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Abstract—The energy storage system in the photovoltaic
energy storage charging station is one of the important
components that ensure the stable operation of the system and
increase the consumption rate of photovoltaic power generation.
However, at present, photovoltaic energy storage charging
stations are facing problems of unreasonable -capacity
configuration and high costs. To address this problem, this
paper proposes a capacity configuration method for
photovoltaic energy storage charging stations based on
reinforcement learning. Firstly, by introducing a battery state
of health model for the energy storage system, a corresponding
configuration model is established to minimize the
comprehensive cost of the photovoltaic energy storage charging
stations under time-of-use electricity prices while considering
constraints. Secondly, the Deep Q-Network algorithm is
employed to solve the configuration model and obtain
configuration results for photovoltaic energy storage charging
stations, taking into account the battery's state of health. Finally,
the effectiveness of the proposed model and method is validated
through practical case analysis. The capacity configuration
method for photovoltaic energy storage charging stations not
only increased the economic benefits of the photovoltaic energy
storage power stations by 12.66% but also provided technical
references and theoretical support for the optimal design and
configuration of photovoltaic energy storage power stations.

Index Terms—photovoltaic energy storage charging station,
energy storage system, capacity configuration, reinforcement
learning

1. INTRODUCTION

LECTRIC wvehicles (EVs) are a new type of
transportation that uses electric energy to drive instead of
traditional fuel-driven vehicles. With the rapid growth of EVs,
many vehicles enter charging stations for charging, which has
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a significant impact on the distribution network where the
charging stations are located. Therefore, the sharp increase in
charging capacity exerts a notable influence on the entire
power grid. The charging station serves as a critical
supporting facility for EVs, with the Energy Storage System
(ESS) being a core component of the Photovoltaic Energy
Storage Charging Station (PESCS). Consequently, Therefore,
it’s necessary to rationally configure the capacity of the ESS.
The optimal configuration of the ESS primarily entails
planning its capacity, which determines the space-time
translation capability of the system. However, the
configuration of capacity is influenced by investment costs.
Therefore, achieving an appropriate balance between ESS
configuration and capital investment is crucial for realizing
optimal ESS configuration [1-2]. To enable EVs to
effectively utilize renewable energy sources, photovoltaic
(PV) systems can serve as their primary energy source,
thereby facilitating significant reductions in carbon emissions.
Given the volatility of PV power generation, the reliability of
power supply can be notably improved by configuring an
ESS. Therefore, the configuration of an ESS within PESCS
not only enhances grid stability but also allows new energy
vehicles to harness renewable energy more efficiently [3-5].
During the planning phase for configuring an ESS, it is
essential to thoroughly consider the potential loss of battery's
state of health to optimize both the economic and
environmental advantages. Given that time-of-use electricity
pricing has been implemented in most regions, an effective
energy management strategy should be developed based on
time-of-use electricity pricing [6-8].

Currently, some progress has been made in the research on
the capacity configuration of ESS, both domestically and
internationally. Based on varying optimization objectives, the
optimal configuration of ESS can be categorized into three
distinct types: configurations aimed at economic efficiency,
low carbon, and system reliability. In reference [9], a
multi-agent deep reinforcement learning method is proposed
for energy management of PESCS, which reduces the
operating cost of PESCS. In reference [10], a synchronous
capacity configuration and scheduling optimization model
for integrated electric vehicle charging stations was proposed,
which effectively improved economic benefits and reduced
carbon emissions. In reference [11], V2G technology is
integrated to construct a dual charging and discharging mode
for EVs, a cost model of the charging system with maximum
energy efficiency and minimum investment is established,
and an optimal configuration scheme for the capacity of
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PESCS is proposed. In summary, conducting research on the
optimal configuration of ESS capacity in the PESCS holds
considerable significance. Whether the configuration of ESS
is reasonable will directly affect the normal operation of
PESCS and its overall economy [12-15].

In contrast, the deep Q-network (DQN) has outstanding
advantages in achieving optimal operation for PESCS with
uncertainties and complex nonlinear models. This is due to its
two key characteristics: Dynamic relevance  of
decision-making: Reinforcement learning (RL) focuses on
the current configuration problem and can make targeted
decisions at different stages based on past experience and
current status, aiming at maximizing long-term cumulative
rewards. The ability to cope with complex systems: Under
the architecture of PESCS, the types of equipment are
becoming more and more abundant, and the degree of
coupling between equipment is deepening, which brings
great challenges to model optimization. Reinforcement
learning can effectively deal with the situation of diverse and
complex interactions of equipment through learning
environment models and decision-making strategies, and
then make decisions more accurately.

