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Abstract-This paper examines strategic interactions 

between outsourcing and value chain climbing in a supply 

chain, analyzing decision-making processes and outcomes for a 

supplier and buyer under competitive pricing. Using a two-

stage game-theoretic model, we investigate how stochastic 

demand and price competition influence sequential decisions. 

In Stage 1, the supplier sets outsourcing prices; in Stage 2, the 

buyer determines retail prices and production quantities. 

Equilibrium analysis identifies two dominant strategies: (1) 

market maintaining (full outsourcing) and (2) cost advantage 

seeking (full in-house production). Numerical studies (baseline 

and nonlinear experiments) confirm buyer’s persistently 

outsource across all stochastic demand types and parameter 

combinations. This resilience stems from their ability to 

dynamically adjust prices, countering supplier threats. 

Meanwhile, shifts in the production cost ratio redistribute 

profits asymmetrically: the supplier’s profit always gains with 

the increase in production cost ratio in both two experiments, 

while the buyer’s profit shows more complex variation patterns. 

The increased in competition intensity increases profit 

volatility of the buyer in nonlinear experiment yet consistently 

benefits supplier. Our findings endogenize vertical competition, 

bridge operations-marketing integration, and offer strategic 

guidance for managing supplier encroachment in uncertain 

markets. 
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Ⅰ. INTRODUCTION 

N the context of global value chain restructuring, 

outsourcing and in-sourcing decisions are pivotal in 

economics and business strategy, addressing key strategic 

issues. Firms often outsource less profitable activities (e.g., 

manufacturing) to suppliers with economies of scale in 

developing countries. These suppliers, known as original 

equipment manufacturers (OEMs) or contract manufacturers 

(CMs), enable technology giants like Apple, Dell, and Intel 

to focus on core, high-profit activities (e.g., R&D and 

marketing), thereby enhancing their competitive advantages 

and financial flexibility. This strategy aligns with the well-

known smile curve theory, which posits that the value chain's 

ends (R&D and marketing) are more profitable than the 

middle segment (manufacturing). For outsourcing buyers, 

crucial strategies include cost reduction and a focus on 

patents, branding, and services. 

However, developing-country suppliers can acquire 

market entry capabilities through learning - by - doing, 

termed value chain climbing, a key industrial upgrading 

routewith significant implications for global competition 

[1,2]. This process may undermine industry leaders' profits. 

Samsung's foray into the smartphone market exemplifies this: 

after supplying Apple, it harnessed its tech edge to launch 

the Galaxy series, becoming a global leader and threatening 

Apple's share [3]. Despite legal disputes, Samsung 

maintained its competitive edge and continued to supply 

high-quality, cost-effective components to Apple. This 

might spur other developing - country suppliers to emulate 

such strategies. However, some suppliers avoid value chain 

climbing due to fears of buyer retaliation or transaction 

dependence, which can impede technological advancement 

and market competitiveness [4]. 

While existing literature has extensively explored 

outsourcing motivations and the phenomenon of value chain 

climbing, there are still significant gaps. First, and most 

critically, most studies treat vertical competition stemming 

from supplier entry as an exogenous factor and seldom 

explore its endogenous link to suppliers' value chain 

climbing through learning. For example, many studies 

assume that suppliers' entry and competition are given, 

without in-depth analysis of how suppliers actively change 

the competitive landscape through learning and market entry 

strategies. Second, the treatment of stochastic demand in 

multi-stage outsourcing decisions is insufficient, with most 

research focusing on single-stage decisions and neglecting 

its dynamic interplay with value chain 

climbing. Third, existing studies mostly focus on binary 

decisions (full outsourcing vs. full in-house production), 

while neglecting mixed strategies that combine both 

approaches, which are more reflective of real-world supply 

chain management practices. 

Building on this background, we examine the 

outsourcing strategies of a buyer and a supplier in a two-

stage process: a learning stage (Stage 1) and a competing 

stage (Stage 2). The buyer may outsource to the supplier in 

either or both stages. We develop a two-stage Stackelberg 

game model with stochastic demand dependent on retail 

prices. Our numerical study investigates key factors 

influencing outsourcing strategies and profits, including 

different stochastic demand types and the impact of 
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product/demand information. 

Our study makes several key contributions: First, we 

construct a novel two-stage game-theoretic model capturing 

the dynamic interplay of learning, potential competition, and 

stochastic demand. Second, we endogenize vertical 

competition by explicitly modeling how suppliers' learning 

and market entry strategies dynamically reshape the 

competitive landscape with buyers. Third, we explore mixed 

outsourcing strategies alongside traditional binary options, 

providing a more realistic and comprehensive view. Our 

findings offer significant theoretical insights into 

outsourcing dynamics and practical guidance for firms 

navigating complex supplier relationships. 

Ⅱ. LITERATURE REVIEW 

We first summarize several key environmental factors 

that catalyze value chain climbing. First, increasing 

disposable income in developing countries has created large 

domestic markets, providing a foundation for suppliers 

before global expansion [5, 6]. Second, trade liberalization 

and globalization enable emerging competitors to adopt 

strategies akin to "surrounding cities from the countryside"  

[7]. Third, technological advances such as e-commerce, 5G, 

and blockchain have lowered entry barriers, facilitating 

suppliers' efforts to climb the value chain. Although many 

suppliers have attempted to introduce branded products by 

learning technology, few have succeeded. Leading branded 

buyers often use restrictive outsourcing agreements to 

relegate suppliers to subordinate roles and distance them 

from customer-facing activities [1, 8]. However, outsourcing 

is projected to grow, favoring companies with strategic 

approaches. Deng [9] identifies four conditions influencing 

technological upgrading strategies: technical resources 

(firm-level), technological intensity (industry-level), and 

technological protection (regional-level), which align with 

the strategy tripod perspective. Unlike other studies, Niu [10]  

investigates production timing decisions based on market 

acceptance uncertainty in a co-opetitive supply chain where 

a manufacturer functions as both an OEM's upstream 

contract manufacturer and downstream competitor. Case 

studies [11] and empirical investigations [1] reveal the 

implications of suppliers climbing value chains, cautioning 

Western companies to be wary of their suppliers in 

developing countries to avoid vertical competition. From the 

buyer's perspective, Wan and Wu [12] developed an 

analytical model to study how value chain climbing affects 

value distribution in buyer-supplier relationships, 

identifying three outsourcing strategies: accommodation, 

squeeze, and dump. However, their analysis overlooks 

operational factors like demand and inventory, and the 

uncertain operating environment can lead to strategy failure. 

We also address cooperation and competition in supply 

chains under various conditions. Typically, such coexistence 

manifests as vertical cooperation and horizontal competition 

[13-15]. Horizontal competition may occur upstream or 

downstream. Upstream competition often refers to the 

competition between suppliers to a retailer or other 

downstream buyer, which is also called the supplier 

selection problem [16, 17]. Downstream competition often 

refers to the competition between retailers, closely related to 

channel decisions [18, 19]. In recent years, the coexistence 

of vertical cooperation and competition has garnered 

significant theoretical and practical attention. As 

outsourcing constitutes a form of vertical cooperation in the 

supply chain, the impact of a single - tier competition on 

outsourcing strategy has been extensively examined, such as 

horizontal competition among downstream buyers or 

upstream suppliers. For instance, Wang et al. [20] 

investigate the outsourcing strategy problem of two OEMs 

whose products each consist of two components. 

Specifically, each OEM produces a distinct component and 

determines whether to outsource the other component to the 

rival OEM or a third - party supplier. Niu et al. [21] examine 

how two competing firms outsource product manufacturing 

to two different manufacturers, while the first manufacturer 

produces a critical component that is required by every 

product and the second manufacturer provides additional 

services that enhance product value. Arya 2008 make show 

that when two competitive firms outsource to a unique 

external supplier, they may also pay a premium to the 

supplier. Some scholars have discussed important factors 

affecting the coopetition in outsourcing strategies [22, 23]. 

