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ABSTRACT—This study investigates the change point problem 

in time series analysis, a prominent research topic in statistics. 

We propose the CP-AR(P) model, an autoregressive framework 

integrating change points, primarily addressing scenarios 

where sequence variance shifts after a structural break. Notably, 

a constant variance is highlighted as a special case of this 

framework. The methodology employs the likelihood ratio test 

for model formulation, with change point estimates derived via 

the conditional maximum likelihood method. Additionally, a 

symmetric matrix is introduced to provide a universal expression 

for parameter estimation. To further validate the proposed 

model's efficacy, extensive simulations using the CP-AR(2) 

model, in particular considering almost all potential points in the 

sequence as change points (reserving only marginal samples for 

modeling), demonstrate its efficacy, revealing that performance 

depends on variance disparity and sample size. Comparative 

analyses show a significant reduction in anomaly prediction 

error when considering change points, enhancing confidence 

interval plausibility. Thus, we recommend testing for change 

points before applying ARMA models to improve their fitting 

performance. This study presents a CP-AR(P) methodological 

framework and novel time series perspectives, emphasizing the 

role of change point identification in enhancing model 

performance. The framework applies to financial risk 

management, quality control, and environmental monitoring, 

among other fields. 
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I. INTRODUCTION 

HE concepts of change point detection were initially 

proposed by Page and gained widespread recognition for 

their early application in quality control [1-2]. Subsequently, 

Lai [3] developed a comprehensive theory for sequential 

change point detection, particularly within quality-control 

contexts. The field of change point detection has seen 

extensive research and practical applications, with a focus on 

time series change points, especially in ARMA models with 

change points. The core of these studies centres on estimating 

change point sequences, with the maximum likelihood ratio 

test being a primary method in this process. Pioneering work 
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by Horváth [4] detailed the computation of the asymptotic 

distribution of the maximum likelihood ratio test for 

identifying parameter shifts in normal observations at an 

unknown point. Subsequently, Horváth [5] expanded the 

research to include detecting mean shifts in linear processes. 

Ciuperca and Maciak [6] proposed a novel quantile 

estimation method for change points in multiple linear 

regression models. Sheikhrabori and Aminnayeri [7] developed 

a maximum likelihood estimation technique to evaluate the 

change point of stationary ARMA (1,1) models transiting to a 

non-stationary process. Further contributions in this domain 

include those by Liu [8], Shiohama and Taniguchi [9], and 

Wang [10], among others, who discussed the maximum 

likelihood method in the context of ARMA models with 

change points. For non-normal change point sequences, 

Gombay [11] examined change point detection in exponential 

distribution families. For the non-parametric method, Keriven 

et al. [12] investigated the issue of finding change points in 

multidimensional time series. A heuristic method was 

proposed based on ratings to estimate change points in 

non-parametric processes [13]. Comprehensive insights into 

the asymptotic behaviour of the maximum likelihood ratio in 

change point issues are provided by Yao and Davis [14] and 

Gombay and Horváth [15]. Moreover, the practical 

applications of change point detection are vast and varied. 

For instance, Manzano Sanchez et al. [16] extracted 

characteristics from the power consumption of smartphones 

through change point analysis. This method has also proven 

useful in identifying significant variations in such 

consumption patterns [17]. Inoue and Yamada [18] detected 

the time point of software failure by the change point 

detection method, while Awe and Adepoju [19] employed 

this method in environmental detection. For the application 

of the change point problem in other fields, please refer to 

references [20-22]. This brief outline of relevant work 

provides only a cursory insight into the extensive literature on 

change point problems. Interested readers are encouraged to 

consult comprehensive reviews, such as those by Aue and 

Horváth [23], Jandhyala et al. [24] or Atashgar [25]. 

Additional contributions include Lee [26], who expounds on 

five prevalent types of change point problems, among other 

key works. 

 

 
Fig. 1. Time series with change point ( 200T = , k=100)  
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First, the concept of change points and the necessity of 

detecting them will be introduced through illustrations. The 

sequences with a change point in Fig. 1 are all simulated 

using autoregressive models, referred to as CP-AR(P) models, 

which are the primary focus of this study. A change point 

here is defined as a moment where model parameters shift. 

While the approximate location of a change point can 

sometimes be identified directly from a time series plot, it is 

often challenging to confirm its existence. For instance, Fig. 

1 presents two time series with a change point at position 100. 

In Fig. 1(a), the change point is relatively obvious: the 

sequence exhibits a noticeable increase in fluctuation 

midway through, marking the change point. In contrast, the 

change point in Fig. 1(b) is hard to detect, as there is no 

significant variation in the sequence’s fluctuation. In such 

cases, modeling that overlooks the change point can 

compromise the model’s performance. 

