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Research on the AR(P) Change Point Model with
Unequal Variances before and after the Sequence

Jibin Yang, Fang Yu*, Guodong Li, Shuo Li

ABSTRACT—This study investigates the change point problem
in time series analysis, a prominent research topic in statistics.
We propose the CP-AR(P) model, an autoregressive framework
integrating change points, primarily addressing scenarios
where sequence variance shifts after a structural break. Notably,
a constant variance is highlighted as a special case of this
framework. The methodology employs the likelihood ratio test
for model formulation, with change point estimates derived via
the conditional maximum likelihood method. Additionally, a
symmetric matrix is introduced to provide a universal expression
for parameter estimation. To further validate the proposed
model's efficacy, extensive simulations using the CP-AR(2)
model, in particular considering almost all potential points in the
sequence as change points (reserving only marginal samples for
modeling), demonstrate its efficacy, revealing that performance
depends on variance disparity and sample size. Comparative
analyses show a significant reduction in anomaly prediction
error when considering change points, enhancing confidence
interval plausibility. Thus, we recommend testing for change
points before applying ARMA models to improve their fitting
performance. This study presents a CP-AR(P) methodological
framework and novel time series perspectives, emphasizing the
role of change point identification in enhancing model
performance. The framework applies to financial risk
management, quality control, and environmental monitoring,
among other fields.

Keywords—AR(P), Change point, Parameter estimation,
Data simulations

I. INTRODUCTION

HE concepts of change point detection were initially

proposed by Page and gained widespread recognition for
their early application in quality control [1-2]. Subsequently,
Lai [3] developed a comprehensive theory for sequential
change point detection, particularly within quality-control
contexts. The field of change point detection has seen
extensive research and practical applications, with a focus on
time series change points, especially in ARMA models with
change points. The core of these studies centres on estimating
change point sequences, with the maximum likelihood ratio
test being a primary method in this process. Pioneering work
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by Horvath [4] detailed the computation of the asymptotic
distribution of the maximum likelihood ratio test for
identifying parameter shifts in normal observations at an
unknown point. Subsequently, Horvath [5] expanded the
research to include detecting mean shifts in linear processes.
Ciuperca and Maciak [6] proposed a novel quantile
estimation method for change points in multiple linear
regression models. Sheikhrabori and Aminnayeri [7] developed
a maximum likelihood estimation technique to evaluate the
change point of stationary ARMA (1,1) models transiting to a
non-stationary process. Further contributions in this domain
include those by Liu [8], Shiohama and Taniguchi [9], and
Wang [10], among others, who discussed the maximum
likelihood method in the context of ARMA models with
change points. For non-normal change point sequences,
Gombay [11] examined change point detection in exponential
distribution families. For the non-parametric method, Keriven
et al. [12] investigated the issue of finding change points in
multidimensional time series. A heuristic method was
proposed based on ratings to estimate change points in
non-parametric processes [13]. Comprehensive insights into
the asymptotic behaviour of the maximum likelihood ratio in
change point issues are provided by Yao and Davis [14] and
Gombay and Horvath [15]. Moreover, the practical
applications of change point detection are vast and varied.
For instance, Manzano Sanchez et al. [16] extracted
characteristics from the power consumption of smartphones
through change point analysis. This method has also proven
useful in identifying significant variations in such
consumption patterns [17]. Inoue and Yamada [18] detected
the time point of software failure by the change point
detection method, while Awe and Adepoju [19] employed
this method in environmental detection. For the application
of the change point problem in other fields, please refer to
references [20-22]. This brief outline of relevant work
provides only a cursory insight into the extensive literature on
change point problems. Interested readers are encouraged to
consult comprehensive reviews, such as those by Aue and
Horvath [23], Jandhyala et al. [24] or Atashgar [25].
Additional contributions include Lee [26], who expounds on
five prevalent types of change point problems, among other
key works.

(a) Sequence with a Change Point  (b) Sequence with a Change Point
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Fig. 1. Time series with change point ( 7 =200 , ~=100)
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First, the concept of change points and the necessity of
detecting them will be introduced through illustrations. The
sequences with a change point in Fig. 1 are all simulated
using autoregressive models, referred to as CP-AR(P) models,
which are the primary focus of this study. A change point
here is defined as a moment where model parameters shift.
While the approximate location of a change point can
sometimes be identified directly from a time series plot, it is
often challenging to confirm its existence. For instance, Fig.
1 presents two time series with a change point at position 100.
In Fig. 1(a), the change point is relatively obvious: the
sequence exhibits a noticeable increase in fluctuation
midway through, marking the change point. In contrast, the
change point in Fig. 1(b) is hard to detect, as there is no
significant variation in the sequence’s fluctuation. In such
cases, modeling that overlooks the change point can
compromise the model’s performance.

