
 

 

Abstract—This paper deals with the estimation of stress 

strength reliability model R when the stress and strength follow 

Ailamujia distributions. Some point estimates of R are obtained 

via the maximum likelihood and Bayesian methods, and the 

delta and MCMC methods are utilized to obtain the interval 

estimators. Some Monte Carlo simulations are used to compare 

the different estimated methods, and one real data analysis is 

utilized to illustrate purposes.  

Index Terms—Stress strength model, Ailamujia distribution, 

Bayesian estimation, Confidence interval, Maximum likelihood 

estimation 

I. INTRODUCTION 

HE Ailamujia distribution is a newly proposed lifetime 

model that has many engineering applications, such as 

queuing theory, reliability analysis and telecommunications 

networks [1-2]. For example, it can be used to simulate the 

time interval between the arrivals of telephone calls in 

telecommunications. In reliability analysis, it can be used to 

describe the life of a product. In the field of engineering 

maintenance, it can be used to model the repair time and 

characterize the distribution of delay time. From Refs. [1-2], 

the probability density function (PDF) of Ailamujia 

distribution is given by 
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For convenience, we reparametrized this distribution by 

defining 
02 t  . Then, we can get 

    2 expf x x x   , 0, 0x                               (2) 

where  is the scale parameter, and the corresponding 

cumulative distribution function (CDF) of the Ailamujia 

distribution is defined by 

   ( ) 1 1 expF x x x     , 0, 0x                     (3) 

Some studies have been given for the Ailamujia 

distributions, such as the maximum likelihood estimator, 

the Bayesian estimation, and the mini-max estimators, and 

so on (see in Refs. [3-5]).  
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In the field of reliability engineering, the stress-strength 

model R=P(Y<X) plays an important role in reliability 

analysis. In recent years, the stress-strength model has 

been extensively studied under various distributional 

assumptions, such as the generalized inverted exponential 

distribution [6], the exponentiated pareto distribution [7], 

the generalized lindley distribution [8], the inverse chen 

distribution [9], the lindley distribution [10], the inverse 

weibull distribution [11], the generalized exponentiated 

distribution [12], the power modified lindley distribution 

[13], the unit gompertz distribution [14], the generalized 

logistic distribution [15], the exponentiated generalized 

marshall olkin distribution [16], the weighted exponential 

distribution [17], the exponentiated logistic distribution 

[18], and the Burr Type distribution [19]. Although many 

stress-strength models have been studied, the Ailamujia 

distribution has not been explored in this context.  

In this paper, we focus on the estimation of R=P(Y<X) 

for the Ailamujia distribution. Some points estimator and 

interval estimator methods are proposed in the following. 

II. SYSTEM RELIABILITY MODEL 

Let X and Y be independent random variables following 

the Ailamujia distribution with parameters θ and β, 

respectively. That is, the PDFs of X and Y are 

   2 expXf x x x   , 0, 0x                                 (4) 

and 

   2 expYf y y y   , 0, 0y                              (5) 

Then, the reliability function can be obtained as 
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where the parameters θ and β are unknown. From the 

expression of R, if we get the estimator of the θ and β, then 

we can obtain the estimator of R. 

III. THE POINT ESTIMATES OF R  

A. The maximum likelihood estimator of R 

Let X1, X2, … , Xn and Y1, Y2, … , Ym be two independent 

random samples of sizes n and m from the Ailamujia 

distribution with parameters θ and β, respectively. Then, 

the likelihood function is given by 
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Taking the logarithm for the above likelihood function 

in equation (7), we can get 
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Equating the partial derivative to zero to solve this 

equation, we can get 
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Then, the MLEs of θ and β, say̂ and ̂ , respectively, 

can be obtained as                                  
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Based on the equations (6) and (11), the estimator of R 

can be obtained as 

 2
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B. The bayesian estimator of R 

In this section, we derive the bayesian estimator of R 

under the mean squared error loss function. Suppose that 

X1, X2, … , Xn and Y1, Y2, … , Ym are two independent 

random samples of sizes n and m, drawn from the 

Ailamujia distribution with parameters θ and β. Then, the 

likelihood functions of each sample can be obtained as 
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It is assumed that θ and β are independent random 

variables having gamma prior distributions with the 

following PDFs as 
1
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    Therefore, the joint density of the θ, β, x1, x2, … , xn and 

y1, y2, … , ym can be obtained as 

         1 1 1 2, , , ; , ,          n mL x x y y L L     (17) 

Based on the bayesian theorem, given the x1, x2, … , xn 

and y1, y2, … , ym, the joint posterior density of θ and β can 

be obtained as 
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Then, we can get the posterior PDFs of θ and β are as 
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and 
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To obtain the Bayesian estimator of R, we use the idea 

of Smith and Roberrs [20] to generate a sample from the 

conditional posterior densities via the MCMC method. We 

adopt the following scheme: 

Step 1): Generate θ1 from 
1 1( , )Gamma c d , 

Step 2): Generate β1 from 
2 2( , )Gamma c d , 

Step 3): Repeat Steps 1 and 2, M times. 

