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Reliability Estimation in Stress Strength Model
for Ailamujia Distribution

Chunping Li, Huibing Hao, Xue Wang, Mingyu Shen

Abstract—This paper deals with the estimation of stress
strength reliability model R when the stress and strength follow
Ailamujia distributions. Some point estimates of R are obtained
via the maximum likelihood and Bayesian methods, and the
delta and MCMC methods are utilized to obtain the interval
estimators. Some Monte Carlo simulations are used to compare
the different estimated methods, and one real data analysis is
utilized to illustrate purposes.

Index Terms—Stress strength model, Ailamujia distribution,
Bayesian estimation, Confidence interval, Maximum likelihood
estimation

. INTRODUCTION

HE Ailamujia distribution is a newly proposed lifetime

model that has many engineering applications, such as
queuing theory, reliability analysis and telecommunications
networks [1-2]. For example, it can be used to simulate the
time interval between the arrivals of telephone calls in
telecommunications. In reliability analysis, it can be used to
describe the life of a product. In the field of engineering
maintenance, it can be used to model the repair time and
characterize the distribution of delay time. From Refs. [1-2],
the probability density function (PDF) of Ailamujia
distribution is given by

f(x)=4—2Xexp _2x , Xx>0,t,>0 (1)
tO tO

For convenience, we reparametrized this distribution by
defining « =2/t; . Then, we can get

f (x)=a’xexp(-ax), x>0,a>0 2
where ¢ is the scale parameter, and the corresponding
cumulative distribution function (CDF) of the Ailamujia
distribution is defined by
F(x)=1-(1+ax)exp(-ax), x>0,a>0 €))

Some studies have been given for the Ailamujia
distributions, such as the maximum likelihood estimator,

the Bayesian estimation, and the mini-max estimators, and
so on (see in Refs. [3-5]).
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In the field of reliability engineering, the stress-strength
model R=P(Y<X) plays an important role in reliability
analysis. In recent years, the stress-strength model has
been extensively studied under various distributional
assumptions, such as the generalized inverted exponential
distribution [6], the exponentiated pareto distribution [7],
the generalized lindley distribution [8], the inverse chen
distribution [9], the lindley distribution [10], the inverse
weibull distribution [11], the generalized exponentiated
distribution [12], the power modified lindley distribution
[13], the unit gompertz distribution [14], the generalized
logistic distribution [15], the exponentiated generalized
marshall olkin distribution [16], the weighted exponential
distribution [17], the exponentiated logistic distribution
[18], and the Burr Type distribution [19]. Although many
stress-strength models have been studied, the Ailamujia
distribution has not been explored in this context.

In this paper, we focus on the estimation of R=P(Y<X)
for the Ailamujia distribution. Some points estimator and
interval estimator methods are proposed in the following.

Il. SYSTEM RELIABILITY MODEL

Let X and Y be independent random variables following
the Ailamujia distribution with parameters 6 and p,
respectively. That is, the PDFs of X and Y are

fy (X)=6*xexp(-6x), x>0,0>0 4)
and
fo(y)=p’yexp(-By), y>0,4>0 (5)

Then, the reliability function can be obtained as
R=P(Y < X):jo”“P(Y <X | X =x)f, (x;6)dx

= J':O 9°x exp(—@x)[l— (1+ ﬁX)eXp(—ﬂx)]dx

1 o 20°B =ﬂ2(ﬂ+39) ©)
@+py @+p° (©@+p)

where the parameters @ and £ are unknown. From the

expression of R, if we get the estimator of the 8 and f3, then

we can obtain the estimator of R.

I1l. THE POINT ESTIMATES OF R

A. The maximum likelihood estimator of R

Let X1, Xz, -, Xnand Yy, Y2, -+, Ym be two independent
random samples of sizes n and m from the Ailamujia
distribution with parameters 6 and g, respectively. Then,
the likelihood function is given by
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Lo.p=TTo% (-0 [ £y, 00(-py) @)

Taking the logarithm for the above likelihood function
in equation (7), we can get

InL(8,8) =D Inx +2nInd—6) ",
i=1 i=1

+ilnyi—2mln,6’—ﬂiyj 8

Equating the partial derivative to zero to solve this
equation, we can get

L@, p) _ 2n n
00 ZX B ®)
and
oL, ) 2m &
J 2 =0 10
Y F: ;y, (10)

Then, the MLEs of 6 and j, sayd and 3, respectively,

can be obtained as
A~ 2n A 2m

0= f=-:
2.
j=1

=, (12)
2.