Consequently, this paper puts forward a capacity
configuration approach to tackle the drawbacks in optimizing
the ESS capacity configuration of the PESCS. By solving the
ESS capacity configuration optimization model and taking
into account the service life of ESS batteries, this approach
ensures a reliable power supply and accomplishes peak load
shifting. As a result, it enhances the overall operational
efficiency of the PESCS. Eventually, the validity of the
proposed model and methods is confirmed through case
studies. The primary contributions of this research can be
summarized as follows.

(D In the capacity configuration of the PESCS, the impact
of the ESS battery's state of health is taken into account. An
optimal configuration model aiming to minimize the annual
total cost of the PESCS is set up, and the effects of factors
like the battery's state of health on the configuration
outcomes are further examined.

(IT) Using the time-of-use electricity price as a basis,
developing a reasonable operation strategy are conducive to
extending the battery's state-of-health. Then, a capacity
configuration model for the ESS is established, taking into
account the constraints related to the system power balance,
ESS, and the cost associated with the battery's state of health.

(IIT) By constructing an optimal capacity configuration
model that considers the health status of batteries and solving
it using DQN algorithms, a capacity configuration method
that can delay the battery's state of health and better adapt to
energy complementary characteristics is obtained, which
improves the economy of PESCS.

The structure of this article is organized as follows. In
Section 2, the fundamental architecture and model of the
PESCS are presented. Section 3 takes into account the
battery’s health status and formulates an optimized
capacity-configuration model for the PESCS. Section 4
elaborates on the solution approach for the system's capacity
configuration model. In Section 5, the feasibility of the
proposed method is validated through a case analysis. Finally,
Section 6 concludes the paper and offers perspectives on
future research directions.

II. THE ARCHITECTURE MODEL OF PHOTOVOLTAIC STORAGE
CHARGING STATION

The fundamental structure of the PESCS is depicted in Fig.
1. It primarily consists of a PV system, an ESS, an energy
management system for the PESCS, and an EV load section.
Every component is linked to the DC bus and engages in
energy exchange with the communication system via the
energy management system [16].

PV system  Photovoltaic Energy management Transformer ~ Main Grid
- A inverter system ﬁ A

] 1 it
A

—
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ESS Converter Charging pile EV
Bus bar Ethernet communication line

Fig.1. Basic structure of PESCS.

A. Photovoltaic generation model

The output power of the PV system is primarily influenced
by factors such as light intensity and temperature. The output
power P,,(¢) at time t can be expressed as

Py, (t)=Ins(t)Anm,, [1+v (To(0)~Tg ) | (1)
where, lns(t) is the radiance (w/m?), A is the area of the
photovoltaic module, 7. is the photoelectric conversion

efficiency of module, 77, is the MPPT efficiency of the DC

conversion link, v is the weather correlation

coefficient, T (¢) is the temperature of the PV cell in the t
period, and T, is the temperature of the PV cell under

standard test conditions.

B. Energy storage system model

The ESS at the charging station satisfies the EV charging
demand via charging and discharging. The charging process
model of the ESS is as follows.

Prss (DT P

SOC 45 (1 +1) = SOC g5 () — M5 P )0 (2)

ESS
The discharge process model of ESS is shown in the
following equation.

1 P ()T
SOC._(t+1)=S0C. (t)- ——E P (1)>0 (3)

ESS ESS ESS
UESS ESS

where, SOC . (¢ +1) and SOC . (¢) are the SOC of ESS at
time ¢ +1 and ¢ , respectively; P, (¢) is the power of ESS at
time ¢ ; C, and 77, are the capacity and charging efficiency

of ESS, respectively; and 7 is the unit period.

