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Maximum Bound Principle and
Energy-Stability-Preserving SPH Method for
Solving the Allen-Cahn Equation

Huanzhu Yang, Rahmatjan Imin, Azhar Halik

Abstract—This paper presents a novel framework for
constructing numerical schemes that preserve both the
Maximum Bound Principle (MBP) and energy dissipation for
the Allen—Cahn equation. We develop a class of Smoothed
Particle Hydrodynamics (SPH) schemes for the Allen—-Cahn
equation, which are semi-implicit and conditionally stable.
These schemes are rigorously analyzed for stability. The
primary contributions of this work are twofold. First, in terms
of methodological innovation, we pioneer the application of
both standard and modified SPH methods to numerically solve
the Allen—Cahn equation. Numerical experiments further verify
the accuracy and robustness of the proposed methods. Second,
we provide rigorous proofs that these schemes preserve the
discrete MBP and maintain energy stability. Our framework
extends existing theory for semi-linear parabolic equations and
suggests directions for future research. This includes applying
the method to broader classes of equations and developing
unconditionally stable, higher-order accurate variants.

Index Terms—Allen-Cahn equation; SPH; Meshless particle
method; Maximum Bound Principle; Energy dissipation law

I. INTRODUCTION

he Allen-Cahn (AC) equation, originally proposed by

Allen and Cahn [1] to model phase separation in binary
alloys, is a foundational phase-field equation with broad
applications in materials science, image segmentation, and
biomembrane modeling. Mathematically, it is a semi-linear
parabolic partial differential equation (PDE) of the form:

6—uzzszAu—f(u) (1)
ot

where u(x,t) is the phase variable, £ controls interface

thickness, and the nonlinear term f (u) derives from the
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double-well potential F(u)= %(l ~u).

Key features of the AC equation include the following:
(1)Strict energy dissipation: the total energy

E[u]= jg(%wr +F(u)]dx )

. . . dE
decreases monotonically over time, i.c., I <0.
t

(i)MBP: u(x, t) € [—1, 1] if initialized within these bounds.

These properties impose strict requirements on numerical
scheme design. In the numerical solution of the AC equation,
the stability of its equilibrium points is of vital importance.
According to relevant research [2], the equilibrium points
should satisfy the energy dissipation and the MBP to ensure
the long-term stability of the system and the rationality of the
solutions.

The AC equation has undergone significant theoretical
evolution-from foundational analysis (existence/uniqueness
proofs via energy methods [3], stability of equilibria [4], and
I'-convergence to mean curvature flow [5]) to modern studies
of sharp-interface limits, nonlocal variants, and multiphysics
coupling (e.g., Navier-Stokes-Allen-Cahn [6] and
Cahn-Hilliard-Allen-Cahn systems [7]). Its applications in
image processing [8] and medicine [9] have expanded
phase-field theory's interdisciplinary impact.

In numerical methods, spatial discretization critically
affects accuracy and stability. Classical approaches like finite
differences [10] and finite elements [11] achieve precision
through structured grids but struggle with complex
geometries. Recent advances include unconditionally stable
high-order schemes [12] and AMR strategies [13] for
interface resolution. While efficient, mesh-based methods
face limitations with intricate domains and strong
nonlinearities, motivating meshfree alternatives. Adam et al.
demonstrated RBF methods for AC equations with complex
boundaries [14], while deep learning frameworks like PINN's
[15] extend applicability to high-dimensional nonlinear
regimes. These approaches excel at handling evolving
interfaces and complex geometries.

While meshfree approaches have gained traction in AC
simulations, the SPH method remains largely unexplored,
presenting both challenges and opportunities for
methodology development.

This work introduces the first enhanced SPH method for
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the AC equation discretization. By combining Taylor
expansions with kernel moment properties, we develop
derivative approximations eliminating traditional SPH's
kernel differentiation requirement, yielding an efficient linear
discrete model. Theoretical analysis proves the scheme
preserves both MBP and energy dissipation with reasonable
time-steps. Numerical experiments confirm robustness for
complex geometries and long-term simulations, establishing
a new meshfree phase-field modeling framework.

