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Abstract—Multi-label learning, which involves training
models on data annotated with more than one label, has
garnered considerable attention. However, there are still several
challenges in this field. A) In multi-label learning, traditional
algorithms have not fully exploited samples with missing labels,
despite the fact that such samples are prevalent in real-world
applications. B) Traditional methods typically assume that
strongly correlated labels share similar label-specific features.
However, this assumption does not hold in some scenarios, as
even though there is a correlation between two labels, their
corresponding specific features may not be identical. C) The
sparsity and redundancy of features hinder the selection of
high-quality features. To address these limitations, we design
an Efficient Elastic net based high Sparse personalized and
low Redundancy Feature Selection method with Missing Label
for multi-label data named EESRFSML. First, we introduce
the label correlation matrix to construct an enhanced label
matrix, which recovers as many missing labels as possible.
Second, we leverage a label-level regularizer to capture both
global and local label correlations from the label outputs, rather
than relying on the coefficient matrix. Meanwhile, We also
fully consider both label-specific features and common features.
Finally, the classification model is efficiently optimized using the
accelerated proximal gradient algorithm. Extensive experiments
demonstrate that the proposed method outperforms existing
methods in multi-label learning tasks.

Index Terms—Multi-label learning; Missing labels;
Label-specific features; Common features;

I. INTRODUCTION

MULTI-LABEL learning aims to address classification
tasks where each sample can be associated with

multiple labels simultaneously and is widely applied across
various fields, such as text categorization [1], social media
[2], image search and partitioning [3], protein function
prediction [4], and so on.

Multi-label learning algorithms are generally categorized
into two main groups: problem transformation (PT) methods
and algorithm adaptation (AA) methods. PT methods
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reformulate a multi-label classification task into either
a multi-class classification task or a set of binary
classification tasks. Representative PT algorithms include
Binary Relevance (BR) [5], Label Powerset (LP) [6], and
Classifier Chains (CC) [7]. In contrast, AA methods modify
existing classification algorithms to handle multi-label data
directly. Typical AA algorithms include Multi-label Decision
Trees [8], CML [9], Rank-SVM [10], and ML-KNN [11].

The traditional multi-label algorithms generally assume
that all labels share the same feature set [12], [13].
However, in practical applications, this assumption may
not always hold. For example, in multi-label image
classification tasks, labels such as "sunset" and "ocean"
may rely on entirely different visual features, with the
former focusing on color gradients and atmospheric hues,
and the latter emphasizing textures and wave patterns.
Such label-specific dependencies underscore the limitations
of shared feature sets in capturing nuanced label-specific
characteristics. In contrast, label-specific feature learning
algorithms extract distinct features for each individual label,
which effectively improves classification performance [14].
The typical algorithms of label-specific features include LITF
[15], LSML [16], CLML [17], and LRLSF [18].

In many cases, different labels may still share underlying
patterns or relationships. For instance, labels like "beach" and
"ocean" may both rely on features capturing sand textures
or water dynamics. By leveraging these shared patterns,
common features can complement label-specific features,
enabling the model to better generalize across all labels. This
complementary relationship underscores the importance of
simultaneously learning common and label-specific features
to achieve robust performance. Therefore, common features
play a crucial role in providing shared discrimination for
all labels in multi-label learning. The typical algorithms
of common features include SCMFS [19], MLMLFS [20],
FSLCLC [21], CLML [17], and ESRFS [22].

In multi-label classification, labels are often interrelated.
Based on the level of label correlation considered, multi-label
learning algorithms can be categorized into three types.
First-order strategies ignore label correlations entirely.
Representative algorithms in this category include Binary
Relevance (BR) [5], ML-KNN [11], LIFT [15], and
LSFML-MLTSVM [23]. Second-order strategies take into
account pairwise label correlations. Typical algorithms
include LLSF [24], LSML [16], CLML [17], NMDG
[25], and LRLSF [18]. Higher-order strategies aim to
capture correlations among all labels simultaneously. Notable
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examples include LLSF-DL [24], LFFS [26], GLMAM [27],
and GLFS [28].

Multi-label learning, which involves training models on
data annotated with more than one label, has garnered
considerable attention. However, there are still several
challenges in this field. A) In multi-label learning, traditional
algorithms have not fully exploited samples with missing
labels, despite the fact that such samples are prevalent in
real-world applications. B) Traditional methods typically
assume that strongly correlated labels share similar specific
label features. However, this assumption does not hold
in some scenarios, as even though there is a correlation
between two labels, their corresponding specific features
may not be identical. C) The sparsity and redundancy of
features hinder the selection of high-quality features. To
address these limitations, we design an Efficient Elastic
net based high Sparse personalized and low Redundancy
Feature Selection Method with Missing Label for multi-label
data named EESRFSML. First, we introduce the label
correlation matrix to construct an enhanced label matrix,
which recovers as many missing labels as possible. Second,
we leverage a label-level regularizer to capture both global
and local label correlations from the label outputs, rather
than relying on the coefficient matrix. Meanwhile, We
also fully consider both label-specific features and common
features. Finally, the classification model is efficiently
optimized using the accelerated proximal gradient algorithm.
Extensive experiments demonstrate that the proposed method
outperforms existing methods in multi-label learning tasks.

The structure of the paper is as follows: Section 2 provides
an overview of related works. Section 3 introduces our
EESRFSML algorithm, including the classification model,
optimization and analysis of time complexity. Section 4
presents the experimental results and examines parameter
sensitivity. Section 5 concludes the paper.

II. RELATED WORKS

A. Label-specific features and common features learning

Zhang et al. propose the LIFT algorithm [15], which
first utilizes label-specific features to address the multi-label
learning problem. It clusters instances according to their
labels and leverages the separation between instances to
acquire label-specific features. Huang et al. propose the
LLSF algorithm [24], which assumes that each label is
correlated to a subset of features from the original feature
set, and uses a linear regression model to obtain the
relevant label-specific features. Huang et al. also propose the
LLSF-DL [24] algorithm by extending the LLSF algorithm,
which learns label-specific features using a sparse stacking
method. However, the LLSF and LLSF-DL algorithms ignore
common feature learning. To address this issue, Li et al.
proposed the CLML [17] algorithm, which introduces the
l2,1-norm regularizer to learn common features to enhance
classification performance. Hu et al. propose the SCMFS
[29] algorithm, which employs coupled matrix factorization
(CMF) to identify the common modes between the feature
and label matrices, effectively capturing the underlying
information from both data sources. Additionally, the
algorithm extracts common features from these modes using
the l2,1-norm. However, the SCMFS algorithm can only

utilize samples with complete labels and cannot make use of
samples with missing labels. Li et al. propose the CLSML
[30] algorithm, which employs a two-stage, second-order
label correlation learning method based on cosine similarity
to better acquire label-specific features and common features.
However, the l2,1-norm ignores the redundant correlations
among features, leading to the selection of shared common
features with considerable redundancy. Li et al. propose the
ESRFS [22] algorithm, which identifies common features
with low redundancy and strong discriminative power by
introducing a novel regularization term.