C. EVs charging load model

The size of EVs random charging load is related to factors
such as mileage, home time, and battery characteristics. Its
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daily mileage m can be regarded as satisfying the logarithmic

normal distribution, that is, m ~ Log — N ( ,um,éj) . Its home
time T can be regarded as satisfying the normal distribution,
thatis, 7y ~ N ( U O, ) . Then the probability density function

satisfies the following formula.

ot [ (nmep,)
f(m)—m ﬂamexp( 25 J “4)

(1o +24-p )
257

1
\/Eé‘c exp| — 0<T; S(yc —12)

1(Ts) ()

2
1 exp[—(Ts_#C) } (1o —12) <T, <24

N27é, 267

where, 1, and 0, are the average and standard deviation of
EVs mileage, respectively; 4. and . are the mean and

standard deviation of EVs at home.

The charging characteristic of EVs is usually to start
charging after the last trip to the home, which is the starting
time of EV charging. The charging process is simplified to a
fixed power charge until it is fully charged. Then the charging
duration of the ith EV is shown in the following equation.

a d, N ©)
i ’7EV . pehe

where, aE*" is the power consumption per kilometer of
EVs, P’ is the charging rated power of EVs, and " is the

charging efficiency of EVs.

The charging state of each EV in each period is determined
by simulation. The cumulative random charging load of EVs
in each time period can be determined by summing up the
charging power of each individual EV during the
corresponding period. The calculation formula is presented in
Equation (7).

NEV

})L — chhe A:Z]V (7)
i=1

where, Af;/ is the judgment of the charging state of the ith EV
attimet 1<¢<24;1<i<N ;P is the total random charging

load of EVs at time ¢ , and N*” is the number of EVs.

D. System energy management strategy

First of all, battery state of health estimation can help to
evaluate the impact on the battery's state of health and then
choose the appropriate way to prolong the service life of the
battery. Secondly, an effective operation strategy can
improve the economy and reliability of the system. Therefore,
there is a close relationship between a battery's state of health
estimation and integrated energy configuration optimization.
By accurately estimating the service life of the battery, a
reasonable operation strategy can be formulated to achieve
the optimization and efficient operation of the system. The
energy management strategy of the PESCS is the basis for the
energy exchange between the PESCS and the power grid and
the basis for configuring the ESS capacity of the PESCS
below [17-21]. The energy exchange strategy can be
summarized as follows:

() When the PV system generates electricity, priority is

given to the use of PV power.

(IT) When the electricity price is low, in principle, the ESS
is not used to charge the EVs, and the power supply is
provided by the power grid. If the ESS is not fully charged,
the ESS is charged by the power grid.

(II) When the electricity price is normal, the photovoltaic
output is greater than the station load, and the state of charge
of the ESS is not at full capacity. If the ESS cannot absorb all
the PV power, the excess power is fed into the grid. If the PV
output is less than the charging station load, the ESS is used
to supply power to the station load. If the ESS cannot meet
the load demand, the grid will cover the shortage.

(IV) During the peak period of electricity price, when the
PV output is greater than the load and the state of charge of
the ESS is not full, the excess PV power is absorbed by the
ESS at this time. In the event that the ESS is unable to absorb
the entirety of the PV power, the excess power is discarded.
Conversely, when the PV output is lower than the load within
the station, the ESS compensates for the power deficit.

For the convenience of calculation below, P, () is the

output power of the PV system at time ¢, P, (¢) is the charging
load at time ¢ , P (¢) is the power of ESS at time ¢ ,
and P, (¢) is the energy exchange power between the PESCS
and the power grid at time. When P, (¢) < 0 represents the
discharge of the ESS, and when P, (¢) >0 represents the
charging of the ESS. When F, (¢) > 0 indicates that the power

grid supplies power to the PESCS, the PESCS purchases
power from the power grid, and when P, (¢) < 0 indicates the

PESCS sells power to the power grid.

III. CAPACITY CONFIGURATION MODEL OF PHOTOVOLTAIC
STORAGE CHARGING STATION
A. Objective function

According to the PV power generation energy of the
PESCS and the charging load of the EVs, the capacity
configuration of the ESS of the PESCS is optimized. In the
case of meeting the charging demand in the station, the
design optimization goal is to minimize the annual total cost
C of the PESCS.

minC =min[ (C,, +C,, +C,, , +C,.))~(C,, +C,) | ®)
where, C,, is the initial fixed capital investment cost of the
PESCS, C - is the operation and maintenance investment cost
of the PV system and the ESS, C, , represents the cost
associated with the state of health of the ESS battery, C,,, is
the purchase cost of the PESCS from the power grid when the
PV system cannot meet the electricity demand, C, is the

turnover obtained from the charging of the PESCS, and C,, is
the subsidy of the PESCS.