Given the complexity of change point detection (e.g., 

non-significant variance changes and hidden structural shifts), 

research in this area has drawn substantial attention, and this 

paper aims to advance the field by addressing key gaps. Many 

researchers have discussed the invariance of variance before 

and after sequence change points. This paper further 

addresses the position of model change points, the estimation 

of model parameters, and the variance before and after a 

change point in cases of variance mutation. Notably, a key 

innovation lies in its simulation design. Unlike most existing 

simulation studies that typically consider only one or a few 

selected points, commonly the midpoint, as change points to 

demonstrate the effectiveness of the proposed methods, our 

study takes almost all points in the sequence into account as 

potential change points, reserving only a small portion of 

samples at the beginning and end of the sequence for 

modeling. This study aims to develop a method for detecting 

change points that can accurately identify change points in 

time series data and is effective for both structural changes in 

variance and other types of structural breaks. Therefore, we 

propose the CP-AR (P) model, designed to analyze time 

series data by integrating an autoregressive framework with a 

change point detection mechanism. In terms of methodology, 

the change point problem is transformed into a hypothesis 

test problem, and the likelihood ratio test is used to estimate 

the change point k. Additionally, a symmetric matrix is 

introduced to provide estimation expressions for variance and 

other parameters. This method, with a solid theoretical 

foundation, also exhibits broad practical applicability. To 

further validate its effectiveness and reliability, we conducted 

extensive simulation experiments. Specifically, using the 

CP-AR(2) model, we executed multiple simulations at 

varying positions within the sequence's change points to 

investigate how variance levels and sample sizes influence 

outcomes. We achieved notable results by comparing model 

errors with and without considering change points, 

confirming the method's superiority. The key finding is that 

the model's change point detection method accurately 

identifies change points in time series data, even in the 

presence of variance mutations. This insight is crucial for 

maintaining the model's accuracy and adaptability, 

particularly for extended time series data. Finally, the study's 

significance is multifaceted. Firstly, the CP-AR (P) model's 

change point detection approach offers a new theoretical 

perspective and tool for time series analysis, enriching the 

research in this domain. Secondly, it holds broad practical 

application prospects, particularly in areas such as quality 

control, environmental monitoring, and consumer behavior 

detection, by ensuring model accuracy, adaptability, and 

efficiency in data processing. Thus, the findings of this study 

not only hold theoretical value but also have significant 

practical implications. 

II. CP-AR(P) MODEL 

For a noncentralized stationary time series, 

0

11 p




 
=

− − −L
 

shifts it by a constant to convert it into a centralized sequence. 

Assuming that b satisfies the p-order autoregressive model, 

and if a delay operator is introduced, then this centered model 

can be expressed as: ( ) t tB x  = , where 1 2
1 2( ) 1B B B  = − −  

p
p B− −L , usually, we assume 2

t ~ i.i.d. (0, )WN  . 

For a practical problem, the sequence may be affected by 

certain factors, resulting in a sudden change at time k. 

Therefore, it is divided into two sequences, 
( )1

t{ }x  and then 
( ) ( )1 2

t t t{ } { , }x x x= , a new model is obtained as follows: 
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L L

L L
    (1) 

 

This is the CP-AR(P) model, where T is the length of the 

sequence, and k is the location of change point. The sequence 

before the change point is described by the first equation in 

the model, and the second equation describes the later part of 

the sequence. Here, an abrupt parameter changes means 

parameter values shift while the model structure and 

parameter count remain unchanged. If a delay operator is 

introduced, the above equation can be expressed as: 

 

 

(1) (1) (1)

(2) (2) (2)

( ) 3, ,

( ) 1, ,

t t

t t

B x t k

B x t k T





 = =


 = = +

L

L
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III. SEARCHING FOR CHANGE POINTS 

A. (1) (2)   

Horváth [4] and Gombay [11] introduced the likelihood 

ratio method to find the location of the change point. Here, a 

similar approach is used to model time series. Therefore, the 

CP-AR(P) model can also be considered as a hypothesis 

testing problem for the following: 

 

0 1 1 2 2

(1) (1) (1) (1)

1 1 2 2

1 (2) (2) (2) (2)

1 1 2 2

: 1

1
:

1

t t p t p

t t p t p

t t p t p

t t

t
t

t

H X X X X p t T

X X X p t k
H X

X X X k t T
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   

− − −

− − −
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= + + + + +  

 + + + + +  
= 
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L

L
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 (3) 

 

When 0H  is true, given { }tX , denote 0 1 2( ,  =
r

L  

, )p    as the parameter vector. Since t{ } is assumed to be a 

Gaussian process, 1X  is also a Gaussian process. When t 2 , 

tX  is also a Gaussian process given in the previous sequence 

1{ }tX − , Therefore, when T P , the conditional logarithmic 

likelihood function is: 
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         (4) 

 

Differentiating 1 , 2 pL L will result in a complex 

expression. So, to estimate these parameters, a symmetric 

matrix is introduced as below: 
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Then, Z B =  is derived, which is: 
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Subsequently, assuming Z is invertible, 1=Z B−  can be 

obtained. Solving this system of linear equations yields the 

maximum likelihood estimate 1 2
ˆ ˆ ˆ ˆ( , )p   = L  of  . The 

estimation of 
2  obtained using the same method is as 

follows: 