B. Missing labels

Huang et al. propose the LSML [16] algorithm, which
leverages the label correlation coefficient matrix to recover
missing labels and learn label-specific features from the
new supplementary label matrix. However, the LSML
algorithm ignores the potential correlations between the
feature space and multidimensional label data. Deng et
al. propose the NMFR [31] algorithm, which utilizes
non-negative matrix factorization to learn a low-rank
approximation of the feature and label matrices, enhancing
the accuracy of multi-label classification tasks by exploiting
both feature-label relationships and latent patterns. However,
the NMFR algorithm does not address the issue of label
imbalance. Faraji et al. propose the MLFS-GLOCAL [32]
algorithm, which integrates both global and local label
correlations to enhance feature selection, aiming to improve
classification performance by identifying discriminative
features that are relevant across multiple labels.

C. Label correlation learning

Zhu et al. propose the GLOCAL [33] algorithm, which
addresses multi-label learning with missing labels by
modeling both global and local label correlations, learning a
latent label representation, and optimizing label manifolds.
However, the GLOCAL algorithm ignores the potential
issue of redundant features in high-dimensional spaces.
Fan et al. propose the LCIFS [34] algorithm, which
employs a manifold-based regression model to capture the
relationship between the feature space and label distribution.
Additionally, an adaptive spectral graph is used to enhance
the accuracy of label correlations. However, the LCIFS
algorithm only considers samples with complete labels and
does not sufficiently address the issue of missing labels.
Xu et al. propose the IncomLDL-LCD [35] algorithm,
which decomposes label correlation into sparse local label
correlation and low-rank global label correlation using a
soft-thresholding operator and a singular value thresholding
operator, respectively.

III. EESRFSML

Let X = [x1, x2, . . . , xn]
T ∈ Rn×d represent the training

data with n samples and d features. The corresponding label
matrix Y = [y1, y2, . . . , yn]

T ∈ {−1, 0, 1}d×l contains the
class labels. For the i-th sample, yij = 1 denotes the i-th
sample has the j-th label yj , yij = −1 denotes the i-th
sample has not the j-th label yj , and yij = 0 denotes the
label of the i-th sample is unobserved.
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A. Learning label-specific features and common features

We utilize the elastic net to overcome the limitations of the
l1-norm and introduce an inner-product-based regularization
term to capture sparse personalized features for each label
while considering common features across labels, as in [22].
The original problem is formulated as follows.

min
W

1

2
∥XW − Y ∥2F + λ1∥W∥1

+ λ2∥W∥2F + λ3(∥WWT ∥1 − ∥W∥2F )
(1)

where W = [w1, w2, . . . , wd] ∈ Rd×l represents the
weighted matrix, and λ1, λ2, λ3 serve as the trade-off
parameters.

B. Recovering the missing labels

Traditional algorithms typically assume that all labels for
training samples are fully available. However, in real-world
applications, only a subset of the label set is often
observable [36]. To address the problem of missing labels,
it is commonly assumed that incomplete labels can be
reconstructed based on their correlations with other labels.
Accordingly, the original label matrix with missing entries
is augmented into a new, more complete label matrix by
leveraging a label correlation coefficient matrix. We then
define:

min
W,C

1

2
∥XW − Y C∥2F +

α

2
∥Y C − Y ∥2F + λ1∥W∥1

+λ2∥W∥2F + λ3(∥WWT ∥1 − ∥W∥2F ) + λ4∥C∥1
(2)

By minimizing α
2 ∥Y C − Y ∥

2
F , we aim for the new label

matrix Y C to closely approximate the true label matrix Y .
The model enables the redefinition of each label by taking
into account high-order correlations among labels. Besides,
the label correlations coefficient matrix C is constrained by
l1-norm that can select the most important label correlation
information, thereby improving the model of generalization
ability and prediction accuracy [37].

C. Incorporating global and local label correlations

In traditional multi-label learning, it is generally assumed
that correlated labels share similar label-specific feature
representations. However, this assumption may not always
hold in practice. Therefore, we propose an additional
assumption: when two labels are strongly correlated, their
corresponding outputs are likely to be similar [17]. To
address this issue, we utilize a new label matrix XW instead
of the coefficient matrix W . Finally, we employ a graph
Laplacian regularization to improve model stability. Then we
defined:

l∑
p,q=1

Spq∥(XW )p − (XW )q∥ = tr
(
(XW )(S∆ − S)(XW )T

)
= tr

(
(XW )TL1(XW )

)
(3)

where Sij ∈ S represents the cosine similarity-based
correlation between labels yi and yj . L1 = S∆ − S denotes
the l × l label laplacian matrix of S. Meanwhile, S∆ is

the diagonal matrix, where S∆
ii =

∑l
j=1 Sij . The objective

function is subsequently defined.

min
W,C

1

2
∥XW − Y C∥2F +

α

2
∥Y C − Y ∥2F

+
β

2
tr((XW )L1(XW )T ) + λ1∥W∥1 + λ2∥W∥2F

+ λ3(∥WWT ∥1 − ∥W∥2F ) + λ4∥C∥1
(4)

In our EESRFSML algorithm, we also analyze the local
correlations among labels. However, the effectiveness of the
cosine similarity is limited by redundant features and noisy
samples. Thus, we introduce k-nearest neighbors method to
analyze the instance similarity matrix G. For example, the
similarity of the p-th and q-th samples is defined:

Gpq =

{
1, if xp ∈ KNN(xq) or xq ∈ KNN(xp)

0, otherwise
(5)

If two instances are strongly correlated, their predicted
labels should be similar. To capture this relationship, we
introduce a graph laplacian regularization term, defined as
follows:

n∑
p,q=1

Gpq∥(xpW )− (xqW )∥ = tr((XW )TL2(XW )) (6)

Finally, the objective function of our EESRFSML
algorithm can be expressed as an equation.

min
W,C

1

2
∥XW − Y C∥2F +

α

2
∥Y C − Y ∥2F

+
β

2
tr((XW )L1(XW )T ) +

γ

2
tr((XW )TL2(XW ))

+ λ1∥W∥1 + λ2∥W∥2F
+ λ3(∥WWT ∥1 − ∥W∥2F ) + λ4∥C∥1

(7)
where α, β, γ, λ1, λ2, λ3 and λ4 are constant coefficients.