II. SPATIAL APPROXIMATION

A. Conventional SPH Methodology

The conventional SPH technique employs two principal
computational phases for function approximation [16]:

(i)Kernel Approximation: The field quantity u(x) is

approximated by the convolution integral:
<u(x)>:jﬂu(x')W(x-x‘,h)dx‘ 3)

where W (x—x',h) denotes the smoothing kernel with
compact support, the parameter % controls the kernel's

smoothing length, while Q defines its support region where
w (x -x', h) #0.When W (x -x', h) is sufficiently smooth

(e.g., C7), the generalized derivative estimate becomes:

<M> 1 L)u(xv)wdx' @)

ox* B h_d ox*

(i)Particle Approximation: The integral is approximated
by particle discretization:

<u(x)>zzﬁu(xj)W(x—x',h) 5)

j=1 P

where j indexes neighboring particles within Q .The particle

approximation for the gradient is constructed as:

<aku(X)>:Zﬁu(x,~)—6kW(x_x""h) ©)

ox* =P, ox*

The accuracy of this approximation depends on the kernel
function, particle density, and smoothing length.

B. KDF-SPH Methodology

Building upon the conventional SPH framework, we now
present the Kernel Derivative-Free SPH (KDF-SPH)
approach that circumvents kernel differentiation. This
methodology combines Taylor expansion with statistical
moment properties of kernel functions to directly construct
derivative approximations, thereby eliminating the need for
traditional kernel function differentiation [17].

The expansion of u(x") about reference point x yields:

u(x’)=u(x)+(x—x")-Vu(x) :
+%(x—x')T-Au(x)-(x—x')+--- @

Kernel moments M. eL'(Q) are introduced,

defined as:

X, —X ' X, —X ! '
Mo =hld ) K ) v || X . k” W[xhx jdx'(S)

These moments depend solely on the shape of kernel
function W (x—x',/) and are independent of the smoothing

length h.
The Taylor expansion is multiplied by %W(x -x',h)

and integrated over the kernel support domain, yielding:

h

a

<Lx",u(x)> = M} u(x)+hME %m+o(h2) ©)

For symmetric kernels (where M 1/‘ =0), the first derivative

is derived as:

5u(x)_ 1 xk_xk’ 2
ox, _hM§k< h u(x)>+0(h) (10

The continuous form is discretized into a matrix operation
U=AX+ o(hz) ,where A is KDF-SPH discretization

matrix constructed from particle positions and kernel values,
that is,

U:[au(xl),,,,,au(xn)f, X (a5 )ou(x))"

Ox Ox
m X —Xx m, X, — X%
1 pl h 11 pn 1n (1 1)
M,
ﬂxl _'xn W,,] mn ‘xn _‘xn sz
/01 h pn h

Higher-order terms are incorporated by multiplying the

N2
Taylor expansion by (%) W (x-x',h) and integrating:

<(MJZ u(x)> = M u(x) +h_22 ppos T 0(3)

h ox’ (12)
+0(h2)

Simplifying with M =0,a# B ,the second-order
derivative becomes:
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azu(x) 1 X, -x, ' :
6x2 = hZMD(Dtkk <( ‘ h ‘ j u(x)_M;(ku(x)
4

a

(13)
+0(h2)

Similar to first derivatives, this is discretized into matrix
form, avoiding explicit computation of kernel derivatives.

For multi-dimensional problems, directional moments
(e.g., M;",My”" )are combined to construct gradient or

Laplacian operators, and mixed moments (e.g., M;*") are
0 u(x, y,t)
ooy

used to handle cross-derivatives like

III. THEORETICAL ANALYSIS

To simplify the notation, we define the standard Sobolev
space with homogeneous Dirichlet conditions, their norms

and inner products using the symbols H*(Q), ||, and (-
respectively. To be specific, ||, and (--) are used to
represent the norm and inner product of L, (Q) ,and ||||sc for

the norm of L, (Q) .The domain is the set of uniformly

spaced particles in square [0,1]2 or cubic [0,1]3, but the

analysis can extend to domains with different shapes. We
regard X as the solution space spanned by the particle-based

function u, ,where X = R" and 0X = R’.

A. The semi-discrete maximum bound principle

Following Du et al.'s abstract framework for the AC
equation's MBP [18], proper spatial discretization of such
semi-linear parabolic equations yields the following ODE
system:

48 _ L ui N[u]
dt

(14)
where Lu , Nu represents the linear and non-linear
components, respectively. Building upon this framework, we
initially restrict the KDF-SPH-based numerical solution of
the AC equation to the spatial discretization framework for
proof simplification.