Based on the equations (6) and (11), the estimator of R
can be obtained as
. B (p+39)
R = =
@+p)

B. The bayesian estimator of R
In this section, we derive the bayesian estimator of R
under the mean squared error loss function. Suppose that
X1, Xz, =+, Xp and Y1, Yz, -+, Ym are two independent
random samples of sizes n and m, drawn from the
Ailamujia distribution with parameters ¢ and . Then, the

likelihood functions of each sample can be obtained as

= ﬁ&zxi exp(—0x; ) oc 67" exp(—gzn: Xij (13)

(12)

and
15, exp(=py, ) B exp[—ﬂi y,—] (14)
=1 =t

It is assumed that & and g are independent random
variables having gamma prior distributions with the
following PDFs as

7(0) = %9"’1‘1 exp(-b#),6>0, a >0,b,>0  (15)
and
7(B) = F( )ﬂaz_l exp(-b,5), p>0,a,>0,b,>0 (16)

Therefore, the joint density of the 6, 8, x1, X2, -
Y1, Y2, =, Ym Can be obtained as

L(6 81X Yorr - Yo ) = L () x L (B)x7(8) x2(B) ~ (17)
Based on the bayesian theorem, given the X1, X2, -, Xn

and y1, yo, -, Ym, the joint posterior density of 8 and $ can
be obtained as

, Xn and

2(0,81X:Y )= 7(0, B1%,  %0i Vv s Y )
(O X )
J.OM.I-OML(H’ﬂ'Xi X Yo ,ym)deﬂ
d>dy

:meq Lg% exp(-d,0—d,p) (18)

Then, we can get the posterior PDFs of 6 and f are as
1%, x, ~Gamma(c,,d,) (19
and

BlYir Y (20)

~ Gamma(c,,d,)
where
¢ =2n+a, d, = ZX +b, ¢c,=2m+a,, d, —ZyJ +h, .
i=1

To obtain the Bayesian estimator of R, we use the idea
of Smith and Roberrs [20] to generate a sample from the
conditional posterior densities via the MCMC method. We
adopt the following scheme:

Step 1): Generate 61 from Gamma(c,,d,),

Step 2): Generate g1 from Gamma(c,,d,) ,

Step 3): Repeat Steps 1 and 2, M times.
B (B +36,)

@ +B)

Under the squared error loss function, the approximate
posterior mean, and posterior variance of R become

L3R VR=IS(R -E®) @D

Similar to Chen and Shao [25], we can get the credible

intervals of R as
A(yj' A(l ]/]
2 2

where R (%j and R (l— Zj are the % and 1— g quantiles

Step 4): Let R, = k=1,2, -, M

E(R) =

(22)

2
of R in equation (12).

IV. THE INTERVAL ESTIMATES OF R
A. The asymptotic distribution approach

In this section, the asymptotic distribution of R is
obtained. Based on the asymptotic distribution of R , the
asymptotic confidence interval of R is derived. By using
the central limit theoremand and the delta method in
equation (13), we can get

o) - 2
R~ N(R,0?) (23)
where o =[G'I"'G |, |, G'=(eR/06,0R/0p) , and 17

is the inverse of the Fisher’s information matrix | about the
parameters (6, ), and

azlnL(H A ¢ o%InL(8, B)
L Gl o6op (24)
g &INL@.5) L &*InL(0.p)
000 op’

where the partial derivatives are
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82InL(0 p)__2n E82InL(0,,B):_2_m

06 o' o Vg
£ 0°InL(6.5) _  2°InL(8.5) _

o opo
G,:(@ @j: -693° 60’

00'0p) ((0+p) (0+p)

~[ore], -2 B] L=

_ { 60" j +,B_2{ 6367 JZ
(0+p)" ) 2ml(0+p)
_120°p° (n+mj
C(o+p)\ m
Then, we get the following asymptotically distribution
as

R-R

~N(0,2) (25)
R
We can use this asymptotic normality to construct an
approximate 100(1 — y)% confidence interval for R as

(IQ -Z,_,,04 R+ Zl—y/zari) (26)
1,2 1 the (1—/2) quantile of the standard
normal distribution.

where Z

B. The bootstrap approach

It is known that asymptotic confidence intervals based
on the asymptotic results do not perform very well for
small sample sizes. In this subsection, two bootstrap
confidence intervals are proposed in this paper: (1)
bootstrap-p method of Efron [21], and (2) bootstrap-t
method of Hall [22].

Boot-p algorithm:

Stepl: Generate random samples Xi, X2, -, Xn from the
Ailamujia distribution with parameters 6, and ya,
y2,-,¥Ym from the same distribution with parameters
p. Then, compute maximum likelihood estimators

asfand 3.
Step2: Using parameter  generate a bootstrap sample
X, Xy, X, and similarly using parameter j

generate a bootstrap sample Y;,Y,, -, Y. . Based on
these bootstrap samples compute bootstrap estimate
of R using equation (23), say R" .