D. Optimization

Due to the non-smooth nature of the l1-norm regularization
term, the optimization problem (8) is convex but overall
non-smooth. Therefore, this paper uses the accelerated
proximal gradient descent algorithm to solve problem (8).
The model has two solution variables, we denote ϕ as W
and C. Simplifying the objective framework to:

min
ϕ

Γ(ϕ) = h(ϕ) + ψ(ϕ) (8)

where

h(ϕ) =

1

2
∥XW − Y C∥2F +

α

2
∥Y C − Y ∥2F

+
β

2
tr((XW )L1(XW )T ) +

γ

2
tr((XW )TL2(XW ))

+ λ2∥W∥2F − λ3∥W∥2F .
(9)

ψ(ϕ) = λ1∥W∥1 + λ4∥C∥1 + λ3∥WWT ∥1. (10)
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Both h(ϕ) and ψ(ϕ) are convex, but ψ(ϕ) is non-smooth.
For any L > 0, we define the second-order approximation
of the former:

QL(ϕ, ϕ
(t)) = h(ϕ(t)) + ⟨∇h(ϕ(t)), ϕ− ϕ(t)⟩

+
L

2
∥ϕ− ϕ(t)∥2F + ψ(ϕ)

(11)

For any L ≥ Lf , it can be stated that QL(ϕ, ϕ
t) ≥ Γ(ϕ),

where Lf is Lipschitz constant. We do not directly minimize
Γ(ϕ), the proximal gradient algorithm approximates the
objective function Γ(ϕ) by minimizing many separable
quadratic approximations. By defining G(t) = ϕ(t) −
1
L∇h(ϕ

(t)), this solution for ϕ be acquired by minimizing
QL(ϕ, ϕ

t).

ϕ∗ = argmin
ϕ
QL(ϕ, ϕ

(t)) = argmin
ϕ
g(ϕ) +

L

2
∥ϕ−G(t)∥2F

(12)
where G(t) = ϕ(t)− 1

L∇h(ϕ
(t)), by setting bt in a sequence,

the convergence of the model can be accelerated, with ϕ(t) =
ϕt +

bt−1−1
bt

(ϕt − ϕt−1), where b2t+1 − bt+1 ≤ b2t , ϕt is the
t-th iteration of ϕ.

1) Updating W : First, C is fixed to update W , and the
partial derivative W is computed.

∇Wh(ϕ) = XTXW −XTY C + βXTXWL1

+ γXTL2XW + 2λ2W − 2λ3W
(13)

The update process for W can be obtained through
equation (13).

W (t) =Wt +
bt−1 − 1

bt
(Wt −Wt−1)

W (t+1) = proxε

(
W t − 1

L
∇f(W (t), C)

) (14)

where τ represents the step size, regarding ψ(ϕ), The
l1-norm of W is obtained using the element-wise
soft-thresholding operator.

proxε(Wij) = (|Wij | − τ)+ sign(Wij) (15)

where (·)+ = max(·, 0).
2) Updating C : First, W is fixed to update C, and the

partial derivative C is computed.

∇Sf(ϕ) = (1 + α)Y TY C − Y TXW − αY TY (16)

Similarly, we can obtain the update process for C,

C(t) = Ct +
bt−1 − 1

bt
(Ct − Ct−1)

C(t+1) = proxε

(
C(t) − 1

L
∇f(W,C(t))

) (17)

where ε represents the step size, regarding ψ(ϕ), the
representation of the l1-norm of C can be derived from the
definition of the element-wise soft-thresholding operator.

proxε(Sij) = (|Sij | − ε)+ sign(Sij) (18)

where (·)+ = max(·, 0).

E. Proof of Lipschitz continuity

Lipschitz is essential in accelerated proximal gradient
algorithms. We give ϕ1 = (W1, C1) and ϕ2 = (W2, C2).
Based on equations (14) and (17), we can obtain the
following expressions.

∥∇f(ϕ1)−∇f(ϕ2)∥2F
= ∥XTX∆W + βXTX∆WL1

+ γXTL2X∆W + 2λ2∆W

− 2λ3∆W + (1 + α)Y TY∆C∥2F
= ∥XTX∆W + βXTX∆CL1

+ γXTL2X∆W + 2λ2∆W

− 2λ3∆W∥2F + ∥(1 + α)Y TY∆C∥2F
≤ 5(∥XTX∥2F + ∥βXTX∥22∥L1∥22
+ ∥γXTL2X∥2F + ∥2λ2∥22
− ∥2λ3∥22)∥∆W∥2F
+ 2(∥Y TY ∥22 + ∥αY TY ∥22)∥∆C∥2F
≤ 5(∥XTX∥2F + ∥βXTX∥22∥L1∥22
+ ∥γXTL2X∥2F + ∥2λ2∥22 + ∥2λ3∥22)

+ 2(∥Y TY ∥22 + ∥αY TY ∥22)∥
∆W

∆C
∥2F

(19)
where ∆W =W1 −W2,∆C = C1 − C2.

Therefore, the objective function for the Lipschitz constant
is expressed as

Lf =

√√√√√√5
(
∥XTX∥22 + ∥βXTX∥22∥L1∥22

+∥γXTL2X∥22 + ∥2λ2∥22 + ∥2λ3∥22
)

+ 2
(
∥Y TY ∥22 + ∥αY TY ∥22

) (20)

Algorithm LSMLLC.
Input: Train data matrix X ∈ Rn×d, train label matrix

Y ∈ Rn×l, and weighting parameters α, β, γ, λ1, and λ2.
Output: Coefficient matrix W ∈ Rd×l.

1) Initialization: W0,W1 ← rand(d, l); C0, C1 ←
rand(l, l); ϕ(1) = {W1, C1}; t0, t1 ← 1; k ← 1.

2) Calculate label correlation matrix S by calculating
cosine similarity on Y ; calculate H by using k-nearest
neighbors; calculate the Lipschitz constant Lf .