Step 4): Let 
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R , k = 1, 2, … , M. 

Under the squared error loss function, the approximate 

posterior mean, and posterior variance of R become 
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Similar to Chen and Shao [25], we can get the credible 

intervals of R as 
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IV.  THE INTERVAL ESTIMATES OF R  

A. The asymptotic distribution approach 

In this section, the asymptotic distribution of R̂ is 

obtained. Based on the asymptotic distribution of R̂ , the 

asymptotic confidence interval of R is derived. By using 

the central limit theoremand and the delta method in 

equation (13), we can get 
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where the partial derivatives are 
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Then, we get the following asymptotically distribution 

as 
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ˆ
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We can use this asymptotic normality to construct an 

approximate 100(1 − γ)% confidence interval for R as 

         ˆ ˆ1 2 1 2
ˆ ˆZ , Z

R R
R R                            (26) 

where 
21Z 

 is the (1 2)  quantile of the standard 

normal distribution. 

B. The bootstrap approach 

It is known that asymptotic confidence intervals based 

on the asymptotic results do not perform very well for 

small sample sizes. In this subsection, two bootstrap 

confidence intervals are proposed in this paper: (1) 

bootstrap-p method of Efron [21], and (2) bootstrap-t 

method of Hall [22]. 

Boot-p algorithm: 

Step1: Generate random samples x1, x2, … , xn from the 

Ailamujia distribution with parameters θ, and y1, 

y2,…,ym from the same distribution with parameters 

β. Then, compute maximum likelihood estimators 

as ̂ and ̂ . 

Step2: Using parameter ̂ generate a bootstrap sample 
* * *

1 2, , , nx x x , and similarly using parameter ̂  

generate a bootstrap sample 
* * *

1 2, , , my y y . Based on 

these bootstrap samples compute bootstrap estimate 

of R using equation (23), say *R .   

Step3: Repeat step 2, N boot times. 

Step4: Let *ˆ( ) ( )H x P R x   be the cumulative distribution 

function of *R̂ . Define
1

_
ˆ ( )Boot pR H x  for a given x .  

The approximate100(1 2)%  bootstrap confidence 

interval of R is  
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Boot-t algorithm: 

Step1: Generate random samples x1, x2, … , xn from the 

Ailamujia distribution with parameters θ, and y1, 

y2, …  , ym from the same distribution with 

parameters β. Then, compute maximum likelihood 

estimators as ̂  and ̂ . 

Step2:Using parameter ̂ generate a bootstrap sample 
* * *

1 2, , , nx x x , and similarly using parameter ̂     

generate a bootstrap sample 
* * *

1 2, , , my y y . Based on 

these bootstrap samples, compute the bootstrap 

estimate of R using equation (23), denoted as *R̂ . 

Step 3: Repeat Step 2, N times, and calculate the following 

statistic: 
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where R̂ and Var( *R̂ ) are the mean and variance of 

1 2
ˆ ˆ ˆ{ , , , }  

NR R R , respectively. 

Step4: Let *( ) ( ) H x P T x be the cumulative distribution 

function of *T .  

Define  
1

12
_

ˆ ˆ ( )


 Boot tR R N V R H x  for a given x . 

The approximate100(1 2)% bootstrap confidence 

interval of R is  

                    
_ _, 1

2 2

     
    
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V. MONTE-CARLO SIMULATION 

In this section, we use Monte Carlo simulations to compare 

the performance of different methods, mainly focusing on 

small sample sizes and different parameter values, such as (n, 

m)=(10, 10), (10, 20), (10, 30), (20, 10), (20, 20), (20, 30), 

(30, 10), (30, 20), (30, 30), and (θ, β)=(2, 0.5), (1.5, 0.5), (1.0, 

0.5), (0.5, 0.5), (0.5, 0.1), (0.5, 1.0), (0.5, 1.5), and (0.5, 2.0). 

Under the different cases, we compare the performances of 

different estimators of R by using the average biases, mean 

squares errors, and the average confidence lengths.  

For the MLE and Bayes estimator of R, we report the 

average biases and mean squared errors (MSEs) over 1000 

replications. Based on the MLE of R, we also compute the 

95% confidence intervals using the asymptotic distribution 

and report the average confidence lengths across 1000 

replications.  

Given the poor performance of asymptotic confidence 

intervals for small sample sizes, we additionally report 95% 

confidence intervals via Boot-p and Boot-t methods. The 

bootstrap intervals are obtained using 1000 bootstrap 

replications for both methods, and their average confidence 

lengths are reported.  