For example, Deng et al. [24] investigate the outsourcing 

contract in a supply chain with two competing OEMs and a 

common CM whose production cost of the CM decreases by 

the learning-by-doing effect. Liu and Tyagi [25] examine the 

effects of upward channel decentralization between two 

competing firms that outsource the production to upstream 

suppliers. Surprisingly, the suppliers do not provide cost 

advantages to these firms, demonstrating that when the 

downstream firms' production positioning is endogenous, 

upward channel decentralization with a peculiar outsourcing 

strategy is still profitable.  

A well - designed contract is essential for firms to 

maximize benefits and minimize outsourcing risks. Most 

relevant literature focuses on the quantity-based outsourcing 

contracts. Recently, many scholars have paid attention to 

price competition in outsourcing strategies. Niu et al. [17] 

investigate price competition between an OEM and its ODM 

in three different forms: simultaneous pricing game, OEM-

price-first game, and ODM-price-first game. Feng and Lu 

[26] consider outsourcing contracts in a two-tier supply 

chain consisting of two competing manufacturers and an 

upstream supplier based on both quantity competition and 

price competition. Each manufacturer can produce in - house 

or outsource to the supplier, and the supplier can be 

negotiated to act as either an exclusive supplier or a common 

supplier. Their analysis reveals that wholesale-price 

contracts always weaken the competition among 

manufacturers. Chen et al. [27] also investigate the 

outsourcing strategies of an OEM and a CM in the Cournot 

competition setting, where either the OEM or the CM 

determines the wholesale price of the outsourcing product. 

Most closely related to our paper,  Shi [28]  explores the 

CM's encroachment strategy and quality decisions, such as 

building a private brand to compete with the OEM and 

deciding the quality level and selling price of the private 

brand. 

To summarize, the existing literature rarely examines 

how suppliers' value chain climbing impacts outsourcing 

contracts under operational uncertainty, and it usually treats 

vertical competition as an exogenous rather than endogenous 
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factor. Consequently, the dynamic decision - making process 

of buyers and suppliers—facing both the supplier's growing 

capabilities and demand uncertainty — remains largely 

unexplored. To address these limitations, we develop a two 

- stage outsourcing contract model in a supply chain with a 

buyer and a supplier. The decision process is divided into 

two stages: a learning stage where the supplier receives 

outsourcing requirements, and a competing stage where the 

supplier may launch its own branded product to compete 

with the buyer if outsourcing occurred in the first stage. In 

Stage 1, the supplier sets the outsourcing price, and the buyer 

decides on retail price and outsourcing/in - house quantities, 

with demand linearly related to the buyer's price. In Stage 2, 

if outsourcing occurred, the supplier enters the market and 

engages in price competition with the buyer, whose 

stochastic demands are linearly related to both parties' retail 

prices. 

Ⅲ. MODELLING 

We model a supply chain comprising of a buyer (she, 

subscribed as b) who sells the product to the market and a 

supplier (he, subscribed as s) that can produce the product 

for the buyer with the production cost 𝑐𝑠  per unit, and 

provide the outsourcing contract. Both buyer and supplier 

are occupied with complete and perfect information. This 

simplified assumption is applicable to mature industries 

(such as consumer electronics), where the buyer and the 

supplier establish cost transparency through long - term 

cooperation. The annual cost auditing mechanism between 

Dell and Flex is a typical case [11].  

We adopt the wholesale price contract for its 

operational feasibility and theoretical applicability [10,13], 

wherein the dominant supplier—with bargaining primacy 

from asset-specific investments like proprietary processes or 

specialized equipment (e.g., semiconductor 

photolithography systems)—sets wholesale prices initially. 

This first-mover dynamic reflects actual power asymmetries 

in Electronics Manufacturing Services (EMS) industries, as 

observed in Apple-Samsung relationships and TSMC's 

capability advantage. Subsequently, the buyer has three 

choices: (1) accept the contract provided by the supplier and 

only outsource the production process to the supplier; (2) 

reject the contract and only produce in-house with the 

production cost of 𝑐𝑏 per unit, 𝑐𝑠 < 𝑐𝑏 < 𝑝, (3) or adopt the 

mixed strategy where outsourcing and in-house production 

coexist. If the buyer outsources production to the supplier, 

the supplier may learn the buyer's technology and marketing 

knowledge, potentially launching its own product to 

compete with the buyer. This is termed value chain climbing. 

For simplicity, we assume the buyer's and supplier's products 

are substitutable. The assumption of substitutability is a 

common starting point in models of competition，which 

allows us to analyze the impact of the supplier's potential 

entry into the market on the buyer's outsourcing decision.  

We divide the timeline into two stages: Stage 1 is the 

learning stage, the supplier does not have the ability to 

provide products to the market, he needs to improve 

corresponding capabilities from value chain climbing. Stage 

2 is the competition stage: the supplier is able to provide 

products to the market and competes with the buyer if the 

outsourcing relationship exists in stage 1. 

We conceptualize the supplier's and buyer's sequential 

decisions in Figure 1. The whole decision process includes 

two stages: In stage 1, the supplier decides the wholesale 

price 𝑤 at first, then the buyer decides outsourcing quantity 

𝑞𝑜𝑢𝑡1 and in-house production quantity 𝑞𝑖𝑛1 as well as retail 

price 𝑝𝑏1 simultaneously. After these decisions, the demand 

in stage 1, 𝐷1(𝑝𝑏1, 𝜖1) , is realized. Normally, 𝐷1(𝑝𝑏1, 𝜖1) 

can be characterized as additive model or multiplicative 

model [29]. In this paper, we apply the additive model for all 

demand function owing to its capacity to preserve the 

intrinsic attributes of price elasticity whilst safeguarding the 

viability of analytical solutions. That is, 𝐷1(𝑝𝑏1, 𝜖1): =
𝐿1(𝑝𝑏1) + 𝜖1 where 𝐿1(𝑝𝑏1) is the deterministic component 

of the  demand, 𝑑𝐿1/𝑑𝑝𝑏1 ≤ 0 . Normally, 𝜖1  is the 

stochastic component of the demand with known probability 

density function (pdf) 𝑓1(⋅)  and cumulative distribution 

function (cdf)𝐹1(⋅). In stage 2, the the buyer decides the 

retail price 𝑝𝑏2  and outsourcing quantity 𝑞𝑜𝑢𝑡2  while the 

supplier decides his retail price 𝑝𝑠 and production quantity 

𝑞𝑠 (if the supplier does not enter the market, 𝑝𝑠 and 𝑞𝑠 are all 

equal to 0 ) at the same time. Then the stochastic demands, 

𝐷𝑏2(𝑝𝑏2, 𝑝𝑠 , 𝜖𝑏2) and 𝐷𝑠2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑠2), are realized. 

𝐷𝑏2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑏2): = 𝐿𝑏2(𝑝𝑏2, 𝑝𝑠) + 𝜖𝑏2 

𝐷𝑠2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑠2, 𝑞𝑜𝑢𝑡1): = (𝐿𝑠2(𝑝𝑏2, 𝑝𝑠) + 𝜖𝑠2)𝐼𝑞𝑜𝑢𝑡1 

where 𝐿𝑏2(𝑝𝑏2, 𝑝𝑠) is the deterministic part of demand 

faced by buyer in stage 2 , and 𝐿𝑠2(𝑝𝑏2, 𝑝𝑠)  is the 

deterministic part of demand faced by supplier in stage 2. 