3) repeat:
a) W (k) ←Wk + tk−1−1

tk
(Wk −Wk−1).

b) F
(k)
W ←W (k) − 1

L∇W f(W (k), Ck).
c) Wk+1 ← proxE

(
λ1

L F
(k)
W

)
(by according to (14)).

d) W (k+1) ←Wk+1.
e) C(k) ← Ck + tk−1−1

tk
(Ck − Ck−1).

f) F
(k)
C ← C(k) − 1

L∇Cf(Wk, C
(k)).

g) Ck+1 ← proxε

(
λ2

L F
(k)
C

)
(by according to (17)).

h) C(k+1) ← Ck+1.

i) tk+1 ←
1+
√

4t2k+1

2 .
j) k ← k + 1.

4) until convergence.
5) Return W .
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TABLE I
THE DETAILS OF THE EXPERIMENTAL DATASETS

Dataset Domain # Label-Sample #Unlabel-Sample #Sample #Feature #Label

emotions music 296 297 593 72 6
medical text 489 489 978 1449 45
enron text 851 851 1702 1001 52
yeast biology 1208 1208 2416 103 14
education text(web) 2500 2500 5000 550 333
arts text(web) 2500 2500 5000 462 26
science text(web) 2500 2500 5000 743 40
bibtex text 3697 3698 7395 1836 159
delicious text(web) 8052 8053 16105 500 983

F. Analysis of time complexity

The time complexity of the algorithm derived from the
Lipschitz constant can be analyzed based on the main
operations involved in the computation. In the preprocessing
phase, the computation of terms results in a complexity
of O(nd2 + d2k + ndl + dl), where n is the number of
data points, d is the feature dimension, k is the output
dimension, and l is the number of labels. During iterative
optimization, each iteration involves matrix multiplications
and norm calculations, with a per-iteration complexity of
O(nd2 + nl2 + d2k + dl + dk + l2). Assuming the number
of iterations is bounded by maxIter, the total iterative
optimization complexity is O(maxIter× (nd2 +nl2 + d2k+
dl + dk + l2)). Combining both phases, the overall time
complexity of the algorithm is O(nd2 + d2k + ndl + dl +
maxIter× (nd2 + nl2 + d2k + dl + dk + l2)).

IV. EXPERIMENTS AND EVALUATION

A. Datasets

We perform experiments on nine multi-label benchmark
datasets to assess the performance of our EESRFSML
algorithm. Table 1 summarizes the characteristics of the
experimental datasets, where #Sample, #Label-Sample,
#Unlabel-Sample, #Feature, and #Label denote the total
number of samples, labeled samples, unlabeled samples,
features and labels, respectively [38].

B. Comparative algorithms

In this experiment, we perform the comparative analysis
of our EESRFSML algorithm and eight state-of-the-art
algorithms. Meanwhile, we select six evaluation metrics:
average precision, coverage, one error, ranking loss,
Hamming loss and AUC. The following section provides the
descriptions and parameter settings for these algorithms:

LIFT [15] is a multi-label classification algorithm that first
leverages label-specific features and employs LIBSVM for
classification. It has one parameter r, which is set to 0.1 in
our experiment [39].

LLSF [24] is a multi-label classification algorithm that
leverages label-specific features using the l1-norm and
incorporates label correlation learning. The parameters of
LLSF include λ1 and λ2, these parameters are selected from
[2−5, 25] in our experiment.

LLSF-DL [24] extends LLSF by introducing
class-dependent labels through sparse superposition and
incorporating higher-order label correlations. The parameters

of LLSF-DL include λ1, λ2, and λ3, these parameters are
selected from [2−5, 25] in our experiment.

LSML [16] is a multi-label classification algorithm
designed for missing labels, which learns label-specific
features from a newly completed label matrix and
incorporates label correlations. The parameters of LSML
include λ1, λ2, λ3 and λ4, these parameters are selected from
[2−5, 25] in our experiment.

LSLC-ML [37] is a multi-label classification algorithm
designed for missing labels, which recovers missing labels
using label correlations and leverages label-specific features.
The parameters of LSLC-ML include λ1, λ2, λ3, λ4, λ5 and
λ6, these parameters are selected from [2−5, 25] in our
experiment.

CLML [17] employs both label-specific features and
common features for multi-label classification, directly
exploring label correlations through their labels, rather than
relying on coefficient matrices. The parameters of CLML
include λ1, λ2, λ3 and λ4, these parameters are selected from
[2−5, 25] in our experiment.

LRLSF [18] introduces the robust global label correlation
method using the self-expression matrix and includes
a manifold regularization term to capture local label
correlations. The parameters of LRLSF include λ1, λ2, λ3
and λ4, these parameters are selected from [2−5, 25] in our
experiment.

ESRFS [22] is a multi-label classification algorithm
that proposes an efficient Elastic Net-based method for
multi-label data, designed to tackle sparsity and redundancy
by selecting high-sparsity, low-redundancy features. The
parameters of ESRFS include λ1, λ2, λ3 and λ4, these
parameters are selected from [2−5, 25] in our experiment.

C. Experimental results

In this paper, we evaluate the classification performance
of each algorithm on five benchmark datasets using five-fold
cross-validation. The detailed results are presented in Tables
2 to 7, with the corresponding rankings summarized in Tables
8 to 13. For each evaluation metric, ‘↓‘ denotes that lower
values indicate better performance, while ‘↑‘ indicates that
higher values are preferred. As shown in Tables 8 through
13, our EESRFSML algorithm consistently surpasses LIFT
[15], LLSF [24], LLSF-DL [24], LSML [16], LSLC-ML
[37], CLML [17], LRLSF [18] and ESRFS [22] across nine
datasets in terms of each evaluation metric. To evaluate the
significant performance differences between our EESRFSML
algorithm and the competing algorithms, we performed a
Friedman test [40].
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TABLE II
AVERAGE PRECISION OF ALL COMPARED ALGORITHMS ACROSS NINE PUBLIC AVAILABLE DATASETS

