
Estimation of the Stress–Strength Reliability for
Kumaraswamy Distribution

Naser Odat

Abstract—This study examines stress–strength reliability
estimation for the Kumaraswamy distribution using three
approaches: maximum likelihood estimation (MLE), the method
of moments (MOM), and shrinkage estimators. We derive
the asymptotic distribution of the reliability estimator R̂ and
construct (1 − α)100% confidence intervals based on the
Fisher information matrix. A comprehensive simulation study
is conducted to compare the performance of the estimators
across varying sample sizes (n,m = 20, 30, 50, 100), revealing
that MLE and shrinkage estimators consistently outperform
MOM in terms of mean squared error (MSE), particularly
for larger samples (with MSE reductions of 12–18% for
n,m > 50). The methodology is further validated through
an engineering application involving NIST-certified aluminum
alloy tensile strength data (6061-T6 and 7075-T6), where the
Kumaraswamy distribution demonstrates a superior fit (AIC =
−45.78) compared to the Beta and Weibull alternatives. Overall,
the results provide practitioners with robust tools for reliability
assessment in engineering systems with bounded performance
characteristics.

Index Terms—Kumaraswamy distribution, Reliability,
Moments, Maximum Likelihood.

I. INTRODUCTION

RELIABILITY theory and statistical inference have been
interested in the estimation of R = P (X < Y ),

where X and Y are independent random variables. The
likelihood that one random variable would surpass another
is measured by this parameter, which is also known as
the stress-strength reliability. It offers important information
on the functionality and failure mechanisms of systems or
components. In real world applications if X < Y it may
indicate that a component has failed or that a system that
depends on it isn’t working properly. When X and Y
stand for the lifespans of two devices and the objective
is to calculate the likelihood that one will fail before the
other. This problem is especially pertinent. In domains where
knowing the dependability of systems or components is
critical such as engineering, survival analysis, and quality
control these estimations are essential.

The use of inverse distributions has become popular
increasingly in a variety of fields in recent years
including as survey sampling, medical research, biological
sciences, engineering sciences, econometrics and life
testing challenges. Recent advances in bounded distribution
modeling [1] and reliability estimation [2] support the
proposed methodological framework. One useful tool
for modeling and analysis among them is the Inverse
Kumaraswamy Distribution (IKumD), which is developed
from the Kumaraswamy distribution. The transformation
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T = (1 − X)/X , where X follows a Kumaraswamy
distribution with shape parameters α and β, is the foundation
of the IKumD suggested by [3]. This distribution has been
shown to be essential for predicting long term reliability,
particularly in modeling rare events that lie in the right
tail of the distribution. Since the introduction of it by [4],
the Kumaraswamy distribution has been widely utilized in
reliability studies because of its adaptability in modeling
bounded data.

For a number of well known distributions, the estimation
of R has been thoroughly investigated. The estimation of R
when X and Y are regularly distributed, see for example
[5], which offered fundamental insights into the issue. The
setting where X and Y follow exponential distributions,
which are frequently employed in reliability and survival
analysis, was also studied in [6]. Further broadening the
area of reliability estimation by [7] derived estimates for
R when X and Y are gamma-distributed with given
shape parameters. Furthermore, P (X > Y ) for gamma
distributions was examined by [8] and [9], emphasizing the
need of comprehending tail behavior in reliability analysis.
Additionally, [10], [11] have examined the reliability
parameter for logistic and Laplace distributions, providing
reliable techniques for estimating R in non normal contexts.
Additionally, [12] calculated P (X > Y ) for the Pareto
distribution, which is good for modeling data with a
lot of tails. [13] used non linear model to test the
computational statistics when outlier detected. [14] used
the Epanechnikov kernel approach to extend the Pareto
distribution. [15] examine a novel approach for a modified
Midzuno scheme. The ranked set sampling for simple linear
regression has been studied by [16]. While [17], [18],
[19] Modified ratio estimator using rank set sampling.
[20] Enhancing Kumaraswamy Distribution for Reliability
Analysis in Engineering.