 

( )
2

2

1 1 2 2

1
ˆ ˆ ˆˆ

T

t t t p t p

t p

X X X X
T p
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 
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 L  (8) 

 

Under the assumption that 1H  is true, 1 1 2( , ,p   =
r

L  
(1) (2), )   , the logarithmic likelihood function of the change 

point problem is: 
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In this case, differentiating (1) (1) (1)

1 2 p  L L，  is only related to 

the previous sequence, while differentiating (2)

1 , (2)

2 L L (2)
p  

is only related to the subsequent sequence. Therefore, the 

sequence X is divided into two sequences U and V by the 

change point, so { , }X U V= , where 1{ ,..., }p kU X X+=  is the 

sequence before the change point, and 1{ ,..., }k TV X X+=  is the 

sequence after the change point. Then, similarly to the 

previous case, introduce the following symmetric matrix: 
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Subsequently (1) (1) 1 (1)=[ ]Z B− , and solving this linear system 

of equations obtains the maximum likelihood estimate 
(1) (1) (1) (1)

1 2
ˆ ˆ ˆ ˆ( , )p   = L . The maximum likelihood estimation of 

(1) 2ˆ[ ] , (2) 2ˆ[ ]  is: 
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The maximum likelihood ratio function is: 
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Then: 
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The maximum likelihood estimate of the change point k is: 

 

 1 1
ˆ arg max p k T p kk +   − −=   (16) 

B. (1) (2) =  

When the variance of the sequence before and after the 

change point is equal, the CP-AR (P) model can also be 

considered as a hypothesis testing problem for the following: 
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When 
0H  is true, the estimation results for each parameter 

can be found in (3), (4), and (8). Under the true assumption, 
(1) (1) (1)

1 1 2( , ,p   =
r

L
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1 2 , L (2) , )p k    the conditional 

logarithmic likelihood function is: 

 

( )

(

) ( )

1 1

2 (1) (1)

1 1 2 22
1

2 2
(1) (2) (2) (2)

1 1 2 22
1

1 1log , , , , ,

1 1
log(2 ) log

2 2 2

1

2

, , , , , ;T T p t p

k

k t t t

t pk

T

p t p t t t p t p

t kk

p t pT Tf X X X X X

T T p
X X X

X X X X X

x x x x x

   


   




− +

− −

= +

− − − −

= +

+− 

− − 
= − − − − − 

 

− − − − − − −

 



L L

∣ ∣

 

(18) 

 

The maximum likelihood estimation of 
2  is: 
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Estimations of (1)̂ and (2)̂  are in the previous section, so 

the maximum likelihood ratio function is: 
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Then, the maximum likelihood estimate of the change 

point k is: 

 

 1 1
ˆ arg max p k T p kk +   − −=   (21) 

IV. SIMULATION RESEARCH 

To further verify and study the above conclusions, we take 

the 2nd-order model as an example for simulation. According 

to (3), the CP-AR(2) can also be transformed into a 

hypothesis testing problem, as shown below: 
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 (22) 

 

When 0H  is true, 0 1 2( , , )    =
r

, according to the method 

in section 3, the estimation expression for each parameter is 

as follows: 
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When 1H is true, (1) (1) (2) (2) (1) (2)
1 1 2 1 2, , , , ,      = ( )
r

, 

according to the method in section 3, the estimation 

expression for each parameter is as follows: 
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Estimation details of k̂  are provided in (14) to (16), which 

are not repeated here. For example, for the following CP-AR 

(2) model: 
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First, a sample sequence will be generated based on this 

model. Fig. 1 shows a sequence of T=200 and k=100. When 

the sample size is increased to 600, the estimated k is shown 
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in Fig. 2. 

 

 
Fig. 2. The estimation of Change point k and bias. Note that T = 600, 

(1)
1 0.5 = , 

(1)
2 0.7 = − , (2)

1 0.6 = , 
(2)
2 0.4 = − , (1) (2)0.1 0.5D D= =， (where 

D represent variance), the number of simulations times 20=  for each k. For 

Fig. 2(a),  the abscissa is ( )t k , the ordinate is k̂ , the secondary axis is the 

estimated deviation of k; that is: 

 

( ˆ 20,...,580= − ， ke k k k  

 

for Fig. 2(b), the ordinate axis is the average estimation deviation of k, that is: 

 

( 
1

1
20,...,580 , 600

n

k k

n

e e k n
n =

=  = ，  

 

and the secondary axis is the ratio of the average deviation to the estimated 

value of  k, that is: 

( / 20,...,580k kr e k k= ，  

 

