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Abstract—This paper presents a novel framework for 

constructing numerical schemes that preserve both the 
Maximum Bound Principle (MBP) and energy dissipation for 
the Allen–Cahn equation. We develop a class of Smoothed 
Particle Hydrodynamics (SPH) schemes for the Allen–Cahn 
equation, which are semi-implicit and conditionally stable. 
These schemes are rigorously analyzed for stability. The 
primary contributions of this work are twofold. First, in terms 
of methodological innovation, we pioneer the application of 
both standard and modified SPH methods to numerically solve 
the Allen–Cahn equation. Numerical experiments further verify 
the accuracy and robustness of the proposed methods. Second, 
we provide rigorous proofs that these schemes preserve the 
discrete MBP and maintain energy stability. Our framework 
extends existing theory for semi-linear parabolic equations and 
suggests directions for future research. This includes applying 
the method to broader classes of equations and developing 
unconditionally stable, higher-order accurate variants. 
 

Index Terms—Allen-Cahn equation; SPH; Meshless particle 
method; Maximum Bound Principle; Energy dissipation law 
 

I. INTRODUCTION 

he Allen-Cahn (AC) equation, originally proposed by 
Allen and Cahn [1] to model phase separation in binary 

alloys, is a foundational phase-field equation with broad 
applications in materials science, image segmentation, and 
biomembrane modeling. Mathematically, it is a semi-linear 
parabolic partial differential equation (PDE) of the form: 
 

 2u
u f(u)

t


  


 (1) 

       
where  u ,x t  is the phase variable,   controls interface 

thickness, and the nonlinear term  f u  derives from the 
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Key features of the AC equation include the following: 
(i)Strict energy dissipation: the total energy 
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decreases monotonically over time, i.e., 
E

0
d

dt
 . 

(ii)MBP:    u , 1,1x t    if initialized within these bounds. 

These properties impose strict requirements on numerical 
scheme design. In the numerical solution of the AC equation, 
the stability of its equilibrium points is of vital importance. 
According to relevant research [2], the equilibrium points 
should satisfy the energy dissipation and the MBP to ensure 
the long-term stability of the system and the rationality of the 
solutions.  

The AC equation has undergone significant theoretical 
evolution-from foundational analysis (existence/uniqueness 
proofs via energy methods [3], stability of equilibria [4], and 
Γ-convergence to mean curvature flow [5]) to modern studies 
of sharp-interface limits, nonlocal variants, and multiphysics 
coupling (e.g., Navier-Stokes-Allen-Cahn [6] and 
Cahn-Hilliard-Allen-Cahn systems [7]). Its applications in 
image processing [8] and medicine [9] have expanded 
phase-field theory's interdisciplinary impact. 

In numerical methods, spatial discretization critically 
affects accuracy and stability. Classical approaches like finite 
differences [10] and finite elements [11] achieve precision 
through structured grids but struggle with complex 
geometries. Recent advances include unconditionally stable 
high-order schemes [12] and AMR strategies [13] for 
interface resolution. While efficient, mesh-based methods 
face limitations with intricate domains and strong 
nonlinearities, motivating meshfree alternatives. Adam et al. 
demonstrated RBF methods for AC equations with complex 
boundaries [14], while deep learning frameworks like PINNs 
[15] extend applicability to high-dimensional nonlinear 
regimes. These approaches excel at handling evolving 
interfaces and complex geometries.  

While meshfree approaches have gained traction in AC 
simulations, the SPH method remains largely unexplored, 
presenting both challenges and opportunities for 
methodology development.  

This work introduces the first enhanced SPH method for 
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the AC equation discretization. By combining Taylor 
expansions with kernel moment properties, we develop 
derivative approximations eliminating traditional SPH's 
kernel differentiation requirement, yielding an efficient linear 
discrete model. Theoretical analysis proves the scheme 
preserves both MBP and energy dissipation with reasonable 
time-steps. Numerical experiments confirm robustness for 
complex geometries and long-term simulations, establishing 
a new meshfree phase-field modeling framework. 