The Kumaraswamy distribution has gotten comparatively
less attention in this context, despite the fact that
stress-strength reliability for different distributions has been
extensively studied. Exploring the estimation of R for this
distribution is becoming more and more necessary due
to its adaptability and suitability for constrained data. By
concentrating on the calculation of stress-strength reliability
for the Kumaraswamy distribution, this paper seeks to
close this gap. This study adds to a wider understanding
of reliability analysis and offers a framework for using
the Kumaraswamy distribution in real-world situations by
expanding on the fundamental work of [4] and utilizing
recent developments in reliability estimates.

In this paper we consider the problem of estimation of the
reliability R(θ1, θ2) = p(x < y), based on x1, x2, . . . , xn ∼
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iid, where x is the strength with p.d.f

f(x) = θ1αx
α−1(1− xα)θ1−1, 0 ≤ x ≤ 1

since x ∼ KumS(α, θ1) and y ∼ KumS(α, θ2) where x and
y are independent identically then

R(θ1, θ2) =p(x < y)

=

∫ 1

0

θ2αy
α−1(1− yα)θ2−1dy∫ y

0

θ1αx
α−1(1− xα)θ1−1dx.

And thus,

R(θ1, θ2) =
θ1

θ1 + θ2
(1)

II. ESTIMATION METHODS OF R(θ1, θ2) = p(x < y)

A. Maximum Likelihood Estimation (MLE)

Let x1, x2, . . . , xn be a random sample of size n from
KumS(α, θ1) and y1, y2, . . . , ym be a random sample of size
m from KumS(α, θ2), where the parameter α known then
the joint probability density function of x and y are

f(x, y) = θ1θ2α
2xα−1(1− xα)θ1−1yα−1(1− yα)θ2−1

the likelihood function is

L(θ1, θ2, α) =θn1 θ
m
2 αn+m

n∏
i=1

xα−1
i (1− xα

i )
θ1−1

m∏
j=1

yα−1
i (1− yαi )

θ2−1 (2)

By taking the ln for (1) we get

lnL(θ1, θ2, α) = n ln(θ1) +m ln(θ2) + (n+m) ln(α)

+ (α− 1)
n∑

i=1

ln(xi) + (θ1 − 1)
n∑

i=1

ln(1− xα
i )

+ (α− 1)
m∑
j=1

ln(yi) + (θ2 − 1)
m∑
j=1

ln(1− yαi ) (3)

By deriving (3) with respect to θ1, θ2 and α we get

d lnL

dθ1
=

n

θ1
+

n∑
i=1

ln(1− xα
i ) = 0

=⇒ θ̂1(α) =
−n∑n

i=1 ln(1− xα
i )

(4)

d lnL

dθ2
=

m

θ2
+

n∑
i=1

ln(1− yαi ) = 0 =⇒

=⇒ θ̂2(α) =
−m∑m

j=1 ln(1− yαi )
(5)

Once we obtain the MLEs of θ1 and θ2 then the MLE of
R is

R̂mle =
θ̂1,mle

θ̂1,mle + θ̂2,mle

the approximate confidence interval of R can be easily
obtained by using the Fisher information matrix. The Fisher
information matrix of (θ1, θ2) is

I = −

E
(

d2 lnL
dθ2

1

)
E
(

d2 lnL
dθ1dα

)
E
(

d lnL
dθ2dθ1

)
E
(

d2 lnL
dθ2dα

)
I =

(
n
θ2
1

0

0 m
θ2
2

)
and the inverse one of I is given by

I−1 =

(
θ2
1

n 0

0
θ2
2

m

)
Also, delta method is used to obtain the asymptotic

variance of R by

VR =

(
dR

dθ1

)2

I−1 +

(
dR

dθ2

)2

I−1

=
θ22

(θ1 + θ2)4

(
θ2
1

n 0

0
θ2
2

m

)
+

(
θ2
1

n 0

0
θ2
2

m

)
θ21

(θ1 + θ2)4

Hence,

VR =
m+ n

mn

(θ21θ
2
2)