Figure 2 shows the results of estimating the inflection 

points in sequence Xt using the method introduced above, as 

well as the estimation bias. Like the Q-Q plot for determining 

normal distribution, the better the estimation, the more 

concentrated the points in the plot are on a slope-1 straight 

line. Here, the sample size T is 600. To ensure that the sample 

size of the preceding and succeeding sequence segments is at 

least 20, the actual position of the change point, k, ranges 

from 20 to 580. With 20 simulations performed for each of 

these 560 values of k (times = 20), a total of 20×560 = 

11,200 simulations are conducted. In Fig. 2 (a), the primary 

axis (left) represents the predicted change point position, and 

nearly all estimated values fall near the straight line with a 

slope of 1 and pass through the origin. The secondary 

coordinate axis of Fig. 2(a) is the absolute deviation of k, and 

Fig. 2(b) is a supplement to Fig. 2(a), mainly showing the 

predicted deviation of k . The primary axis (left) represents 

the average absolute deviation of the change point. Most 

values range between 1 and 4, indicating small and uniformly 

distributed deviations. The secondary axis (right) shows the 

ratio of the average absolute deviation to k̂ , which tends to 

decrease as the sample size increases. This trend indicates 

improved prediction accuracy with larger sample sizes (as 

shown in the bottom part of Fig. 2(b)). For a more detailed 

breakdown of these results, selected data points are presented 

in Table I. 

 

 

TABLE I 

MEAN EST.BIAS AND BIAS RATIO OF K 

k 21 30 50 100 200 300 

kr  12.73% 9.67% 5.10% 3.25% 1.25% 0.75% 

ke  4.05 2.9 2.6 3.25 2.5 2.25 

 

As shown in Table I, when the sample size reaches 30, the 

average absolute deviation is small and relatively stable, 

supporting its recommendation as the minimum sample size 

for modeling. A saTmple size of 50 or more is even better, as 

it further reduces deviations. Additionally, from Fig. 2, it is 

noted that there are many cases of large deviations near the 

starting and ending positions (see the dashed boxes in Fig. 2(a) 

and Fig. 2(b)). This is caused by an excessively forward 

change point position, which leads to an insufficient sample 

size. Although Table I shows that the average deviation is not 

much larger, the stability is obviously poor.  

The above analysis indicates that a larger sample size 

corresponds to a longer sequence. Apart from the influence of 

sequence length (i.e., sample size) on the stability of 

estimation bias, are there other contributing factors? To 

address this, further research will explore the impact of 

different variance differences between pre- and post-change 

point sequences. 
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Fig. 3.  Change point k estimation with different sample size and variance. 

Note that in (a), (c), and (d), (1)D = 0.1, (2)D = 0.5, and the sample size T is 

600, 300, and 100, respectively. In (b), (d), and (f), (1)D = 0.1, (2)D = 0.3, 

and the sample size T is 600, 300, and 100, respectively. The number of 

simulation times for each position k is 20. 
 

The sub-diagram in Fig. 3 is like Fig. 2. The horizontal axis 

represents the position of the change point, the vertical axis 

represents k̂ , and the secondary axis is the change point 

estimated deviation. It further illustrates scenarios with 

different samples and also displays simulation results with 

different variances. Based on variance differences, it can be 

divided into two groups: Fig. 3(a), Fig. 3(c), and Fig. 3(e), 

and Fig. 3(b), Fig. 3(d), and Fig. 3(f); based on different 

sample sizes, it can be divided into three groups: Fig. 3(a) and 

Fig. 3(b), Fig. 3(c) and Fig. 3(d), Fig. 3(e) and Fig. 3(f). For 

the sample grouping, as the sample size decreases from 600 

to 100, the estimates of the change points are more widely 

scattered, especially when T=100, with a consequent decrease in 

prediction accuracy. This implies that more points deviate 

from the line with a slope of 1 in the graph. For the grouping 

based on variance, comparing Fig. 3(a) and Fig. 3(b), Fig. 3(c) 

and Fig. 3(d), Fig. 3(e) and Fig. 3(f) when the difference in 

the variance between the preceding and following sequences 

becomes smaller, the range of deviations increases and 

becomes more unstable, so the accuracy of change point 

estimation is affected by the difference in variance between 

the preceding and following sequences. When the variance 

difference is small enough, it can be assumed that it is 

constant during structural changes. In this case, the method 

described in Section 3 can be used for estimation. 

 

TABLE II 

PARAMETER ESTIMATION RESULTS 
( ) ( )( )

2 2
1 2

600, 300, 0.1, 0.3T k     = = = =
     

 Not considering C.P. ( )0
r

 Considering C.P. ( )1
r

 

1k̂  1̂  2̂  2̂  
( )1

1̂  
( )1

2̂  
( )2

1̂  
( )2

2̂  
( )

2
1

̂ 
 

 
( )

2
2

̂ 
 

 