Average Precision ↑

Algorithm emotion medical enron yeast education art science bibtex delicious

LIFT
0.5528

±
0.0159

0.7599
±

0.0055

0.5586
±

0.0021

0.7311
±

0.0017

0.5872
±

0.0.0169

0.5628
±

0.0029

0.5203
±

0.0051

0.4235
±

0.0029

0.2894
±

0.0006

LLSF
0.6019

±
0.0014

0.6775
±

0.0145

0.5311
±

0.0161

0.6884
±

0.0073

0.5928
±

0.0036

0.5980
±

0.0112

0.5309
±

0.0048

0.4106
±

0.0029

0.2782
±

0.0021

LLSF-DL
0.6006

±
0.0028

0.8497
±

0.0178

0.5511
±

0.0026

0.7323
±

0.0079

0.6070
±

0.0137

0.5939
±

0.0034

0.5281
±

0.0108

0.4309
±

0.0044

0.3416
±

0.0006

LSML
0.5913

±
0.0248

0.8235
±

0.0041

0.5911
±

0.0032

0.7377
±

0.0007

0.5489
±

0.0023

0.5542
±

0.0019

0.5322
±

0.0040

0.4144
±

0.0035

0.3209
±

0.0003

LSLC-ML
0.5970

±
0.0.0116

0.8451
±

0.0100

0.6111
±

0.0042

0.7393
±

0.0029

0.6089
±

0.0071

0.5964
±

0.0084

0.5341
±

0.0072

0.4295
±

0.0039

0.3316
±

0.0008

CLML
0.5923

±
0.0043

0.8496
±

0.0112

0.6246
±

0.0060

0.7408
±

0.0030

0.5579
±

0.0364

0.5790
±

0.0094

0.5055
±

0.0055

0.4340
±

0.0079

0.2792
±

0.0005

LRSLF
0.6039

±
0.0139

0.8540
±

0.0126

0.6012
±

0.0106

0.6977
±

0.0073

0.5919
±

0.0174

0.5918
±

0.0033

0.5373
±

0.0044

0.4252
±

0.0096

0.2926
±

0.0009

ESRFS
0.5728

±
0.0120

0.8247
±

0.0123

0.5981
±

0.0145

0.7195
±

0.0081

0.5877
±

0.0138

0.5826
±

0.0092

0.5332
±

0.0090

0.4318
±

0.0100

0.3031
±

0.0006

EESRFSML
0.6037

±
0.0050

0.8620
±

0.0019

0.6228
±

0.0045

0.7418
±

0.0013

0.6235
±

0.0013

0.6146
±

0.0014

0.5494
±

0.0028

0.4562
±

0.0031

0.3385
±

0.0005

TABLE III
COVERAGE OF ALL COMPARED ALGORITHMS ACROSS NINE PUBLIC AVAILABLE DATASETS

Coverage ↓

Algorithm emotion medical enron yeast education art science bibtex delicious

LIFT
0.6042

±
0.00359

0.0739
±

0.0046

0.4115
±

0.0098

0.5354
±

0.0019

0.2511
±

0.0101

0.2017
±

0.0036

0.1972
±

0.0041

0.2308
±

0.0094

0.6696
±

0.0047

LLSF
0.5245

±
0.0035

0.1453
±

0.0084

0.3936
±

0.0174

0.5544
±

0.0164

0.2324
±

0.0057

0.1954
±

0.0059

0.1723
±

0.0031

0.2486
±

0.0045

0.6685
±

0.0035

LLSF-DL
0.5161

±
0.0034

0.0361
±

0.0031

0.3371
±

0.0018

0.5104
±

0.0071

0.2246
±

0.0057

0.1939
±

0.0034

0.1769
±

0.0006

0.1996
±

0.0006

0.7281
±

0.0044

LSML
0.5404

±
0.0339

0.0680
±

0.0034

0.3381
±

0.0102

0.4874
±

0.0028

0.2427
±

0.0018

0.2881
±

0.0031

0.2250
±

0.0035

0.3136
±

0.0035

0.7598
±

0.0009

LSLC-ML
0.5479

±
0.0082

0.0397
±

0.0016

0.3471
±

0.0092

0.4886
±

0.0048

0.1944
±

0.0046

0.1959
±

0.0037

0.1723
±

0.0020

0.1915
±

0.0042

0.7276
±

0.0023

CLML
0.5432

±
0.0088

0.0361
±

0.0094

0.3572
±

0.0102

0.4813
±

0.0005

0.2466
±

0.0111

0.2678
±

0.0134

0.2878
±

0.0034

0.2850
±

0.0094

0.7131
±

0.0028

LRSLF
0.5240

±
0.0035

0.0293
±

0.0070

0.3153
±

0.0066

0.4872
±

0.0059

0.2271
±

0.0080

0.1937
±

0.0039

0.1531
±

0.0028

0.2156
±

0.0041

0.7601
±

0.0037

ESRFS
0.5183

±
0.0132

0.0496
±

0.0129

0.3414
±

0.0167

0.5053
±

0.0141

0.2085
±

0.0039

0.2132
±

0.0097

0.1513
±

0.0041

0.2235
±

0.0091

0.6734
±

0.0019

EESRFSML
0.5208

±
0.0121

0.0266
±

0.0045

0.3262
±

0.0093

0.4632
±

0.0020

0.2184
±

0.0011

0.1797
±

0.0016

0.1702
±

0.0019

0.2224
±

0.0030

0.6917
±

0.0013
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TABLE IV
ONE ERROR OF ALL COMPARED ALGORITHMS ACROSS NINE PUBLIC AVAILABLE DATASETS