𝜖𝑏2  and 𝜖𝑠2  are independent stochastic components with 

𝜖𝑏2 ∼ 𝑓𝑏2(⋅)(𝐹𝑏2(⋅)), 𝜖𝑠2 ∼ 𝑓𝑠2(⋅)(𝐹𝑠2(⋅)), and 

We assume that 𝐿𝑏2(𝑝𝑏2, 𝑝𝑠) is decreasing in 𝑝𝑏2  and 

increasing in 𝑝𝑠, while 𝐿𝑠2(𝑝𝑏2, 𝑝𝑠) is decreasing in 𝑝𝑠 and 

increasing in 𝑝𝑏2  to capture the economics of price 

competition between the buyer and supplier. The failure rate 

of stochastic components 𝜖1, 𝜖𝑏2 and 𝜖𝑠2 are  

𝑟1(⋅): = 𝑓1(⋅)/(1 − 𝐹1(⋅)), 
𝑟𝑏2(⋅): = 𝑓𝑏2(⋅)/(1 − 𝐹𝑏2(⋅)), 
 𝑟𝑠2(⋅): = 𝑓𝑠2(⋅)/(1 − 𝐹𝑠2(⋅)), 

In stage 1, we use the newsvendor setting to describe 

the expected profit of the buyer: 

𝜋𝑏
1(𝑤, 𝑝𝑏1, 𝑞𝑜𝑢𝑡1, 𝑞𝑖𝑛1)   

= 𝑝𝑏1𝐸[min(𝑞𝑜𝑢𝑡1 + 𝑞𝑖𝑛1, 𝐷1(𝑝𝑏1, 𝜖1))] − 𝑤𝑞𝑜𝑢𝑡1 − 𝑐𝑏𝑞𝑖𝑛1    (1) 

The expected profit of the supplier at this stage is: 

                              𝜋𝑠
1(𝑤, 𝑞𝑜𝑢𝑡1) = (𝑤 − 𝑐𝑠)𝑞𝑜𝑢𝑡1       (2) 

Stage 2 contains the vertical competition between the buyer 

and the supplier. At this stage, the buyer decides her price 

𝑝𝑏2  and outsourcing quantity 𝑞𝑜𝑢𝑡2 . 𝑞𝑜𝑢𝑡2  satisfies the 

stochastic demand 𝐷𝑏2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑏2)  (generally, buyer will 

outsource only for 𝑤 < 𝑐𝑏. We assume that when 𝑤 = 𝑐𝑏, 

the buyer will outsource at this stage to simplify the model, 

indicating the situation that outsourcing does not exist at all). 

At the same time, the supplier decides his quantity price 𝑝𝑠 

and quantity 𝑞𝑠.     𝑞𝑠  satisfies the stochastic demand 

𝐷𝑠2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑠2, 𝑞out 1). We assume that if the buyer does not 

outsource to the supplier in stage 1, the supplier will not 

enter the market in stage 2 in this 
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paper(𝐷𝑠2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑠2, 0) = 0). Note that the supplier may 

also upgrade the value chain and enter the market by self-

investment meant in stage 1. In this case, the relationship 

between buyers and suppliers becomes more complicated. In 

conclusion, we write the buyer's 

expected profit in stage 2 as:  

𝜋𝑏
2(𝑤, 𝑝𝑏2, 𝑝𝑠, 𝑞𝑜𝑢𝑡) = 𝑝𝑏2𝐸[𝑚𝑖𝑛(𝑞𝑜𝑢𝑡2, 𝐷𝑏2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑏2))] 

                                    −𝑤𝑞𝑜𝑢𝑡2                                                (3) 

The supplier's expected profit in stage 2 as: 

 𝜋𝑠
2(𝑤, 𝑝𝑏2, 𝑝𝑠, 𝑞𝑜𝑢𝑡1, 𝑞𝑜𝑢𝑡2, 𝑞𝑠) = (𝑤 − 𝑐𝑠)𝑞𝑜𝑢𝑡2 

           +𝑝𝑠𝐸[min(𝑞𝑠, 𝐷𝑠2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑠2, 𝑞𝑜𝑢𝑡1))] − 𝑐𝑠𝑞𝑠    (4) 

Above all, the total expected profit of buyer is 

𝛱𝑏 (𝑤, 𝑝𝑏1, 𝑝𝑏2, 𝑝𝑠 , 𝑞𝑜𝑢𝑡1, 𝑞in 1, 𝑞𝑜𝑢𝑡2) =

𝜋𝑏
1 (𝑤, 𝑝𝑏1, 𝑞𝑜𝑢𝑡1, 𝑞in 1) +  𝜋𝑏

2(𝑤, 𝑝𝑏2, 𝑝𝑠 , 𝑞𝑜𝑢𝑡2) ; the total 

expected profit of supplier is 

𝛱𝑠(𝑤, 𝑝𝑏2, 𝑝𝑠, 𝑞𝑜𝑢𝑡1, 𝑞𝑜𝑢𝑡2, 𝑞𝑠) = 𝜋𝑠
1(𝑤, 𝑞𝑜𝑢𝑡1) + 

𝜋𝑠
2(𝑤, 𝑝𝑏2, 𝑝𝑠, 𝑞𝑜𝑢𝑡1, 𝑞𝑜𝑢𝑡2, 𝑞𝑠). 

In this game, the supplier prioritizes choosing 

appropriate w to induce the buyer's behavior to maximize 

his total expected profit. Given w, the buyer will choice her 

optimal price and outsourcing/production quantities in stage 

1: pb1, qout1 and qin1. Then, whether the supplier can enter 

the market in stage 2 is known to all, and the buyer and the 

supplier simultaneously make their price and quantity 

decisions in stage 2. The objective functions of the buyer and 

supplier are maximizing their respective total expected 

profits. 

Observing Equations (1) to (4), given other decision 

variables, all quantity decision, 𝑞out1 1, 𝑞in 1, 𝑞out 2  and 𝑞𝑠 , 

can be obtained by solving several separate newsvendor 

models, so we can rewrite 𝑞𝑜𝑢𝑡1, 𝑞𝑖𝑛1, 𝑞𝑜𝑢𝑡2  and 𝑞𝑠  as 

functions containing other decision variables and simplify 

the analysis process. Lemma 1 shows the quantity decisions 

of the buyer and the supplier at two stages given the decision 

variables (and 𝑞out 1 ) in stage 1 . Without loss of generality, 

we set that 𝑞𝑜𝑢𝑡1 = 0 and 𝑝𝑠 = 0 if 𝑤 = 𝑐𝑏 . 

Lemma 1. (1) Given 𝑤 and 𝑝𝑏1, the quantity decisions 

in stage 1 are : 𝑞𝑜𝑢𝑡1(𝑤, 𝑝𝑏1) = 𝐹1
−1 (

𝑝𝑏1−𝑤

𝑝𝑏1
) +

𝐿1(𝑝𝑏1), 𝑞𝑖𝑛1(𝑝𝑏1) = 0, 𝑤 ∈ [0, 𝑐𝑏);  or  𝑞𝑜𝑢𝑡1(𝑐𝑏 , 𝑝𝑏1) =

0, 𝑞𝑖𝑛1(𝑝𝑏1) = 𝐹1
−1 (

𝑝𝑏1−𝑐𝑏

𝑝𝑏1
) + 𝐿1(𝑝𝑏1), 𝑤 = 𝑐𝑏. 