The KDF-SPH approximation of the Laplace operator (13)
generates the sparse matrix K, with entries:

’Zu[ y;<’61].m‘7i%(<¥,;x|) W, mm,(x‘ ,\\J W,
\ =1 Py i Py
7
imi(vlfx,) W z‘:m (,\ x\) W
i, ‘ Sp ok :
K, =
2 2
m, (x,—x, ﬂ[x 7}%] C&my(x, - x
—L W, W, \\
ﬂ|[ h ) " Py h " z:wﬁ, h
7 7
om (v on ) ﬁ:’i(‘ -n)
" "
= h ! Sp, h 4

and the elements are expressed ask,, 1<i,j < N.

The kernel function W, adopts the cubic B-spline kernel

[/

function:
g—s2 +ls3 0<s<l
3 2
' ad 1 3
W(x—x,h)=h—d 8(2—5) I1<s<2 (16)
0 s>2

r . . . .
where ¢ = = |x- x| is the is the distance between points

x and x'; A is the smoothing length.

The cubic B-spline kernel function possesses three key
characteristics: non-negativity, symmetry, and compact
support. That is,

an

Due to the uniform particle distribution, each particle i
has at least one neighboring particle ; satisfying W, >0

with x; # x;, meaning there exist no isolated points in Q.

Therefore, K, is weakly diagonally dominant:

| = [k, | ey < 0k, =0 (18)

The discrete matrix K, can be extended to two and three

dimensions through the Kronecker tensor
formulation.
By discretizing the AC equation (1) using KDF-SPH, we

obtain an ODE system similar to (14):

product

%:Au+fh (u),vt>0

(19)

where A =&’K, ,and the elements are expressed as a, ,
1<i,j<N.

In order to establish the MBP for this equation, we propose
the following assumption.

Assumption: The non-linear operator discretization f
acts as a composite function induced by a given one-variable
continuously differentiable functionf : R — R ,that is,

f, [u](x):fo (u(x)),VueX (20)
There exists a constant y > 0 such that
fy(7)<0<f, () @1)

The key to the assumption is that the nonlinear operator f
has opposite signs on the left and right sides of 0.
Lemma 1: Under Assumption 1, the discrete linear

operator A generates a contraction semigroup {e’A} .
24
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Proof:

())Consider any ueX and let x, be the point

where |u(x

..

our analysis by definition:

)| achieves its supremum, which implies

:|u(xk )| .The non-negative case u, >0 suffices for

N
Au, =ay, uk+2a,w. u;

(22)
Jj=1
J#k
Sinceu, <u, (k # j)and condition (18), we have
N N
zakj u; < Z% U, =—a, 4, (23)
ok o
Therefore, we obtain:
Au, =akkuk+2a,w.ujSa,(kuk—ak,{ u =0 (24

Jj=1
J#k

Condition (24) implies that matrix A is dissipative.
(ii)From the Lumer-Phillips Theorem and condition (18)

it follows that: for any constant & > max ¢,, , then it holds:
k

Z|“k/|

jik

Z|ak/|

a-a, >a-|a,|=a (25)

This shows that matrix al—A is strictly diagonally
dominant and hence invertible, whereI is the N x N identity
matrix.

(iii))Under condition (18),as matrix A has non-negative

© A n
= ZQ inherits this

n=0 M-

off-diagonal terms, the resulting

non-negative off-diagonal characteristic; as the row sums of

matrix A vanish, we have A-1=0 and e =1 .That is,

=W (e’A 1),‘ =

(26)

N
< IA)
<),
=

ie., ”e’A”w <|u,| =|jul,, completing the proof.