One Error ↓

Algorithm emotion medical enron yeast education art science bibtex delicious

LIFT
0.5781

±
0.0211

0.2955
±

0.0039

0.2444
±

0.0121

0.2318
±

0.0031

0.5256
±

0.0324

0.5047
±

0.0068

0.5969
±

0.0092

0.5153
±

0.0171

0.3962
±

0.0056

LLSF
0.5625

±
0.0000

0.3932
±

0.0211

0.3333
±

0.0271

0.3128
±

0.0216

0.5204
±

0.0053

0.4778
±

0.0186

0.5769
±

0.0070

0.5023
±

0.0179

0.4745
±

0.0078

LLSF-DL
0.5656

±
0.0117

0.2259
±

0.0249

0.3229
±

0.0078

0.2477
±

0.0199

0.4987
±

0.0277

0.5022
±

0.0058

0.5924
±

0.0204

0.5030
±

0.0088

0.3655
±

0.0063

LSML
0.5427

±
0.0211

0.2089
±

0.0045

0.2939
±

0.0163

0.2474
±

0.0027

0.5167
±

0.0045

0.5047
±

0.0061

0.5361
±

0.0085

0.4876
±

0.0054

0.3496
±

0.0018

LSLC-ML
0.5550

±
0.0.0286

0.2250
±

0.0151

0.2889
±

0.0144

0.2440
±

0.0079

0.4929
±

0.0126

0.4978
±

0.0149

0.5693
±

0.0094

0.4672
0.0080

0.3665
±

0.0019

CLML
0.5656

±
0.0063

0.2205
±

0.0223

0.2301
±

0.0177

0.2147
±

0.0018

0.5360
±

0.0454

0.4929
±

0.0101

0.5698
±

0.0096

0.5350
±

0.0181

0.4679
±

0.0054

LRSLF
0.5250

±
0.0249

0.2205
±

0.0211

0.2458
±

0.0263

0.2596
±

0.0214

0.5625
±

0.0550

0.4844
±

0.0074

0.5689
±

0.0051

0.5386
±

0.0092

0.4375
±

0.0066

ESRFS
0.5565

±
0.0132

0.2868
±

0.0249

0.3035
±

0.0131

0.2619
±

0.0021

0.5310
±

0.0176

0.4992
±

0.0099

0.5700
±

0.0123

0.4852
±

0.0081

0.3602
±

0.0028

EESRFSML
0.5225

±
0.0000

0.2217
±

0.0155

0.2705
±

0.0092

0.2428
±

0.0033

0.4944
±

0.0025

0.4907
±

0.0044

0.5540
±

0.0019

0.4748
±

0.0047

0.3472
±

0.0017

TABLE V
RANKING LOSS OF ALL COMPARED ALGORITHMS ACROSS NINE PUBLIC AVAILABLE DATASETS

Ranking Loss ↓

Algorithm emotion medical enron yeast education art science bibtex delicious

LIFT
0.4086

±
0.0251

0.0505
±

0.0040

0.1675
±

0.0022

0.2017
±

0.0021

0.1648
±

0.0121

0.1558
±

0.0027

0.1612
±

0.0034

0.1553
±

0.0072

0.1478
±

0.0019

LLSF
0.4245

±
0.0049

0.1209
±

0.0090

0.1740
±

0.0070

0.2563
±

0.0064

0.2498
±

0.0037

0.1327
±

0.0037

0.1238
±

0.0031

0.1511
±

0.0040

0.1779
±

0.0011

LLSF-DL
0.4373

±
0.0051

0.0232
±

0.0074

0.1440
±

0.0033

0.2077
±

0.0055

0.1920
±

0.0097

0.1332
±

0.0019

0.1172
±

0.0099

0.1428
±

0.0015

0.1617
±

0.0003

LSML
0.3958

±
0.0361

0.0453
±

0.0033

0.1426
±

0.0032

0.1907
±

0.0019

0.1837
±

0.0020

0.2058
±

0.0027

0.1373
±

0.0029

0.1855
±

0.0022

0.1915
±

0.0004

LSLC-ML
0.4175

±
0.0130

0.0276
±

0.0067

0.1226
±

0.0052

0.1895
±

0.0033

0.1052
±

0.0027

0.1342
±

0.0038

0.1275
±

0.0015

0.1506
0.0025

0.31609
±

0.0018

CLML
0.4138

±
0.0054

0.0234
±

0.0086

0.1357
±

0.0043

0.1917
±

0.0022

0.1864
±

0.0128

0.1940
±

0.0124

0.2292
±

0.0039

0.1553
±

0.0062

0.1583
±

0.0004

LRSLF
0.4405

±
0.0084

0.0222
±

0.0088

0.1236
±

0.0027

0.2550
±

0.0068

0.2451
±

0.0104

0.1432
±

0.0024

0.1153
±

0.0017

0.1214
±

0.0050

0.2199
±

0.0015

ESRFS
0.4183

±
0.0144

0.0476
±

0.0084

0.1573
±

0.0057

0.2006
±

0.0082

0.0811
±

0.0041

0.1452
±

0.0074

0.1167
±

0.0032

0.1423
±

0.0053

0.1534
±

0.0014

EESRFSML
0.4106

±
0.0065

0.0231
±

0.0031

0.1172
±

0.0040

0.1806
±

0.0004

0.0855
±

0.0009

0.1180
±

0.0014

0.1268
±

0.0016

0.1402
±

0.0020

0.1533
±

0.0003
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TABLE VI
HAMMING LOSS OF ALL COMPARED ALGORITHMS ACROSS NINE PUBLIC AVAILABLE DATASETS