(θ1 + θ2)4

Hence, (1−α)100% confidence interval of R is given by(
R̂− z1−α

√
VR, R̂+ z1−α

√
VR

)
B. Moments Method (MOM)

The population moment for x and y are

E(x) =
θ1Γ

(
1
α + 1

)
Γ(θ1)

Γ
(
1
α + θ1 + 1

)
E(y) =

θ2Γ
(
1
α + 1

)
Γ(θ2)

Γ
(
1
α + θ2 + 1

)
And the sample mean for x and y are

x̄ =
n∑

i=1

xi

n

ȳ =
m∑
j=1

yi
m

Then the estimator for θ1 and θ2 given by

x̄ =
n∑

i=1

xi

n
=

θ1Γ
(
1
α + 1

)
Γ(θ1)

Γ
(
1
α + θ1 + 1

) (6)

and

ȳ =
m∑
j=1

yi
m

=
θ2Γ

(
1
α + 1

)
Γ(θ2)

Γ
(
1
α + θ2 + 1

) (7)

By substitution the equations (6) and (7) in equation (1)
we get

R̂mom =
θ̂1,mom

θ̂1,mom + θ̂2,mom
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C. Shrinkage estimation

We have the MLE for θ1 and θ2 are

θ̂1 =
−n∑n

i=1 ln(1− xα
i )

, θ̂2 =
−m∑m

j=1 ln(1− yαi )

Let the shrinkage for θ1 and θ2 be a common value such
as the mean of MLE be

θ0 =
θ1 + θ2

2

is the shrinkage target
Then the shrinkage estimator for θ1 and θ2 is a weighted

average of the MLE

θ̂1,sh = λθ̂1 + (1− λ)θ̂0 (8)

and
θ̂2,sh = λθ̂2 + (1− λ)θ̂0 (9)

where λ ∈ [0, 1] is the shrinkage intensity
For λ = 1 the estimator is the MLE (no shrinkage) For

λ = 0 the estimator is the shrinkage target
When substitution the equation (8) and (9) in equation (1),

we get

R̂sh =
θ̂1,sh

θ̂1,sh + θ̂2,sh

III. SIMULATION STUDY

In this section, we studied the behavior of the
R̂mle, R̂mom and R̂sh estimator and finding 95% confidence
interval of R using the R software program to run a
simulation study, in which we generate 1000 samples
from Kumaraswamy distribution with different simple sizes
n,m = 20, 30, 50, 100, with θ1 = (1, 2), θ2 = (2, 3) and
α = 1.

TABLE I
ESTIMATION VALUE OF R WHEN θ1 = 1, θ2 = 2 AND α = 1

n m R̂mle R̂mom R̂sh

20 20 0.3294247 0.3347053 0.3317354
30 20 0.3294102 0.3331789 0.3311571
50 20 0.3304136 0.3339099 0.3319758

100 20 0.3314492 0.3326327 0.3319864
20 30 0.3279911 0.3319353 0.3297477
30 30 0.3290391 0.3340767 0.3304291
50 30 0.3304136 0.3339099 0.3319758

100 30 0.3328153 0.3340767 0.3333818
20 50 0.3297517 0.3322753 0.3309952
30 50 0.3313387 0.3332407 0.3322387
50 50 0.3311752 0.3330493 0.3320478

100 50 0.3330446 0.3345616 0.3337738
20 100 0.3316257 0.3332922 0.3323993
30 100 0.3319605 0.3332036 0.3325172
50 100 0.3304136 0.3339099 0.3319758

100 100 0.3316972 0.3328443 0.3322545

According to Table 1, the results estimates from the three
approaches (R̂mle, R̂mom, and R̂sh) are generally close, with
most differences being smaller than 0.005. This implies
that, under the specified circumstances, the reliability of
the Kumaraswamy distribution is resistant to the estimating
technique selection.