Step3: Repeat step 2, N boot times.

Step4: Let H(x)=P(R <x) be the cumulative distribution

function of R". Define R =H™(x) foragivenX.

Boot_p
The approximate100(1
interval of R is

-7/2)% bootstrap confidence

5 Y Y
(RBoot_p(zj RBoot p(l ij (27)
Boot-t algorithm:
Stepl: Generate random samples X1, X2, -, Xn from the

Ailamujia distribution with parameters 6, and yi,
Y2, = , Ym from the same distribution with
parameters S. Then, compute maximum likelihood

estimators as 6 and 4.

Step2:Using parameter § generate a bootstrap sample
X1 sz ’
generate a bootstrap sample Y, ,Y,, -,y . Based on

these bootstrap samples, compute the bootstrap

estimate of R using equation (23), denoted as R".
Step 3: Repeat Step 2, N times, and calculate the following

statistic:
(R -R)

(R
where R and Var(R") are the mean and variance of
{R’,R;,---,R"}, respectively.
Step4: Let H(x)=P(T <x) be the cumulative distribution
function of T~.

1
Define Ry,  =R+N 2,/\F/(F§)H’1(x) for a givenX.
The approximate100(1- y/2)% bootstrap confidence
interval of R is

(fos () -3)

V. MONTE-CARLO SIMULATION

and similarly using parameter ,B

*
’I']'

T =

(28)

In this section, we use Monte Carlo simulations to compare
the performance of different methods, mainly focusing on
small sample sizes and different parameter values, such as (n,
m)=(10, 10), (10, 20), (10, 30), (20, 10), (20, 20), (20, 30),
(30, 10), (30, 20), (30, 30), and (6, B)=(2, 0.5), (1.5, 0.5), (1.0,
0.5), (0.5, 0.5), (0.5, 0.1), (0.5, 1.0), (0.5, 1.5), and (0.5, 2.0).
Under the different cases, we compare the performances of
different estimators of R by using the average biases, mean
squares errors, and the average confidence lengths.

For the MLE and Bayes estimator of R, we report the
average biases and mean squared errors (MSEs) over 1000
replications. Based on the MLE of R, we also compute the
95% confidence intervals using the asymptotic distribution
and report the average confidence lengths across 1000
replications.

Given the poor performance of asymptotic confidence
intervals for small sample sizes, we additionally report 95%
confidence intervals via Boot-p and Boot-t methods. The
bootstrap intervals are obtained using 1000 bootstrap
replications for both methods, and their average confidence
lengths are reported.