Under the squared error loss function and Gamma prior 

distribution, the Bayes estimator of R and the associated 

credible interval are derived using 10000 replications. In this 

case, we compute the average biases, mean squared errors, 

and average lengths of simulated intervals for R. All results 

are reported in Tables I–VIII. 
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TABLE I 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=2.0, Β=0.5, R=0.1040 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10    10 0.1159(0.0437) 

(0.0030) 

0.1262(0.0576) 

(0.0052) 

(0.0207,0.2111) 

( 0.1904) 

     (0.0146,0.3028) 

    (0.2882 ) 

(0.0817,0.1262) 

(0.0445) 

(0.0391,0.2841) 

(0.2450) 

   20 0.1150(0.0334) 

(0.0019) 

0.1269(0.0516) 

(0.0040) 

(0.0325,0.1974) 

(0.1649 ) 

   (0.0369,0.2407) 

    (0.2038) 

(0.0925,0.1155) 

(0.0230) 

(0.0454,0.2228) 

(0.1774) 

   30     0.1066(0.0319) 

(0.0017) 

0.1162(0.0471) 

(0.0043) 

(0.0289,0.1843) 

(0.1554) 

      (0.0314,0.2914) 

   (0.2600) 

(0.0952,0.1128) 

(0.0176) 

(0.0493,0.2164) 

(0.1671) 

20 10 0.1197(0.0363) 

(0.0024) 

0.1253(0.0511) 

(0.1253) 

(0.0372,0.2021) 

(0.1649) 

(0.0358,0.2839) 

(0.2481) 

(0.0764,0.1316) 

(0.0552) 

(0.0471,0.2413) 

(0.1942) 

 20 0.1156(0.0306) 

(0.0014) 

0.1160(0.0419) 

(0.0031) 

(0.0482,0.1829) 

(0.1347) 

(0.0345,0.2426) 

(0.2081) 

(0.0924,0.1156) 

(0.0232) 

(0.0516,0.2032) 

(0.1516) 

 30 0.1088(0.0298) 

(0.0013) 

0.1155(0.0365) 

(0.0020) 

(0.0473,0.1702) 

(0.1229) 

(0.0443,0.2201) 

(0.1758) 

(0.0949,0.1130) 

(0.0181) 

(0.0598,0.2078) 

(0.1480) 

30 10 0.1165(0.0346) 

(0.0020) 

0.1279(0.0470) 

(0.0040) 

(0.0388,0.1943) 

(0.1555) 

(0.0343,0.2643) 

(0.2300) 

(0.0817,0.1263) 

(0.0446) 

(0.0512,0.2484) 

(0.1972) 

 20 0.1175(0.0292) 

(0.0013) 

0.1213(0.0386) 

(0.0026) 

(0.0560,0.1789) 

(0.1229) 

(0.0518,0.2380) 

(0.1862) 

(0.0927,0.1153) 

(0.0226) 

(0.0534,0.2078) 

(0.1544) 

 30 
0.1151(0.0268) 

(0.0011) 

0.1159(0.0341) 

(0.0020) 

(0.0602,0.1701) 

(0.1099) 

(0.0521,0.2269) 

(0.1748) 

(0.0930,0.1150) 

(0.0220) 

(0.0632,0.1850) 

(0.1218) 

 

 

 
TABLE II 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=1.5, Β=0.5, R=0.15625 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10 10 0.1789(0.0576) 

(0.0064) 

0.1901(0.0897) 

(0.0143) 

(0.048,0.3096) 

(0.2616) 

(0.0544,0.4741) 

(0.4197) 

(0.0914,0.2211) 

(0.1297) 

(0.0665,0.3601) 

(0.2936) 

 20 0.1732(0.0458) 

(0.0034) 

0.1846(0.0715) 

(0.0085) 

(0.0600,0.2865) 

(0.2265) 

(0.0405,0.3876) 

(0.3471) 

(0.1267,0.1858) 

(0.0591) 

(0.0691,0.3209) 

(0.2518) 

 30 0.1718(0.0432) 

(0.0029) 

0.1768(0.0578) 

(0.0059) 

(0.0651,0.2786) 

(0.2135) 

(0.0574,0.3581) 

(0.3007) 

(0.1324,0.1801) 

(0.0477) 

(0.0738,0.2929) 

(0.2191) 

20 10 0.17735(0.0598) 

0(.00549) 

0.17858(0.0801) 

(0.0113) 

(0.0641,0.2906) 

(0.2265) 

(0.0422,0.4512) 

(0.4090) 

(0.1003,0.2122) 

(0.1119) 

(0.0775,0.3473) 

(0.2698) 

 20 0.1691(0.0440) 

(0.0029) 

0.1608(0.0546) 

(0.0045) 

(0.0767,0.2616) 

(0.1849) 

(0.0657,0.2990) 

(0.2333) 

(0.1331,0.1794) 

(0.0463) 

(0.0884,0.2837) 

(0.1953) 

 30 0.1690(0.0356) 