Lemma 2: Under Assumption, we have:

%[maxu (¢ )J f[maxu (¢ )J

i

dr .
E[m[lnu (¢ )] f[mlnu (¢ )J

V>0 (27)

Proof:

Let u,, ()= max u, (¢) ,we suppose that u(x,) reaches

its maximum at (x,,7*) i.e.,

uk(t*):umax (t*);u, (t*)Suk (t*).Vi;tk (28)
Inserting this into the semi-discrete system (19):
%uk () =(Au()) + (e () (29)
Expanding the matrix-vector product yields:
* Y *
(au()), =S4, (1)
J=
o 6o
=A,u, (t )+2Akj u; (t )
j=1
ik
Combine condition (18) and (28), we obtain:
(Au(%), <0 31

Consequently, (29) reduces to %uk (t*)sf(uk (t*)) ,

which gives

%[maxu[ (I)J < f[m;dxu[ (t)} Vt>0 (32)

i

On the other hand, let u,; (7)=minu,(¢) ,we suppose

1<i<N
that u(x,t) reaches its minimum at (xm,t**) , a similar
analysis yields to obtain (Au(t **))m >0and
dr . .
Z[m’m u, (t)} > f[m[m u, (t)} vt>0 (33)

Hence, the proof is complete.

We have now established the existence and uniqueness of
solutions to the model problem (1) that maintain the MBP
property. The following theorem summarizes our main
result:

Theorem 1: Consider the semi-discrete AC system (19)
under Dirichlet boundary conditions. For arbitrary 7 >0,
when A complies with Condition (18) and Lemma 1, while

f(u) satisfies Assumption and Lemma 2, if both the initial is

bounded by 1, i.e., ||u0(x)||w <1 ,then the solution to the

discrete scheme exists, is unique, and satisfies

I, (x0)],<1 Vie(0,T] (34)

Proof:

Using Condition(19) and Lemma 1, As A is the generator
of a contraction semigroup, the Banach fixed-point theorem
yields local existence and uniqueness of solutions to the
semi-discrete AC system on [0,7,]. Global existence up to

arbitrary 7 >0 follows from standard continuation

arguments.
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Let u,, (#)=maxu,(¢),we suppose there exist some time
1<i<N

u,. (t*)=y .The

guarantees the existence of a first hitting time ¢, at which

t* makes continuity —argument

d
umax (IO):yﬂ_[umax (tO)ZO (35)

d

Combining the above conclusion with the Assumption
and Lemma 2, we obtain that

4
di

W (to) < f(umax (to )) = f(7/) <0

(36)

. .. d
which contradicts d_ u
t

max

In this case,u,, (¢) reaches its critical value y at ¢, and

cannot grow further. Similarly,

%umm ()2 f(uy,(1)=f(-r)=0 (37
u,.. (¢) reaches its critical value —y .
From [18], y=1 ,which means -1<u, (x,t) <1 . The

theorem is proved.

B.  The fully discrete maximum bound principle

To achieve better numerical results while avoiding overly
complex computational procedures, we adopt the
Crank-Nicolson (CN) scheme for the linear term and an
explicit scheme for the nonlinear term. Therefore, the fully
discrete scheme for the equation (1) is written as:

A + n n
—=?( "u )+ (u") (38)
where f(u)=vu’-u ,the derivative of the double-well

potential F(u) :i(uz—l)2 .After reformatting, (38) can be

rewritten as
A A
I-dt-= |u"" =| I+dt-= |u"+dt- f(u" 39
( 2) ( 2) f( ) %)

Clearly, (39) is equivalent to (38). We now present the
fully discrete MBP:

Theorem 2: Let 7 >0 be arbitrary. Under the
requirements that A complies with condition (18) and
Lemma 1, while f (u) satisfies Assumption and Lemma 2,

the fully discrete scheme (38) preserves the MBP provided

. . 1 ..
the time-step satisfies dtSE .That is, if ||u°|| <1 holds,

n+l

then (ju

<1 follows forany n>0.

(t,)=0 unless%umax (#,) =0holds.

Proof:

Theorem 2 establishes the stability of the spatially discrete
system. Through proper time-step selection, this stability
property extends to the fully discrete scheme (39),
guaranteeing the preservation of the discrete MBP.