Under the squared error loss function and Gamma prior
distribution, the Bayes estimator of R and the associated
credible interval are derived using 10000 replications. In this
case, we compute the average biases, mean squared errors,
and average lengths of simulated intervals for R. All results
are reported in Tables I-VIII.
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TABLE |
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=2.0, B=0.5, R=0.1040
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10 0.1159(0.0437) 0.1262(0.0576) (0.0207,0.2111) (0.0146,0.3028) (0.0817,0.1262) (0.0391,0.2841)
(0.0030) (0.0052) (0.1904) (0.2882) (0.0445) (0.2450)
20 0.1150(0.0334) 0.1269(0.0516)  (0.0325,0.1974) (0.0369,0.2407) (0.0925,0.1155) (0.0454,0.2228)
(0.0019) (0.0040) (0.1649) (0.2038) (0.0230) (0.1774)
30 0.1066(0.0319) 0.1162(0.0471) (0.0289,0.1843) (0.0314,0.2914) (0.0952,0.1128) (0.0493,0.2164)
(0.0017) (0.0043) (0.1554) (0.2600) (0.0176) (0.1671)
20 10 0.1197(0.0363) 0.1253(0.0511)  (0.0372,0.2021) (0.0358,0.2839) (0.0764,0.1316) (0.0471,0.2413)
(0.0024) (0.1253) (0.1649) (0.2481) (0.0552) (0.1942)
20 0.1156(0.0306) 0.1160(0.0419) (0.0482,0.1829) (0.0345,0.2426) (0.0924,0.1156) (0.0516,0.2032)
(0.0014) (0.0031) (0.1347) (0.2081) (0.0232) (0.1516)
30 0.1088(0.0298) 0.1155(0.0365)  (0.0473,0.1702) (0.0443,0.2201) (0.0949,0.1130) (0.0598,0.2078)
(0.0013) (0.0020) (0.1229) (0.1758) (0.0181) (0.1480)
30 10 0.1165(0.0346) 0.1279(0.0470) (0.0388,0.1943) (0.0343,0.2643) (0.0817,0.1263) (0.0512,0.2484)
(0.0020) (0.0040) (0.1555) (0.2300) (0.0446) (0.1972)
20 0.1175(0.0292) 0.1213(0.0386) (0.0560,0.1789) (0.0518,0.2380) (0.0927,0.1153) (0.0534,0.2078)
(0.0013) (0.0026) (0.1229) (0.1862) (0.0226) (0.1544)
30 0.1151(0.0268) 0.1159(0.0341)  (0.0602,0.1701) (0.0521,0.2269) (0.0930,0.1150) (0.0632,0.1850)
(0.0011) (0.0020) (0.1099) (0.1748) (0.0220) (0.1218)
TABLE Il
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=1.5, B=0.5, R=0.15625
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10 0.1789(0.0576) 0.1901(0.0897) (0.048,0.3096) (0.0544,0.4741) (0.0914,0.2211) (0.0665,0.3601)
(0.0064) (0.0143) (0.2616) (0.4197) (0.1297) (0.2936)
20 0.1732(0.0458) 0.1846(0.0715)  (0.0600,0.2865) (0.0405,0.3876) (0.1267,0.1858) (0.0691,0.3209)
(0.0034) (0.0085) (0.2265) (0.3471) (0.0591) (0.2518)
30 0.1718(0.0432) 0.1768(0.0578)  (0.0651,0.2786) (0.0574,0.3581) (0.1324,0.1801) (0.0738,0.2929)
(0.0029) (0.0059) (0.2135) (0.3007) (0.0477) (0.2191)
20 10 0.17735(0.0598)  0.17858(0.0801)  (0.0641,0.2906) (0.0422,0.4512) (0.1003,0.2122) (0.0775,0.3473)
0(.00549) (0.0113) (0.2265) (0.4090) (0.1119) (0.2698)
20 0.1691(0.0440) 0.1608(0.0546)  (0.0767,0.2616) (0.0657,0.2990) (0.1331,0.1794) (0.0884,0.2837)
(0.0029) (0.0045) (0.1849) (0.2333) (0.0463) (0.1953)
30 0.1690(0.0356) 0.1704(0.0482)  (0.0846,0.2534) (0.0693,0.3269) (0.1357,0.1768) (0.0827,0.2828)
(0.0018) (0.0039) (0.1688) (0.2576) (0.0411) (0.2001)
30 10 0.1897(0.0593)  0.1839(0.0703)  (0.0830,0.2965)  (0.0622,0.3849) (0.1236,0.1889) (0.0780,0.3445)
(0.0045) (0.0077) (0.2135) (0.3227) (0.0653) (0.2665)
20 0.1740(0.0415) 0.1769(0.0578)  (0.0897,0.2584) (0.0773,0.3019) (0.1368,0.1757) (0.0921,0.2662)
(0.0030) (0.0049) (0.1687) (0.2246) (0.0389) (0.1741)