296 0.5148 -0.3556 0.2144 0.4790 -0.6383 0.5111 -0.3039 0.1046 0.2790 

303 0.5078 -0.3829 0.2338 0.5339 -0.6326 0.5004 -0.3435 0.1001 0.3142 

306 0.5459 -0.4175 0.2256 0.5093 -0.6216 0.5466 -0.3900 0.0994 0.3043 

302 0.4904 -0.3789 0.2145 0.4154 -0.6717 0.4925 -0.3289 0.0989 0.2835 

304 0.4602 -0.3966 0.2261 0.4741 -0.6559 0.4539 -0.3474 0.1030 0.3017 

302 0.4131 -0.3111 0.2132 0.5051 -0.6132 0.3921 -0.2438 0.1007 0.2809 

303 0.5310 -0.3539 0.2264 0.4572 -0.6299 0.5308 -0.3187 0.0991 0.3025 

301 0.4893 -0.3108 0.2357 0.4905 -0.6127 0.4824 -0.2687 0.1012 0.3149 

300 0.4989 -0.3486 0.2251 0.4913 -0.6386 0.4932 -0.3041 0.0981 0.2996 

307 0.5385 -0.4067 0.2274 0.4958 -0.6212 0.5391 -0.3814 0.0944 0.3092 

 

TABLE III 

PARAMETER ESTIMATION RESULTS 
( ) ( )( )

2 2
1 2

600, 300, 0.1, 0.15T k     = = = =
      

 Not considering C.P. ( )0
r

 Considering C.P. ( )1
r

 

1k̂
 

1̂
 

2̂
 2̂  ( )1

1̂
 ( )1

2̂
 ( )2

1̂
 ( )2

2̂
 ( )

2
1

̂ 
 

 
( )

2
2

̂ 
 

 

299 0.4212 -0.4443 0.1319 0.3564 -0.6271 0.4404 -0.3561 0.0978 0.1556 

302 0.4290 -0.4222 0.1281 0.3480 -0.5177 0.4589 -0.3836 0.0992 0.1509 

299 0.4078 -0.4775 0.1271 0.4137 -0.6116 0.4022 -0.4026 0.0973 0.1497 

302 0.4370 -0.4429 0.1255 0.4426 -0.5895 0.4271 -0.3367 0.1033 0.1421 

313 0.4284 -0.4219 0.1279 0.3216 -0.5804 0.4626 -0.3573 0.0936 0.1542 

318 0.4274 -0.3840 0.1245 0.4110 -0.5100 0.4312 -0.3047 0.1021 0.1442 

305 0.4161 -0.4645 0.1326 0.3699 -0.6914 0.4251 -0.3104 0.0987 0.1538 

301 0.3996 -0.4290 0.1249 0.3638 -0.5741 0.4117 -0.3536 0.0961 0.1467 

307 0.4198 -0.4325 0.1252 0.3048 -0.5357 0.4576 -0.3986 0.0918 0.1510 

281 0.4177 -0.4318 0.1213 0.3562 -0.5326 0.4419 -0.3870 0.0980 0.1378 

 

TABLE IV 

PARAMETER ESTIMATION RESULTS 
( ) ( )( )

2 2
1 2

200, 100, 0.1, 0.3T k     = = = =
     

 Not considering C.P. ( )0
r

 Considering C.P. ( )1
r

 

1k̂  1̂  2̂  2̂  
( )1

1̂  
( )1

2̂  
( )2

1̂  
( )2

2̂  
( )

2
1

̂ 
 

 
( )

2
2

̂ 
 

 

97 0.4689 -0.2939 0.1910 0.3729 -0.5978 0.4730 -0.2468 0.1006 0.2447 

107 0.4278 -0.3378 0.2036 0.4460 -0.3819 0.4267 -0.3334 0.0885 0.2847 

104 0.4601 -0.3720 0.1998 0.3139 -0.5495 0.4781 -0.3473 0.1028 0.2669 

102 0.5311 -0.3775 0.2306 0.3667 -0.5451 0.5410 -0.3673 0.0926 0.3155 

106 0.4710 -0.3828 0.2224 0.3833 -0.3977 0.4808 -0.3832 0.0990 0.3084 

96 0.3804 -0.5105 0.1987 0.4100 -0.5384 0.3778 -0.5085 0.0927 0.2621 
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103 0.4052 -0.3017 0.2148 0.3448 -0.5693 0.4092 -0.2683 0.0935 0.2924 

102 0.5022 -0.3756 0.2507 0.2859 -0.5667 0.5182 -0.3618 0.1084 0.3392 

102 0.3706 -0.3375 0.2134 0.3109 -0.6466 0.3749 -0.2883 0.0959 0.2869 

103 0.4016 -0.3751 0.2164 0.5311 -0.5716 0.3800 -0.3391 0.0998 0.2928 

 

TABLE V 

PARAMETER ESTIMATION RESULTS 
( ) ( )( )

2 2
1 2

200, 100, 0.1, 0.15T k     = = = =
     

 Not considering C.P. ( )0
r

 Considering C.P. ( )1
r

 

1k̂  1̂  2̂  2̂  
( )1

1̂  
( )1

2̂  
( )2

1̂  
( )2

2̂  
( )

2
1

̂ 
 

 
( )

2
2

̂ 
 

 