Let B= I—dt-% .The elements of matrix B are defined

as:
1Jralt-gzkijz1 dt-&* _ 1 , -
? Z(xj—x,.)z
Jj=1
bij = m!'(x/ 4 Jz W,
dt- & dt-&& p;\_ h ’ o
__2 kij:_ > ‘(x]__xv)“ , [#]
2L U w,
;p/ hZ g
(40)
Clearly, it satisfies:
b,21>0,b,<0 (41)
2 2
|bﬁ|_i|bu|:1+dt.g |kﬁ|_idt'g |k,.j|
= 2 =2
= (42)

gt X
:1+d’25 ;|k,.j|=1>o

Conditions (41)-(42) show that matrix B possesses the
M-matrix property and is therefore invertible. Consequently,
the numerical scheme (39) possesses a unique solution.

n

Assuming |u

<1 holds. Let I/IZ[I-F%AJUW It’s

evident that the off-diagonal elements of matrix I +%A are

non-negative and its row sums equal 1.Thus, |u’|<1 implies
|l//l.| <I.
Let o=y+dt-f (u" ) ,then we have

|a),.| <l+dt -‘f(uf )‘ .Combining the assumptions, @, <1

holds when u’ =1; ®, > -1 holds when u =—1.To ensure
|a)|él holds for all ||u||w <1 .,we have to ensure all the

extremum points lie within the interval [—1,1] .Through

analysis, the condition is satisfied if dt < _From

S
(u)

max

‘u‘sl

f'(u)[=2.

[19, Example 2.1] L =2, we know that max

‘u‘sl

1 .
In summary, when df < > forany o satisfies |a)L| <1,we

n+l

have u"'=B o w<1 which means

,that makes

n+l

u

<1 holds.

The Theorem is proved.
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C. Energy Stability

The AC equation constitutes the L’ -gradient flow for the
energy functional (2), and it obeys the following energy
dissipation property. The discrete formulation of the energy
functional (2) is given by [20]:

2

E, (u) :%(v,, wV,u), +(F(u),1) (43)

h

Preservation of energy dissipation by the discretization (38)

requires rigorous verification. To this end, we derive the
weak form of the KDF-SPH discretization.

First, let us provide a detailed exposition of the
discretization methodology for scheme (38):

{1+l_ n m. n+ n+
u:ezZ—’(“f %—ui %)Wﬁf(uin) “4)
dt i P

where u% :unﬂT_un,Wy :W("x,. —xj.”,h) represents the

cubic B-spline kernel function. We now define the following
discrete inner products:

(u,v)h = me u, v, (45)
And the gradient-based product:
(Vu,vy), =220 (u—u)(v,=v,) W, @6)
i pipj ‘

The properties of W, directly imply that the discrete

gradient product satisfies:
(i) Symmetry:
(VU,VV)h = (V v,V u)h

(i))Non-negativity:

mm,
(Vu,Vu)h :,Z,: ,D,-,O; (uj—u[) W, >0

The KDF-SPH method admits a weak formulation due to (i)
and(ii), which allows the energy stability to be proven
analogously. This yields the weak formulation of the
discretized AC equation:

i(unﬂ _

” u",v)-i—gz(Vu"%,VV)+(f(u"),V):0,

(47)
VveH (Q)

Theorem 3: Let 7 >0 be arbitrary. For df<1 ,the
solution of (47) satisfies:

E,(u")<E,(u"), vn20

Proof:
Taking v=u

n+l n+l

i

—u” where |u

<1and use the identity

(a,b)= |a|2 —|b|2. The second term on the left-hand side of
equation (47) is:
g (V u"%,VV) = (V(u"”+u" ),V(u"”—u”’l)
(48)
2
)

For the third term on the left hand of (47), we use the
Taylor expansion

82
2
& 2
=—(||V u™! —"V u”
2 2

F(u"”)—F(u”) ~ f(u")~(u"”—u" ) +
(49)

and the condition that the derivative of the double-well
potential satisfies max |f '(u)|SL with Lipschitz constant

‘u‘sl
L >?2 Based on the above derivation, we set the Lipschitz
constant L =2.
Thus, we obtain:

In summary, we may write (44) in the form:

i
dt

2
2 & 2
n+l n , (HV n+l HV n

2

j)+(p(u~+l)_F(un),1)

2

(51)
= %(f'(g”)(u”“—u”),u””—u”) <

n+l n

u

u

2
Combining (48) with (51):

n+l n

2 2
+ Eh (un+1 ) _ Eh (un ) < ||un+1 —u"
2 2

(52)

when dr<1.
This completes the proof.