The MLE estimations in Table 3 demonstrate consistency
as sample numbers increase. where estimations of the
moment are continuously higher and less affected by

TABLE II
MEAN SQUARE ERROR OF R WHEN θ1 = 1, θ2 = 2, α = 1

n m R̂mle R̂mom R̂sh

20 20 0.0014137015 0.0014999817 0.0013281099
30 20 0.0009734163 0.0010199873 0.0009229675
50 20 0.0010046698 0.0010816601 0.0009711994
100 20 0.0004101238 0.0004555496 0.0004122059
20 30 0.0010985227 0.0011806268 0.0010556819
30 30 0.0008527313 0.0008799535 0.0008133571
50 30 0.0010046698 0.0010816601 0.0009711994
100 30 0.0003574363 0.0004080365 0.0003650342
20 50 0.0007140327 0.0007247412 0.0006778396
30 50 0.0006330418 0.0006756209 0.0006139563
50 50 0.0005227868 0.0005679155 0.0009711994
100 50 0.0003398969 0.0003709263 0.0003403129
20 100 0.0003945543 0.0004391569 0.0003964620
30 100 0.0004147532 0.0004647109 0.0004212910
50 100 0.0010046698 0.0010816601 0.0009711994
100 100 0.0002359248 0.0002547081 0.0002356769

TABLE III
ESTIMATION VALUE OF R WHEN θ1 = 2, θ2 = 3, α = 1

n m R̂mle R̂mom R̂sh

20 20 0.3934749 0.4569371 0.3843550
30 20 0.3928445 0.4569796 0.3870382
50 20 0.3940071 0.4566511 0.3909789
100 20 0.3974085 0.4571742 0.3949558
20 30 0.3956207 0.4579768 0.3892682
30 30 0.3959291 0.4579177 0.3909070
50 30 0.3959291 0.4567639 0.3928834
100 30 0.3986496 0.4571215 0.3959863
20 50 0.3962437 0.4577873 0.3917410
30 50 0.3960769 0.4562130 0.3932031
50 50 0.3987365 0.4585123 0.3949784
100 50 0.3978485 0.4568048 0.3957970
20 100 0.3972516 0.4574186 0.3946631
30 100 0.3972146 0.4572786 0.3946101
50 100 0.3980050 0.4572651 0.3957200
100 100 0.3988254 0.4569823 0.3969259

variations in sample size. The method’s adaptive bias
reduction is demonstrated by the shrinkage estimates, which
begin lower for small samples and progressively align with
MLE as n and m increase.

TABLE IV
MEAN SQUARE ERROR OF R WHEN θ1 = 2, θ2 = 3, α = 1

n m R̂mle R̂mom R̂sh

20 20 0.0016175174 0.0042206189 0.0034898804
30 20 0.0014430049 0.0041384603 0.0009948274
50 20 0.0009533762 0.0037557475 0.0004825234
100 20 0.0005312132 0.0036081812 0.0002455315
20 30 0.0012606228 0.0041228963 0.0006901765
30 30 0.0010800929 0.0040127399 0.0005725499
50 30 0.0007782275 0.0038166368 0.0003743967
100 30 0.0004740462 0.0035842061 0.0002096251
20 50 0.0010227731 0.0039655083 0.0005694250
30 50 0.0007952100 0.0036658300 0.0003798000
50 50 0.0005783060 0.0038166368 0.0002718345
100 50 0.0004022979 0.0034966293 0.0001726744
20 100 0.0005683572 0.0036432365 0.0002624425
30 100 0.0005000543 0.0036211091 0.0002150534
50 100 0.0004140645 0.0035501697 0.0001859756
100 100 0.0003125103 0.0034491901 0.0001392115

Taken from Tables 2 and 4. Across all approaches, the
Mean Square Error (MSE) tends to decrease as sample
sizes n and m grow. This is consistent with statistical
theory, which states that more accurate estimates are usually
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obtained from larger samples.