(0.0018) 

0.1704(0.0482) 

(0.0039) 

(0.0846,0.2534) 

(0.1688) 

(0.0693,0.3269) 

(0.2576) 

(0.1357,0.1768) 

(0.0411) 

(0.0827,0.2828) 

(0.2001) 

30 10 0.1897(0.0593) 

(0.0045) 

0.1839(0.0703) 

(0.0077) 

(0.0830,0.2965) 

(0.2135) 

(0.0622,0.3849) 

(0.3227) 

(0.1236,0.1889) 

(0.0653) 

(0.0780,0.3445) 

(0.2665) 

 20 0.1740(0.0415) 

(0.0030) 

0.1769(0.0578) 

(0.0049) 

(0.0897,0.2584) 

(0.1687) 

(0.0773,0.3019) 

(0.2246) 

(0.1368,0.1757) 

(0.0389) 

(0.0921,0.2662) 

(0.1741) 

 30 
0.1698(0.0354) 

(0.0018) 

0.1735(0.0493) 

(0.0037) 

(0.0943,2453) 

(0.1510) 

(0.0768,0.3043) 

(0.2275) 

(0.1446,0.1679) 

(0.0233) 

(0.1036,0.2695) 

(0.1659) 

 

 

 
TABLE III 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=1.0, Β=0.5, R=0.2593 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10 10 0.2867(0.0779) 

(0.0088) 

0.3051(0.0116) 

(0.0168) 

(0.1034,0.4703) 

(0.3669) 

(0.0865,0.5718) 

(0.4853) 

(0.1871,0.3314) 

(0.1443) 

(0.1202,0.5160) 

(0.3958) 

 20 0.2762(0.0603) 

(0.0062) 

0.2981(0.0768) 

(0.0094) 

(0.1022,0.4377) 

(0.3355) 

(0.1119,0.4772) 

(0.3653) 

(0.2144,0.3041) 

(0.0897) 

(0.1297,0.4486) 

(0.3189) 

 30 0.2612(0.0432) 

(0.0078) 

0.2685(0.0578) 

(0.0059) 

(0.1178,0.4203) 

(0.3025) 

(0.1126,0.5544) 

(0.4418) 

(0.2350,0.2835) 

(0.0205) 

(0.1306,0.4283) 

(0.2977) 

20 10 0.2780(0.0653) 

(0.0061) 

0.2793(0.0872) 

(0.0116) 

(0.1189,0.4370) 

(0.3181) 

(0.0786,0.4753) 

(0.3967) 

(0.2020,0.3165) 

(0.1145) 

(0.1278,0.5131) 

(0.3853) 

 20 0.2734(0.0610) 

(0.0061) 

0.2723(0.0844) 

(0.0116) 

(0.1436,0.4033) 

(0.2597) 

(0.1252,0.5485) 

(0.4233) 

(0.2278,0.2907) 

(0.0629) 

(0.1645,0.4575) 

(0.2930) 

 30 0.2808(0.0515) 

(0.0039) 

0.2965(0.0758) 

(0.0074) 

(0.1622,0.3993 

(0.2371) 

(0.1530,0.4619) 

(0.3089) 

(0.2324,0.2861) 

(0.0537) 

(0.1582,0.4136) 

(0.2554) 

30 10 0.2856(0.0721) 

(0.0077) 

0.2875(0.0933) 

(0.0141) 

(0.1357,0.4356) 

(0.2999) 

(0.0973,0.5943) 

(0.4970) 

(0.2012,0.3173) 

(0.1161) 

(0.1499,0.4872) 

(0.3373) 

 20 0.2779(0.0511) 

(0.0039) 

0.2807(0.0704) 

(0.0077) 

(0.1594,0.3964) 

(0.2370) 

(0.1351,0.4772) 

(0.3421) 

(0.2291,0.2894) 

(0.0603) 

(0.1666,0.4157) 

(0.2491) 

 30 
0.2723(0.0482) 

(0.0035) 

0.2851(0.0677) 

(0.0067) 

(0.1733,0.3854) 

(0.2121) 

(0.1493,0.4700) 

(0.3207) 

(0.2444,0.2741) 

(0.0297) 

(0.1623,0.3916) 

(0.2293) 

 

 

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 10, October 2025, Pages 3279-3286

 
______________________________________________________________________________________ 



 

 

 

 

 

 

 

 

 

TABLE V 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=0.5, Β=0.1, R=0.0741 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10 10 0.0747(0.0289) 

(0.0015) 

0.0839(0.0430) 

(0.0036) 

(0.0030,0.1464) 

(0.1434) 

(0.0148,0.2506) 

(0.2358) 

(0.0430,0.1052) 

(0.0622) 

(0.0205,0.1976) 

(0.1771) 

 20 0.0743(0.0288) 

(0.0015) 

0.0824(0.0397) 

(0.0030) 