Hamming Loss ↓

Algorithm emotion medical enron yeast education art science bibtex delicious

LIFT
0.3561

±
0.0066

0.0284
±

0.0005

0.0597
±

0.0029

0.2325
±

0.0019

0.0398
±

0.0019

0.0669
±

0.0001

0.0381
±

0.0005

0.0240
±

0.0004

0.0186
±

0.0016

LLSF
0.3786

±
0.0027

0.0275
±

0.0024

0.0725
±

0.0046

0.2406
±

0.0061

0.0392
±

0.0002

0.0555
±

0.0006

0.0346
±

0.0002

0.0149
±

0.0004

0.0255
±

0.0001

LLSF-DL
0.4156

±
0.0080

0.0192
0.0012

0.1115
±

0.0021

0.2308
±

0.0052

0.0404
±

0.0002

0.0573
±

0.0002

0.0343
±

0.0002

0.0138
±

0.0001

0.0182
±

0.0000

LSML
0.3028

±
0.0088

0.0159
±

0.0004

0.0778
±

0.0108

0.2457
±

0.0016

0.0498
±

0.0003

0.0556
±

0.0001

0.0338
±

0.0001

0.0132
±

0.0000

0.0181
±

0.0000

LSLC-ML
0.3385

±
0.0023

0.0211
±

0.0009

0.0578
±

0.0021

0.2556
±

0.0066

0.0407
±

0.0001

0.0584
±

0.0004

0.0347
±

0.0001

0.0139
±

0.0001

0.0182
±

0.0009

CLML
0.3385

±
0.0029

0.0207
±

0.0007

0.0523
±

0.0006

0.2240
±

0.0068

0.0424
±

0.0009

0.0582
±

0.0007

0.0337
±

0.0005

0.0211
±

0.0005

0.0342
±

0.0001

LRSLF
0.3630

±
0.0042

0.0337
±

0.0018

0.0548
±

0.0049

0.2348
±

0.0035

0.0589
±

0.0030

0.0555
±

0.0028

0.0387
±

0.0011

0.0369
±

0.0005

0.0176
±

0.0012

ESRFS
0.3110

±
0.0100

0.0277
±

0.0008

0.0624
±

0.0069

0.2155
±

0.0087

0.0576
±

0.0007

0.0628
±

0.0011

0.0362
±

0.0005

0.0151
±

0.0001

0.0180
±

0.0005

EESRFSML
0.3249

±
0.0037

0.0227
±

0.0044

0.0570
±

0.0003

0.2260
±

0.0020

0.0419
±

0.0002

0.0525
±

0.0001

0.0343
±

0.0000

0.0138
±

0.0000

0.0180
±

0.0000

TABLE VII
AUC OF ALL COMPARED ALGORITHMS ACROSS NINE PUBLIC AVAILABLE DATASETS

AUC ↑

Algorithm emotion medical enron yeast education art science bibtex delicious

LIFT
0.5052

±
0.0298

0.9417
±

0.0029

0.8372
±

0.0036

0.7817
±

0.0019

0.7699
±

0.0095

0.8166
±

0.0034

0.8210
±

0.0029

0.8356
±

0.0061

0.8510
±

0.0008

LLSF
0.5541

±
0.0041

0.8672
±

0.0071

0.8108
±

0.0054

0.7240
±

0.0075

0.7852
±

0.0038

0.8330
±

0.0046

0.8563
±

0.0027

0.8515
±

0.0029

0.8203
±

0.0014

LLSF-DL
0.5415

±
0.0052

0.9692
±

0.0062

0.8585
±

0.0031

0.7828
±

0.0058

0.7875
±

0.0154

0.8289
±

0.0026

0.8601
±

0.0119

0.8890
±

0.0026

0.8203
±

0.0005

LSML
0.5500

±
0.0379

0.9427
±

0.0029

0.8493
±

0.0032

0.7960
±

0.0017

0.7860
±

0.0013

0.7473
±

0.0023

0.7977
±

0.0070

0.8808
±

0.0023

0.8070
±

0.0004

LSLC-ML
0.5617

±
0.0108

0.9660
±

0.0063

0.8593
±

0.0043

0.7985
±

0.0030

0.8693
±

0.0045

0.8276
±

0.0046

0.8472
±

0.0026

0.8494
±

0.0017

0.8376
±

0.0013

CLML
0.5645

±
0.0054

0.9692
±

0.0079

0.8630
±

0.0032

0.7990
±

0.0023

0.7799
±

0.0085

0.7648
±

0.0117

0.7506
±

0.0031

0.8293
±

0.0051

0.8738
±

0.0004

LRSLF
0.5487

±
0.0068

0.9750
±

0.0017

0.8791
±

0.0027

0.7401
±

0.0060

0.7459
±

0.0082

0.8298
±

0.0032

0.8641
±

0.0023

0.8830
±

0.0026

0.7869
±

0.0006

ESRFS
0.5608

±
0.0148

0.9751
±

0.0092

0.8589
±

0.0047

0.7835
±

0.0063

0.9077
±

0.0036

0.8169
±

0.0075

0.8404
±

0.0039

0.8249
±

0.0085

0.8452
±

0.0014

EESRFSML
0.5620

±
0.0106

0.9784
±

0.0041

0.8780
±

0.0032

0.8063
±

0.0005

0.8993
±

0.0011

0.8473
±

0.0013

0.8480
±

0.0016

0.8526
±

0.0014

0.8455
±

0.0003
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TABLE VIII
THE RANKING OF AVERAGE PRECISION ACROSS NINE PUBLIC AVAILABLE DATASETS

Average Precision

Algorithm emotion medical enron yeast education art science bibtex delicious average
LIFT 9 8 8 6 7 8 7 7 7 7.44444
LLSF 3 9 9 9 4 2 6 9 9 6.66667
LLSF-DL 4 3 7 5 3 4 8 4 1 4.33333
LSML 7 7 6 4 9 9 5 8 4 6.55556
LSLC-ML 5 5 3 3 2 3 3 5 3 3.55556
CLML 6 4 1 2 8 7 9 2 8 5.22222
LRSLF 1 2 4 8 5 5 2 6 6 4.33333
ESRFS 8 6 5 7 6 6 4 3 5 5.55556
EESRFSML 2 1 2 1 1 1 1 1 2 1.33333

TABLE IX
THE RANKING OF COVERAGE ACROSS NINE PUBLIC AVAILABLE DATASETS

Coverage

Algorithm emotion medical enron yeast education art science bibtex delicious average
LIFT 9 8 9 8 9 6 7 6 2 7.11111
LLSF 5 9 8 9 6 4 5 7 1 6.00000
LLSF-DL 1 3 3 7 4 3 6 2 7 4.00000
LSML 6 7 4 4 8 9 8 9 8 7.00000
LSLC-ML 8 5 6 5 1 5 4 1 6 4.55556
CLML 7 3 7 2 7 8 9 8 5 6.22222
LRLSF 4 2 1 3 5 2 2 3 9 3.44444
ESRFS 2 6 5 6 2 7 1 5 3 4.11111
EESRFSML 3 1 2 1 3 1 3 4 4 2.44444

TABLE X
THE RANKING OF ONE ERROR ACROSS NINE PUBLIC AVAILABLE DATASETS

One Error

Algorithm emotion medical enron yeast education art science bibtex delicious average
LIFT 9 8 2 2 6 8 9 7 6 6.33333
LLSF 5 9 9 9 5 1 7 5 9 6.55556
LLSF-DL 6 6 8 6 3 7 8 6 4 6.00000
LSML 3 1 7 5 4 8 1 4 2 3.88889
LSLC-ML 4 5 5 4 1 6 4 1 4 3.77778
CLML 6 2 1 1 8 4 5 8 8 4.77778
LRLSF 2 2 3 7 9 2 3 9 7 4.88889
ESRFS 8 7 6 8 7 5 6 3 3 5.88889
EESRFSML 2 4 4 4 2 3 2 2 1 2.44444

TABLE XI
THE RANKING OF RANKING LOSS ACROSS NINE PUBLIC AVAILABLE DATASETS

Ranking Loss

Algorithm emotion medical enron yeast education art science bibtex delicious average
LIFT 2 8 8 6 4 7 8 7 1 5.66667
LLSF 7 9 9 9 9 2 4 6 7 6.88889
LLSF-DL 8 3 6 7 6 3 3 4 5 5.00000
LSML 1 6 5 3 5 9 7 9 8 5.88889
LSLC-ML 5 5 2 2 3 4 6 5 6 4.22222
CLML 4 4 4 4 7 8 9 7 4 5.66667
LRLSF 9 1 3 8 8 5 1 1 9 5.00000
ESRFS 6 7 7 5 1 6 2 3 3 4.44444
EESRFSML 3 2 1 1 2 1 5 2 2 2.11111