105 0.4985 -0.4570 0.2266 0.4150 -0.5257 0.5114 -0.4504 0.1144 0.3071 

96 0.4034 -0.3254 0.2134 0.3032 -0.5643 0.4120 -0.2981 0.0950 0.2810 

107 0.4818 -0.3312 0.2128 0.4615 -0.4523 0.4840 -0.3196 0.0877 0.2989 

102 0.5151 -0.3737 0.2272 0.4462 -0.4204 0.5213 -0.3711 0.0939 0.3116 

100 0.4466 -0.3565 0.2305 0.4830 -0.6235 0.4405 -0.3187 0.0978 0.3101 

101 0.4000 -0.3816 0.2282 0.4409 -0.5977 0.3936 -0.3449 0.1069 0.3056 

100 0.5570 -0.4363 0.1930 0.4604 -0.5617 0.5697 -0.4194 0.1037 0.2521 

106 0.5603 -0.4113 0.2201 0.4338 -0.4791 0.5745 -0.4080 0.1070 0.3007 

99 0.4440 -0.3466 0.2248 0.4688 -0.7069 0.4326 -0.2759 0.0957 0.2973 

109 0.4483 -0.2914 0.2133 0.4279 -0.4332 0.4504 -0.2727 0.0998 0.2978 

 

TABLE VI 

PARAMETER ESTIMATION RESULTS 
( ) ( )( )

2 2
1 2

100, 50, 0.1, 0.3T k     = = = =
     

 Not considering C.P. ( )0
r

 Considering C.P. ( )1
r

 

1k̂  1̂  2̂  2̂  
( )1

1̂  
( )1

2̂  
( )2

1̂  
( )2

2̂  
( )

2
1

̂ 
 

 
( )

2
2

̂ 
 

 

56 0.3457 -0.1805 0.2423 0.3157 -0.6206 0.3456 -0.1153 0.0928 0.3488 

52 0.4251 -0.3236 0.2095 0.3779 -0.4321 0.4324 -0.3141 0.0926 0.2896 

52 0.4297 -0.3555 0.1779 0.5192 -0.4955 0.4156 -0.3291 0.0882 0.2418 

52 0.4804 -0.3386 0.2058 0.4081 -0.4875 0.4913 -0.3201 0.1014 0.2798 

52 0.4873 -0.2753 0.2110 0.4323 -0.2622 0.4936 -0.2782 0.0881 0.2937 

49 0.4991 -0.4363 0.2255 0.4713 -0.3112 0.5031 -0.4487 0.0922 0.3055 

44 0.5585 -0.5267 0.2313 0.1289 -0.3764 0.5706 -0.5341 0.0733 0.3027 

68 0.5410 -0.5601 0.2163 0.4268 -0.4308 0.5831 -0.6119 0.1356 0.3319 

53 0.3316 -0.2706 0.2279 0.4554 -0.6095 0.3151 -0.2169 0.0924 0.3174 

45 0.4766 -0.4067 0.2184 0.4820 -0.6828 0.4731 -0.3649 0.0993 0.2804 

 

TABLE VII 

PARAMETER ESTIMATION RESULTS 
( ) ( )( )

2 2
1 2

100, 50, 0.1, 0.15T k     = = = =
     

 Not considering C.P. ( )0
r

 Considering C.P. ( )1
r

 

1k̂  1̂  2̂  2̂  
( )1

1̂  
( )1

2̂  
( )2

1̂  
( )2

2̂  
( )

2
1

̂ 
 

 
( )

2
2

̂ 
 

 

52 0.5178 -0.4386 0.1222 0.1831 -0.4862 0.5948 -0.4562 0.0858 0.1474 

34 0.3203 -0.4528 0.1229 -0.1096 -0.3763 0.3616 -0.4708 0.0659 0.1429 

65 0.3720 -0.3953 0.1192 0.4107 -0.5749 0.2442 0.1462 0.1160 0.1044 

58 0.2448 -0.4582 0.1180 0.4314 -0.5961 0.1052 -0.3685 0.0898 0.1448 

43 0.5574 -0.2976 0.1323 0.6171 -0.4517 0.5505 -0.2622 0.0843 0.1595 

47 0.4694 -0.4282 0.1258 0.2618 -0.5946 0.5073 -0.4043 0.0773 0.1557 

48 0.3256 -0.4246 0.1223 0.2429 -0.5099 0.3476 -0.4070 0.0828 0.1511 

61 0.5787 -0.6075 0.1056 0.4885 -0.7802 0.6406 -0.5093 0.0787 0.1308 

50 0.4079 -0.2570 0.1332 0.4356 -0.5149 0.3806 -0.1118 0.1032 0.1543 

63 0.5059 -0.4880 0.1283 0.4591 -0.6417 0.5285 -0.3889 0.0954 0.1688 

 

Tables II to VII list the estimated results under different 

conditions, including the change point, the variance of 

sequences with and without considering the change point, 

and the estimated results of other parameters in the model, 

and each Table provides 10 estimates. In Table Ⅱ, the 

estimated value of the change point fluctuates slightly around 

300, with most errors within 4 and a maximum error of 7, 

indicating good estimation performance. In Table III, the 

variance of the two sequences is further reduced, and the 

estimation error of k also slightly increases, with a maximum 

absolute error of 18, but the overall deviation is not 

significant. The sample size in Table Ⅳ and Table V is 200, 

and the estimation results are still good. Further investigation 

revealed that when the sample size was reduced to 100 (as 
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shown in Tables V and VI), the prediction error increased. 