Given the complexity of change point detection (e.g.,
non-significant variance changes and hidden structural shifts),
research in this area has drawn substantial attention, and this
paper aims to advance the field by addressing key gaps. Many
researchers have discussed the invariance of variance before
and after sequence change points. This paper further
addresses the position of model change points, the estimation
of model parameters, and the variance before and after a
change point in cases of variance mutation. Notably, a key
innovation lies in its simulation design. Unlike most existing
simulation studies that typically consider only one or a few
selected points, commonly the midpoint, as change points to
demonstrate the effectiveness of the proposed methods, our
study takes almost all points in the sequence into account as
potential change points, reserving only a small portion of
samples at the beginning and end of the sequence for
modeling. This study aims to develop a method for detecting
change points that can accurately identify change points in
time series data and is effective for both structural changes in
variance and other types of structural breaks. Therefore, we
propose the CP-AR (P) model, designed to analyze time
series data by integrating an autoregressive framework with a
change point detection mechanism. In terms of methodology,
the change point problem is transformed into a hypothesis
test problem, and the likelihood ratio test is used to estimate
the change point k. Additionally, a symmetric matrix is
introduced to provide estimation expressions for variance and
other parameters. This method, with a solid theoretical
foundation, also exhibits broad practical applicability. To
further validate its effectiveness and reliability, we conducted
extensive simulation experiments. Specifically, using the
CP-AR(2) model, we executed multiple simulations at
varying positions within the sequence's change points to
investigate how variance levels and sample sizes influence
outcomes. We achieved notable results by comparing model
errors with and without considering change points,
confirming the method's superiority. The key finding is that
the model's change point detection method accurately
identifies change points in time series data, even in the
presence of variance mutations. This insight is crucial for
maintaining the model's accuracy and adaptability,
particularly for extended time series data. Finally, the study's
significance is multifaceted. Firstly, the CP-AR (P) model's
change point detection approach offers a new theoretical

perspective and tool for time series analysis, enriching the
research in this domain. Secondly, it holds broad practical
application prospects, particularly in areas such as quality
control, environmental monitoring, and consumer behavior
detection, by ensuring model accuracy, adaptability, and
efficiency in data processing. Thus, the findings of this study
not only hold theoretical value but also have significant
practical implications.

II. CP-AR(P) MODEL

For a noncentralized stationary time series,

4
I-¢-L -9,
shifts it by a constant to convert it into a centralized sequence.
Assuming that b satisfies the p-order autoregressive model,
and if a delay operator is introduced, then this centered model
can be expressed as: ®(B)x, =&, where ®(B) =1-pB' — ¢, B
—-L —¢,B” , usually, we assume & ~iidWN(0,5?).

For a practical problem, the sequence may be affected by
certain factors, resulting in a sudden change at time k.
Therefore, it is divided into two sequences, {x\"} and then
)=, 171, a new model is obtained as follows:
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This is the CP-AR(P) model, where T is the length of the
sequence, and k is the location of change point. The sequence
before the change point is described by the first equation in
the model, and the second equation describes the later part of
the sequence. Here, an abrupt parameter changes means
parameter values shift while the model structure and
parameter count remain unchanged. If a delay operator is
introduced, the above equation can be expressed as:

OV (B)x" =£0 =3 k
V(B =EP r=k+1L,T

III. SEARCHING FOR CHANGE POINTS

A. O'(l) ¢O'(2)

Horvath [4] and Gombay [11] introduced the likelihood
ratio method to find the location of the change point. Here, a
similar approach is used to model time series. Therefore, the
CP-AR(P) model can also be considered as a hypothesis
testing problem for the following:

Hy: X, =pX_+¢,X, ,+L v, X,_, +&

gy - o"X X, +L +oV' X, +&EY p+l<i<k (3)
V0P X P X L 490X, +EP k+1<t<T

p+1<t<T

When H, is true, given {X,} , denote Hro =(p,p L
¢,,0)" as the parameter vector. Since {&}1is assumed to be a
Gaussian process, X; is also a Gaussian process. When t>2,
X, is also a Gaussian process given in the previous sequence
(X,.}, Therefore, when 7> P, the conditional logarithmic
likelihood function is:
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Differentiating ¢, > L L ¢, will result in a complex
expression. So, to estimate these parameters, a symmetric
matrix is introduced as below:

zXzz—l ZXHX 2
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Then, Z® = B is derived, which is:
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Subsequently, assuming Z is invertible, ®=Z"'B can be
obtained. Solving this system of linear equations yields the
maximum likelihood estimate & =(¢,é L ¢,) of ® . The
estimation of &’ obtained using the same method is as
follows:

T

6’ =;|:Z(Xr _(alX

A ~ 2
T_P P -1 _(Pth-z -L _(osz-p) :| (8)
I
Under the assumption that H, is true, 6 =(¢, L o,,
o",o?Y, the logarithmic likelihood function of the change
point problem is:

xl;H)
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In this case, differentiating ¢, 'L L ¢, isonly related to
the previous sequence, while dlfferentlatmg o2, P L L o
is only related to the subsequent sequence. Therefore, the
sequence X is divided into two sequences U and V by the
change point, so X ={U,V}, where U ={X,.,..,X,} is the
sequence before the change point, and V = {X,,,,.., X7} is the
sequence after the change point. Then, similarly to the
previous case, introduce the following symmetric matrix:

> U >U, U, > U, U,
g ULV UL L YU

L
L

M M o M
L

(10)
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Subsequently ®®=[z"71"B", and solving this linear system
of equations obtains the maximum likelihood estimate
" =", "L 45y . The maximum likelihood estimation of
[60F L[] is:

T

. 1
|:O'“)]2 _ k_—p{lzp‘il(){ ~¢"X, , -LL -¢"X,

w (12)

[A(z)} - pLM(X -97X,, LL—@;Z)X,I;)Z}

(13)
The maximum likelihood ratio function is:
T
Hf( X 9,,L (Dp’o-T)
by =—— =
:I’;l[f( t’(ol(l)’(oél)L ~(1) ‘(]))tl;llf( ,,(ﬂ(z), A;2)[‘ ¢(2) '\(2))
)
[+"]
= ( n—1
(67) %
(14)
Then:
A, =-2log(4,) = (T -Dlog(67 )~ (k—Dlog(&7) 05

~(T - k)log(57)

The maximum likelihood estimate of the change point k is:

k = argmax Al (16)

p+I<k<T-p-1 |

B. oV =c®

When the variance of the sequence before and after the
change point is equal, the CP-AR (P) model can also be
considered as a hypothesis testing problem for the following:
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H X =pX,_ +0,X,, +L+(p +§,
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(17)

p+1<t<T

When H, is true, the estimation results for each parameter
can be found in (3), (4), and (8). Under the true assumption,

=", 0"L ¢, o, #PL ¢?,0,) the conditional
logarlthmlc likelihood function is:

log [ X, Xy oo X, 1 X0 X, (xT,xT Lo Xyl X0 ...,xl;H)
T-1 T-p 5 |

=—"——log(27) - logo X -0"X, , -oX,,
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2 2

L -¢p"X,_,) - > (X, —oPX,, —p"X,,-L 97X, )

2
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The maximum likelihood estimation of o is

T

N 1 . R 2
Glf = rp{ Z ( (DJ(I)Xt q)él)Xt—z -L _(DZI)Xz—p)

t=p+1

I . . . 2
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t=k+1

(19)

Estimations of ®“ and ®® are in the previous section, so
the maximum likelihood ratio function is:

]ﬁf( tsgolv(ﬂzL (/)p’ )

//Lk —_ t=1
S(X:90. 0L ¢ )];[lf( X0 051 6.6,
1=k+

Tk
2)2
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I
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)
Ll Y
~
o

(20)

Then, the maximum likelihood estimate of the change
point £ is:

A

k =arg max , cr<r—p-1 |Ak| (1)
IV. SIMULATION RESEARCH

To further verify and study the above conclusions, we take
the 2nd-order model as an example for simulation. According
to (3), the CP-AR(2) can also be transformed into a
hypothesis testing problem, as shown below:

Hy: X =pX _+p,X ,+¢& 3<t<T
Hox {(pl(”X VX L, +EY 3<t<k

POX AP X 4+ ED k+1<t<T

(22)

Iy
When H, is true, & = (¢1,92,0)", according to the method
in section 3, the estimation expression for each parameter is
as follows:

¢l _ =3 - =3 - =3 - =3 - (23)
ZXrZ—ZZ 12—1 _Z(Xt—er—l)
t=3 t=3 t=3

T , T T T

N ZXHZszX ZXt X, 1sz X,

¢2 _ =3 . (=3 . =3 . =3 : (24)
thz—szzz—l _Z(Xz—ZXr—l)
t=3 =3 t=3
1 T N . 2
) Z(Xt —¢>1X,|—1—(p2X,72) (25)

=3
When H, is true, 6r’, =", 0", 02, 0P, M, oY

according to the method in section 3, the estimation

expression for each parameter is as follows:

" th—ZZth IXt _Z3Xt ZXt—IEXt 2X
¢1 k = k = k = 5 (26)
thzfszil _Z(Xt 2Xt 1)
t=3 t=3 t=3
k k k k
- Z3Xt2—123Xt—2Xt_;Xt—ZXt—ngt—IXt
2() = L& = X = R (27)
ZSXFZZSX%I _Z3(Xt—2Xt—l)
= 1= =
T T
DXL D XX - " XX Z
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> XL Y K- (XK, )
t=k+1 t=k+1 1=k+1
T T T T
Z Xzz—l z Xr—zXz _ZXI—ZXz—IZX IX
‘2(2) _ 1=kl i=k+1 k+1 k+1 (29)
IS I Y PR AN
k+1 k+1 k+1
[ A(l):l |:i( (1)X ¢(1)X'_2 )2:| (30)
=3

[&(Z)TZT—;H[Z{ZQ'(X -P7X, @éZ)X,z)z} (1

Estimation details of £ are provided in (14) to (16), which
are not repeated here. For example, for the following CP-AR
(2) model:

05X,
X, =
0.6X,,

 —0.7X, , +&Y
—04X,_, +&E2

3<t<k
(32)
k+1<t<T

First, a sample sequence will be generated based on this
model. Fig. 1 shows a sequence of 7=200 and k=100. When
the sample size is increased to 600, the estimated & is shown
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in Fig. 2.
(a) Change Point k Est. (b) Mean Est. Bias
600 - -7 60 6 r0.25
T=600 "=
. n
times=20 o
500 -50 54 |
(- ro.2
-
-
.l %
400 - 40 gl — = <
4 Zooo |t oo Lt atots B
= s .= = Lo r R
2 v M m
< < -]
300 - F30 -8 =
AT 85 &
R ! % g Az
. ! [a5) < 58]
= 2 =
200 -20 p= 8
1 =
¥ -0.05
1004 _:., F10 14 }5‘.
0 = T T 0 0 T T 0
0 200 400 600 0 200 400 600

True Change Point True Change Point
Fig. 2. The estimation of Change point £ and bias. Note that 7" = 600,
=05, o' =07, p® =06, ¢ =04, DV =0.1, DD =0.5 (where
D represent variance), the number of simulations times =20 for each k. For
Fig. 2(a), the abscissa is (k) , the ordinate is & , the secondary axis is the
estimated deviation of &; that is:

e, =‘k—l€

» ke(20,...,580]
for Fig. 2(b), the ordinate axis is the average estimation deviation of £, that is:

2 :%iq, k &(20,...,580],1 = 600
n=1

and the secondary axis is the ratio of the average deviation to the estimated
value of £, that is:

rn=elk ke(ZO,...,SSO]

Figure 2 shows the results of estimating the inflection
points in sequence X; using the method introduced above, as
well as the estimation bias. Like the Q-Q plot for determining
normal distribution, the better the estimation, the more
concentrated the points in the plot are on a slope-1 straight
line. Here, the sample size T'is 600. To ensure that the sample
size of the preceding and succeeding sequence segments is at
least 20, the actual position of the change point, k, ranges
from 20 to 580. With 20 simulations performed for each of
these 560 values of k (times = 20), a total of 20%X560 =
11,200 simulations are conducted. In Fig. 2 (a), the primary
axis (left) represents the predicted change point position, and
nearly all estimated values fall near the straight line with a
slope of 1 and pass through the origin. The secondary
coordinate axis of Fig. 2(a) is the absolute deviation of &, and
Fig. 2(b) is a supplement to Fig. 2(a), mainly showing the
predicted deviation of & . The primary axis (left) represents
the average absolute deviation of the change point. Most
values range between 1 and 4, indicating small and uniformly
distributed deviations. The secondary axis (right) shows the
ratio of the average absolute deviation to %, which tends to
decrease as the sample size increases. This trend indicates
improved prediction accuracy with larger sample sizes (as
shown in the bottom part of Fig. 2(b)). For a more detailed
breakdown of these results, selected data points are presented
in Table I.

TABLEI
MEAN EST.BIAS AND BIAS RATIO OF K
k 21 30 50 100 200 300
o 12.73%  9.67% 5.10% 3.25% 1.25% 0.75%
e, 4.05 2.9 2.6 3.25 2.5 2.25

As shown in Table I, when the sample size reaches 30, the
average absolute deviation is small and relatively stable,
supporting its recommendation as the minimum sample size
for modeling. A saTmple size of 50 or more is even better, as
it further reduces deviations. Additionally, from Fig. 2, it is
noted that there are many cases of large deviations near the
starting and ending positions (see the dashed boxes in Fig. 2(a)
and Fig. 2(b)). This is caused by an excessively forward
change point position, which leads to an insufficient sample
size. Although Table I shows that the average deviation is not
much larger, the stability is obviously poor.

The above analysis indicates that a larger sample size
corresponds to a longer sequence. Apart from the influence of
sequence length (i.e., sample size) on the stability of
estimation bias, are there other contributing factors? To
address this, further research will explore the impact of
different variance differences between pre- and post-change
point sequences.

(a)
= 500 T=600 L 5o 2
T times=20 3
] <
E &
s8] 4 7
0 T T T T T 0 =
0 100 200 300 400 500 600
(b)
~500-  T=600 L 5o o
B times=20 °
] <
£ 5
2 =
53] 3 pTHT %
0 1 1 1 1 1 T 0 =
0 100 200 300 400 500 600
(©)
e T=300 L 50 &
B 200 times=20 s
< <
g [
£ 100 X
7 =
i - z
0 T T T T T 0o 4
0 50 100 150 200 250 300
(d)
~ T=300 L 5o o
T 200 times=20 °
< =3
£ 100 - &
0 T T T T T 0
0 50 100 150 200 250 300
100 ©
— T=100 - L so &
T times=20 -""iiill""':’.".I 3
1 ] -
g 50 4 i|=u-||!i||!l"" - 2
-3 T T UL ]
[_ﬁfj jil ! E
0 T T T T 0
0 20 40 60 80 100
100+ ® ; o
T=100 e e il F 50 «—
B times=20 . I-.Ilii!"!|||!!|luug 5
g 50 4 E I;;.Ii |ii!||i!'!I ult 5
£ it : )
% : =
s3] 7
0 Fo &
0 20 40 60 80 100

True Change Point Position
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Fig. 3. Change point k estimation with different sample size and variance.
Note that in (a), (c), and (d), DD =0.1, D@ = 0.5, and the sample size T is
600, 300, and 100, respectively. In (b), (d), and (f), DO =0.1, D@ =0.3,
and the sample size 7 is 600, 300, and 100, respectively. The number of
simulation times for each position £ is 20.