r(1+r)n1 . r(l+r)"2
(1+r)n‘—1 (1+r)"2—1

where, P,,, P, is the rated output power of the photovoltaic

ng =Py Cpyy )

ESS CESS

array and the energy storage unit, C,, ,C,, is the unit price of
the PV and ESS, #, is the Operational life of PV, and n, is the
Operational life of ESS, r is the discount rate.
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T
Cyw = Z (KPVPPV CPV + K py Prgg CESS )AL (10)
=1

where, K
ESS.

v » K 155 18 the unit-rated maintenance cost of PV and

C _ CESS,[nil[al (1 -SOH (t ))
ess,sh N

(11)
rated
where, Cpg 10 18 the initial cost of ESS, SOH, is the health
state of ESS, and NV, , is the number of battery quota cycles.

Coi = i[ﬂ, Py (1) A (12)

t=1

where, 4, is the price of electricity purchased by the PESCS
from the superior power grid, and P,,, (¢) is the power that

the PESCS needs to purchase from the superior power grid.

T
Co=2 4, ()P O N (13)
t=1
where, P, (¢) is the EVs load of the PESCS, and 4, () is the
unit price of the power supply for the PESCS.
T
Cow = 2P (O, A (14)
t=1

where, p,, is the state subsidy price of PV power generation

per kilowatt-hour.

B. Constraint condition

The constraints of planning PESCS are mainly considered
as the PV output system, charging and discharging of ESS,
state of charge constraint, power supply reliability, and
system power balance constraint.

Photovoltaic output constraints:

0< Py, (1)< N,, P (15)

where, P, is the maximum output power of a unit PV.

Energy storage system state constraints:

The ESS should consider its own charge and discharge
depth during each charge and discharge. The battery state
constraint formula is as follows.

SOC s <SOC i (1) <SOC s (16)

where, SOC e and SOC% are the upper and lower limits of
the state of charge of the ESS.

When the ESS is in the process of charging and
discharging, taking into account factors like the lifespan of

the ESS, the following is the constraint formula with its rated
power as the maximum value.

0 < Prss < Prssou 7
_ngziut < PESS <0 (18)

where,The maximum discharge power of the ESS is P/

and the maximum charging power of the ESS is represented

. max
18 P ESSin *

For battery management and battery's state of health
prediction, SOH can reflect the health status and service life
of the battery to a certain extent, so it plays an important role

in battery management and battery's state of health prediction.

In this paper, state of health (SOH) is used to estimate the
health status of the battery. The battery discharge process
expression is shown in the following equation.

sor =S x100 (19)
CO

The cost associated with the state of health of the ESS
battery during the i discharge process is denoted as C!

which can be defined as
. SOH. ., —SOH,
C;ss = = : Cd (20)
80%

where, C,, C, and C, represent the current full-charging

capacity, nominal capacity, and initial cost of the ESS,
respectively. When the SOH of the battery decays to
approximately 20%, the battery is regarded as having reached
the end of its service life.
System power balance constraints:

The power balance constraint is described by the chance

constraint method. At any time ¢ , EV charging load P, (t) ,
charging station PV power P,, (1), ESS power P (1), and

power exchange with the grid P, (t) are in a balanced

relationship.
Pr(ﬁ:PL(t):ZT:PPV )+ P ()22, ( )j > o Q1)

where, the probability of the event is Pr(---) , a,_ is the

confidence level at which the chance constraint holds.

IV. ENERGY STORAGE SYSTEM CAPACITY CONFIGURATION
METHOD BASED ON REINFORCEMENT LEARNING

A. Modeling of Reinforcement learning
The basic components of RL include the state space s, ,
action space a, , and reward function r(t) , which represent

the environment. According to the solving characteristics of
RL, the capacity configuration optimization model of ESS in
this paper is transformed into a DQN framework. Through
multiple training of the deep reinforcement learning model,
the optimal strategy is finally obtained to maximize the return
of the entire scheduling cycle of the microgrid. Among them,
state space, action space, and return function are the core
elements of the whole process, which together constitute the
deep reinforcement learning framework of microgrid optimal
scheduling. According to the needs of the problem, the three
elements are designed as follows. Its RL framework is
composed of agents and an environment. The specific
transformation process is as follows.

