑥3, ⋯ , 𝑥𝑛) ∈ 𝑆̅ } , 
⋮ 

𝑎𝑛
∗ = sup{ 𝑥𝑛 ∈ ℝ ∣∣ (𝑎1

∗ , 𝑎2
∗ , 𝑎3

∗ , ⋯ , 𝑎𝑛−1
∗ , 𝑥𝑛) ∈ 𝑆̅ }. 

Similarly, the candidate for optimal infimum is 

(𝑎1∗
, 𝑎2∗

, ⋯ , 𝑎𝑛∗
), which 

𝑎1∗
= sup { 𝑥1 ∈ ℝ ∣∣ (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛) ∈ 𝑆̅ } , 

𝑎2∗
= sup{ 𝑥2 ∈ ℝ ∣∣ (𝑎1

∗, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛) ∈ 𝑆̅ } , 

𝑎3∗
= sup{ 𝑥3 ∈ ℝ ∣∣ (𝑎1

∗, 𝑎2
∗ , 𝑥3, ⋯ , 𝑥𝑛) ∈ 𝑆̅ } 

⋮ 

𝑎𝑛∗
= sup{ 𝑥𝑛 ∈ ℝ ∣∣ (𝑎1

∗, 𝑎2
∗ , 𝑎3

∗ , ⋯ , 𝑎𝑛−1
∗ , 𝑥𝑛) ∈ 𝑆̅ }. 

 

Proposition 27 

Let 𝑆 ⊂ ℝ𝑛 is a compact set, then   

(𝑎1
∗, 𝑎2

∗ , ⋯ , 𝑎𝑛
∗ ) and (𝑎1∗

, 𝑎2∗
, ⋯ , 𝑎𝑛∗

) ∈ 𝑆. 

 

Proof:  

Mimic the proof of Proposition 11. 

 

Proposition 28 

Let 𝑆 ⊂ ℝ × ℝ is a compact set, then  (𝑎∗, 𝑏∗) is the optimal 

supremum of 𝑆. 

 

Proof:  

Mimic the proof of Proposition 12.  

 

An analogous condition holds for the optimal infimum. 

 

Example 12  

Consider the set 𝑆 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶   𝑥 + 𝑦 + 2𝑧 ≤ 4, 𝑥 >
0, 𝑦 > 0, 𝑧 > 0}(as illustrated in Fig. 9). 

This set is totally bounded in ℝ³ because there exist 

bounded intervals 𝐼1 = [0,5], 𝐼2 = [0,5], and 𝐼3 = [0,3], 
such that 𝑆 ⊆ 𝐼1 × 𝐼2 × 𝐼3. In this case, for any (𝑥, 𝑦, 𝑧) ∈
𝑆, then  𝑥 ∈ (0,4] ⊆  [0,5] = 𝐼1 , 𝑦 ∈ (0,4] ⊆  [0,5] = 𝐼2,
𝑧 ∈ (0,2] ⊆  [0,3] = 𝐼3. 

The point (4,0,0) ∈ 𝑆̅, and serves as a right bound of S, 

since for every (𝑥, 𝑦, 𝑧) ∈ 𝑆 satisfies (𝑥, 𝑦, 𝑧) ≤ (4,0,0). To 

see that (4,0,0) is the smallest right bound, assume there 

exists another right bound (𝑝, 𝑞, 𝑟) such that (𝑝, 𝑞, 𝑟) <
(4,0,0). If 𝑝 = 4 then necessarily 𝑞 ≤ 0, which contradicts 

the condition 𝑦 > 0. If 𝑦 > 0 then (𝑝, 𝑞, 𝑟) ∈ 𝑆. Thus, (4, 0, 

0) is the optimal supremum of S. Similarly, one can show that 

the optimal infimum of S is (0, 0, 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 29 

The optimal supremum of any nonempty set S is unique. 

 

Proof: 

Assume that S has two optimal suprema, say 𝑥 and 𝑦. If 𝑥 <
𝑦, then, given that y is the optimal supremum, 𝑥 cannot serve 

as a right bound for S. Conversely, if 𝑦 < 𝑥, then 𝑥 cannot be 

the optimal supremum. Therefore, we must have x = y. A 

similar argument establishes the uniqueness of the optimal 

infimum. 

 

An analogous condition holds for the optimal infimum. 

 

Proposition 30 

For any 𝑆 ≠ ∅, 𝑆 ⊆ ℝ2 that is right bounded has an optimal 

supremum in ℝ2. Similarly, for any 𝑆 ≠ ∅, 𝑆 ⊆ ℝ2 that is 

left bounded has an optimal infimum in ℝ2. 