 

II. SPATIAL APPROXIMATION 

A. Conventional SPH Methodology 

The conventional SPH technique employs two principal 
computational phases for function approximation [16]: 

(i) Kernel Approximation: The field quantity  u x  is 

approximated by the convolution integral: 
 

      u u ' W ', 'x x x - x h dx


   (3) 

 
where  W ,x x h  denotes the smoothing kernel with 

compact support, the parameter h  controls the kernel's 
smoothing length, while   defines its support region where 

 W , 0x x h  .When  W ,x x h  is sufficiently smooth  

(e.g., C ), the generalized derivative estimate becomes: 
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(ii)Particle Approximation: The integral is approximated 

by particle discretization: 
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where j indexes neighboring particles within  .The particle 

approximation for the gradient is constructed as: 
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The accuracy of this approximation depends on the kernel 

function, particle density, and smoothing length. 
 

B. KDF-SPH Methodology 

Building upon the conventional SPH framework, we now 
present the Kernel Derivative-Free SPH (KDF-SPH) 
approach that circumvents kernel differentiation. This 
methodology combines Taylor expansion with statistical 
moment properties of kernel functions to directly construct 
derivative approximations, thereby eliminating the need for 
traditional kernel function differentiation [17]. 

The expansion of  u x  about reference point x yields: 

 

       
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Kernel moments  1 1nk k
nM L   are introduced, 

defined as: 
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These moments depend solely on the shape of kernel 

function  W ,x x h  and are independent of the smoothing 

length h. 

The Taylor expansion is multiplied by   W ,
x - x

x - x h
h


  

and integrated over the kernel support domain, yielding: 
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For symmetric kernels (where 1 0kM  ), the first derivative 

is derived as: 
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The continuous form is discretized into a matrix operation 

 2hU = AX ,where A  is KDF-SPH discretization 

matrix constructed from particle positions and kernel values, 
that is, 
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Higher-order terms are incorporated by multiplying the 

Taylor expansion by  
2

W ,
x - x

x - x h
h

   
 

 and integrating: 

 

     

 

2 22

2 4 2

2

u'
u u

2
kk kkk k

xx - x h
x M x M

h x

h







      



 (12) 

 

Simplifying with 4 0,klM     ,the second-order 

derivative becomes: 
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Similar to first derivatives, this is discretized into matrix 

form, avoiding explicit computation of kernel derivatives. 
For multi-dimensional problems, directional moments 

(e.g., 2 2,xx yyM M )are combined to construct gradient or 

Laplacian operators, and mixed moments (e.g., 4
xxyyM ) are 

used to handle cross-derivatives like
 2 u x, y,t

x y


 

. 

 

III. THEORETICAL ANALYSIS 

To simplify the notation, we define the standard Sobolev 
space with homogeneous Dirichlet conditions, their norms 

and inner products using the symbols  kH  , 
k

  and  ,   

respectively. To be specific,
2

  and  ,   are used to 

represent the norm and inner product of   2L  ,and 

  for 

the norm of  L  .The domain is the set of uniformly 

spaced particles in square  2
0,1  or cubic  30,1 , but the 

analysis can extend to domains with different shapes. We 
regard X  as the solution space spanned by the particle-based 

function uh ,where NX R  and 2X R  . 

 

A. The semi-discrete maximum bound principle 

Following Du et al.'s abstract framework for the AC 
equation's MBP [18], proper spatial discretization of such 
semi-linear parabolic equations yields the following ODE 
system:  

 

 u
u u

d
L N

dt
          (14) 

 
where uL , uN represents the linear and non-linear 
components, respectively. Building upon this framework, we 
initially restrict the KDF-SPH-based numerical solution of 
the AC equation to the spatial discretization framework for 
proof simplification. 