Establish state space:

In DQN, the state refers to the agent’s perception of
information from the external environment, and state space is
a collection of environmental information. To avoid
information redundancy and capture environmental
information accurately and efficiently, an agent state
perception model is established as

5, ={By (¢).P, (¢).P; (£).S0C,5 (t).SOH (1), 4 } (22)

Action space:

Action is the action taken by the agent for the
environmental state, and the charging and discharging action
is shown in the following equation.

c d
a, € {_PESS,MAX 550, Prgg aay }

(23)
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C . .
where, —PESS’ w4y Tepresents the maximum charging power,

. . d
a negative value represents charging, PESS’ iy Tepresents the

maximum discharge power, and a positive value represents
discharge.
Reward function:

When the agent chooses an action under a state, the reward
serves as the instant feedback it receives, which is the most
important part of training the agent to achieve the goal.

The revenue reward is associated with the revenue that the
PESCS acquires in the objective function, as presented in
(24):

RO =(Coa) +C, () + Cy (0 + Cpy(0)= (C, (0 + G, (1)) (24)
where, 7, (¢) is the revenue reward for the ¢ period.

ESS health attenuation penalty: The ESS health decay
penalty corresponds to the objective function battery's state
of health cost C,, . After a capacity decay counting cycle T,

the penalty factor o, :

start end
E," —E,

IR0

The immediate penalty for the capacity decay of the ESS
as

a;

C 25)

es

r() =a,|p,0)| (26)
The ESS SOH penalty is shown in (27).
(1) =A[1-B(x)(SOH ()= 02)] @7)

where, £(x) is the index function; when x is positive, On the
contrary, when the value of B(x) is 1, the value of 8(x) is 0.
When SOH(t) <02 is
discharge, SOH(¢)>02 is a cross-border penalty, it has a

considered to be a deep

great influence on the battery's state of health. 1 , which is a
large number, serves as a penalty factor. The reward design
takes into account behaviors that violate the SOH constraints.

In summary, the reward and punishment function of RL as

r(t)=op(t)-oun (t)-oy (1) (28)
where, o,» 0, 0 is the weight coefficient of the rewards

and punishments of each part, and they are all positive.
State-action value function:
The DQN algorithm wuses the

function Q" (s,a) , that is, the Q-value, to evaluate the

state-action value

long-term benefits of taking action a, when the state s, is

taken, which can be expressed as

0" (s,a)= E{Zk:ykmk |s[ =5s,a, =a}
=0

where, k is the range of time steps, and the value range is [0,
1], = is the strategy of mapping from the environmental state
to the allocation strategy.

By relying on the Bellman equation, the state - action value

29

function Q" (s,,4, ) is capable of being formulated as

Qﬂ (St’at ) = E|:rt (Sr’at’StH )+ 7Qﬂ (St+]’at+] ):| (30)
By iteratively updating the Q-value function, the
Q-learning algorithm can gradually converge to the optimal

Q-value function to find the optimal strategy. In the DQN
algorithm, solving the optimal strategy 7" is equivalent to
seeking
function 07 (s,,4, ) :

o~ (s,a,0)~maxQ” (s,a)
where, @ denotes the parameter of the neural network.
Consequently, the Bellman equation corresponding to the

the maximization of the state-action value

€2))

state-action value function Q7 (s,,4, ) can be formulated as

Q” (Sz’ar ) = E[’? (Sl’aﬂslﬂ )+ }/maxQ” (Sz+1’at+1 ):| (32)

B. Solution based on an improved DON algorithm

DQN is a value-based reinforcement learning algorithm. It
defines the state action value function, namely the Q function,
and iteratively learns by substituting the observation data into
the Q function. Within the DQN algorithm, the state, action,
and Q-value of each round are stored. The agent makes action
recommendations by querying the Q-table. During the
training phase of the agent, the Q-value is updated according
to formula (33).