(2) Let 

𝐼𝑤,𝑝𝑏1
: = {

1,  if 𝑞𝑜𝑢𝑡1(𝑤, 𝑝𝑏1) = 1

0,  if 𝑞𝑜𝑢𝑡1(𝑤, 𝑝𝑏1) = 0
 

Given 𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏2 and 𝑝𝑠, the quantity decisions in stage 2 

are:  

1) If 𝐼𝑤,𝑝𝑏1
= 0 , then 𝑞𝑜𝑢𝑡2(𝐼𝑤,𝑝𝑏1

, 𝑤, 𝑝𝑏2, 𝑝𝑠) =

𝑞𝑜𝑢𝑡2(0, 𝑤, 𝑝𝑏2, 0) = 𝐹𝑏2
−1 (

𝑝𝑏2−𝑤

𝑝𝑏2
) + 𝐿𝑏2(𝑝𝑏2, 0), 

𝑞𝑠(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏2, 𝑝𝑠) = 𝑞𝑠(0, 𝑤, 𝑝𝑏2, 0) = 0;  

2) If 𝐼𝑤,𝑝𝑏1
= 1 , then 𝑞𝑜𝑢𝑡2(𝐼𝑤,𝑝𝑏1

, 𝑤, 𝑝𝑏2, 𝑝𝑠) =

𝑞𝑜𝑢𝑡2(1, 𝑤, 𝑝𝑏2, 𝑝𝑠) = 𝐹𝑏2
−1 (

𝑝𝑏2−𝑤

𝑝𝑏2
) + 𝐿𝑏2(𝑝𝑏2, 𝑝𝑠),  

𝑞𝑠(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏2, 𝑝𝑠) = 𝑞𝑠(1, 𝑤, 𝑝𝑏2, 𝑝𝑠) = 𝐹𝑠2

−1 (
𝑝𝑠−𝑐𝑠

𝑝𝑠
) +

𝐿𝑠2(𝑝𝑏2, 𝑝𝑠). 

Now, there are price decision variables left: 𝑤, 𝑝𝑏1, 𝑝𝑏2 

and 𝑝𝑠 , and we can rewrite a multi-stage game model to 

explicit the the outsourcing strategy decisions of the buyer 

and supplier. To ensure compactness of the decision 

variables, we assume that max{𝑝𝑏1, 𝑝𝑏2, 𝑝𝑠} ≤ 𝑝𝑚𝑎𝑥 < +∞, 

where 𝑝𝑚𝑎𝑥 is sufficiently large that they would not impact 

any of the choices, as pointed out by Cachon and Netessine 

([12]), "Therefore, the transformed game [with compact sets] 

behaves just like the original game with an unbounded 

strategy space." Without loss of generality, 𝐿1(𝑝𝑏1) ≥
0, ∀𝑝𝑏1 ∈ [0, 𝑝𝑚𝑎𝑥] , and 𝐿𝑖(𝑝𝑏2, 𝑝𝑠) ≥ 0, ∀𝑖 ∈
{𝑏2, 𝑠2}, ∀(𝑝𝑏2, 𝑝𝑠) ∈ [0, 𝑝𝑚𝑎𝑥] × [0, 𝑝𝑚𝑎𝑥]. 

We rewrite 𝜋𝑏
2(𝑤, 𝑝𝑏2, 𝑝𝑠, 𝑞𝑜𝑢𝑡2)  and 

𝜋𝑠
2(𝑤, 𝑝𝑏2, 𝑝𝑠, 𝑞𝑜𝑢𝑡1, 𝑞𝑜𝑢𝑡2, 𝑞𝑠)  as 𝜋𝑏

2(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏2, 𝑝𝑠)  and 

𝜋𝑠
2(𝐼𝑤,𝑝𝑏1

, 𝑤, 𝑝𝑏2, 𝑝𝑠)  by plugging 𝑞𝑜𝑢𝑡2(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏2, 𝑝𝑠) 

and 𝑞𝑠(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏2, 𝑝𝑠)  into the equations (3)-(4), 

respectively. Similarly, we rewrite πb
1 (w, pb1, qout1, qin1) 

and πs
1(w, qout1) as πb

1 (w, pb1  and πs
1(w, pb1) by plugging 

qout1(w, pb1)  and qin1(pb1)  into equations (1)-(2), 

respectively. By backward induction, given w and pb1, the 

buyer and supplier's simultaneous decisions in stage 2 are 

represented by the following system: 

  {

𝑚𝑎𝑥
𝑤≤𝑝𝑏2≤𝑝max 

 𝜋𝑏
2(𝐼𝑤,𝑝𝑏1

, 𝑤, 𝑝𝑏2, 𝑝𝑠)

𝑚𝑎𝑥
𝑝𝑠∈ 𝒟1

  𝜋𝑠
2(𝐼𝑤,𝑝𝑏1

, 𝑤, 𝑝𝑏2, 𝑝𝑠)
         (5) 

where 

𝒟1 = {
0,  if 𝐼𝑤,𝑝𝑏1

= 0

[𝑐𝑠, 𝑝𝑚𝑎𝑥],  if 𝐼𝑤,𝑝𝑏1
= 1

 

Define (𝑝𝑏2
∗ (𝐼𝑤,𝑝𝑏1

, 𝑤), 𝑝𝑠
∗(𝐼𝑤,𝑝𝑏1

, 𝑤) ) as the optimal 

solution to the problem (5). Then, we write the buyer's total 

expected profit as 𝛱𝑏(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏1): = 𝜋𝑏

1(𝑐𝑏 , 𝑝𝑏1) +

𝜋𝑏
2(0, 𝑤, 𝑝𝑏2

∗ (0, 𝑤),0) for 𝐼𝑤,𝑝𝑏1
= 0; or 𝛱𝑏(𝐼𝑤,𝑝𝑏1

, 𝑤, 𝑝𝑏1): =

𝜋𝑏
1(𝑤, 𝑝𝑏1) + 𝜋𝑏

2(1, 𝑤, 𝑝𝑏2
∗ (1, 𝑤), 𝑝𝑠

∗(1, 𝑤))  for 𝐼𝑤,𝑝𝑏1
= 1 . In 

stage 1 , the buyer first decides pb1 given w, which can be 

expressed as: 

                    𝑚𝑎𝑥
𝑤≤𝑝𝑏1≤𝑝𝑚𝑎𝑥

 𝛱𝑏(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏1)                                (6) 

Define 𝑝𝑏1
∗ (𝑤) as the optimal solution to the problem 

(6). The supplier's total expected profit is 

𝛱𝑠(𝐼𝑤,𝑝𝑏1
∗ (𝑤), 𝑤): = 𝜋𝑠

1(𝑤, 𝑞𝑜𝑢𝑡1(𝑤, 𝑝𝑏1
∗ (𝑤))) 

                                +𝜋𝑠
2 (𝑤, 𝑝𝑏2

∗ (𝑤, 𝑝𝑏1
∗ (𝑤)), 𝑝𝑠

∗(𝐼𝑤,𝑝𝑏1
∗ (𝑤), 𝑤)) 

and the optimization problem to the supplier in stage 1 is 

                           𝑚𝑎𝑥
0≤𝑤≤𝑐𝑏

 𝛱𝑠(𝐼𝑤,𝑝𝑏1
∗ (𝑤), 𝑤)                                  (7) 

Note that when w = cb , it is equivalent to the buyer's 

producing in-house at two stages, so that the supplier cannot 

benefit from value chain climbing in stage 2 . 

Ⅳ. EQUILIBRIUM ANALYSIS 

In this section, we analyze the existence of the Nash 

equilibria by solving the problems (5), (6) and (7) 

sequentially. 

We first solve the problem (5). According to Lemma 1, 

we need to discuss the following two cases separately: 

𝐼𝑤,𝑝𝑏1
= 0, and 𝐼𝑤,𝑝𝑏1

= 1. The case 𝐼𝑤,𝑝𝑏1
= 0 means that 

the buyer owns all market in two stages by producing in-

house in stage 1 , and the case Iw,pb1
= 1 implies that the 
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buyer focuses on the cost advantage and ignore the value 

chain climbing of the supplier. In the following, we refer to 

the case Iw,pb1
= 0 as the market maintaining case, and the 

case 𝐼𝑤,𝑝𝑏1
= 1 as the cost advantage seeking case. 