(0.0122,0.1365) 

(0.1243) 

(0.0160,0.2306) 

(0.2146) 

(0.0614,0.0868) 

(0.0254) 

(0.0256,0.1479) 

(0.1223) 

 30 0.0753(0.0253) 

(0.0011) 

0.0784(0.0342) 

(0.0019) 

(0.0167,0.1338) 

(0.1171) 

(0.0172,0.1729) 

(0.1557) 

(0.0614,0.0868) 

(0.0254) 

(0.0256,0.1479) 

(0.1223) 

20 10 0.0788(0.0267) 

(0.0012) 

0.0850(0.0376) 

(0.0027) 

(0.0167,0.1409) 

(0.1242) 

(0.0212,0.2270) 

(0.2058) 

(0.0419,0.1062) 

(0.0643) 

(0.0267,0.1564) 

(0.1297) 

 20 0.0735(0.0205) 

(0.0007) 

0.0777(0.0292) 

(0.0015) 

(0.0227,0.1242) 

(0.1015) 

(0.0212,0.1745) 

(0.1533) 

(0.0659,0.0823) 

(0.0164) 

(0.0318,0.1349) 

(0.1031) 

 30 0.0712(0.0185) 

(0.0005) 

0.0765(0.0267) 

(0.0013) 

(0.0247,0.1175) 

(0.0928) 

(0.0265,0.1637) 

(0.1372) 

(0.0658,0.0823) 

(0.0165) 

(0.0325,0.1206) 

(0.0881) 

30 10 0.0758(0.0244) 

(0.0011) 

0.0771(0.0344) 

(0.0019) 

(0.0172,0.1343) 

(0.1171) 

(0.0184,0.1887) 

(0.1703) 

(0.0550,0.0932) 

(0.0382) 

(0.0311,0.1530) 

(0.1219) 

 20 0.0714(0.0191) 

(0.0006) 

0.0741(0.0269) 

(0.0012) 

(0.0251,0.1177) 

(0.0926) 

(0.0266,0.1552) 

(0.1286) 

(0.0661,0.0820) 

(0.0159) 

(0.0356,0.1284) 

(0.0928) 

 30 
0.0708(0.0175) 

(0.0005) 

0.0743(0.0256) 

(0.0011) 

(0.0283,0.1122) 

(0.0839) 

(0.0272,0.1529) 

(0.1257) 

(0.0653,0.0829) 

(0.0176) 

(0.0347,0.1289) 

(0.0942) 

 

 

 

TABLE IV 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=0.5, Β=0.5, R=0.5 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10    10 0.5008(0.1025) 

(0.0161) 

0.5091(0.1399) 

(0.0279) 

0.2684,0.7333) 

(0.4649) 

(0.1993,0.8102) 

(0.6109) 

(0.4267,0.5733) 

(0.1466) 

0.2716,0.7623) 

(0.4907) 

   20 0.4922(0.0853) 

(0.0111) 

0.4959(0.1145) 

(0.0195) 

0.2909,0.6935) 

(0.4026) 

(0.2409,0.7602) 

(0.5193) 

(0.4701,0.5299) 

(0.0598) 

0.2681,0.6958) 

(0.4277) 

   30     0.4953(0.0860) 

(0.0115) 

0.4976(0.1046) 

(0.0170) 

0.3055,0.6851) 

(0.3796) 

(0.2419,0.7584) 

(0.5165) 

(0.4699,0.5301) 

(0.0602) 

0.2905,0.6883) 

(0.3978) 

20 10 0.4856(0.0721) 

(0.0077) 

0.4875(0.0933) 

(0.0141) 

(0.3357,0.5356) 

(0.2999) 

(0.0973,0.5943) 

(0.4970) 

(0.4374,0.5626) 

(0.1252) 

0.3091,0.7203) 

(0.4112) 

 20 0.4779(0.0511) 

(0.0039) 

0.4807(0.0704) 

(0.0077) 

(0.3594,0.5964) 

(0.2370) 

(0.1351,0.4772) 

(0.3421) 

(0.4637,0.5363) 

(0.0726) 

0.3097,0.6880) 

(0.3783) 

 30 0.4723(0.0482) 

(0.0035) 

0.4851(0.0677) 

(0.0067) 

(0.3733,0.5854) 

(0.2121) 

(0.1493,0.4700) 

(0.3207) 

(0.4726,0.5274) 

(0.0548) 

0.3520,0.6562) 

(0.3042) 

30 10 0.5064(0.0881) 

(0.0119) 

0.4977(0.1176) 

(0.0205) 

(0.3166,0.6962) 

(0.3796) 

(0.2391,0.7593) 

(0.5202) 

(0.4438,0.5562) 

(0.1124) 

0.3080,0.7037) 

(0.3957) 

 20 0.4998(0.0609) 

(0.0058) 

0.4958(0.0849) 