In the DQN algorithm, the state, action, and Q-value of
each round are stored. The agent makes action
recommendations by querying the Q-table. During the
training of the agent, the Q-value as

Qi (554,) =0, (s,5a, )+
al:rt +7/maXQ1 (Sr'+1’al,+l )_Qt (Sﬂaz ):|

Gy

(33)

o= %a +COSE TN = )+ Coin Vo

where, o and ¢, are the learning rate and initial learning rate,

(34

respectively, which are used to balance the importance of the
agent to the current estimation and the previous accumulated
experience; &, is the cosine coefficient, and C,; is the
minimum attenuation rate.

Therefore, the Bellman iteration equation based on the
DQN architecture can be expressed as

0.1(5:4.0)= 0(5..0) +
a| 1+ ymax., (5.1:0.1.0) - (5 .9 %, O 5 .4. 9

Where, the network parameters of the evaluation network and

(35)

the target network are ' and 6™, respectively.
After accumulating a certain number of samples, the DQN

algorithm extracts samples (sj,aj r,S ) from the

IR
experience replay unit for the loss function L, to update the
evaluation network parameter 6 and copies the
parameter ' to the target network at every N, step.

Ny
L, = LZ[J’,/' =0 (S_/+1 ’a,fﬂ’e)]z (36)
N, ‘3

v, =r+v0;, [sm’argmax (Qj+1 (872154, ’Q)P’)j 7

where, N, is the mini-batch sample size, and y, is the target Q

value. By using two independent networks to estimate the
action value function, DQN can be more accurate. Evaluate
the value of the action and reduce the problem of
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overestimation, thereby improving the performance of
reinforcement learning.

C. DQON algorithm training process

Based on the Q-learning algorithm and a deep neural
network, a DQN is developed. By using two independent
networks to estimate the action value function, DQN can
more accurately evaluate the value of the action and reduce
the problem of overestimation, thereby improving the
performance of RL. DQN improves the ability to process data,
overcomes the shortcomings of traditional solvers that cannot
process too much data, and has good practical significance.

Initialize network parameters
0" And 0, setn=1

3*

Initialize the training

environment , sett=1

e

Initial state S,

select action A

¥
The environment gives the
next state Sy ¢,
and the reward R
¥

Store (Si, A, Ry, St+q) in |5t
memory pool C=C+1

)
Calculate TD-error and
sampling probability, and
extract Mini-batch

Update and replace network
parameters

N
Y

Update learning rate o
Y

Output DQN is used for optimal
configuration of PSCS

end

Fig. 2. PESCS capacity configuration training flow chart based on DQN.

Fig. 2 is the training flowchart of capacity configuration
optimization of PESCS. First, initialize the network function
and initialize the training environment. Secondly, after each
action, the agent is selected to receive an instant reward. In
each cycle, the accumulated learning experience is put into
the memory pool, the TD-error of all samples in the sample
pool is calculated, and the mini-batch is randomly extracted
from the memory pool. Then, the gradient descent method is
used to optimize the network parameters with the goal of
minimizing the error loss function. After the training is
completed, the weight parameters of the network are updated.
After a certain training step, the network weights are copied
to the target network to evaluate the reward values of all

actions that can be taken in each state. At the end of each
round, the learning rate of the agent is attenuated once to
balance the exploration ability of the agent. Finally, the
optimal parameter network is used to optimize the capacity
configuration of the PESCS.

V. EXAMPLE ANALYSIS
A. Research Objects and Basic Data of PESCS

The basic simulation settings of the PESCS are shown in
TABLE 1. Taking the PESCS shown in Fig. 1 as an example,
the load of a typical solar storage charging station in
Shenyang, Liaoning Province, is selected, and the
configuration optimization of the ESS capacity of the PESCS
is solved based on the RL algorithm. Taking to minimize the
annual total cost of the PESCS as the optimization objective,
the proposed configuration optimization model of the PESCS
is simulated and verified.

TABLE 1
INTERRELATING PARAMETER
Related parameter names Parameter

value
PV service life (Year) 25
ESS service life (Year) 12
Unit ESS capacity cost (CNY/kWh) 1800
Unit PV installation cost (CNY/kW) 3000
Charging service fee (CNY/kWh) 1.8569
Operation maintenance coefficient 0.01
ESS charging/discharging efficiency 95%
Minimum/Maximum SOC of ESS 0.05-0.95
Discount rate 0.08
State subsidy for PV power generation (CNY/kWh)  0.08
Charging pile unit price (CNY) 20000

In terms of parameter setting of reinforcement learning, the
number of hidden layers of the evaluation network and the
target network is selected to be 3, the number of neurons in
each layer is 500, the initial learning rate is set to 0.15, the
update step is 300, the discount rate is 0.9, the attenuation rate
is 0.001, the mini-batch capacity is 125, and the experience
pool capacity is 3000.