30 0.1698(0.0354) 0.1735(0.0493) (0.0943,2453) (0.0768,0.3043) (0.1446,0.1679) (0.1036,0.2695)
(0.0018) (0.0037) (0.1510) (0.2275) (0.0233) (0.1659)
TABLE Il
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=1.0, B=0.5, R=0.2593
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10 0.2867(0.0779) 0.3051(0.0116)  (0.1034,0.4703) (0.0865,0.5718) (0.1871,0.3314) (0.1202,0.5160)
(0.0088) (0.0168) (0.3669) (0.4853) (0.1443) (0.3958)
20  0.2762(0.0603)  0.2981(0.0768)  (0.1022,0.4377)  (0.1119,0.4772) (0.2144,0.3041) (0.1297,0.4486)
(0.0062) (0.0094) (0.3355) (0.3653) (0.0897) (0.3189)
30 0.2612(0.0432) 0.2685(0.0578)  (0.1178,0.4203) (0.1126,0.5544) (0.2350,0.2835) (0.1306,0.4283)
(0.0078) (0.0059) (0.3025) (0.4418) (0.0205) (0.2977)
20 10  0.2780(0.0653)  0.2793(0.0872)  (0.1189,0.4370)  (0.0786,0.4753) (0.2020,0.3165) (0.1278,0.5131)
(0.0061) (0.0116) (0.3181) (0.3967) (0.1145) (0.3853)
20 0.2734(0.0610) 0.2723(0.0844)  (0.1436,0.4033) (0.1252,0.5485) (0.2278,0.2907) (0.1645,0.4575)
(0.0061) (0.0116) (0.2597) (0.4233) (0.0629) (0.2930)
30  0.2808(0.0515)  0.2965(0.0758)  (0.1622,0.3993  (0.1530,0.4619) (0.2324,0.2861) (0.1582,0.4136)
(0.0039) (0.0074) (0.2371) (0.3089) (0.0537) (0.2554)
30 10 0.2856(0.0721) 0.2875(0.0933)  (0.1357,0.4356) (0.0973,0.5943) (0.2012,0.3173) (0.1499,0.4872)
(0.0077) (0.0141) (0.2999) (0.4970) (0.1161) (0.3373)
20 0.2779(0.0511)  0.2807(0.0704)  (0.1594,0.3964)  (0.1351,0.4772) (0.2291,0.2894) (0.1666,0.4157)
(0.0039) (0.0077) (0.2370) (0.3421) (0.0603) (0.2491)
30 02723(0.0482)  0.2851(0.0677)  (0.1733,0.3854)  (0.1493,0.4700) (0.2444,0.2741) (0.1623,0.3916)
(0.0035) (0.0067) (0.2121) (0.3207) (0.0297) (0.2293)
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TABLE IV
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=0.5, B=0.5, R=0.5
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10 0.5008(0.1025) 0.5091(0.1399) 0.2684,0.7333) (0.1993,0.8102) (0.4267,0.5733) 0.2716,0.7623)
(0.0161) (0.0279) (0.4649) (0.6109) (0.1466) (0.4907)
20 0.4922(0.0853) 0.4959(0.1145)  0.2909,0.6935) (0.2409,0.7602) (0.4701,0.5299) 0.2681,0.6958)
(0.0111) (0.0195) (0.4026) (0.5193) (0.0598) (0.4277)
30  0.4953(0.0860) 0.4976(0.1046)  0.3055,0.6851) (0.2419,0.7584) (0.4699,0.5301) 0.2905,0.6883)
(0.0115) (0.0170) (0.3796) (0.5165) (0.0602) (0.3978)
20 10 0.4856(0.0721) 0.4875(0.0933)  (0.3357,0.5356) (0.0973,0.5943) (0.4374,0.5626) 0.3091,0.7203)
(0.0077) (0.0141) (0.2999) (0.4970) (0.1252) (0.4112)
20 0.4779(0.0511) 0.4807(0.0704)  (0.3594,0.5964) (0.1351,0.4772) (0.4637,0.5363) 0.3097,0.6880)
(0.0039) (0.0077) (0.2370) (0.3421) (0.0726) (0.3783)
30 0.4723(0.0482) 0.4851(0.0677)  (0.3733,0.5854) (0.1493,0.4700) (0.4726,0.5274) 0.3520,0.6562)
(0.0035) (0.0067) (0.2121) (0.3207) (0.0548) (0.3042)
30 10 0.5064(0.0881) 0.4977(0.1176)  (0.3166,0.6962) (0.2391,0.7593) (0.4438,0.5562) 0.3080,0.7037)
(0.0119) (0.0205) (0.3796) (0.5202) (0.1124) (0.3957)
20 0.4998(0.0609) 0.4958(0.0849)  (0.3498,0.6499) (0.2969,0.6952) (0.4681,0.5319) 0.3369,0.6729)
(0.0058) (0.0111) (0.3001) (0.3983) (0.0638) (0.3360)
30 0.5047(0.0595) 0.4988(0.0768)  (0.3705,0.6389) (0.3102,0.6800) (0.4755,0.5245) (0.3568,0.6381)
(0.0055) (0.0090) (0.2684) (0.3698) (0.0490) (0.2813)
TABLE V
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=0.5, B=0.1, R=0.0741