Let 𝜋𝑏
𝑑2(𝑤, 𝑝𝑏2, 𝑝𝑠) : = (𝑝𝑏2 − 𝑤)𝐿𝑏2(𝑝𝑏2, 𝑝𝑠),  

 𝑞𝑜𝑢𝑡2
𝑣 (𝑤, 𝑝𝑏2): = 𝐹𝑏2

−1 (
𝑝𝑏2−𝑤

𝑝𝑏2
) , ∀𝑤 ∈ [0, 𝑐𝑏] ; and 

𝜋𝑠
𝑑2(𝑤, 𝑝𝑏2, 𝑝𝑠): =  (𝑤 − 𝑐𝑠)𝐿𝑏2(𝑝𝑏2, 𝑝𝑠) + (𝑝𝑠 − 𝑐𝑠)𝐿𝑠2(𝑝𝑏2, 𝑝𝑠), 

𝑞𝑠
𝑣(𝑝𝑠): = 𝐹𝑠2

−1 (
𝑝𝑠−𝑐𝑠

𝑝𝑠
) . Theorem 1 shows the quasi-

concavity of problem system (5) and the properties of 

optimal solutions 𝑝𝑏2
∗ (𝑤, 𝑝𝑏1) and 𝑝𝑠

∗(𝑤, 𝑝𝑏1). 

Theorem 1. (i) In marketing maintaining case 

( 𝐼𝑤,𝑝𝑏1
= 0 ), 𝑝𝑠

∗(0, 𝑤) = 0 , assume (A1) 
𝜕2𝜋𝑏

𝑑2(𝑐𝑏,𝑝𝑏2,0)

𝜕𝑝𝑏2
2 < 

0,
𝜕3𝜋𝑏

𝑑2(𝑐𝑏,𝑝𝑏2,0)

𝜕𝑝𝑏2
3 ≤ 0 and (B1) 𝜖𝑏2 have an increasing failure 

rate (IFR) distribution with 𝑟𝑏2(𝜙) ≤ 3, ∀𝜙 ∈ [0,1] , then 

𝜋𝑏
2(0, 𝑤, 𝑝𝑏2, 0) is quasi-concave in 𝑝𝑏2 and 𝑝𝑏2

∗ (0, 𝑤) is the 

unique solution of equation (8) 

    𝐸[min(𝑞𝑜𝑢𝑡2
𝑣 (𝑤, 𝑝𝑏2), 𝜖𝑏2)] +

𝜕𝜋𝑏
𝑑2(𝑤, 𝑝𝑏2, 0)

𝜕𝑝𝑏2

= 0          (8) 

Otherwise, 𝑝𝑏2
∗ (0, 𝑤) ∈ (𝑤, 𝑝𝑚𝑎𝑥) satisfying equation (8). 

(ii) In cost advantage seeking case ( 𝐼𝑤,𝑝𝑏1
= 1 ), assume 

(A2) 
𝜕2𝜋𝑏

𝑑2(𝑤,𝑝𝑏2,𝑝𝑠)

𝜕𝑝𝑏2
2 < 0,

𝜕2𝜋𝑠
𝑑2(𝑤,𝑝𝑏2,𝑝𝑠)

𝜕𝑝𝑠
2 < 

0,
𝜕3𝜋𝑏

𝑑2(𝑤,𝑝𝑏2,𝑝𝑠)

𝜕𝑝𝑏2
3 ≤ 0,

𝜕3𝜋𝑠
𝑑2(𝑤,𝑝𝑏2,𝑝𝑠)

𝜕𝑝𝑠
3 ≤ 0  and (B2) 𝜖𝑏2, 𝜖𝑠2 

have IFR distributions with 𝑟𝑏2(𝜙) ≤ 3  and 𝑟𝑠2(𝜙) ≤

3, ∀𝜙 ∈ [0,1], then 𝜋𝑏
2(1, 𝑤, 𝑝𝑏2, 𝑝𝑠) is quasiconcave in 𝑝𝑏2 

and 𝜋𝑠
2(1, 𝑤, 𝑝𝑏2, 𝑝𝑠) is quasiconcave in 𝑝𝑠 , so the optimal 

solution to the problem (5), (𝑝𝑏2
∗ (1, 𝑤), 𝑝𝑠

∗(1, 𝑤)) , is the 

unique solution of (9)-(10) 

     𝐸[min(𝑞𝑜𝑢𝑡2
𝑣 (𝑤, 𝑝𝑏2), 𝜖𝑏2)] +

𝜕𝜋𝑏
𝑑2(𝑤, 𝑝𝑏2, 𝑝𝑠)

𝜕𝑝𝑏2

= 0     (9)

        𝐸[min(𝑞𝑠
𝑣(𝑝𝑠), 𝜖𝑠2)] +

𝜕𝜋𝑠
𝑑2(𝑤, 𝑝𝑏2, 𝑝𝑠)

𝜕𝑝𝑠

= 0            (10)

 

Otherwise, (𝑝𝑏2
∗ (1, 𝑤), 𝑝𝑠

∗(1, 𝑤)) can be determined by 

searching all interior points in the domain (𝑤, 𝑝𝑚𝑎𝑥) × 

( 0, 𝑝max ) satisfying equations (9) and (10). 

In Theorem 1(i) and (ii), the conditions (A1) and (A2) 

are standard for the existences of unique solution for the 

deterministic cases of problem (5); Conditions (B1) and (B2) 

implies the effective stochastic demand components, 

𝐷𝑏2(𝑝𝑏2, 𝑝𝑠 , 𝜖𝑏2)  and 𝐷𝑠2(𝑝𝑏2, 𝑝𝑠, 𝜖𝑏2)  given 𝐼𝑞𝑜𝑢𝑡1
=

1(𝐼𝑤,𝑝𝑏1
= 1), have IFR distributions. Furthermore, ϵb2 and 

ϵs2 may be dependent in cost advantage seeking case, which 

relaxes the conventional assumption that stochastic demands 

are independent of each other. Of course, if the conditions of 

quasi-concavity shown in Theorem 1 do not hold, because 

the maxima of problem (5) are interior (which we have 

shown in the Proof of Theorem 1 ), 𝑝𝑏2
∗ (0, 𝑤)  or 

(𝑝𝑏2
∗ (1, 𝑤), 𝑝𝑠

∗(1, 𝑤))  can be determined by exhaustively 

searching over all points satisfying equation (8) or equation 

set (9)-(10). 

Next, we solve the problem (6). Theorem 2 shows the 

conditions of quasi-concavity of 𝛱𝑏(𝐼𝑤,𝑝𝑏1
, 𝑤, 𝑝𝑏1)  in 𝑝𝑏1 

and the properties of the optimal solution 𝑝𝑏1
∗ (𝑤) . Let 

𝜋𝑏
𝑑1(𝑤, 𝑝𝑏1): = (𝑝𝑏1 − 𝑤)𝐿1(𝑝𝑏1), ∀𝑤 ∈ [0, 𝑐𝑏]  be the 

deterministic part of the buyer's profit in stage 

1, 𝑞𝑜𝑢𝑡1
𝑣 (𝑤, 𝑝𝑏1): = 𝐹1

−1 (
𝑝𝑏1−𝑤

𝑝𝑏1
) ∀𝑤 ∈ [0, 𝑐𝑏)  or 

𝑞𝑖𝑛1
𝑣 (𝑝𝑏1): = 𝐹1

−1 (
𝑝𝑏1−𝑐𝑏

𝑝𝑏1
)  is the stochastic part of the 

outsourcing/in-house production quantity in stage 1 given 𝑤 

and 𝑝𝑏1. 

Theorem 2. Assume (A) 
𝜕2𝜋𝑏

𝑑1(𝑤,𝑝𝑏1)

𝜕𝑝𝑏1
2 <

0,
𝜕3𝜋𝑏

𝑑1(𝑤,𝑝𝑏1)

𝜕𝑝𝑏1
3 ≤ 0 and (B) 𝜖1 have an IFR distribution with 

𝑟1(𝜙) ≤ 3, ∀𝜙 ∈ [0,1], then 𝜋𝑏
1(𝑤, 𝑝𝑏1) is quasi-concave in 

𝑝𝑏1  and 𝑝𝑏1
∗ (𝑤) is the unique solution of equation (11) or 

equation (12). 