The sub-diagram in Fig. 3 is like Fig. 2. The horizontal axis
represents the position of the change point, the vertical axis
represents  , and the secondary axis is the change point
estimated deviation. It further illustrates scenarios with
different samples and also displays simulation results with
different variances. Based on variance differences, it can be
divided into two groups: Fig. 3(a), Fig. 3(c), and Fig. 3(e),
and Fig. 3(b), Fig. 3(d), and Fig. 3(f); based on different
sample sizes, it can be divided into three groups: Fig. 3(a) and
Fig. 3(b), Fig. 3(c) and Fig. 3(d), Fig. 3(e) and Fig. 3(f). For
the sample grouping, as the sample size decreases from 600

to 100, the estimates of the change points are more widely
scattered, especially when 7=100, with a consequent decrease in
prediction accuracy. This implies that more points deviate
from the line with a slope of 1 in the graph. For the grouping
based on variance, comparing Fig. 3(a) and Fig. 3(b), Fig. 3(c)
and Fig. 3(d), Fig. 3(e) and Fig. 3(f) when the difference in
the variance between the preceding and following sequences
becomes smaller, the range of deviations increases and
becomes more unstable, so the accuracy of change point
estimation is affected by the difference in variance between
the preceding and following sequences. When the variance
difference is small enough, it can be assumed that it is
constant during structural changes. In this case, the method
described in Section 3 can be used for estimation.

TABLE II

07T o7
PARAMETER ESTIMATION RESULTS (7 =600,k = 300,[0 ] =0.1, [a ] =03

T
Not considering C.P. (00)

Considering C.P. (é, )