However, the situation was more pronounced in Table VII. 

As the variance differences in Table VII narrowed, its 

prediction outcomes became unstable. This instability was 

directly reflected in an increase in the deviation of the change 

point, with a maximum deviation reaching 16 and a mean 

deviation reaching 7.7, significantly exceeding the previous 

range of prediction errors. This finding indicates that the 

model’s predictive performance may be severely 

compromised by reduced sample size and narrowed variance 

differences. Therefore, in future research, we should handle 

such data more cautiously and consider adopting more 

sophisticated or robust prediction models to improve the 

accuracy and stability of predictions. 

The above findings have been validated through extensive 

simulations on numerous sequences. To further investigate 

the predictive performance of the CP-AR (2) model, a 

sequence is randomly selected for analysis with T=200 as an 

example.

 
Fig. 4.  Sequence Prediction Err. Without Change Point ( 100k = , k̂ =105). 

Note that the two dotted lines above and below are the 95% confidence 

interval, and the solid dots mark the points that exceed the interval. 

 

 
Fig. 5.  Sequence Prediction Err. with Change Point ( 100k = , k̂ =105). 

Note that the two dotted lines above and below are the 95% confidence 

interval, and the solid dots mark the points that exceed the interval. Since 

modeling takes into account change points, the confidence intervals of errors 

before and after these points are different. 

 

Fig. 4 and Fig. 5 demonstrate the prediction error situation 

through a sequence. This sequence contains a change point at 

k=100. The predicted change point position is 102.  When 

modeling and predicting, Fig. 4 shows the error when change 

points are not considered, while Fig. 5 shows the error 

situation after considering the change point modeling. For 

Fig. 4, when the change point is not considered, 13 points 

(marked by solid dots) lie outside twice the standard 

deviation from the mean. All outliers are in the sequence after 

the change point, while the earlier sequence contains no 

outliers, even with significant tolerance. In fact, after 

multiple simulation experiments, this situation remains the 

same, and all the outliers are concentrated in the latter half of 

the sequence. This situation is clearly unreasonable. Unlike 

Fig. 4, Fig. 5 considers the change point, and since the model 

parameters before and after the change point differ, the 

confidence intervals also vary accordingly. At this time, there 

are 5 points above twice the standard deviation of the mean 

and uniformly distributed, with 2 in the sequence before the 

change point and 3 in the later sequence. The number of 

outliers is significantly less than without considering the 

change point. To further assess the overall error profile, Table 

VII provides the analysis results of RMSE. 

 
TABLE Ⅷ  

RMSE COMPARISON（TIMES=20） 

T k ( ) ( )
2

1 2
2

    
      

  
Not 

considering 

C.P. RMSE 

Considering 

C.P.  RMSE 

RMSE 

comparison 

600 300 0.1/0.3  0.1886 0.1691 11.50% 

600 300 0.1/0.15 0.2061 0.1822 13.15% 

200 100 0.1/0.3  0.2143 0.1912 12.11% 

200 100 0.1/0.15 0.2237 0.1978 13.11% 

100 50 0.1/0.3 0.2344 0.2101 11.57% 

100 50 0.1/0.15  0.2524 0.2246 12.36% 

 

Table Ⅷ compares the RMSE values obtained from 

modeling with and without change points for stationary 

autoregressive sequences. The former involves identifying 

change points and deriving model expressions before and 

after using the method proposed in this paper, whereas the 

latter involves direct modeling. The first column of the table 

indicates the sequence length, the second column shows the 

location of sequence change points, and the third column 

displays the variance of the sequences before and after the 

change points. For each of the six scenarios presented in the 

table, data simulation and modeling were conducted 20 times 

based on specific conditions, and the RMSE values were 

calculated as the average of these 20 results. In all six 

scenarios, the RMSE values obtained from modeling with 

change points were consistently lower than those obtained 

without change points. This indicates that considering change 

points can significantly enhance models' fitting effectiveness 

and prediction accuracy when dealing with stationary 

autoregressive time series with change points. Furthermore, 

as the sequence length increases from 100 to 200 and then to 

600, the RMSE values with and without considering change 

points generally decrease to some extent, suggesting that 

longer sequence data helps the model learn patterns and 

reduce errors. However, the reduction in RMSE was more 

pronounced when change points were considered, 

highlighting its advantage. Additionally, even if parameters 

such as the variance before and after the change points vary 

under the same sequence length, modeling with change 

points demonstrates greater stability and superiority. 
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Fig. 6.  Sequence fitting without a change point. Note that the black line is 

the sequence. The red dashed line is a fitting value. The gray area is the 

confidence interval. 