 

Proof:  

Let D be a nonempty, right-bounded subset of ℝ2. Then there 

exists an interval 𝐼1 in ℝ that is bounded above and an interval 

𝐼2 in ℝ such that 𝐷 ⊆ 𝐼1 × 𝐼2. Define 𝑀𝑖 = {𝑥𝑖/(𝑥1, 𝑥2) ∈
𝐷}. 𝑀1 ⊆ 𝐼1 is bounded above, 𝑀1  has a supremum, say α, in 

𝑅; similarly, M₂ is bounded. Three cases rise: 

Case (1), if 𝛼 ∈ 𝑀1 then (𝛼, 𝑦) = sup 𝑜𝑝 𝐷 with 𝑦 =
𝑠𝑢𝑝{𝑥2/(𝛼, 𝑥2) ∈ 𝐷} or 𝑦 is the only element in di 𝑀2 then 

(𝛼, 𝑦) ∈ 𝐷̅. Case (2), if 𝛼 ∉ 𝑀1 then (𝛼, 𝑦) = sup 𝑜𝑝 𝐷 with 

𝑦 = 𝑖𝑛𝑓{𝑥2/(𝛼, 𝑥2) ∈ 𝐷}∈D} or y is the only element in 𝑀2 

then (𝛼, 𝑦) ∈ 𝐷̅. Case (3), if 𝛼 ∈ 𝑀1 at once 𝛼 ∉ 𝑀1(𝐷 is 

combination of several subsets in ℝ2), a similar analysis 

applies as in the previous cases. 

Fig. 9.  Illustrative representation of set S in Example 12 
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A similar line of reasoning shows that every left-bounded 

subset D of ℝ2 has an optimal infimum. This framework can 

be extended to subsets of ℝ𝑛. 

 

Proposition 31 

For any 𝑆 ≠ ∅, 𝑆 ⊆ ℝ𝑛 that is right bounded has an optimal 

supremum in ℝ𝑛. Likewise, for any 𝑆 ≠ ∅, 𝑆 ⊆ ℝ𝑛 that is 

left bounded has an optimal infimum in ℝ𝑛. In conclusion, 

any totally bounded set in ℝ𝑛  possesses both an optimal 

supremum and an optimal infimum. 

In what follows, we extend the translation operation 

defined in Definition 12 to ℝ𝑛. 
 

Definition 32 

For any subset 𝑆 ⊆ ℝ𝑛 , and any point  𝑎 ∈ ℝ𝑛, define 

𝑎 + 𝑆 = {𝑎 + 𝑥 ∶ 𝑥 ∈ ℝ𝑛}    

 

Example 13 

Let 𝑆 = {(𝑥, 𝑦, 𝑧): 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1,0 ≤ 𝑧 ≤
1} and let 𝑎 = (2,2,2). Then 𝑎 + 𝑆 = {(2 + 𝑥, 2 + 𝑦, 2 +
𝑧): 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑧 ≤ 1} = {(𝑥, 𝑦, 𝑧): 2 ≤ 𝑥 ≤
3, 2 ≤ 𝑦 ≤ 3, 2 ≤ 𝑧 ≤ 3} .  

Given that the optimal supremum of S is 𝑆𝑢𝑝 𝑂𝑝(𝑆)  =
 (1,1,1) and the optimal infimum is 𝐼𝑛𝑓 𝑜𝑝(𝑆)  =  (0,0,0), it 

follows that 𝑆𝑢𝑝 𝑜𝑝(𝑎 + 𝑆) = (3,3,3) = (2,2,2) +
(1,1,1) = 𝑎 + 𝑆𝑢𝑝 𝑜𝑝(𝑆), and 𝐼𝑛𝑓 𝑜𝑝(𝑎 + 𝑆) = (2,2,2) =
(2,2,2)  + (0,0,0) = 𝑎 +  𝐼𝑛𝑓 𝑜𝑝(𝑆) 

  

Example 14 

Consider the set 𝑆 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶   3𝑥 + 2𝑦 + 2𝑧 ≤
6, 𝑥 > 0, 𝑦 > 0, 𝑧 > 0} and let  𝑎 = (2,2,2) (see Fig. 2). S is 

totally bounded in ℝ3 since there exist bounded intervals 𝐼1 =
[0,3], 𝐼2 = [0,4], and 𝐼3 = [0,4], such that 𝑆 ⊆ 𝐼1 × 𝐼2 × 𝐼3. 

In particular, for every (𝑥, 𝑦, 𝑧) ∈ 𝑆, we have  𝑥 ∈ (0,2] ⊆
[0,3] = 𝐼1 , 𝑦 ∈ (0,3] ⊆ [0,4] = 𝐼2, 𝑧 ∈ (0,3] ⊆ [0,4] = 𝐼3. 