koo 4 4, s #" A a) Iy ("] (6]
296  0.5148 -0.3556 0.2144 0.4790 -0.6383 0.5111 -0.3039 0.1046 0.2790
303  0.5078 -0.3829 0.2338 0.5339 -0.6326 0.5004 -0.3435 0.1001 0.3142
306  0.5459 -0.4175 0.2256 0.5093 -0.6216 0.5466 -0.3900 0.0994 0.3043
302 0.4904 -0.3789 0.2145 0.4154 -0.6717 0.4925 -0.3289 0.0989 0.2835
304  0.4602 -0.3966 0.2261 0.4741 -0.6559 0.4539 -0.3474 0.1030 0.3017
302  0.4131 -0.3111 0.2132 0.5051 -0.6132 0.3921 -0.2438 0.1007 0.2809
303  0.5310 -0.3539 0.2264 0.4572 -0.6299 0.5308 -0.3187 0.0991 0.3025
301 0.4893 -0.3108 0.2357 0.4905 -0.6127 0.4824 -0.2687 0.1012 0.3149
300  0.4989 -0.3486 0.2251 0.4913 -0.6386 0.4932 -0.3041 0.0981 0.2996
307 0.5385 -0.4067 0.2274 0.4958 0.6212 0.5391 0.3814 0.0944 0.3092
TABLE III
_ - 07 _ o7 _
PARAMETER ESTIMATION RESULTS (7 =600,k = 300,[5 ] = 0.1,[0 } =0.15
T r
Not considering C.P. (90) Considering C.P. (91 )
Eood é & ! A 3 s [6"] [T
299 0.4212 -0.4443 0.1319 0.3564 -0.6271 0.4404 -0.3561 0.0978 0.1556
302 0.4290 -0.4222 0.1281 0.3480 -0.5177 0.4589 -0.3836 0.0992 0.1509
299 0.4078 -0.4775 0.1271 0.4137 -0.6116 0.4022 -0.4026 0.0973 0.1497
302 0.4370 -0.4429 0.1255 0.4426 -0.5895 0.4271 -0.3367 0.1033 0.1421
313 0.4284 -0.4219 0.1279 0.3216 -0.5804 0.4626 -0.3573 0.0936 0.1542
318 0.4274 -0.3840 0.1245 0.4110 -0.5100 0.4312 -0.3047 0.1021 0.1442
305 0.4161 -0.4645 0.1326 0.3699 -0.6914 0.4251 -0.3104 0.0987 0.1538
301 0.3996 -0.4290 0.1249 0.3638 -0.5741 0.4117 -0.3536 0.0961 0.1467
307 0.4198 -0.4325 0.1252 0.3048 -0.5357 0.4576 -0.3986 0.0918 0.1510
281 0.4177 -0.4318 0.1213 0.3562 -0.5326 0.4419 -0.3870 0.0980 0.1378
TABLE IV
PARAMETER ESTIMATION RESULTS (7 =200,k = 100,[0“)] = 0.1,[0(2)] = 0.3)
Tr T
Not considering C.P. (90) Considering C.P. (9,)
ih e e e e T[]
97 0.4689 -0.2939 0.1910 0.3729 -0.5978 0.4730 -0.2468 0.1006 0.2447
107 0.4278 -0.3378 0.2036 0.4460 -0.3819 0.4267 -0.3334 0.0885 0.2847
104 0.4601 -0.3720 0.1998 0.3139 -0.5495 0.4781 -0.3473 0.1028 0.2669
102 0.5311 -0.3775 0.2306 0.3667 -0.5451 0.5410 -0.3673 0.0926 0.3155
106 0.4710 -0.3828 0.2224 0.3833 -0.3977 0.4808 -0.3832 0.0990 0.3084
96 0.3804 -0.5105 0.1987 0.4100 -0.5384 0.3778 -0.5085 0.0927 0.2621
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103 0.4052 -0.3017 0.2148 0.3448 -0.5693 0.4092 -0.2683 0.0935 0.2924
102 0.5022 -0.3756 0.2507 0.2859 -0.5667 0.5182 -0.3618 0.1084 0.3392
102 0.3706 -0.3375 0.2134 0.3109 -0.6466 0.3749 -0.2883 0.0959 0.2869
103 0.4016 -0.3751 0.2164 0.5311 -0.5716 0.3800 -0.3391 0.0998 0.2928
TABLEV
2 2
PARAMETER ESTIMATION RESULTS (T =200,k = 100,[0-”} = 0‘1,[0(2)J =0.1 5)
r T
Not considering C.P. (90) Considering C.P. (9, )
Pd s e @ e e w T ]
105 0.4985 -0.4570 0.2266 0.4150 -0.5257 0.5114 -0.4504 0.1144 0.3071
96 0.4034 -0.3254 0.2134 0.3032 -0.5643 0.4120 -0.2981 0.0950 0.2810
107 0.4818 -0.3312 0.2128 0.4615 -0.4523 0.4840 -0.3196 0.0877 0.2989
102 0.5151 -0.3737 0.2272 0.4462 -0.4204 0.5213 -0.3711 0.0939 0.3116
100 0.4466 -0.3565 0.2305 0.4830 -0.6235 0.4405 -0.3187 0.0978 0.3101
101 0.4000 -0.3816 0.2282 0.4409 -0.5977 0.3936 -0.3449 0.1069 0.3056
100 0.5570 -0.4363 0.1930 0.4604 -0.5617 0.5697 -0.4194 0.1037 0.2521
106 0.5603 -0.4113 0.2201 0.4338 -0.4791 0.5745 -0.4080 0.1070 0.3007
99 0.4440 -0.3466 0.2248 0.4688 -0.7069 0.4326 -0.2759 0.0957 0.2973
109 0.4483 -0.2914 0.2133 0.4279 -0.4332 0.4504 -0.2727 0.0998 0.2978
TABLE VI
2 2
PARAMETER ESTIMATION RESULTS (T =100,k =50, [a(')} =0. 1,[6(2)} = 0.3)
r T
Not considering C.P. (90) Considering C.P. (91)
i P 1 §w e [T [
56 0.3457 -0.1805 0.2423 0.3157 -0.6206 0.3456 -0.1153 0.0928 0.3488
52 0.4251 -0.3236 0.2095 0.3779 -0.4321 0.4324 -0.3141 0.0926 0.2896
52 0.4297 -0.3555 0.1779 0.5192 -0.4955 0.4156 -0.3291 0.0882 0.2418
52 0.4804 -0.3386 0.2058 0.4081 -0.4875 0.4913 -0.3201 0.1014 0.2798
52 0.4873 -0.2753 0.2110 0.4323 -0.2622 0.4936 -0.2782 0.0881 0.2937
49 0.4991 -0.4363 0.2255 0.4713 -0.3112 0.5031 -0.4487 0.0922 0.3055
44 0.5585 -0.5267 0.2313 0.1289 -0.3764 0.5706 -0.5341 0.0733 0.3027
68 0.5410 -0.5601 0.2163 0.4268 -0.4308 0.5831 -0.6119 0.1356 0.3319
53 0.3316 -0.2706 0.2279 0.4554 -0.6095 0.3151 -0.2169 0.0924 0.3174
45 0.4766 -0.4067 0.2184 0.4820 -0.6828 0.4731 -0.3649 0.0993 0.2804
TABLE VII
2 2
PARAMETER ESTIMATION RESULTS (7 =100,k = 50, [a“q =0.1, [o-(ﬂ = 0.15)
r r
Not considering C.P. (6‘0) Considering C.P. (6’1 )
I
52 0.5178 -0.4386 0.1222 0.1831 -0.4862 0.5948 -0.4562 0.0858 0.1474
34 0.3203 -0.4528 0.1229 -0.1096 -0.3763 0.3616 -0.4708 0.0659 0.1429
65 0.3720 -0.3953 0.1192 0.4107 -0.5749 0.2442 0.1462 0.1160 0.1044
58 0.2448 -0.4582 0.1180 0.4314 -0.5961 0.1052 -0.3685 0.0898 0.1448
43 0.5574 -0.2976 0.1323 0.6171 -0.4517 0.5505 -0.2622 0.0843 0.1595
47 0.4694 -0.4282 0.1258 0.2618 -0.5946 0.5073 -0.4043 0.0773 0.1557
48 0.3256 -0.4246 0.1223 0.2429 -0.5099 0.3476 -0.4070 0.0828 0.1511
61 0.5787 -0.6075 0.1056 0.4885 -0.7802 0.6406 -0.5093 0.0787 0.1308
50 0.4079 -0.2570 0.1332 0.4356 -0.5149 0.3806 -0.1118 0.1032 0.1543
63 0.5059 -0.4880 0.1283 0.4591 -0.6417 0.5285 -0.3889 0.0954 0.1688