TABLE XII
THE RANKING OF HAMMING LOSS ACROSS NINE PUBLIC AVAILABLE DATASETS

Hamming Loss

Algorithm emotion medical enron yeast education art science bibtex delicious average
LIFT 1 6 9 7 5 2 9 8 8 6.77778
LLSF 2 8 7 8 7 1 2 5 5 5.66667
LLSF-DL 3 9 2 9 4 3 5 3 2 4.66667
LSML 4 1 1 6 8 7 4 2 1 3.77778
LSLC-ML 5 4 4 4 9 4 7 6 4 5.22222
CLML 6 4 3 1 2 6 6 1 7 4.33333
LRLSF 7 7 8 2 6 9 2 9 9 5.88889
ESRFS 8 2 6 5 1 8 8 7 6 5.00000
EESRFSML 9 3 5 3 3 5 1 3 2 3.00000
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TABLE XIII
THE RANKING OF AUC ACROSS NINE PUBLIC AVAILABLE DATASETS

AUC

Algorithm emotion medical enron yeast education art science bibtex delicious average
LIFT 9 8 8 7 8 7 7 7 2 7.00000
LLSF 6 9 9 8 6 2 3 5 7 6.11111
LLSF-DL 4 4 6 6 4 4 2 1 6 4.11111
LSML 7 7 7 4 5 9 8 3 8 6.44444
LSLC-ML 3 6 4 3 3 5 5 6 5 4.44444
CLML 1 4 3 2 7 8 9 8 1 4.77778
LRLSF 8 3 1 9 9 3 1 2 9 5.00000
ESRFS 5 2 5 5 1 6 6 9 4 4.77778
EESRFSML 2 1 2 1 2 1 4 4 3 2.22222

(a) Average precision (b) One Error

(c) One Error (d) Ranking Loss

(e) Hamming Loss (f) AUC

Fig.1. Comparison of the EESRFSML algorithm with other algorithms using the Nemenyi test at a 0.05 significance level.
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(a) art (b) science

(b) yeast

Fig.2. The impact of the samples of missing labels on average precision.

(a) art (b) science

(b) yeast

Fig.3. The impact of the samples of missing labels on coverage.
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(a) art (b) science

(b) yeast

Fig.4. The impact of the samples of missing labels on one error.

(a) art (b) science

(b) yeast

Fig.5. The impact of the samples of missing labels on ranking loss.
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(a) art (b) science

(b) yeast

Fig.6. The impact of the samples of missing labels Hamming loss.

(a) art (b) science

(b) yeast

Fig.7. The impact of the samples of missing labels on AUC.
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TABLE XIV
FRIEDMAN TEST RESULTS FF (K = 9, N = 6) AND CRITICAL VALUES

FOR DIFFERENT METRICS

Evaluation Metric FF Critical Value(α = 0.05)

One Error 19.274074

2.086758

Ranking Loss 17.696296
Average Precision 33.540741

Hamming Loss 10.377778
AUC 18.451852

Coverage 25.955556

Table 14 presents each evaluation metric, along with its
corresponding FF value and critical value. At a significance
level of α = 0.05, we rejected the null hypothesis that
all competing algorithms perform equally, as the FF value
surpassed the critical value, indicating significant differences
between the algorithms. We applied the Nemenyi test [40]
to determine whether EESRFSML outperforms the other
algorithms, designating EESRFSML as the reference method.
We compared the average rank differences between algorithm

pairs using the critical difference (CD): CD = qα

√
k(k+1)

6N .
For Nemenyi test, qα = 2.08676, CD = 4.0047(K =
9, N = 6) at a significance level of α = 0.05. The CD
diagrams for each metric are shown in Fig. 1. It displays the
CD diagrams for each evaluation metric. In each subplot,
a line connects two algorithms if their average ranks are
within one CD of each other. Conversely, two unconnected
algorithms are considered to exhibit a significant difference
for that evaluation metric. It is evident that our EESRFSML
algorithm outperforms the other eight algorithms.

D. Discussion on the experimental results

The experimental results lead to the following conclusions:

1.LLSF and LLSF-DL outperform LIFT by effectively
leveraging label correlation information. This comprehensive
exploitation of label dependencies enhances their robustness
and generalization performance, even under conditions of
label space redundancy and imbalanced label distributions.

2.CLML and ESRFS outperform LLSF and LLSF-DL
by effectively leveraging shared feature representations. By
constructing a shared feature strategy within the feature
space, they achieve superior classification performance on
datasets characterized by high label semantic overlap or
strong feature correlations.

3.EESRFSML outperforms CLML, LRSFS, and ESRFS
by effectively addressing the challenge of missing label
information. In real-world multi-label learning scenarios,
missing labels are a common issue. However, many existing
methods either disregard these incomplete samples or rely
on strong assumptions to infer the missing labels, often

resulting in reduced classification performance. EESRFSML
overcomes this limitation by employing a label correlation
coefficient matrix to complete missing labels at the label
level, enabling more accurate recovery of label information
and more effective utilization of incomplete data.

E. Analysis of parameter sensitivity

Samples with missing labels can substantially affect
an algorithms classification performance. As illustrated in
Figures 2 to 7, we evaluate the performance of various
algorithms under different missing label ratios. The results
demonstrate a general decline in classification accuracy as the
proportion of incomplete samples increases. Nevertheless,
the proposed EESRFSML algorithm maintains notably stable
performance across varying missing rates, highlighting its
superior robustness to missing label scenarios compared to
other methods.

V. CONCLUSION

In this paper, we present EESRFSML, an effective
algorithm for multi-label classification with missing labels
that outperforms existing methods. Our approach utilizes
the label correlation matrix to reconstruct an enhanced
label matrix, enabling the recovery of a substantial portion
of missing labels. Additionally, we propose a label-level
regularizer that directly captures both global and local
label dependencies from the label outputs, avoiding sole
reliance on the correlation matrix. Future work will explore
integrating this algorithm within a multi-view learning
framework and tackling the challenges posed by noisy
labels.
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