(0.0111) 

(0.3498,0.6499) 

(0.3001) 

(0.2969,0.6952) 

(0.3983) 

(0.4681,0.5319) 

(0.0638) 

0.3369,0.6729) 

(0.3360) 

 30 
0.5047(0.0595) 

(0.0055) 

0.4988(0.0768) 

(0.0090) 

(0.3705,0.6389) 

(0.2684) 

(0.3102,0.6800) 

(0.3698) 

(0.4755,0.5245) 

(0.0490) 

(0.3568,0.6381) 

(0.2813) 

 

 

 

TABLE VI 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=0.5, Β=1.0, R=0.7407 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10    10 0.7175(0.0814) 

(0.0106) 

0.7108(0.1116) 

(0.0202) 

(0.5338,0.9011) 

(0.3673) 

(0.3662,0.9194) 

(0.5532) 

(0.6841,0.7974) 

(0.1133) 

(0.4740,0.8682) 

(0.3942) 

   20 0.7075(0.0762) 

(0.0092) 

0.70340.0962) 

0.0147) 

(0.5485,0.8665) 

(0.3180) 

(0.4332,0.8880) 

(0.4548) 

(0.7007,0.7808) 

(0.0801) 

(0.5028,0.8726) 

(0.3698) 

   30     0.7221(0.0619) 

(0.0061) 

0.71950.0865) 

0.0117) 

(0.5722,0.8721) 

(0.2999) 

(0.4824,0.9003) 

(0.4179) 

(0.7151,0.7664) 

(0.0513) 

(0.5390,0.8654) 

(0.3264) 

20 10 0.7291(0.0670) 

(0.0070) 

0.7234(0.0849) 

(0.0117) 

(0.5700,0.8881) 

(0.3181) 

(0.4655,0.9072) 

(0.4417) 

(0.6895,0.7920) 

(0.1025) 

(0.5189,0.8663) 

(0.3474) 

 20 0.7145(0.0605) 

(0.0053) 

0.7075(0.0843) 

(0.0104) 

(0.6034,0.8445) 

(0.2411) 

(0.4752,0.8800) 

(0.4048) 

(0.7105,0.7710) 

(0.0605) 

(0.5797,0.8398) 

(0.2601) 

 30 0.7219(0.0540) 

(0.0043) 

0.7199(0.0704) 

(0.0078) 

(0.5134,0.8405) 

(0.3271) 

(0.5134,0.8616) 

(0.3482) 

(0.7177,0.7638) 

(0.0461) 

(0.5873,0.8394) 

(0.2521) 

30 10 0.7273(0.0639) 

(0.0066) 

0.7148(0.0907) 

(0.0127) 

(0.5774,0.8773) 

(0.2999) 

(0.4649,0.8882) 

(0.4233) 

(0.6843,0.7971) 

(0.1123) 

(0.5493,0.8435) 

(0.2942) 

 20 0.7225(0.0516) 

(0.0040) 

0.7147(0.0670) 

(0.0071) 

(0.6039,0.8410) 

(0.2371) 

(0.5397,0.8609) 

(0.3212) 

(0.7084,0.7731) 

(0.0647) 

(0.5639,0.8435) 

(0.2796) 

 30 
0.7245(0.0491) 

(0.0037) 

0.7232(0.0656) 

(0.0067) 

(0.6189,0.8309) 

(0.2120) 

(0.5196,0.8532) 

(0.3336) 

(0.7190,0.7625) 

(0.0435) 

(0.5975,0.8223) 

(0.2248) 
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 From the above simulation results, we can find that: (1) 

For the point estimation of R, the MLE value is very close to 

the Bayesian estimate value. However, compared to the 

Bayesian estimator, the MLE exhibits smaller bias and MSE. 

Thus, we conclude that the MLE outperforms the Bayesian 

estimator in small sample scenarios. (2) For the interval 

TABLE VII 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=0.5, Β=1.5, R=0.84375 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10    10 0.8221(0.0609) 

(0.0061) 

0.8129(0.0861) 

(0.0117) 

(0.6914,0.9528) 

(0.2614) 

(0.5339,0.9651) 

(0.4312) 

(0.7909,0.8966) 

(0.1057) 

(0.6488,0.9325) 

(0.2837) 

   20 0.8199(0.0564) 

(0.0052) 

0.8184(0.0744) 

(0.0096) 

(0.7067,0.9331) 

(0.2264) 

(0.5756,0.9516) 

(0.3760) 

(0.8189,0.8686) 

(0.0497) 

(0.6509,0.9195) 

(0.2686) 

   30     0.8215(0.0521) 

(0.0045) 

0.8203(0.0691) 

(0.0079) 

(0.7147,0.9282) 

(0.2135) 

(0.6183,0.9461) 

(0.3278) 

(0.8138,0.8737) 

(0.0599) 

(0.6673,0.9197) 