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10  0.0747(0.0289)  0.0839(0.0430)  (0.0030,0.1464)  (0.0148,0.2506) (0.0430,0.1052) (0.0205,0.1976)
(0.0015) (0.0036) (0.1434) (0.2358) (0.0622) (0.1771)
20 0.0743(0.0288)  0.0824(0.0397)  (0.0122,0.1365)  (0.0160,0.2306) (0.0614,0.0868) (0.0256,0.1479)
(0.0015) (0.0030) (0.1243) (0.2146) (0.0254) (0.1223)
30  0.0753(0.0253)  0.0784(0.0342)  (0.0167,0.1338)  (0.0172,0.1729) (0.0614,0.0868) (0.0256,0.1479)
(0.0011) (0.0019) (0.11712) (0.1557) (0.0254) (0.1223)
20 10 0.0788(0.0267)  0.0850(0.0376)  (0.0167,0.1409)  (0.0212,0.2270) (0.0419,0.1062) (0.0267,0.1564)
(0.0012) (0.0027) (0.1242) (0.2058) (0.0643) (0.1297)
20  0.0735(0.0205)  0.0777(0.0292)  (0.0227,0.1242)  (0.0212,0.1745) (0.0659,0.0823) (0.0318,0.1349)
(0.0007) (0.0015) (0.1015) (0.1533) (0.0164) (0.1031)
30 0.0712(0.0185)  0.0765(0.0267)  (0.0247,0.1175)  (0.0265,0.1637) (0.0658,0.0823) (0.0325,0.1206)
(0.0005) (0.0013) (0.0928) (0.1372) (0.0165) (0.0881)
30 10 0.0758(0.0244)  0.0771(0.0344)  (0.0172,0.1343)  (0.0184,0.1887) (0.0550,0.0932) (0.0311,0.1530)
(0.0011) (0.0019) (0.1172) (0.1703) (0.0382) (0.1219)
20 0.0714(0.0191)  0.0741(0.0269)  (0.0251,0.1177)  (0.0266,0.1552) (0.0661,0.0820) (0.0356,0.1284)
(0.0006) (0.0012) (0.0926) (0.1286) (0.0159) (0.0928)
30  0.0708(0.0175)  0.0743(0.0256)  (0.02830.1122)  (0.0272,0.1529) (0.0653,0.0829) (0.0347,0.1289)
(0.0005) (0.0011) (0.0839) (0.1257) (0.0176) (0.0942)
TABLE VI
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=0.5, B=1.0, R=0.7407
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10 0.7175(0.0814) 0.7108(0.1116)  (0.5338,0.9011) (0.3662,0.9194) (0.6841,0.7974) (0.4740,0.8682)
(0.0106) (0.0202) (0.3673) (0.5532) (0.1133) (0.3942)
20 0.7075(0.0762) 0.70340.0962) (0.5485,0.8665) (0.4332,0.8880) (0.7007,0.7808) (0.5028,0.8726)
(0.0092) 0.0147) (0.3180) (0.4548) (0.0801) (0.3698)
30  0.7221(0.0619) 0.71950.0865)  (0.5722,0.8721) (0.4824,0.9003) (0.7151,0.7664) (0.5390,0.8654)
(0.0061) 0.0117) (0.2999) (0.4179) (0.0513) (0.3264)
20 10 0.7291(0.0670) 0.7234(0.0849)  (0.5700,0.8881) (0.4655,0.9072) (0.6895,0.7920) (0.5189,0.8663)
(0.0070) (0.0117) (0.3181) (0.4417) (0.1025) (0.3474)
20 0.7145(0.0605) 0.7075(0.0843)  (0.6034,0.8445) (0.4752,0.8800) (0.7105,0.7710) (0.5797,0.8398)
(0.0053) (0.0104) (0.24112) (0.4048) (0.0605) (0.2601)
30 0.7219(0.0540) 0.7199(0.0704)  (0.5134,0.8405) (0.5134,0.8616) (0.7177,0.7638) (0.5873,0.8394)
(0.0043) (0.0078) (0.3271) (0.3482) (0.0461) (0.2521)
30 10 07273(0.0639)  0.7148(0.0907)  (0.5774,0.8773)  (0.4649,0.8882) (0.6843,0.7971) (0.5493,0.8435)
(0.0066) (0.0127) (0.2999) (0.4233) (0.1123) (0.2942)
20 0.7225(0.0516) 0.7147(0.0670)  (0.6039,0.8410) (0.5397,0.8609) (0.7084,0.7731) (0.5639,0.8435)
(0.0040) (0.0071) (0.2371) (0.3212) (0.0647) (0.2796)
30 0.7245(0.0491) 0.7232(0.0656)  (0.6189,0.8309) (0.5196,0.8532) (0.7190,0.7625) (0.5975,0.8223)
(0.0037) (0.0067) (0.2120) (0.3336) (0.0435) (0.2248)
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TABLE VII
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=0.5, B=1.5, R=0.84375
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10  0.8221(0.0609) 0.8129(0.0861)  (0.6914,0.9528) (0.5339,0.9651) (0.7909,0.8966) (0.6488,0.9325)
(0.0061) (0.0117) (0.2614) (0.4312) (0.1057) (0.2837)