D. Remark on Convergence Order

Having established the energy dissipation property, we
now address the convergence order of the proposed scheme.
The spatial discretization of the Laplacian operator via
KDF-SPH (Eq. 13) preserves the second-order accuracy

(O(hz)) demonstrated in [16] for general derivative

approximations, as rigorously proven in [16, Theorems 1-2].
When coupled with the second-order Crank-Nicolson

temporal discretization(O(dtz)), the full scheme achieves
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an overall convergence rate of (O(h2 +dt’ )) , provided the

time-step satisfies dt <0.5 (Theorem 2). This theoretical
order is numerically validated in Section IV (Example 2),
where error reduction under spatial refinement aligns with

the expected rate. The Lipschitz continuity of f (u) with

L =2 ensures the nonlinear term does not degrade this
convergence behavior, as guaranteed by the energy stability
analysis (Theorem 3).

IV. NUMERICAL EXPERIMENT

In this section, we present a series of numerical
experiments to evaluate the accuracy, stability, and energy
dissipation properties of the proposed KDF-SPH method
when applied to the AC equation. All simulations employ the
CN discretization for the linear term and explicit treatment of
the nonlinear term, as described in scheme (38).

Example 1. We first consider the one-dimensional AC
equation with Dirichlet boundary conditions on the domain

[—10,10] over the time interval [O,T] ,with 7=10:

a—u:Au—f(u)

ot (53)

27.5 1 —— Energy
25.0
22.51

520.0 1

€175

§17.
15.0
12.5

10.0

0 2 4 6 8 10

Time (t)
(@)

The exact solution is:

(34)

Figure 1 shows the energy evolution for different time
steps. In Fig. 1(a) (dt=2), the energy exhibits irregular
oscillations, violating theoretical requirements. Fig. 1(b)
(dt=0.1) shows smooth monotonic decay, agreeing with
Theorem 3's guarantee for dt <1. These results validate the
dt <1 stability threshold.

Figure 2 demonstrates the MBP property under different
time step sizes. In Fig. 2(a) with df =1 (violating the
condition dt<<0.5 in Theorem 2), the numerical solution
exceeds the admissible range [—1,1], clearly breaking the
MBP. Conversely, Fig. 2(b) with df =0.1 maintains strict
bound preservation, with all solution values properly
contained within [—1, 1] , in perfect accordance with Theorem
2. These contrasting results not only validate the sharp

time-step constraint dt < 0.5 for MBP preservation but also
demonstrate that this theoretical bound is indeed optimal.

—— Energy

0 2 4 6 8 10

Time (t)
(b)

Fig. 1 Energy evolution at different time-steps in Example 1 (a) time-step df =2 and (b) time-step dt =0.1

= Exact Solution

O Numerical Solution

0.8 1
= 0.6 1
)
E]
0.4 1
0.2 1
0.0 SSeseed
—-10.0 *7I.5 *5I.0 *2l.5 010 215 5;0 7;5 16.0
X
(a)

1.0 -PEcEeeEeeceee8e8a Exact Solution
> O  Numerical Solution
0.8 1
0.6
Z
=
0.4 1
0.2 1
0.0 SSesesssq
-100 7.5 5.0 -2.5 0.0 2.5 5.0 7.5 10.0
X
(b)

Fig. 2 Numerical solutions at different time-steps in Example 1 (a) time-step df =1 and (b) time-step df = 0.1
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—— Energy
550 1
5,500 -
2
[0}
C
W 450
4001
0 10 20 30 40 50 60
Time (t)
(@)

Fig. 3 Energy evolution at different time-steps in Example 2 (a) time-step df =2 and (b) time-step df = 0.1

Example 2. Next, we test a more general one-dimensional
problem with the initial condition and Dirichlet boundary
conditions:

aa—l;:ez -Au—f(u)

u(x,O) =0.53x+0.47 Sin(—1.57rx)
u(—l,t) = —l,u(l,t) =1

(55)

The parameter ¢ = 0.1, and the solution is computed over
[0,7] with T =60 .Figure 3 shows the discrete energy

decreasing monotonically when df <1, consistent with the
energy law. For df>1 , oscillations occur, indicating
instability. These results confirm Theorem 3's dissipation
condition. Figure 4 demonstrates smooth phase transitions
converging to steady state

Table 1 compares the L, errors of numerical solution
generated by both SPH and KDF-SPH in solving the
one-dimensional AC equation at different spatial step sizes.
The results demonstrate that KDF-SPH yields significantly
smaller errors than SPH at the same spatial resolutions.
Notably, KDF-SPH achieves a convergence order close to 2,
which aligns with the theoretical analysis in III.D. These
findings confirm the effectiveness of the proposed approach
in solving the 2D AC equation, as it not only substantially
reduces numerical errors but also improves convergence
accuracy.