The KDF-SPH approximation of the Laplace operator (13) 
generates the sparse matrix 2K  with entries: 
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                      (15) 
 
and the elements are expressed as ijk , 1 ,i j N  . 

The kernel function Wij  adopts the cubic B-spline kernel 

function: 
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where ,
r

q r x - x
h

   is the is the distance between points 

x  and x ; h  is the smoothing length. 
The cubic B-spline kernel function possesses three key 

characteristics: non-negativity, symmetry, and compact 
support. That is, 

 
W 0; W Wij ij ji          (17) 

 
Due to the uniform particle distribution, each particle i  

has at least one neighboring particle j  satisfying W 0ij   

with i jx x , meaning there exist no isolated points in  . 

Therefore, 2K  is weakly diagonally dominant: 

 

; 0, 0ii ij ii ijk k k k        (18) 

 
The discrete matrix 2K  can be extended to two and three 

dimensions through the Kronecker tensor product 
formulation. 

By discretizing the AC equation (1) using KDF-SPH, we 
obtain an ODE system similar to (14): 

 

 u
u f u , 0h

d
t

dt
   A       (19) 

 

where 2
2A K ,and the elements are expressed as ija , 

1 ,i j N  . 

In order to establish the MBP for this equation, we propose 
the following assumption. 

Assumption: The non-linear operator discretization f h  
acts as a composite function induced by a given one-variable 
continuously differentiable function f : R R ,that is, 

 

     0f u x f u x , uh X       (20) 

 
There exists a constant 0   such that 

 

   0 0f 0 f          (21) 

 
The key to the assumption is that the nonlinear operator f  

has opposite signs on the left and right sides of 0. 
Lemma 1: Under Assumption 1, the discrete linear 

operator A  generates a contraction semigroup  
0

t

t
e



A . 
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Proof: 
(i)Consider any u X  and let kx  be the point 

where  u x achieves its supremum, which implies 

 u uk kx

 .The non-negative case u 0k   suffices for 

our analysis by definition: 
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Since  u uj k k j  and condition (18), we have 

 

1 1

u u u
N N

kj j kj k kk k
j j
j k j k

a a a
 
 

 
     
 

     (23) 

 
Therefore, we obtain:  
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Condition (24) implies that matrix A is dissipative. 
(ii)From the Lumer-Phillips Theorem and condition（18）, 

it follows that：for any constant max kk
k

  , then it holds: 
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This shows that matrix  I A is strictly diagonally 

dominant and hence invertible, where I is the N × N identity 
matrix. 

(iii)Under condition (18),as matrix A has non-negative 

off-diagonal terms, the resulting
 
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t
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！
inherits this 

non-negative off-diagonal characteristic; as the row sums of 
matrix A  vanish, we have  A 1 0  and te A 1 .That is,  
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i.e., u ut
ke


 A completing the proof. 

Lemma 2：Under Assumption, we have: 
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Inserting this into the semi-discrete system (19): 
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Expanding the matrix-vector product yields: 
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Combine condition (18) and (28), we obtain: 
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Consequently, (29) reduces to     * *u f uk k

d
t t

dt
 , 

which gives 
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On the other hand, let    min
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that  u ,x t  reaches its minimum at  , **mx t ， a similar 

analysis yields to obtain   u ** 0
m

t A and 
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i i

d
t f t t
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Hence, the proof is complete. 
We have now established the existence and uniqueness of 

solutions to the model problem (1) that maintain the MBP 
property. The following theorem summarizes our main 
result: 

Theorem 1: Consider the semi-discrete AC system (19) 
under Dirichlet boundary conditions. For arbitrary 0T  , 
when A  complies with Condition (18) and Lemma 1, while 

 f u  satisfies Assumption and Lemma 2, if both the initial is 

bounded by 1, i.e.,  0u 1x

 ,then the solution to the 

discrete scheme exists, is unique, and satisfies 
 

 || u || 1 (0, ]h x,t t T  ，      (34) 

 
Proof: 
Using Condition(19) and Lemma 1, As A  is the generator 

of a contraction semigroup, the Banach fixed-point theorem 
yields local existence and uniqueness of solutions to the 

semi-discrete AC system on  10,t . Global existence up to 

arbitrary 0T   follows from standard continuation 
arguments. 
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*t  makes  maxu *t  .The continuity argument 
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Combining the above conclusion with the Assumption 

and Lemma 2, we obtain that 
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d

t
dt

 unless  max 0u 0
d

t
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 holds. 