Market maintaining case: 

𝐸[min(𝑞𝑖𝑛1
𝑣 (𝑝𝑏1), 𝜖1)] +

𝜕𝜋𝑏
𝑑1(𝑐𝑏,𝑝𝑏1)

𝜕𝑝𝑏1
=0                       (11) 

Cost advantage seeking case: 

𝐸[min(𝑞𝑜𝑢𝑡1
𝑣 (𝑤, 𝑝𝑏1), 𝜖1)] +

𝜕𝜋𝑏
𝑑1(𝑤, 𝑝𝑏1)

𝜕𝑝𝑏1
= 0, 𝑤

∈ [0, 𝑐𝑏)     (12) 

Otherwise, 𝑝𝑏1
∗ (𝑤) ∈ (𝑤, 𝑝𝑚𝑎𝑥) satisfying equation (11) or 

𝑝𝑏1
∗ (𝑐𝑏) ∈ (𝑐𝑏 , 𝑝𝑚𝑎𝑥) satisfying equation (12). 

Similar to Theorem 1, the condition (A) in Theorem 2 

ensure the existences of unique solution for the deterministic 

cases of problem (6); Condition (B) in Theorem 2 implies 

the stochastic demand component, 𝐷1(𝑝𝑏1, 𝜖1)  has IFR 

distribution. Also, if the conditions of quasi-concavity 

shown in Theorem 2 do not hold, 𝑝𝑏1
∗ (𝑤) is interior and can 

be determined by exhaustively searching over all points 

satisfying equation (11). Actually, given 𝑤 ∈ [𝑐𝑠, 𝑐𝑏] , 

problem (5) and problem (6) are independent and can be 

solved simultaneously. 

After obtaining 𝑝𝑏1
∗ (𝑤), we proceed to solve problem 

(7). We define 𝑊̃: = {𝑤 ∣ 𝛱𝑏(0, 𝑤, 𝑝𝑏1
∗ (𝑤)) ≥ 

𝛱𝑏(1, 𝑤, 𝑝𝑏1
∗ (𝑤)), 𝑤 ∈ [0, 𝑐𝑏]}  as the region of w  under 

which the buyer produces in-house in stage 1 (market 

maintaining case, 𝐼𝑤,𝑝𝑏1
∗ (𝑤) = 0) ; and 𝑊̂: = {𝑤 ∣

𝛱𝑏(1, 𝑤, 𝑝𝑏1
∗ (𝑤)) ≥ 𝛱𝑏(0, 𝑤, 𝑝𝑏1

∗ (𝑤)), 𝑤 ∈ [0, 𝑐𝑏)}  as the 

region of w under which the buyer outsources in stage 1 

(cost advantage seeking case, 𝐼𝑤,𝑝𝑏1
∗ (𝑤) = 1 ). Note that in 

cost advantage seeking case, 𝐼𝑤,𝑝𝑏1
∗ (𝑤) = 1, 𝑤 ≠ 𝑐𝑏. 

In market maintaining case, we define 𝐿̃𝑏2(𝑤): =
𝐿𝑏2(𝑝𝑏2

∗ (0, 𝑤), 𝑝𝑠
∗(0, 𝑤)), which is the deterministic demand 

of buyer in stage 2. Then, let 𝑞̃𝑜𝑢𝑡2
𝑣 (𝑤): = 𝐹𝑏2

−1 (
𝑝𝑏2

∗ (0,𝑤)−𝑤

𝑝𝑏2
∗ (0,𝑤)

) 

is the stochastic part of outsourcing quantity in stage 2. 

  𝛱𝑠(0, 𝑤) = (𝑤 − 𝑐𝑠)[𝐿̃𝑏2(𝑤) + 𝑞̃𝑜𝑢𝑡2
𝑣 (𝑤))], 𝑤 ∈ 𝑊̃     (13) 

In cost advantage seeking case, we define 𝐿̂1(𝑤): =

𝐿1(𝑝𝑏1
∗ (𝑤)), 𝐿̂𝑏2(𝑤): = 𝐿𝑏2(𝑝𝑏2

∗ (1, 𝑤), 𝑝𝑠
∗(1, 𝑤)) and 

𝐿̂𝑠2(𝑤): = 𝐿𝑠2(𝑝𝑏2
∗ (1, 𝑤), 𝑝𝑠

∗(1, 𝑤)). 𝐿̂𝑖(𝑤), ∀𝑖 ∈ {1, 𝑏2, 𝑠2} 

are deterministic demands of buyer/supplier in stage 1/2. 

Then, let 𝑞̂𝑜𝑢𝑡1
𝑣 (𝑤): = 𝐹1

−1 (
𝑝𝑏1

∗ (𝑤)−𝑤

𝑝𝑏1
∗ (𝑤)

) , 𝑞̂𝑜𝑢𝑡2
𝑣 (𝑤): =

𝐹𝑏2
−1 (

𝑝𝑏2
∗ (1,𝑤)−𝑤

𝑝𝑏2
∗ (1,𝑤)

) and 𝑞̂𝑠
𝑣(𝑤): = 𝐹𝑠

−1 (
𝑝𝑠

∗(1,𝑤)−𝑐𝑠

𝑝𝑠
∗(1,𝑤)

) as 

stochastic parts of quantities. Then, 

𝛱𝑠(1, 𝑤) = (𝑤 − 𝑐𝑠)[𝐿̂1(𝑤) + 𝐿̂𝑏2(𝑤) + 𝑞̂𝑜𝑢𝑡1
𝑣 (𝑤) + 𝑞̂𝑜𝑢𝑡2

𝑣 (𝑤)] 

                 +(𝑝𝑠
∗(1, 𝑤) − 𝑐𝑠)𝐿̂𝑠2(𝑤)  
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                 +𝑝𝑠
∗(1, 𝑤)𝐸[𝑚𝑖𝑛(𝑞̂𝑠

𝑣(𝑤), 𝜖𝑠2)] − 𝑐𝑠𝑞̂𝑠
𝑣(𝑤), 𝑤

∈ 𝑊̂    (14) 

Ignoring 𝑤 ∈ 𝑊̃  or 𝑤 ∈ 𝑊̂ , Theorem 3 shows the 

conditions of concavity of 𝛱𝑠(𝐼𝑤,𝑝𝑏1
∗ (𝑤), 𝑤)  in 𝑤  and the 

properties of 𝑤∗. 

Theorem 3. Ignoring 𝑤 ∈ 𝑊̃ or 𝑤 ∈ 𝑊̂, 𝛱𝑠(0, 𝑤) and 

𝛱𝑠(1, 𝑤)  are concave on [𝑐𝑠 , 𝑐𝑏]  if all the following 

conditions hold: (A) 𝐿̃𝑏2(𝑤) and 𝐿̂𝑖(𝑤) are non-increasing 

and concave in 𝑤 ∈ [0, 𝑐𝑏], ∀𝑖 ∈ {1, 𝑏2} ; (B) 

𝑝𝑏1
∗ (𝑤), 𝑝𝑏2

∗ (0, 𝑤)  and 𝑝𝑏2
∗ (1, 𝑤)  are decreasing and 

concave in 𝑤 ∈ [0, 𝑐𝑠]; (C) 𝜖1 and 𝜖𝑏2 are IFR distributions 

with 𝑑𝑟𝑖(𝜙)/𝑑𝜙 ≥ (𝑟𝑖(𝜙))2, ∀𝜙 ∈ [0,1], ∀𝑖 ∈ {1, 𝑏2}  and 

(D)   𝐽(𝑤) =
𝑑𝑝𝑠

∗(𝑤)

𝑑𝑤
(𝐿̂𝑠2(𝑤) + 𝐸[𝑚𝑖𝑛(𝑞̂𝑠

𝑣(𝑤), 𝜖𝑠2)]) +

(𝑝𝑠
∗(𝑤) − 𝑐𝑠)

𝑑𝐿̂𝑠2(𝑤)

𝑑𝑤
 is non-increasing in 𝑤  and 𝐽(𝑤) ≥ 0 

when 𝑤 ∈ [0, 𝑐𝑏]. Then, 𝑤∗ ∈ (𝑐𝑠, 𝑐𝑏]. 
Based on Theorem 3, Lemma 2 shows the properties 

of 𝑤∗. 