(0.2524) 

20 10 0.8254(0.0520) 

(0.0044) 

0.8153(0.0737) 

(0.0087) 

(0.7122,0.9386) 

(0.2264) 

(0.5988,0.9520) 

(0.3532) 

(0.8125,0.8750) 

(0.0625) 

(0.7129,0.9155) 

(0.2026) 

 20 0.8261(0.0449) 

(0.0032) 

0.8192(0.0624) 

(0.0064) 

(0.7337,0.9186) 

(0.1849) 

(0.6374,0.9371) 

(0.2997) 

(0.8292,0.8583) 

(0.0291) 

(0.7259,0.9032) 

(0.1733) 

 30 0.8259(0.0401) 

(0.0025) 

08260(0.0539) 

(0.0046) 

(0.7415,0.9103) 

(0.1688) 

(0.6613,0.9342) 

(0.2729) 

(0.8284,0.8591) 

(0.0307) 

(0.7238,0.9098) 

(0.1852) 

30 10 0.8260(0.0498) 

(0.0038) 

0.8192(0.0646) 

(0.0068) 

(0.7192,0.9327) 

(0.2135) 

(0.6264,0.9432) 

(0.3168) 

(0.8172,0.8703) 

(0.0531) 

(0.7017,0.9344) 

(0.2327) 

 20 0.8280(0.0393) 

(0.0022) 

0.8234(0.0538) 

(0.0044) 

(0.7436,0.9124) 

(0.1688) 

(0.6746,0.9283) 

(0.2537) 

(0.8021,0.8854) 

(0.0833) 

(0.6982,0.9291) 

(0.2309) 

 30 
0.8292(0.0347) 

(0.0018) 

0.8248(0.0483) 

(0.0034) 

(0.7537,0.9047) 

(0.1510) 

(0.6883,0.9207) 

(0.2324) 

(0.8258,0.8617) 

(0.0359) 

(0.7478,0.8971) 

(0.1493) 

 

 

 TABLE VIII 

AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES Θ=0.5, Β=2.0, R=0.8960 

 MLE MCMC MLE MCMC Boot-t Boot-p 

n m AVR(Bias) 

(MSE) 

AVR(Bias) 

(MSE) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

(EL,CP) 

(Length) 

10 10 0.8806(0.0446) 

(0.0035) 

0.8766(0.0613) 

(0.0069) 

(0.7854,0.9758) 

(0.1904) 

(0.6435,0.9756) 

(0.3321) 

(0.8466,0.9454) 

(0.0988) 

(0.7319,0.9632) 

(0.2313) 

 20 0.8779(0.0405) 

(0.0029) 

0.8738(0.0536) 

(0.0051) 

(0.7954,0.9603) 

(0.1649) 

(0.6936,0.9669) 

(0.2733) 

(0.8759,0.9161) 

(0.0402) 

(0.7412,0.9563) 

(0.2151) 

 30 0.8789(0.0377) 

(0.0023) 

0.8746(0.0509) 

(0.0047) 

(0.8012,0.9567) 

(0.1555) 

(0.6895,0.9708) 

(0.2813) 

(0.8752,0.9168) 

(0.0416) 

(0.7559,0.9546) 

(0.1987) 

20 10 0.8838(0.0357) 

(0.0020) 

0.8730(0.0567) 

(0.0057) 

(0.8013,0.9662) 

(0.1649) 

(0.6768,0.9694) 

(0.2926) 

(0.8679,0.9241) 

(0.0562) 

(0.7934,0.9536) 

(0.1602) 

 20 0.8853(0.0310) 

(0.0016) 

0.8784(0.0419) 

(0.0029) 

(0.8179,0.9186) 

(0.1007) 

(0.7468,0.9569) 

(0.2101) 

(0.8649,0.9271) 

(0.0622) 

(0.7931,0.9461) 

(0.1530) 

 30 0.8837(0.0291) 

(0.0013) 

08808(0.0408) 

(0.0025) 

(0.8222,0.9451) 

(0.1229) 

(0.7664,0.9575) 

(0.1911) 

(0.8836,0.9084) 

(0.0248) 

(0.8012,0.9412) 

(0.1400) 

30 10 0.8814(0.0306) 

(0.0014) 

0.8787(0.0427) 

(0.0028) 

(0.8199,0.9428) 

(0.1229) 

(0.7540,0.9555) 

(0.2015) 

(0.8765,0.9155) 

(0.0390) 

(0.7854,0.9523) 

(0.1669) 

 20 0.8856(0.0294) 

(0.0013) 

0.8795(0.0416) 

(0.0029) 

(0.8242,0.9471) 

(0.1229) 

(0.7584,0.9575) 

(0.1991) 

(0.8820,0.9100) 

(0.0280) 

(0.7914,0.9405) 

(0.1491) 

 30 
0.8844(0.0265) 

(0.0011) 