In this case,  maxu t  reaches its critical value   at  0t  and 

cannot grow further. Similarly, 
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d
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 minu t  reaches its critical value  . 

From [18], 1  ,which means  1 u 1h x,t   . The 

theorem is proved.  
 

B. The fully discrete maximum bound principle 

To achieve better numerical results while avoiding overly 
complex computational procedures, we adopt the 
Crank-Nicolson (CN) scheme for the linear term and an 
explicit scheme for the nonlinear term. Therefore, the fully 
discrete scheme for the equation (1) is written as: 

 

   
1

1u u
u u f u

2

n n
n n n

dt




   
A

     (38) 

 
where   3f u u u  ,the derivative of the double-well 

potential    221
F u u 1

4
  .After reformatting, (38) can be 

rewritten as 
 

 1u u u
2 2

n n ndt dt dt f            
   

A A
I I   (39) 

 
Clearly, (39) is equivalent to (38). We now present the 

fully discrete MBP: 
Theorem 2: Let 0T   be arbitrary. Under the 

requirements that A  complies with condition (18) and 
Lemma 1, while  f u  satisfies Assumption and Lemma 2, 

the fully discrete scheme (38) preserves the MBP provided 

the time-step satisfies 
1

2
dt  .That is, if 0u 1


  holds, 

then 1u 1n


  follows for any 0n  .  

 

Proof: 
Theorem 2 establishes the stability of the spatially discrete 

system. Through proper time-step selection, this stability 
property extends to the fully discrete scheme (39), 
guaranteeing the preservation of the discrete MBP. 

Let 
2

dt  
A

B I .The elements of matrix B  are defined 

as: 
 

 

 

2 2

2

1

2

2 2

4

2
1

1
1 1 ,

2 2

W

,
2 2

W

ij N

j i
j

j j iij
ij

j
ij

N
j ij

ij
j j

dt dt
k i j

x x

m x xb
hdt dt

k i j
x xm

h

 

 







  
   

 

   

        
 






(40) 

 
Clearly, it satisfies: 

 
1 0, 0ii ijb b           (41) 

 
2 2

1 1

2

1

1
2 2

1 1 0
2

N N

ii ij ii ij
j j

j i

N

ij
j

dt dt
b b k k

dt
k

 



 




 
   


   

 


   (42) 

 
Conditions (41)-(42) show that matrix B  possesses the 

M-matrix property and is therefore invertible. Consequently, 
the numerical scheme (39) possesses a unique solution. 

Assuming u 1n


  holds. Let u

2
ndt    

 
I A .It’s 

evident that the off-diagonal elements of matrix 
2

dt
I A  are 

non-negative and its row sums equal 1.Thus, u 1n
i   implies 

1i  . 

Let  f undt    ,then we have 

 1 f un
i idt    .Combining the assumptions, 1i   

holds when u 1n
i  ; 1i    holds when u 1n

i   .To ensure 

1   holds for all u 1

 ,we have to ensure all the 

extremum points lie within the interval  .Through 

analysis, the condition is satisfied if  
u 1

1

max f u
dt




 . From 

[19, Example 2.1] 2L  , we know that  
u 1

max f ' u 2


 . 

In summary, when 
1

2
dt  , for any   satisfies 1i  ,we 

have 1 1un   B  ,that makes 1u 1n
i
   which means 

1u 1n


  holds. 