Tables II to VII list the estimated results under different
conditions, including the change point, the variance of
sequences with and without considering the change point,
and the estimated results of other parameters in the model,
and each Table provides 10 estimates. In Table II, the
estimated value of the change point fluctuates slightly around
300, with most errors within 4 and a maximum error of 7,

indicating good estimation performance. In Table III, the
variance of the two sequences is further reduced, and the
estimation error of & also slightly increases, with a maximum
absolute error of 18, but the overall deviation is not
significant. The sample size in Table IV and Table V is 200,
and the estimation results are still good. Further investigation
revealed that when the sample size was reduced to 100 (as
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shown in Tables V and VI), the prediction error increased.
However, the situation was more pronounced in Table VII.
As the variance differences in Table VII narrowed, its
prediction outcomes became unstable. This instability was
directly reflected in an increase in the deviation of the change
point, with a maximum deviation reaching 16 and a mean
deviation reaching 7.7, significantly exceeding the previous
range of prediction errors. This finding indicates that the
model’s predictive performance may be severely
compromised by reduced sample size and narrowed variance
differences. Therefore, in future research, we should handle
such data more cautiously and consider adopting more
sophisticated or robust prediction models to improve the
accuracy and stability of predictions.

The above findings have been validated through extensive
simulations on numerous sequences. To further investigate
the predictive performance of the CP-AR (2) model, a
sequence is randomly selected for analysis with T=200 as an
example.

Sequence Prediction Err without Change Point
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Fig. 4. Sequence Prediction Err. Without Change Point (k =100, & =105).
Note that the two dotted lines above and below are the 95% confidence
interval, and the solid dots mark the points that exceed the interval.

Sequence Prediction Err with Change Point
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Fig. 5. Sequence Prediction Err. with Change Point ( k=100, k =105).
Note that the two dotted lines above and below are the 95% confidence
interval, and the solid dots mark the points that exceed the interval. Since
modeling takes into account change points, the confidence intervals of errors
before and after these points are different.

Fig. 4 and Fig. 5 demonstrate the prediction error situation
through a sequence. This sequence contains a change point at
k=100. The predicted change point position is 102. When
modeling and predicting, Fig. 4 shows the error when change

points are not considered, while Fig. 5 shows the error
situation after considering the change point modeling. For
Fig. 4, when the change point is not considered, 13 points
(marked by solid dots) lie outside twice the standard
deviation from the mean. All outliers are in the sequence after
the change point, while the earlier sequence contains no
outliers, even with significant tolerance. In fact, after
multiple simulation experiments, this situation remains the
same, and all the outliers are concentrated in the latter half of
the sequence. This situation is clearly unreasonable. Unlike
Fig. 4, Fig. 5 considers the change point, and since the model
parameters before and after the change point differ, the
confidence intervals also vary accordingly. At this time, there
are 5 points above twice the standard deviation of the mean
and uniformly distributed, with 2 in the sequence before the
change point and 3 in the later sequence. The number of
outliers is significantly less than without considering the
change point. To further assess the overall error profile, Table
VII provides the analysis results of RMSE.

TABLE VIII
RMSE COMPARISON (TIMES=20)
5 > Not A
Tk [ [ comiderime COURCRE TN
600 300 0.1/0.3 0.1886 0.1691 11.50%
600 300 0.1/0.15 0.2061 0.1822 13.15%
200 100 0.1/0.3 0.2143 0.1912 12.11%
200 100 0.1/0.15 0.2237 0.1978 13.11%
100 50 0.1/0.3 0.2344 0.2101 11.57%
100 50 0.1/0.15 0.2524 0.2246 12.36%

Table VIII compares the RMSE values obtained from
modeling with and without change points for stationary
autoregressive sequences. The former involves identifying
change points and deriving model expressions before and
after using the method proposed in this paper, whereas the
latter involves direct modeling. The first column of the table
indicates the sequence length, the second column shows the
location of sequence change points, and the third column
displays the variance of the sequences before and after the
change points. For each of the six scenarios presented in the
table, data simulation and modeling were conducted 20 times
based on specific conditions, and the RMSE values were
calculated as the average of these 20 results. In all six
scenarios, the RMSE values obtained from modeling with
change points were consistently lower than those obtained
without change points. This indicates that considering change
points can significantly enhance models' fitting effectiveness
and prediction accuracy when dealing with stationary
autoregressive time series with change points. Furthermore,
as the sequence length increases from 100 to 200 and then to
600, the RMSE values with and without considering change
points generally decrease to some extent, suggesting that
longer sequence data helps the model learn patterns and
reduce errors. However, the reduction in RMSE was more
pronounced when change points were considered,
highlighting its advantage. Additionally, even if parameters
such as the variance before and after the change points vary
under the same sequence length, modeling with change
points demonstrates greater stability and superiority.
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Sequence fitting without change point
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Fig. 6. Sequence fitting without a change point. Note that the black line is
the sequence. The red dashed line is a fitting value. The gray area is the
confidence interval.
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Fig. 7. Sequence fitting with a change point. Note that the black line is the
sequence. The red dashed line is the fitting value. The gray area is the
confidence interval.