Lemma 2. If all conditions showed in Theorem 3 hold, 

then 𝑤∗ ∈ (𝑐𝑠 , 𝑐𝑏] can be determined as: 

(1) If 𝑤0 ∈ (𝑐𝑠, 𝑐𝑏]  satisfying 
𝑑𝛱𝑠(0,𝑤)

𝑑𝑤
|

𝑤=𝑤0

= 0  and 

𝛱𝑠(0, 𝑤0) ≥ 𝛱𝑠(1, 𝑤), ∀𝑤 ∈ (𝑐𝑠, 𝑐𝑏), then 𝑤∗ = 𝑤0; 

(2) If 𝑤1 ∈ (𝑐𝑠, 𝑐𝑏)  satisfying 
𝑑𝛱𝑠(1,𝑤)

𝑑𝑤
|

𝑤=𝑤1

= 0  and 

𝛱𝑠(1, 𝑤1) ≥ 𝛱𝑠(0, 𝑤), ∀𝑤 ∈ (𝑐𝑠, 𝑐𝑏], then 𝑤∗ = 𝑤1; 

(3) If 𝑙𝑖𝑚
𝑤→𝑐𝑏

−
 
𝑑𝛱𝑠(1,𝑤)

𝑑𝑤
≥ 0  and ∃𝑤2 ∈ (𝑐𝑠, 𝑐𝑏)  such that 

𝛱𝑠(1, 𝑤2) = 𝑚𝑎𝑥
𝑐𝑠≤𝑤≤𝑐𝑏

 𝛱𝑠(0, 𝑤), then 𝑐𝑠 < 𝑤2 < 𝑤∗ < 𝑐𝑏; 

(4)  Otherwise, 𝑤∗ = 𝑐𝑏. 

If the conditions of concavity shown in Theorem 3 

cannot be satisfied, 𝑤∗ can be searched by comparing 

𝛱𝑠(0), 𝛱𝑠(𝑐𝑏), 𝑙𝑖𝑚
𝑤→𝑐𝑏

−
 𝛱𝑠(𝑤), 𝛱𝑠(𝑤𝑡0) and 𝛱𝑠(𝑤𝑡1), where         

𝑤𝑡0: = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑤∈𝑊𝑡0

𝛱𝑠(0, 𝑤), 

𝑊𝑡0: = {𝑤 | 
𝑑𝛱𝑠(0,𝑤)

𝑑𝑤
= 0,

 d
2𝛱𝑠(0,𝑤)

𝑑𝑤2 ≤ 0, 𝑤 ∈ [𝑐𝑠, 𝑐𝑏]} ;.  

𝑤𝑡1: = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑤∈𝑊𝑡1

𝛱𝒮(1, 𝑤), 

𝑊𝑡1: = {𝑤 | 
𝑑𝛱𝑠(1, 𝑤)

𝑑𝑤
= 0 ,

 d
2𝛱𝑠(1, 𝑤)

𝑑𝑤2
≤ 0, 𝑤 ∈ [0, 𝑐𝑏)} 

That is, the optimal solution to problem (7) may be the 

boundary point ( 0 or 𝑐𝑏 ), local maximum ( 𝑤𝑡0 or 𝑤𝑡1 ), or 

be infinitely close to 𝑐𝑏 from the left. 

Ⅴ. THE PROPERTIES OF THE NASH EQUILIBRIA UNDER 

ADDITIVE STOCHASTIC DEMAND WITH LINEAR 

DETERMINISTIC PART 

In this section, we consider a special case that the 

deterministic parts of all demand are linear, which is widely 

applied in the literature on the interfaces of operations and 

marketing ( [10]  ). That is, in stage 1 , 𝐿1(𝑝𝑏1) = 𝑎1 −

𝑏1𝑝𝑏1. In Stage 2, if 𝑝𝑠 = 0(𝐼𝑤,𝑝𝑏1
= 0), then 𝐿𝑏2(𝑝𝑏2, 0) =

𝑎3 − 𝑏3𝑝𝑏2 ; if 𝑝𝑠 > 0(𝐼𝑤,𝑝𝑏1
= 1) , then 𝐿𝑏2(𝑝𝑏2, 𝑝𝑠) =

𝑎2 − 𝑏2𝑝𝑏2 + 𝜃𝑝𝑠  and 𝐿𝑠2(𝑝𝑏2, 𝑝𝑠) = 𝑎2 − 𝑏2𝑝𝑠 + 𝜃𝑝𝑏2 , 

where 𝜃 refers to the intensity of price competition. Without 

generality, we assume that all parameters ( 𝑎𝑖 , 𝑏𝑖 , 𝑖 ∈ {1,2,3} 

and 𝜃 are positive and 𝜃 ≤ 𝑏2 ). We check the properties of 

the optimal retail prices and order/production quantities 

under different equilibrium, then we compare the price 

competitive case (𝜃 > 0) to the noncompetitive case (𝜃 =
0). 

Proposition 1. In market maintaining case, if 𝑏1 >
1

𝑓1(𝜙)
 and 𝑏3 >

1

𝑓𝑏2(𝜙)
, ∀𝜙 ∈ [0,1] , then (1) 𝑝𝑏1

∗ (𝑐𝑏)  is 

increasing in 𝑐𝑏  and 𝑝𝑏2
∗ (0, 𝑤)  is increasing in 𝑤 . 

Specifically, 
𝑑𝑝𝑏1

∗ (𝑐𝑏)

𝑑𝑐𝑏
< 1  and 

𝑑𝑝𝑏2
∗ (0,𝑤)

𝑑𝑤
< 1 ; (2) 

𝑞in1 (𝑝𝑏1
∗ (𝑐𝑏))  is decreasing in 𝑐𝑏  and 

𝑞𝑜𝑢𝑡2(0, 𝑤, 𝑝𝑏2
∗ (0, 𝑤),0) is decreasing in 𝑤.  

The market maintaining case means the buyer owns the 

whole market in two stages. If the price elasticity of demand 

in all stages, b1  or b3 , exceeds a specific limit, then the 

optimal retail prices of the buyer increase as the increase in 

the unit cost cb and w, the optimal production/outsourcing 

quantities changes in an opposite way. That is, if there is a 

lack of competition in the market and the price elasticity of 

demand is high enough in each stage, then as the unit cost of 

the buyer increases, the increase in retail price with the 

reduced market demand can bring higher profits than 

maintaining or reducing the retail price with increased 

market demand. 

In cost advantage seeking case, Proposition 2 shows 

how the optimal retail prices and outsourcing/production 

quantities change with the outsourcing price. 

Proposition 2. In cost advantage seeking case, if 𝑏1 >
1

𝑓1(𝜙)
 and 𝑏2 > 𝑚𝑎𝑥 {

1

𝑓𝑏2(𝜙)
,

1

𝑓𝑠2(𝜙)
} , ∀𝜙 ∈ [0,1], then (1) 

𝑝𝑏1
∗ (𝑤), 𝑝𝑏2

∗ (1, 𝑤) and 𝑝𝑠
∗(1, 𝑤) are increasing in 𝑤 and 

𝑑𝑝𝑏 𝑑
∗ (𝑤)

𝑑𝑤
< 1; (2) 𝑞out1 (𝑤, 𝑝𝑏1

∗ (𝑤)) is decreasing in 𝑤. 