20 0.8199(0.0564) 0.8184(0.0744)  (0.7067,0.9331) (0.5756,0.9516) (0.8189,0.8686) (0.6509,0.9195)
(0.0052) (0.0096) (0.2264) (0.3760) (0.0497) (0.2686)
30  0.8215(0.0521) 0.8203(0.0691)  (0.7147,0.9282) (0.6183,0.9461) (0.8138,0.8737) (0.6673,0.9197)
(0.0045) (0.0079) (0.2135) (0.3278) (0.0599) (0.2524)
20 10 0.8254(0.0520) 0.8153(0.0737)  (0.7122,0.9386) (0.5988,0.9520) (0.8125,0.8750) (0.7129,0.9155)
(0.0044) (0.0087) (0.2264) (0.3532) (0.0625) (0.2026)
20 0.8261(0.0449) 0.8192(0.0624)  (0.7337,0.9186) (0.6374,0.9371) (0.8292,0.8583) (0.7259,0.9032)
(0.0032) (0.0064) (0.1849) (0.2997) (0.0291) (0.1733)
30 0.8259(0.0401) 08260(0.0539)  (0.7415,0.9103) (0.6613,0.9342) (0.8284,0.8591) (0.7238,0.9098)
(0.0025) (0.0046) (0.1688) (0.2729) (0.0307) (0.1852)
30 10 0.8260(0.0498) 0.8192(0.0646)  (0.7192,0.9327) (0.6264,0.9432) (0.8172,0.8703) (0.7017,0.9344)
(0.0038) (0.0068) (0.2135) (0.3168) (0.0531) (0.2327)
20 0.8280(0.0393) 0.8234(0.0538)  (0.7436,0.9124) (0.6746,0.9283) (0.8021,0.8854) (0.6982,0.9291)
(0.0022) (0.0044) (0.1688) (0.2537) (0.0833) (0.2309)
30 0.8292(0.0347) 0.8248(0.0483)  (0.7537,0.9047) (0.6883,0.9207) (0.8258,0.8617) (0.7478,0.8971)
(0.0018) (0.0034) (0.1510) (0.2324) (0.0359) (0.1493)
TABLE VIII
AVR, BIAS, MSE, EL AND CP UNDER TRUE VALUES ©=0.5, B=2.0, R=0.8960
MLE MCMC MLE MCMC Boot-t Boot-p
n m AVR(Bias) AVR(Bias) (EL,CP) (EL,CP) (EL,CP) (EL,CP)
(MSE) (MSE) (Length) (Length) (Length) (Length)
10 10  0.8806(0.0446)  0.8766(0.0613)  (0.7854,0.9758)  (0.6435,0.9756) (0.8466,0.9454) (0.7319,0.9632)
(0.0035) (0.0069) (0.1904) (0.3321) (0.0988) (0.2313)
20 0.8779(0.0405)  0.8738(0.0536)  (0.7954,0.9603) (0.6936,0.9669) (0.8759,0.9161) (0.7412,0.9563)
(0.0029) (0.0051) (0.1649) (0.2733) (0.0402) (0.2151)
30  0.8789(0.0377)  0.8746(0.0509)  (0.8012,0.9567)  (0.6895,0.9708) (0.8752,0.9168) (0.7559,0.9546)
(0.0023) (0.0047) (0.1555) (0.2813) (0.0416) (0.1987)
20 10 0.8838(0.0357)  0.8730(0.0567)  (0.8013,0.9662) (0.6768,0.9694) (0.8679,0.9241) (0.7934,0.9536)
(0.0020) (0.0057) (0.1649) (0.2926) (0.0562) (0.1602)
20  0.8853(0.0310)  0.8784(0.0419)  (0.8179,0.9186)  (0.7468,0.9569) (0.8649,0.9271) (0.7931,0.9461)
(0.0016) (0.0029) (0.1007) (0.2101) (0.0622) (0.1530)
30 0.8837(0.0291) 08808(0.0408)  (0.8222,0.9451) (0.7664,0.9575) (0.8836,0.9084) (0.8012,0.9412)
(0.0013) (0.0025) (0.1229) (0.1911) (0.0248) (0.1400)
30 10 0.8814(0.0306)  0.8787(0.0427)  (0.8199,0.9428) (0.7540,0.9555) (0.8765,0.9155) (0.7854,0.9523)
(0.0014) (0.0028) (0.1229) (0.2015) (0.0390) (0.1669)
20  0.8856(0.0294)  0.8795(0.0416)  (0.8242,0.9471)  (0.7584,0.9575) (0.8820,0.9100) (0.7914,0.9405)
(0.0013) (0.0029) (0.1229) (0.1991) (0.0280) (0.1491)
30 0.8844(0.0265)  0.8790(0.0366)  (0.8294,0.9393) (0.7657,0.9493) (0.8834,0.9086) (0.8108,0.9375)
(0.0011) (0.0021) (0.1099) (0.1836) (0.0252) (0.1267)
TABLE IX
GOODNESS OF FIT FOR GIVEN DATA SET
sample K-S P value
X 0.1786 0.3165
Y 0.1225 0.7319
TABLE X
DIFFERENT POINT ESTIMATE VALUE FOR GIVEN DATA SET
MLE MCMC
Alpha x 0.0260 0.0309
Alphay 0.0239 0.0282
R 0.4687 0.4657
TABLE XI
DIFFERENT INTERVAL ESTIMATE VALUE FOR GIVEN DATA SET
MLE interval of R MCMC interval of R Boot-t interval of R Boot-p interval of R
R (0.4326,0.4846) (0.5282,0.5947) (0.4429,0.4945) (0.5460,0.6054)
Length 0.0520 0.0665 0.0516 0.0594