Fig. 3 presents the detailed data concerning the time
segments and price of time-of-use electricity price
implemented in the region.
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Fig.3. Time-of-use price of photovoltaic energy storage charging stations.
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B. Optimization results and analysis

Fig. 4 depicts the reward obtained during the training
process of the proposed enhanced DQN algorithm. During
the early phase of the training, given the insufficiency of
training samples, the agent actively explores the environment
with a high learning rate. With the gradual accumulation of
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samples, the reward curve climbs significantly and tends to
converge. With the continuous increase of training rounds,
the reward curve tends to be stable, and the agent successfully
completes the learning of the optimal mapping relationship.
Ensure that the decision of each agent remains reliable and
stable in a dynamic, uncertain environment.
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Fig. 4. Improved DQN algorithm training reward curve.
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To validate the feasibility of the proposed approach and
conduct an economic analysis of the photovoltaic and energy
storage configuration for PESCS, four comparative schemes
are established:

Scenario 1. Neither photovoltaics nor an energy storage
system is configured.

Scenario 2. Configure photovoltaics; do not configure an
energy storage system.

Scenario 3. Do not configure photovoltaics; configure an
energy storage system.

Scenario 4 (This paper's scheme). Configure photovoltaics
and energy storage systems at the same time.

The configuration outcomes are presented in TABLE 2.
Across the four scenarios, the PESCS demonstrates favorable
economic advantages compared to the conventional charging
station. By comparing scenario 2 with scenario 3, it becomes
apparent that the configuration benefit of PV is greater than
that of the ESS configuration. However, solely configuring
PV fails to realize peak-shaving and valley-filling. Therefore,
the configuration of the ESS plays a crucial role in the
PESCS. Thus, it is possible to configure PV as much as
possible within a limited range and configure appropriate
ESS to ensure a reliable and economical power supply. The
economy of the PESCS has improved by 12.66%.

TABLE 2
CONFIGURATION RESULTS UNDER DIFFERENT SCHEMES.
. Scenario  Scenario  Scenario  Scenario
Configuration
1 2 3 4
PV configuration
capacity/ kW - 396 - 396
Energy storage
capacity/ kWh - - 600 628
Energy storage rated
power/ kW - - 198 200
Average annual cost/
CNY 3239.2 2965.8 3186.8 2828.9

To attain the dual-win objective of maximizing the
consumption of PV energy at the charging station and
minimizing the charging expenses for the vehicle owners, a
rational midday low service charge policy is established for
the PESCS. This policy aims to steer EVs to modify their
charging schedules. With the prerequisite of meeting the

charging need, the peak charging period in the evening is
transferred to the high photovoltaic output period at noon.
The adjusted EV load of the EV is roughly bimodal, which
reduces the pressure of no PV output in the evening peak.
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Fig. 5. Charging station load space-time distribution map.
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Fig. 5 shows the variation trend of the load curve of the
PESCS in typical scenarios. By understanding the change
trend of the load curve of typical PESCS, a more economical
energy storage configuration is formulated with a reasonable
energy management strategy and considering the battery
health status of ESS. After the PV and ESS are configured in
the PESCS, their operation mode on typical days is further
discussed. Its operation mode and energy exchange with the
power grid are shown in Fig. 6, which shows the power
balance state at each moment and the power supply source.

The RL algorithm is employed to address the model. When
the installed capacity of the PV system installed in the
charging station reaches 396 kW and the ESS power is 200
kW, the optimal capacity configuration of the ESS is
determined to be 628 kWh. The corresponding PESCS has
the largest net income. At this time, the proportion of PV
supply charging load is 61.39%.

Taking into account the time-of-use price and load demand,
during the period from 0:00 to 4:00 when the grid load
reaches its trough and the electricity price is in the low-price
range, the ESS gives priority to charging the EV load.
Moreover, it charges the ESS based on the day's weather
conditions. This approach notably cuts down the cost of
electricity procurement.