The Theorem is proved. 
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C. Energy Stability 

The AC equation constitutes the 2L -gradient flow for the 
energy functional (2), and it obeys the following energy 
dissipation property. The discrete formulation of the energy 
functional (2) is given by [20]: 

 

      
2

E u u, u F u ,1
2h h h h h


       (43) 

 
Preservation of energy dissipation by the discretization (38) 

requires rigorous verification. To this end, we derive the 
weak form of the KDF-SPH discretization.  

First, let us provide a detailed exposition of the 
discretization methodology for scheme (38): 

 

   
1

1 12 2 2
u u

u u W f u
n n

n nj ni i
j i ij i

j j

m

dt





 

     (44) 

 

where  
1

1
2

u u
u , W W ,

2

n n

ij i jx x h
 

    represents the 

cubic B-spline kernel function. We now define the following 
discrete inner products: 

 

  u, v u vi i ih
i

m       (45) 

 
And the gradient-based product: 
 

    
,

u, v u u v v Wi j
j i j i ijh

i j i j

m m

 
      (46) 

 
The properties of Wij  directly imply that the discrete 

gradient product satisfies: 
(i) Symmetry: 

 

   u, v v, u
h h

      

 
(ii)Non-negativity: 
 

   
2

,

u, u u u W 0i j
j i ijh

i j i j

m m

 
      

 
The KDF-SPH method admits a weak formulation due to (i) 

and(ii), which allows the energy stability to be proven 
analogously. This yields the weak formulation of the 
discretized AC equation: 

 

      
 

1
21 2

1

1
u u , u , v f u , v 0,

v

nn n nv
dt

H

       

  
 (47)

 

 
Theorem 3: Let 0T   be arbitrary. For 1dt  ,the 

solution of (47) satisfies: 
 

   1E u E u 0n n
h h n   ，  

Proof: 

Taking 1v u un n   where 1u 1n
i
  and use the identity 

  2 2
,a b a b  . The second term on the left-hand side of 

equation (47) is: 
 

      

 

1
2

2
2 1 1 1

2
2 21

2 2

u , v u u , u u
2

u u
2

n n n n n

n n





   



      

   

 (48)
 

 
For the third term on the left hand of (47), we use the 

Taylor expansion 
 

       
     

1 1

21 1

F u F u f u u u

f
u u , u , u

2

n n n n n

n

n n n n n




 

 

    


  

             (49) 

 
and the condition that the derivative of the double-well 

potential satisfies  
u 1

max f ' u L


  with Lipschitz constant 

2L  .Based on the above derivation, we set the Lipschitz 
constant 2L  . 

Thus, we obtain: 
 

     
      

1

1 1 1

f u , v f u ,u u

1
F u u ,1 f ' u u ,u u

2

n n n n

n n n n n n n



  

 

    

(50) 
 
In summary, we may write (44) in the form: 
 

      
   

2
2 2 21 1 1

2 2 2

21 1 1

2

1
u u u u F u F u ,1

2
1

f ' u u ,u u u u
2

n n n n n n

n n n n n n n

dt





  

  

      

    
(51) 

 
Combining (48) with (51): 
 

   2 21 1 1

2 2

1
u u E u E u u un n n n n n

h hdt
        (52) 

 
when 1dt  . 

This completes the proof. 
 

D. Remark on Convergence Order 

Having established the energy dissipation property, we 
now address the convergence order of the proposed scheme. 
The spatial discretization of the Laplacian operator via 
KDF-SPH (Eq. 13) preserves the second-order accuracy 

  2O h demonstrated in [16] for general derivative 

approximations, as rigorously proven in [16, Theorems 1–2]. 
When coupled with the second-order Crank-Nicolson 

temporal discretization   2O dt , the full scheme achieves 
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an overall convergence rate of   2 2O h dt , provided the 

time-step satisfies 0.5dt   (Theorem 2). This theoretical 
order is numerically validated in Section IV (Example 2), 
where error reduction under spatial refinement aligns with 
the expected rate. The Lipschitz continuity of  f u  with 

2L   ensures the nonlinear term does not degrade this 
convergence behavior, as guaranteed by the energy stability 
analysis (Theorem 3).  