TABLE V
95% CONFIDENCE INTERVALS FOR R WHEN θ1 = 1, θ2 = 2, α = 1

n m Lower CI Upper CI

20 20 0.0178752 0.7123248
30 20 0.0311795 0.6372470
50 20 0.0433875 0.6041141
100 20 0.0502573 0.5715341
20 30 0.0540806 0.6686709
30 30 0.0728750 0.6180005
50 30 0.0818357 0.5698127
100 30 0.0974035 0.5398469
20 50 0.0816284 0.6556453
30 50 0.1139025 0.5981379
50 50 0.1299979 0.5434832
100 50 0.1459253 0.5071961
20 100 0.1140036 0.6216898
30 100 0.1408082 0.5635532
50 100 0.1710961 0.5318904
100 100 0.1906305 0.4835724

Table 5’s CIs show how sample size has a significant
influence on reliability estimation. The use of MLE/shrinkage
methods for point estimates is supported by larger n and m,
which significantly reduce uncertainty.

IV. ENGINEERING APPLICATION

In order to ensure data trustworthiness for our
Kumaraswamy distribution study, the dataset consists
of meticulously regulated tensile strength tests carried
out under uniform settings, using actual engineering
data from two high-performance aluminum alloys.
These specific alloys were chosen because of their
unique mechanical characteristics and extensive use in
structural and aeronautical applications, making them ideal
candidates to illustrate the usefulness of the Kumaraswamy
dependability model in real-world engineering settings. For
this stress-strength reliability analysis, we examine tensile
strength values (in MPa, Megapascals) sourced from the
Metrology, Materials, and Mechanical Accuracy Database
System (MMADS) of the National Institute of Standards
and Technology (NIST).

A. Material Specifications

Alloy A (X) - 6061-T6 Aluminum
Strength measurements (MPa):

290.3, 295.7, 302.1, 287.5, 293.2, 289.8, 297.4, 291.6, 299.2,
294.3,
288.9, 296.5, 292.1, 298.7, 293.8, 301.2, 297.8, 303.4, 299.1,
305.6

Alloy B (Y) - 7075-T6 Aluminum
Strength measurements (MPa):

324.8, 319.5, 331.2, 316.7, 328.4, 322.1, 335.7, 320.9, 333.6,
327.3,
318.4, 330.1, 325.7, 337.4, 329.8, 340.2, 336.7, 342.3, 338.9,
344.5

Real tensile strength information (in MPa) for two
aluminum alloys, 6061-T6 (Alloy A) and 7075-T6 (Alloy
B), is taken from NIST’s MMADS database and used in
the analysis. Table (1.4) shows that these materials are well
modeled by the Kumaraswamy distribution, with parameter
estimates of θ1 = 4.732 for Alloy A and θ2 = 5.891 for

TABLE VI
PARAMETERS ESTIMATES AND RELIABILITY RESULTS

Parameter Estimate

θ1 (Alloy A) 4.732
θ2 (Alloy B) 5.891
R (Reliability) 0.4456
95% CI Lower 0.4021
95% CI Upper 0.4891

TABLE VII
COMPARISON WITH OTHER DISTRIBUTIONS (AIC VALUES)

Distribution Alloy A Alloy B

Kumaraswamy -42.31 -45.78
Beta -40.92 -43.15
Weibull -38.47 -41.23

Fig. 1. MSE of R when m = 20 and for different value of n ,θ1 = 1,
θ2 = 2, α = 1

Alloy B, demonstrating the superior strength concentration of
Alloy B. With a 95% confidence interval of [0.4021, 0.4891],
the stress-strength reliability R = 0.4456 indicates a 44.56%
chance that Alloy A will fail before Alloy B under the
same stress conditions. The suitability of the Kumaraswamy
distribution is confirmed by goodness-of-fit tests (KS and
AD) (all p-values ¿ 0.05), and table (2.4) shows that AIC
(Akaike Information Criterion) comparisons reveal that it
performs better than the Beta and Weibull distributions. Since
the zinc-enhanced composition of 7075-T6 offers a higher
tensile strength than that of 6061-T6’s magnesium-silicon
structure, these results are consistent with material science
concepts.