0.8790(0.0366) 

(0.0021) 

(0.8294,0.9393) 

(0.1099) 

(0.7657,0.9493) 

(0.1836) 

(0.8834,0.9086) 

(0.0252) 

(0.8108,0.9375) 

(0.1267) 

 

 

 

TABLE X 

DIFFERENT POINT ESTIMATE VALUE FOR GIVEN DATA SET 

 MLE MCMC 

Alpha x 0.0260 0.0309 

Alpha y 

R 

0.0239 

0.4687 

0.0282 

0.4657 

 

 

 

TABLE IX 

GOODNESS OF FIT FOR GIVEN DATA SET  

sample K-S P value 

X 0.1786 0.3165 

Y 0.1225 0.7319 

 

 

 

TABLE XI 

DIFFERENT INTERVAL ESTIMATE VALUE FOR GIVEN DATA SET 

 MLE interval of R MCMC interval of R Boot-t interval of R Boot-p interval of R 

R 

Length 

(0.4326,0.4846) 

0.0520 

(0.5282,0.5947) 

0.0665 

(0.4429,0.4945) 

0.0516 

(0.5460,0.6054) 

0.0594 
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estimation of R, all true reliability values are contained within 

the estimated intervals, demonstrating the effectiveness of the 

interval estimation methods.  

By analyzing the length of different interval estimates, we 

find that the Boot-t method produces the shortest intervals, 

followed by the MLE method, then the Boot-p method; the 

Bayesian method has the longest interval length. Thus, we 

recommend the Boot-t method for interval estimation. (3) 

When fixing n and increasing m, or fixing m and increasing n, 

both point estimators (MLE and Bayesian estimator) 

approach the true value more closely, but no clear trend in R is 

observed. For interval estimation, however, the lengths of all 

interval estimates consistently decrease as n or m increases in 

most cases. (4) When fixing  β and increasing  θ  for the same 

n and m, the bias and MSE of both point estimators (MLE and 

Bayesian estimator) increase, and the lengths of all four 

interval estimators also increase. (5) When fixing θ and 

increasing β for the same n and m, the bias and MSE of both 

point estimators decrease, and the lengths of all four interval 

estimators also decrease. 

VI. REAL DATA ANALYSIS 

The following real-life data sets, from Ref [23], represent 

the monthly concentration of sulfur dioxide in Long Beach, 

California, from 1956 to 1974. In Ref [24], the Weibull 

distribution is used to fit the data sets, where X and Y denote 

the sulfur dioxide concentrations in March and August as 

follow:  

X: 97, 51, 11, 4, 141, 18, 142, 24, 191, 68, 77, 80, 1, 16, 

106, 206, 163, 18, 82, 54, 31, 216, 46, 111, 39, 18, 63 

Y: 90, 10, 60, 186, 61, 49, 14, 24, 208, 130, 56, 20, 79, 84, 

44, 59, 29, 118, 101, 208, 25, 156, 310, 76, 26, 44, 23, 62, 70 

Let X and Y denote the 1-hour average concentrations of 

sulphur dioxide in May and October, respectively. Then 

R=P(Y<X) represents the probability that the concentration in 

May is lower than that in October. In this paper, we use the 

Ailamujia distribution to fit the data sets. 

We also tested goodness-of-fit for each data set separately 

using the Kolmogorov-Smirnov (K-S) test. We observe that 

for the data set of X, the K-S distance is 0.1786 with a p-value 

of 0.3165, and for the data set of Y, the K-S distance is 0.1225 

with a p-value of 0.7319. Since both p-values exceed the 

common significance level of 0.05, the two data sets show a 

reasonable fit to the Ailamujia distribution based on the K-S 

test results. 

Table IX gives the K-S test statistics with p-values for each 

data set. From the Table IX, we do not reject the null 

hypotheses that the data sets are drawn from the Ailamujia 

distributions at the significance level α=0.05. 

Also, the Table X gives the point estimates of R, and Table 

XI gives the 95% confidence interval for R. From Tables X 

and XI, we find that the Boot-t method produces the shortest 

intervals among all methods. This finding from the real data 

analysis is consistent with the results obtained from the 

simulation study. Based on the above analysis, there is no 

sufficient evidence to conclude that the sulfur dioxide 

concentration in May is lower than that in October. 

V. CONCLUSIONS 

In this article, the reliability estimation of R=P(Y<X) for the 

Ailamujia distribution is discussed. The MLE and Bayesian 

estimator of R are derived, and several confidence intervals 

for R are also obtained. Some Monte Carlo simulations are 

conducted to compare different estimation methods. By 

analyzing the simulation results, we find that the MLE 

outperforms the Bayesian estimator in small sample scenarios. 

In addition, the Boot-t interval estimation method has the 

shortest intervals and it is recommended. Finally, a real data 

set is analyzed to illustrate the proposed model and methods. 
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