 

IV. NUMERICAL EXPERIMENT 

In this section, we present a series of numerical 
experiments to evaluate the accuracy, stability, and energy 
dissipation properties of the proposed KDF-SPH method 
when applied to the AC equation. All simulations employ the 
CN discretization for the linear term and explicit treatment of 
the nonlinear term, as described in scheme (38). 

Example 1. We first consider the one-dimensional AC 
equation with Dirichlet boundary conditions on the domain 

 10,10  over the time interval  0,T ,with 10T  : 

 

 u
u f u

t


  


        (53) 

 

The exact solution is: 
 

 

3 2
1 tanh

4 4
u ,

2

t x

x t

 
   

       (54) 

 
Figure 1 shows the energy evolution for different time 

steps. In Fig. 1(a) ( 2dt  ), the energy exhibits irregular 
oscillations, violating theoretical requirements. Fig. 1(b) 
( 0.1dt  ) shows smooth monotonic decay, agreeing with 
Theorem 3's guarantee for 1dt  . These results validate the 

1dt   stability threshold. 
Figure 2 demonstrates the MBP property under different 

time step sizes. In Fig. 2(a) with 1dt   (violating the 
condition dt≤0.5 in Theorem 2), the numerical solution 

exceeds the admissible range  1,1 , clearly breaking the 

MBP. Conversely, Fig. 2(b) with 0.1dt   maintains strict 
bound preservation, with all solution values properly 

contained within  1,1 , in perfect accordance with Theorem 

2. These contrasting results not only validate the sharp 
time-step constraint 0.5dt   for MBP preservation but also 
demonstrate that this theoretical bound is indeed optimal. 

 

 
(a)                         (b)  

Fig. 1 Energy evolution at different time-steps in Example 1 (a) time-step 2dt  and (b) time-step 0.1dt   
 

 
(a)                         (b)  

Fig. 2 Numerical solutions at different time-steps in Example 1 (a) time-step 1dt   and (b) time-step 0.1dt   
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(a)                         (b)  

Fig. 3 Energy evolution at different time-steps in Example 2 (a) time-step 2dt   and (b) time-step 0.1dt   
 

Example 2. Next, we test a more general one-dimensional 
problem with the initial condition and Dirichlet boundary 
conditions: 

 

 

   
   

2u
u f u

u ,0 0.53 0.47sin 1.5

u 1, 1,u 1, 1

t
x x x

t t






  


  

   

   (55) 

 
The parameter 0.1  , and the solution is computed over 

 0,T  with 60T  .Figure 3 shows the discrete energy 

decreasing monotonically when 1dt  , consistent with the 
energy law. For 1dt  , oscillations occur, indicating 
instability. These results confirm Theorem 3's dissipation 
condition. Figure 4 demonstrates smooth phase transitions 
converging to steady state 

Table I compares the L errors of numerical solution 

generated by both SPH and KDF-SPH in solving the 
one-dimensional AC equation at different spatial step sizes. 
The results demonstrate that KDF-SPH yields significantly 
smaller errors than SPH at the same spatial resolutions. 
Notably, KDF-SPH achieves a convergence order close to 2, 
which aligns with the theoretical analysis in Ⅲ.D. These 
findings confirm the effectiveness of the proposed approach 
in solving the 2D AC equation, as it not only substantially 
reduces numerical errors but also improves convergence 
accuracy. 