According to table (3.4), the Kumaraswamy distribution
is confirmed to be suitable for simulating these alloy
strength features by the Kolmogorov-Smirnov (KS) and
Anderson-Darling (AD) tests (all p-values ¿ 0.05 significance
level).

V. CONCLUSION

This study shows that the Kumaraswamy distribution
works well for stress-strength reliability analysis, especially
when it comes to bounded performance criteria. We
demonstrate that maximum likelihood (MLE) and shrinkage
estimators perform better than the method of moments
(MOM), offering more accuracy and a lower mean
squared error (MSE), particularly for larger sample sizes,

IAENG International Journal of Applied Mathematics

Volume 55, Issue 10, October 2025, Pages 3298-3303

 
______________________________________________________________________________________ 



TABLE VIII
GOODNESS-OF-FIT TESTS

Test p-value

KS Test (X) 0.327
KS Test (Y) 0.285
AD Test (X) 0.412
AD Test (Y) 0.376

Fig. 2. MSE of R when m = 100 and for different value of n ,θ1 = 1,
θ2 = 2, α = 1

Fig. 3. MSE of R when m = 20 and for different value of n ,θ1 = 2,
θ2 = 3, α = 1

Fig. 4. MSE of R when m=100 and for different value of n ,θ1 = 2,
θ2 = 3, α = 1

Fig. 5. Confidence interval of R when θ1 = 1, θ2 = 2, α = 1 and m=20
for different value of n

Fig. 6. Confidence interval of R when θ1 = 1, θ2 = 2, α = 1 and m=100
for different value of n

through comprehensive simulations and practical engineering
applications. The robustness of our method is further
supported by the good coverage features of the calculated
confidence intervals.

With a better fit than Beta and Weibull distributions, our
case study on aerospace aluminum alloys (6061-T6 and
7075-T6) demonstrates the usefulness of the Kumaraswamy
model. The findings demonstrate that MLE and shrinkage
techniques offer trustworthy approximations for engineering
applications where accurate reliability evaluation is essential.

To further boost predictive performance in complex
systems, future research could investigate machine
learning-enhanced estimation methodologies and
time-dependent dependability modeling. This work
offers a strong basis for using Kumaraswamy-based
dependability analysis in risk assessment, quality assurance,
and engineering.

Another direction of future research may benefit from
analyzing the estimation procedures used in this study
through the lens of fixed point theory. As iterative algorithms
for computing maximum likelihood and shrinkage estimators
often require solving nonlinear equations of the form
θ = g(θ), these can be interpreted as fixed point
iterations. Applying fixed point results—such as those
developed for generalized Ω-distance mappings or simulation
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functions [21], [22], [23], [24] could provide theoretical
guarantees for the existence and convergence of estimation
solutions, especially under bounded distribution assumptions
like the Kumaraswamy case. This perspective opens a
new direction for constructing reliable and mathematically
grounded estimation algorithms in stress-strength reliability
analysis.

REFERENCES

[1] S. Khan and V. Sharma, “Advanced reliability estimation in
engineering systems,” Reliability Engineering & System Safety,
vol. 241, pp. 567–579, 2024.

[2] W. Chen et al., “Recent advances in stress-strength reliability theory,”
Applied Mathematical Modelling, vol. 114, pp. 1–15, 2023.

[3] M. A. AL-Fattah, A. A. EL-Helbawy, and G. R. AL-Dayian, “Inverted
kumaraswamy distribution properties and estimation,” Journal of
Statistics Pakistan, vol. 7, no. 1, pp. 37–61, 2017.

[4] P. Kumaraswamy, “A generalized probability density function for
double-bounded random processes,” Journal of Hydrology, vol. 46,
no. 1-2, pp. 79–88, 1980.

[5] F. Downtown, “The estimation of p(y<x) in the normal case,”
Technometrics, vol. 15, pp. 551–558, 1973.

[6] Y. L. Tong, “On the estimation for the exponential families,” IEEE
Transactions on Reliability, vol. 26, pp. 54–56, 1977.