Fig. 6 shows the prediction and fitting of the sequence
without considering the change point. Fig. 7 shows the
prediction and fitting of the sequence while considering the
change point. The solid line indicates the actual value, the
dashed red line represents the fitted trend of the data series,
and the shaded area indicates the 95% confidence interval of
the sequence fitting values. When considering change points,
the fit is better compared to the scenario without change
points. The confidence interval in Fig. 6 shows slight
fluctuation, even though the sequence variance before and
after the change point has changed significantly. The
confidence interval in Fig. 7 is smaller before the change
point but suddenly becomes larger after the change point,
mainly due to the increase in sequence fluctuation after the
change point. The pattern in the confidence interval when
considering the change point is much more reasonable, and
the model is more reliable.

V. CONCLUSION

This paper primarily investigates the change-point
problem in autoregressive (P) models, defining these issues
as CP-AR (P) models. While existing studies have explored
cases where sequence variance remains unchanged at change
points, it further examines scenarios with varying variance,
providing estimates for the change point k, model parameters,
and variances before and after the change point. In the
derivation process, symmetric matrices are introduced,
thereby deriving the estimation expression for model
coefficients. Then, variance estimates are obtained, and the

estimation expression for the location of change points is
provided in conjunction with the likelihood ratio. In Chapter
4, a large number of data simulations are conducted based on
the CP-AR(2) model. Unlike most data simulations for
change-point problems, this study simulates almost every
point in the sequence as a change point, with each point
undergoing 20 simulations. To ensure a sufficient sample size,
only some sequence points at the beginning and end are
excluded. This design more fully verifies the reliability of the
model. Also, it leads to the following important conclusions:
Firstly, it is found that the estimation bias rate of
change-point locations is closely related to the sequence
length (i.e., sample size). The larger the sample, the smaller
the bias rate. It is recommended to retain at least 30 sample
points before and after the change point to ensure estimation
accuracy. For details, please refer to Fig. 2, Fig. 3, and Table L.
Additionally, it has been observed that the greater the
variance difference between the sequences before and after
the change point, the higher the accuracy of the change-point
estimation. Some simulation results are detailed in Tables II
to VII. To further verify the model's effectiveness, a
randomly selected sequence is compared regarding the error
and fitting performance with and without considering change
points. Refer to Figs. 4 to 7 and Table VIII. It is found that the
model considering change points is indeed superior.
However, change points in the sequence are often not easily
detectable (Figs. 1 and 2). When there are change points in
the sequence, direct modeling can lead to poor fitting
performance. Therefore, it is recommended to first perform
change-point detection. The specific process is shown in Fig.
8.

Data after
intercepting
faining change
stationary point

sequences

Fig. 8. ARIMA modeling flowchart considering change point.

Step 1: Preprocess the time series data to make it stable.
Step 2: Calculate ACF and PACF and determine model order.
Step 3: Find the change point and verify the estimated change
point. The SIC method can be used here.

Step 4: If the change point £ is not close to the sequence's end
or beginning, use the sequence following the change point for
remodeling.

Fig. 8 applies not only to the modeling of CP-AR(P)
models but also to ARMA models with change points, which
can be further discussed later. From a practical application
perspective, detecting changes in the time series before
modeling is recommended to improve the reliability of model
predictions.

Although this study has conducted some theoretical
research and drawn a series of valuable conclusions through
simulation verification and practical analysis, there are still
some limitations that warrant attention. First, the method
exhibits higher computational complexity for higher-order
models: In simulation, the second-order model is primarily

Volume 55, Issue 10, October 2025, Pages 3252-3261



TAENG International Journal of Applied Mathematics

exemplified, featuring a relatively complex estimation
expression. The detailed process can be referred to in
formulas (5) to (16), from which the second-order parameter
estimation expressions can be derived, as shown in (23) to
(29). When estimating ® , (5) to (7) yield ®=Z"'B ,
necessitating matrix operations. For higher-order scenarios,
computational complexity increases exponentially. Although
high-order models are seldom employed in practical
applications, this issue requires further investigation. Second.
estimation instability occurs at sequence boundaries (Fig. 2
and 3), primarily when fewer than 30 samples are available
for modeling in segments around change points. Insufficient
observations fail to constrain the parameter space, increasing
estimate variance by 20 to 50% compared to central change
points. Furthermore, Table V and Table VI reveal that the
small sample size can cause inaccuracy. Therefore, the
method is more suitable for long series. Additionally, the
model assumes a single change point and a Gaussian

distribution.

Preliminary  tests with non-Gaussian

distributions (e.g., heavy-tailed) showed reduced accuracy,
though detailed results are omitted here. Future work should
address multi-change-point scenarios and non-parametric
distributions.
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