 
Example 3. We now consider the two-dimensional AC 

equation on  2
0,2  over the time interval  0,T  with 

1T  : 
 

    u
u f u g ,x t

t


   


 (56) 

 
where  g ,x t is the source term, given by: 

 

       

   

2

2

2

3

, , 1 sin sin

sin sin

t

t

g x y t e x y

e x y





  

 





   

   

          (57) 

The exact solution is: 
 

     2

u , , sin sintx y t e x y        (58) 

 
Figure 5 confirms the method's spatial-temporal accuracy 

in capturing dynamics. Figure 7 shows excellent agreement 
between numerical and exact solutions, with smooth energy 
decay, validating the scheme's two-dimensional robustness 
and dissipation properties. 

 
Fig. 4 Numerical solution in Example 2 

 

 
Fig. 5 The discretized energy functional in Example 3 
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Fig. 6 The discretized energy functional in Example 4 

 
Example 4. Finally, we examine the AC equation on 

 2
0,2  with initial condition and homogeneous Dirichlet 

boundary conditions: 
 

 

 

2u
u f u

u , ,0 0.05sin sin
t
x y x y


  


 

     (59) 

 
The parameter 0.1  , and the solution is computed over 

 0,T  with 120T  . This problem illustrates long-term 

behavior and asymptotic stability. 
Figure 6 shows the energy dissipation evolution, 

decreasing monotonically with rapid initial changes 
( 0 20t  ) before stabilizing ( 20t  ), confirming the 
method's long-time dissipation characteristics. Figure 8 
presents numerical solutions at four time-instances: the 
interface evolves rapidly initially, showing clear phase 
transitions, then slows toward steady state. These results 
match theoretical predictions, validating the method's 

accuracy for both transient and asymptotic behaviors. 
The comprehensive numerical experiments presented 

above provide compelling and consistent evidence for the 
theoretical properties rigorously established in Sections III–
Ⅳ.In particular, they clearly confirm the remarkable ability 
of the KDF-SPH scheme to preserve the MBP and maintain 
discrete energy dissipation under appropriate time-step 
constraints. The proposed method demonstrates superior 
robustness, excellent accuracy, and reliable stability across 
both one- and two-dimensional computational settings. 
 

V. CONCLUSION 

This paper proposes a novel framework for constructing 
numerical schemes that preserve both the MBP and energy 
dissipation for the AC equation. Within this framework, we 
develop a class of semi-implicit KDF-SPH schemes for the 
AC equation and rigorously analyze their stability properties. 

The main contributions are twofold: 
(i)Methodological Innovation: We pioneer the application 

of both standard and modified SPH methods to numerically 
solve the AC equation, with numerical experiments 
demonstrating their effectiveness. 

(ii)Theoretical Guarantees: We provide rigorous proofs 
that these schemes preserve discrete MBP and maintain 
energy stability, while achieving second-order convergence 
in space. 

Although we focus on the classical AC equation, our 
framework extends the semi-linear parabolic equation theory 
proposed by Du et al. [18]. This generalization opens avenues 
for future work, including: 

(i)Applying the method to broader classes of equations. 
(ii)Developing unconditionally stable, higher-order 

accurate variants.

 

 
(a)                        (b) 

Fig. 7 Exact solution(a) and numerical solution(b) in Example 3 
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(a)                         (b) 

 
(c)                         (d) 

Fig. 8 Asymptotic behavior of the energy-stable scheme in Example 4 (a) 1t   (b) 10t   (c) 20t   and (d) 120t   

 
TABLE I 

Comparison of The L  Error for Example 2 

Method 

SPH KDF-SPH 

L  
 
 

log
2

2

L
x

L
x

 



 

L  
 
 

log
2

2

L
x

L
x

 



 

 ,x y    ,

1 1

5 5
 0.00002891 － 0.00001538 － 

 ,x y    ,

1 1

10 10
 0.00003520 -0.2840 0.00000415 1.8898 

 ,x y    ,

1 1

20 20
 0.00003618 -0.0396 0.00000114 1.8640 

 ,x y    ,

1 1

40 40
 0.00003651 -0.0130 0.00000035 1.7036 
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