Example 3. We now consider the two-dimensional AC
equation on [0,27[]2 over the time interval [0,7] with
T=1:

aa—?= Au=f(u)+g(x1) (56)
where g(x,7) is the source term, given by:
g(x )= (7:2 —1)~e”’z’ -sin(7x)sin(7y)
(57)
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(b)
The exact solution is:
u(x,y,t)=e""-sin(zx)sin(7zy) (58)

Figure 5 confirms the method's spatial-temporal accuracy
in capturing dynamics. Figure 7 shows excellent agreement
between numerical and exact solutions, with smooth energy
decay, validating the scheme's two-dimensional robustness
and dissipation properties.

U(x, t)

-0.25

-0.50

-0.75

Fig. 4 Numerical solution in Example 2
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Fig. 5 The discretized energy functional in Example 3
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Fig. 6 The discretized energy functional in Example 4

Example 4. Finally, we examine the AC equation on
[0, 27[]2 with initial condition and homogeneous Dirichlet

boundary conditions:

ou_ & -Au—f(u)
ot (59)

u(x,,0)=0.05sinx-sin y

The parameter ¢ = 0.1, and the solution is computed over
[0,7] with T=120. This problem illustrates long-term

behavior and asymptotic stability.

Figure 6 shows the energy dissipation evolution,
decreasing monotonically with rapid initial changes
(0<t<20) before stabilizing ( #>20), confirming the
method's long-time dissipation characteristics. Figure 8
presents numerical solutions at four time-instances: the
interface evolves rapidly initially, showing clear phase
transitions, then slows toward steady state. These results
match theoretical predictions, validating the method's

0.00
0.00 025 050 075 100 1.25 150 1.75 2.00

(a)

accuracy for both transient and asymptotic behaviors.

The comprehensive numerical experiments presented
above provide compelling and consistent evidence for the
theoretical properties rigorously established in Sections 11—
IV.In particular, they clearly confirm the remarkable ability
of the KDF-SPH scheme to preserve the MBP and maintain
discrete energy dissipation under appropriate time-step
constraints. The proposed method demonstrates superior
robustness, excellent accuracy, and reliable stability across
both one- and two-dimensional computational settings.

V. CONCLUSION

This paper proposes a novel framework for constructing
numerical schemes that preserve both the MBP and energy
dissipation for the AC equation. Within this framework, we
develop a class of semi-implicit KDF-SPH schemes for the
AC equation and rigorously analyze their stability properties.

The main contributions are twofold:

(i)Methodological Innovation: We pioneer the application
of both standard and modified SPH methods to numerically
solve the AC equation, with numerical experiments
demonstrating their effectiveness.

(ii)Theoretical Guarantees: We provide rigorous proofs
that these schemes preserve discrete MBP and maintain
energy stability, while achieving second-order convergence
in space.

Although we focus on the classical AC equation, our
framework extends the semi-linear parabolic equation theory
proposed by Du et al. [ 18]. This generalization opens avenues
for future work, including:

(1)Applying the method to broader classes of equations.

(i))Developing unconditionally stable, higher-order
accurate variants.

0.00
0.00 0.25 050 0.75 1.00 1.25 1.50 175 2.00

(b)

Fig. 7 Exact solution(a) and numerical solution(b) in Example 3
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Fig. 8 Asymptotic behavior of the energy-stable scheme in Example 4 (a)#=1 (b)#=10 (¢)#=20 and (d) #=120
TABLEI
Comparison of The [ Error for Example 2
SPH KDF-SPH
hod L) Lo )pe
Metho Lw log, Ax Lw log, ;
el ey
11
(Ax,Ap) = (—A—) 0.00002891 — 0.00001538 -
55
1 1
(Ax,ap) = (——) 0.00003520 -0.2840 0.00000415 1.8898
10 10
1 1
(Ax,Ap) = (——) 0.00003618 -0.0396 0.00000114 1.8640
20 20
1 1
(Ax,Ap) = (——) 0.00003651 -0.0130 0.00000035 1.7036
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