The point (2,0,0) ∈ 𝑆̅, and is a right bound of S because 

every (𝑥, 𝑦, 𝑧) ∈ 𝑆 satisfies(𝑥, 𝑦, 𝑧) ≤ (2,0,0). To show that 

(2,0,0) is the smallest right bound, assume there exists 

another right bound(𝑝, 𝑞, 𝑟) such that (𝑝, 𝑞, 𝑟) < (2,0,0). If 

𝑝 = 2 then 𝑞 ≤ 0, this is the opposite of 𝑦 > 0 hypothesis. If 

𝑦 > 0 then (𝑝, 𝑞, 𝑟) ∈ 𝑆. Thus, (2,0,0) is the optimal 

supremum of S. Then 𝑆𝑢𝑝 𝑜𝑝(𝑎 + 𝑆)  =  𝑎 + 𝑆𝑢𝑝 𝑜𝑝(𝑆)  =
(2,2,2) + (2,0,0) = (4,2,2). Or by direct calculation 

 𝑎 + 𝑆 = {(2,2,2) + (𝑥, 𝑦, 𝑧) ∈ 𝑅3 ∶   3𝑥 + 2𝑦 + 2𝑧 ≤
6, 𝑥 > 0, 𝑦 > 0, 𝑧 > 0} = {(2 + 𝑥, 2 + 𝑦, 2 + 𝑧) ∈ 𝑅3 ∶
 3𝑥 + 2𝑦 + 2𝑧 ≤ 6, 𝑥 > 0, 𝑦 > 0, 𝑧 > 0} = {(𝑥′, 𝑦′, 𝑧′) ∈
𝑅3 ∶   3(𝑥′ − 2) + 2(𝑦′ − 2) + 2(𝑧′ − 2) ≤ 6, 𝑥′ − 2 >
0, 𝑦′ − 2 > 0, 𝑧′ − 2 > 0} = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3 ∶   3𝑥 + 2𝑦 +
2𝑧 ≤ 20, 𝑥 > 2, 𝑦 > 2, 𝑧 > 2} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 33 

Suppose 𝑆 ⊆ ℝ𝑛 is totally bounded, 𝑎𝑛𝑑  𝑎 ∈ ℝ𝑛.  
Then 𝑠𝑢𝑝 𝑜𝑝(𝑎 + 𝑆) = 𝑎 + 𝑠𝑢𝑝 𝑜𝑝 (𝑆) and 𝑖𝑛𝑓 𝑜𝑝(𝑆) =
𝑎 + 𝑖𝑛𝑓 𝑜𝑝 (𝑆). 
 

Proof. 

Let 𝑚 =  𝑠𝑢𝑝 𝑜𝑝 (𝑆), so that for every ∀𝑥 ∈ 𝑆, 𝑥 ≤ 𝑚. Then, 

for every 𝑥 ∈ 𝑆, we have 𝑎 + 𝑥 ≤ 𝑎 + 𝑚, implying that 𝑎 +
𝑚 is the right bound for 𝑎 + 𝑆. Hence,  𝑠𝑢𝑝 𝑜𝑝(𝑎 + 𝑆) ≤ 𝑎 +
𝑚 = 𝑎 + 𝑠𝑢𝑝 𝑜𝑝 (𝑆). Conversely, if v is any right bound of 

𝑎 + 𝑆, then 𝑎 + 𝑥 ≤ 𝑣, ∀𝑥 ∈ 𝑆. So that 𝑣 − 𝑎  is the right 

bound of 𝑆. Hence 𝑤 = 𝑠𝑢𝑝 𝑜𝑝 (𝑆) ≤ 𝑣 − 𝑎, which implies 

that 𝑎 + 𝑤 ≤ 𝑣. Since v is an arbitrary right bound of 𝑎 + 𝑆 

it follows that 𝑎 + sup 𝑜𝑝 (𝑆) = 𝑎 + 𝑤 ≤ sup 𝑜𝑝(𝑎 + 𝑆). 

V.   DISCUSSION AND CONCLUSION 

We have presented the properties of lexicographic order in 

ℝ𝑛. In general, there exist no conventional order of elements 

in ℝ𝑛. We introduced a lexicographic order, motivated by 

ordering of words in dictionary, which is non-quantitative 

data. Moreover, we generate mathematical theory to the 

elements of ℝ𝑛 regarding the order dan the properties. This 

mathematical theory might be a potential to be applied in non-

quantitative data management and programming such as [24] 

– [27]. 

In paper, we have started by presenting the properties of 

lexicographic order in ℝ2. Applying ordering properties and 

completeness axiom of real number ℝ we have constructed 

theory of lexicographic order of ℝ2. Starting from this, we 

have continued to generalize the properties of lexicographic 

order established in ℝ2 to higher order space ℝ𝑛. These 

extended properties encompass the nature of inequality, the 

modified Archimedean property, and the modified 

completeness property in ℝ𝑛. 

 

 

 

 

Figure 10. 𝑆 and 𝑎 + 𝑆 in ℝ3 

Set 𝑎 + 𝑆 

Set 𝑆 
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