Bayesian estimator, the MLE exhibits smaller bias and MSE.
Thus, we conclude that the MLE outperforms the Bayesian
estimator in small sample scenarios. (2) For the interval

From the above simulation results, we can find that: (1)
For the point estimation of R, the MLE value is very close to
the Bayesian estimate value. However, compared to the
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estimation of R, all true reliability values are contained within
the estimated intervals, demonstrating the effectiveness of the
interval estimation methods.

By analyzing the length of different interval estimates, we
find that the Boot-t method produces the shortest intervals,
followed by the MLE method, then the Boot-p method; the
Bayesian method has the longest interval length. Thus, we
recommend the Boot-t method for interval estimation. (3)
When fixing n and increasing m, or fixing m and increasing n,
both point estimators (MLE and Bayesian estimator)
approach the true value more closely, but no clear trend in R is
observed. For interval estimation, however, the lengths of all
interval estimates consistently decrease as n or m increases in
most cases. (4) When fixing f and increasing 6 for the same
n and m, the bias and MSE of both point estimators (MLE and
Bayesian estimator) increase, and the lengths of all four
interval estimators also increase. (5) When fixing 6 and
increasing g for the same n and m, the bias and MSE of both
point estimators decrease, and the lengths of all four interval
estimators also decrease.

VI. REAL DATA ANALYSIS

The following real-life data sets, from Ref [23], represent
the monthly concentration of sulfur dioxide in Long Beach,
California, from 1956 to 1974. In Ref [24], the Weibull
distribution is used to fit the data sets, where X and Y denote
the sulfur dioxide concentrations in March and August as
follow:

X: 97,51, 11, 4, 141, 18, 142, 24, 191, 68, 77, 80, 1, 16,
106, 206, 163, 18, 82, 54, 31, 216, 46, 111, 39, 18, 63

Y: 90, 10, 60, 186, 61, 49, 14, 24, 208, 130, 56, 20, 79, 84,
44,59, 29, 118, 101, 208, 25, 156, 310, 76, 26, 44, 23, 62, 70

Let X and Y denote the 1-hour average concentrations of
sulphur dioxide in May and October, respectively. Then
R=P(Y<X) represents the probability that the concentration in
May is lower than that in October. In this paper, we use the
Ailamujia distribution to fit the data sets.

We also tested goodness-of-fit for each data set separately
using the Kolmogorov-Smirnov (K-S) test. We observe that
for the data set of X, the K-S distance is 0.1786 with a p-value
of 0.3165, and for the data set of Y, the K-S distance is 0.1225
with a p-value of 0.7319. Since both p-values exceed the
common significance level of 0.05, the two data sets show a
reasonable fit to the Ailamujia distribution based on the K-S
test results.

Table IX gives the K-S test statistics with p-values for each
data set. From the Table IX, we do not reject the null
hypotheses that the data sets are drawn from the Ailamujia
distributions at the significance level a=0.05.

Also, the Table X gives the point estimates of R, and Table
Xl gives the 95% confidence interval for R. From Tables X
and XI, we find that the Boot-t method produces the shortest
intervals among all methods. This finding from the real data
analysis is consistent with the results obtained from the
simulation study. Based on the above analysis, there is no
sufficient evidence to conclude that the sulfur dioxide
concentration in May is lower than that in October.

V.CONCLUSIONS

In this article, the reliability estimation of R=P(Y<X) for the
Ailamujia distribution is discussed. The MLE and Bayesian
estimator of R are derived, and several confidence intervals

for R are also obtained. Some Monte Carlo simulations are
conducted to compare different estimation methods. By
analyzing the simulation results, we find that the MLE
outperforms the Bayesian estimator in small sample scenarios.
In addition, the Boot-t interval estimation method has the
shortest intervals and it is recommended. Finally, a real data
set is analyzed to illustrate the proposed model and methods.
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