 

 
Fig. 7.  Sequence fitting with a change point. Note that the black line is the 

sequence. The red dashed line is the fitting value. The gray area is the 

confidence interval. 

 

Fig. 6 shows the prediction and fitting of the sequence 

without considering the change point. Fig. 7 shows the 

prediction and fitting of the sequence while considering the 

change point. The solid line indicates the actual value, the 

dashed red line represents the fitted trend of the data series, 

and the shaded area indicates the 95% confidence interval of 

the sequence fitting values. When considering change points, 

the fit is better compared to the scenario without change 

points. The confidence interval in Fig. 6 shows slight 

fluctuation, even though the sequence variance before and 

after the change point has changed significantly.  The 

confidence interval in Fig. 7 is smaller before the change 

point but suddenly becomes larger after the change point, 

mainly due to the increase in sequence fluctuation after the 

change point. The pattern in the confidence interval when 

considering the change point is much more reasonable, and 

the model is more reliable. 

V. CONCLUSION 

This paper primarily investigates the change-point 

problem in autoregressive (P) models, defining these issues 

as CP-AR (P) models. While existing studies have explored 

cases where sequence variance remains unchanged at change 

points, it further examines scenarios with varying variance, 

providing estimates for the change point k, model parameters, 

and variances before and after the change point. In the 

derivation process, symmetric matrices are introduced, 

thereby deriving the estimation expression for model 

coefficients. Then, variance estimates are obtained, and the 

estimation expression for the location of change points is 

provided in conjunction with the likelihood ratio. In Chapter 

4, a large number of data simulations are conducted based on 

the CP-AR(2) model. Unlike most data simulations for 

change-point problems, this study simulates almost every 

point in the sequence as a change point, with each point 

undergoing 20 simulations. To ensure a sufficient sample size, 

only some sequence points at the beginning and end are 

excluded. This design more fully verifies the reliability of the 

model. Also, it leads to the following important conclusions: 

Firstly, it is found that the estimation bias rate of 

change-point locations is closely related to the sequence 

length (i.e., sample size). The larger the sample, the smaller 

the bias rate. It is recommended to retain at least 30 sample 

points before and after the change point to ensure estimation 

accuracy. For details, please refer to Fig. 2, Fig. 3, and Table I. 

Additionally, it has been observed that the greater the 

variance difference between the sequences before and after 

the change point, the higher the accuracy of the change-point 

estimation. Some simulation results are detailed in Tables II 

to VII. To further verify the model's effectiveness, a 

randomly selected sequence is compared regarding the error 

and fitting performance with and without considering change 

points. Refer to Figs. 4 to 7 and Table VIII. It is found that the 

model considering change points is indeed superior. 

However, change points in the sequence are often not easily 

detectable (Figs. 1 and 2). When there are change points in 

the sequence, direct modeling can lead to poor fitting 

performance. Therefore, it is recommended to first perform 

change-point detection. The specific process is shown in Fig. 

8. 

 

 
Fig. 8.  ARIMA modeling flowchart considering change point. 

 

Step 1: Preprocess the time series data to make it stable. 

Step 2: Calculate ACF and PACF and determine model order. 

Step 3: Find the change point and verify the estimated change 

point. The SIC method can be used here. 

Step 4: If the change point k is not close to the sequence's end 

or beginning, use the sequence following the change point for 

remodeling. 

Fig. 8 applies not only to the modeling of CP-AR(P) 

models but also to ARMA models with change points, which 

can be further discussed later. From a practical application 

perspective, detecting changes in the time series before 

modeling is recommended to improve the reliability of model 

predictions. 

Although this study has conducted some theoretical 

research and drawn a series of valuable conclusions through 

simulation verification and practical analysis, there are still 

some limitations that warrant attention. First, the method 

exhibits higher computational complexity for higher-order 

models: In simulation, the second-order model is primarily 
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exemplified, featuring a relatively complex estimation 

expression. The detailed process can be referred to in 

formulas (5) to (16), from which the second-order parameter 

estimation expressions can be derived, as shown in (23) to 

(29). When estimating  , (5) to (7) yield 1=Z B− , 

necessitating matrix operations. For higher-order scenarios, 

computational complexity increases exponentially. Although 

high-order models are seldom employed in practical 

applications, this issue requires further investigation.  Second, 

estimation instability occurs at sequence boundaries (Fig. 2 

and 3), primarily when fewer than 30 samples are available 

for modeling in segments around change points. Insufficient 

observations fail to constrain the parameter space, increasing 

estimate variance by 20 to 50% compared to central change 

points. Furthermore, Table Ⅴ and Table Ⅵ reveal that the 

small sample size can cause inaccuracy. Therefore, the 

method is more suitable for long series. Additionally, the 

model assumes a single change point and a Gaussian 

distribution. Preliminary tests with non-Gaussian 

distributions (e.g., heavy-tailed) showed reduced accuracy, 

though detailed results are omitted here. Future work should 

address multi-change-point scenarios and non-parametric 

distributions. 
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