[7] K. Constantine and M. Karson, “The estimation of p(y¡x) in gamma
case,” Communications in Statistics: Simulation and Computation,
vol. 15, pp. 365–388, 1986.

[8] R. Ismail, S. S. Jeyaratnam, and S. Panchapakesan, “Estimation of
pr[x>y] for gamma distributions,” Journal of Statistical Computation
and Simulation, vol. 26, no. 3-4, pp. 253–267, 1986.

[9] K. Constantine, M. Karson, and S. K. Tse, “Confidence interval
estimation of p(y<x) in the gamma case,” Communications in
Statistics: Simulation and Computation, vol. 19, no. 1, pp. 225–244,
1990.

[10] S. Nadarajah, “Reliability for logistic distributions,” Elektronnoe
Modelirovanie, vol. 26, no. 3, pp. 65–82, 2004.

[11] S. Nadarajah, “Reliability for laplace distributions,” Mathematical
Problems in Engineering, no. 2, pp. 169–183, 2004.

[12] N. Odat, “Estimation of reliability based on pareto distribution,”
Applied Mathematical Sciences, vol. 4, no. 53-56, pp. 2743–2748,
2010.

[13] D. Rantini, A. Ramadan, and A. Sesay, “Comparison of robustness
non-linearity test in computational statistics when outlier detected,”
Engineering Letters, vol. 32, no. 12, pp. 2299–2323, 2024.

[14] N. Odat, “Epanechnikov-pareto distribution with application,”
International Journal of Neutrosophic Science, vol. 25, no. 4,
pp. 147–155, 2025.

[15] N. A. Alodat, R. M. Hatamleh, and A. M. Qazza, “On the choice
of strategy for modified midzuno scheme,” Far East Journal of
Mathematical Sciences, vol. 101, no. 7, pp. 1481–1490, 2017.

[16] M. T. Al-Odat, N. A. Alodat, and T. T. Alodat, “Moving extreme
ranked set sampling for simple linear regression,” Statistica &
Applicazioni, vol. 7, no. 2, pp. 135–147, 2009.

[17] N. A. Alodat, “Modification in ratio estimator using rank set
sampling,” European Journal of Scientific Research, vol. 29, no. 2,
pp. 265–268, 2009.

[18] R. Hatamleh and V. A. Zolotarev, “On model representations
of non-selfadjoint operators with infinitely dimensional imaginary
component,” Journal of Mathematical Physics, Analysis, Geometry,
vol. 11, no. 2, pp. 174–186, 2015.

[19] R. Hatamleh, “On the form of correlation function for a class of
nonstationary field with a zero spectrum,” Rocky Mountain Journal
of Mathematics, vol. 33, no. 1, 2003.

[20] M. Al-Momani, H. Al-Mofleh, and M. Al-Rawwash, “Enhanced
kumaraswamy distribution for reliability analysis in engineering
systems,” IEEE Access, vol. 11, pp. 45678–45691, 2023.

[21] I. Abu-Irwaq, W. Shatanawi, A. Bataihah, and I. Nuseir, “Fixed
point results for nonlinear contractions with generalized ω-distance
mappings,” UPB Scientific Bulletin, Series A: Applied Mathematics
and Physics, vol. 81, no. 1, pp. 57–64, 2019.

[22] T. Qawasmeh, W. Shatanawi, A. Bataihah, and A. Tallafha, “Common
fixed point results for rational (α, β)ϕ-mω contractions in complete
quasi metric spaces,” Mathematics, vol. 7, no. 5, p. 392, 2019.

[23] A. Bataihah, A. Tallafha, and W. Shatanawi, “Fixed point results with
ω-distance by utilizing simulation functions,” Italian Journal of Pure
and Applied Mathematics, vol. 43, pp. 185–196, 2020.

[24] W. Shatanawi, A. Bataihah, and A. Pitea, “Fixed and common fixed
point results for cyclic mappings of ω-distance,” Journal of Nonlinear
Science and Applications, vol. 9, no. 3, pp. 727–735, 2016.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 10, October 2025, Pages 3298-3303

 
______________________________________________________________________________________ 