From 8:00 to 11:00, when the charging demand of EVs
reaches its peak, the charging price also enters the peak-rate
period. During this time frame, the power generated by the
PV system fails to fulfill the load requirements of EVs. The
ESS discharges to make up for the power gap during the peak
period and effectively avoids the cost pressure caused by the
peak price.

During the period from 12:00 to 15:00, the surplus power
generated by PV power generation is preferentially stored in
the ESS. This ensures that the PESCS can obtain a reliable
power supply through ESS when there is no PV power
generation at night and the electricity price is at peak hours.

During the period from 18:00 to 21:00, the electricity price
reaches its peak, and there is no output from the PV system.
At this juncture, the load of EVs is primarily supplied by the
ESS. When the ESS stored power is inadequate, the power
grid steps in to provide supplementary power. For the rest of
the periods with different electricity prices, the load demand
is mainly met by the power grid, and the state of the ESS
determines whether to participate in the discharge.
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Fig.7. Charging and discharging power curve of ESS.

The detailed charging and discharging procedure of the
ESS is presented in Fig. 7. In summary, the capacity
configuration of the PESCS based on the Deep Q-Network
algorithm can conform to the operating characteristics of
each PESCS and collaboratively meet the load demand of EV
in the station. Reasonable configuration of the ESS can not
only promote the coordinated complementarity among PV,
the ESS, and the power grid, but also effectively suppress the
fluctuations of the load.

Through the analysis of the operation results, it is evident
that the overall performance of the PESCS is superior under
this configuration. Compared with before optimization, the
ESS power curve is better smoothed. Under this
configuration, the PV curtailment rate of PESCS is reduced
to less than 3%, which proves that the configuration of ESS is
reasonable and can effectively reduce PV curtailment.

For a long time, the state-of-health of the ESS battery has
remained a bottleneck that restricts the rapid development of
the PESCS. Therefore, the influence of state-of-health of
health of the ESS on the economy of the PESCS is analyzed.
Fig. 8 shows the influence of the ESS of the PESCS on the net
income and comprehensive cost of PESCS with the change of
service life.

It can be seen from Fig. 8 that the health of the ESS in the
PESCS has a great influence on its net income and
comprehensive cost. The healthier the ESS is, the longer the
service life is, the lower the comprehensive cost of the
PESCS is, and the higher the net income is. Therefore,
formulating a reasonable configure the capacity of the
PESCS is conducive to delaying the battery's state of health.
This approach not only lowers the cost of ESS replacement
but also improves the economic viability of the PESCS.
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health status in the design stage of PESCS will significantly
affect the net income of the PESCS. The traditional model
adopts an empirical setting, which often leads to redundancy
or deficiency of ESS capacity, and most traditional models
have limited contribution to improving the net income of
PESCS. Evidently, this paper takes into account the factors
related to the battery’s state-of-health during the design phase
of the ESS. This approach offers notable benefits in
ascertaining the optimal capacity configuration and
enhancing the profitability of the PESCS in different years.

VI. CONCLUSION

The capacity configuration of a PESCS largely determines
its operational mode and economic benefits. This paper puts
forward a capacity configuration approach for PESCS relying
on reinforcement learning algorithms. The approach takes
into account the battery’s state-of-health and makes use of the
flexible complementary capacities of the ESS to improve the
operational economic efficiency of the PESCS. Via case
analysis, the following conclusions are reached:

(I) The DQN algorithm, relying on a time-of-use pricing
energy management strategy, relieves the load demand of the
PESCS and significantly improves its adjustable capacity
during power shortages at peak electricity price periods
through the ESS.

(I) The capacity configuration model of the PESCS
comprehensively considers the battery's state-of-health,
reduces ESS replacement costs, and increases the long-term
economic benefits of the PESCS.

(IIT) The capacity configuration method for PESCS based
on reinforcement learning, which combines the flexible
complementary capability of ESS with the battery health
state, can effectively enhance the economic efficiency of
PESCS by up to 12.66%, with the PV abandoned rate being
less than 3%.

The method put forward in this paper considers the battery
health state, achieves the maximization of economic benefits
for PESCS, and gives a reference for the improvement of

decision-making. However, the geographical layout of the
ESS significantly impacts the overall economic benefits.
Research in the future will aim at exploring how to select the
actual locations of charging stations and the direction in
which algorithms can be optimized.
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