We still find that if the price elasticity of demand at both 

two stages are high enough, with the increase in supplier's 

outsourcing price, buyer's retail prices increase and the 

buyer's outsourcing quantity in stage 1 decreases. 

Meanwhile, the supplier's retail prices in stage two also 

increases. Differentiating qout2
∗ (1, w, pb2

∗ (1, w), ps
∗(1, w)) 

and 𝑞𝑠
∗(1, 𝑤, 𝑝𝑏2

∗ (1, 𝑤), 𝑝𝑠
∗(1, 𝑤)) with w, we have 

 

    
𝑑𝑞𝑜𝑢𝑡2

∗ (1, 𝑤, 𝑝𝑏2
∗ (1, 𝑤), 𝑝𝑠

∗(1, 𝑤))

𝑑𝑤
 

= (
𝑤

(𝑝𝑏2
∗ (1, 𝑤))2

1

𝑓𝑏2 (
𝑝𝑏2

∗ (1, 𝑤) − 𝑐𝑠

𝑝𝑏2
∗ (1, 𝑤)

)
− 𝑏2)

𝑑𝑝𝑏2
∗ (1, 𝑤)

𝑑𝑤
 

−
1

𝑝𝑏2
∗ (1, 𝑤)

1

𝑓𝑏2 (
𝑝𝑏2

∗ (1, 𝑤) − 𝑐𝑠

𝑝𝑏2
∗ (1, 𝑤)

)
+ 𝜃

𝑑𝑝𝑠
∗(1, 𝑤)

𝑑𝑤
, 

    
 d𝑞𝑠

∗(1, 𝑤, 𝑝𝑏2
∗ (1, 𝑤), 𝑝𝑠

∗(1, 𝑤))

𝑑𝑤
 

= (
𝑐𝑠

(𝑝𝑠
∗(1, 𝑤))2

1

𝑓𝑠2 (
𝑝𝑠

∗(1, 𝑤) − 𝑐𝑠

𝑝𝑠
∗(1, 𝑤)

)
− 𝑏2)

𝑑𝑝𝑠
∗(1, 𝑤)

𝑑𝑤
 

+𝜃
𝑑𝑝𝑏2

∗ (1, 𝑤)

𝑑𝑤
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Given 𝑏2 > 𝑚𝑎𝑥 {
1

𝑓𝑏2(𝜙)
,

1

𝑓𝑠2(𝜙)
} , ∀ϕ ∈ [0,1], it can be 

shown that only the last term on the right of both equations, 

𝜃
𝑑𝑝𝑠

∗(1,𝑤)

𝑑𝑤
 and 𝜃

𝑑𝑝𝑏2
∗ (1,𝑤)

𝑑𝑤
, are positive. Actually, when θ is 

relatively low, the last term of both two equations have a 

much smaller impact than other terms, 

𝑞𝑜𝑢𝑡2
∗ (1, 𝑤, 𝑝𝑏2

∗ (1, 𝑤), 𝑝𝑠
∗(1, 𝑤))  and 

𝑞𝑠
∗(1, 𝑤, 𝑝𝑏2

∗ (1, 𝑤), 𝑝𝑠
∗(1, 𝑤))  are decreasing in 𝑤 , indicating 

that higher retail prices will be accompanied by lower market 

demand, this is the most likely scenario. However, when 𝜃 

is high enough, 𝑞𝑠
∗(1, 𝑤, 𝑝𝑏2

∗ (1, 𝑤), 𝑝𝑠
∗(1, 𝑤))  may be 

increasing in 𝑤, referring to the special case that the higher 

retail price and the higher market demand coexist for the 

supplier, which shows the huge benefits of climbing the 

value chain. 

Now, we check how the intensity of price competition 

𝜃  affects the outsourcing decision. Firstly, we define the 

optimal retail price as the function of w  and θ  based on 

Theorem 1(ii) given 𝐼𝑤,𝑝𝑏1
= 1: (𝑝𝑏2

∗ (𝑤, 𝜃) , 𝑝𝑠
∗(𝑤, 𝜃))  is 

the solution to the following equations: 

    𝐸[min(𝑞𝑜𝑢𝑡2
𝑣 (𝑤, 𝑝𝑏2), 𝜖𝑏2)] + 𝑎2 − 2𝑏2𝑝𝑏2 + 𝜃𝑝𝑠 

+𝑏2𝑤 = 0                                                                               (15) 

   𝐸[min(𝑞𝑠
𝑣(𝑝𝑠), 𝜖𝑠2)] + (𝑤 − 𝑐𝑠)𝜃 + 𝑎2 − 2𝑏2𝑝𝑠 + 𝜃𝑝𝑏2 

+𝑏2𝑐𝑠 = 0                                                                               (16) 

Lemma 3. If 𝑏2 > 𝑚𝑎𝑥 {
1

𝑓𝑏2(𝜙)
,

1

𝑓𝑠2(𝜙)
} , ∀𝜙 ∈ [0,1] , 

then𝑝𝑏2
∗ (𝑤, 𝜃) and 𝑝𝑠

∗(𝑤, 𝜃) are increasing in 𝜃  when 𝑤 ∈
[𝑐𝑠, 𝑐𝑏). 

That is, the optimal retail prices in stage 2 are both 

increasing in 𝜃, indicating higher price competition intensity 

induces the buyer and supplier increase their retail prices 

when supplier enters the market in stage 2.  Based on 

𝑝𝑏2
∗ (𝑤, 𝜃) , let 𝑞𝑜𝑢𝑡2

𝑣 (𝑤, 𝜃): =

𝐹𝑏2
−1 (

𝑝𝑏2
∗ (𝑤,𝜃)−𝑤

𝑝𝑏2
∗ (𝑤,𝜃)

) , 𝐿̂𝑏2(𝑤, 𝜃): = 𝑎2 − 𝑏2𝑝𝑏2
∗ (𝑤, 𝜃) +

𝜃𝑝𝑠
∗(𝑤, 𝜃). Then, 

 

𝐽1(𝑤, 𝜃): = (𝑤 − 𝑐𝑠)[𝐿̂1(𝑤) + 𝐿̂𝑏2(𝑤, 𝜃) + 𝑞𝑜𝑢𝑡1
𝑣 (𝑤)  

                 +𝑞𝑜𝑢𝑡2
𝑣 (𝑤, 𝜃)]                                                          (17)

Obviously, 𝐽1(𝑤, 𝜃) is the expected profit of the 

outsourcing orders earned by the supplier from the buyer. 

We further define 𝑞𝑠
𝑣(𝑤, 𝜃): = 𝐹𝑠2

−1 (
𝑝𝑠

∗(𝑤,𝜃)−𝑐𝑠

𝑝𝑠
∗(𝑤,𝜃)

)  and 

𝐿̂𝑠2(𝑤, 𝜃): = 𝑎2 − 𝑏2𝑝𝑠
∗(𝑤, 𝜃) + 𝜃𝑝𝑏2

∗ (𝑤, 𝜃).Then, we  

rewrite the 𝛱𝑠(1, 𝑤),0 ≤ 𝑤 < 𝑐𝑏 as 

𝛱𝑠(𝑤, 𝜃) = 𝐽1(𝑤, 𝜃) + (𝑝𝑠
∗(𝑤, 𝜃) − 𝑐𝑠)𝐿̂𝑠2(𝑤, 𝜃) 

                  +𝑝𝑠
∗(𝑤, 𝜃)𝐸[min(𝑞̂𝑠

𝑣(𝑤, 𝜃), 𝜖𝑠2)]

− 𝑐𝑠𝑞̂𝑠
𝑣(𝑤, 𝜃)   (18) 

Proposition 3 shows a lower bound of 𝜃 that ensure the 

outsourcing relationship exists at both two stages. 

       Proposition 3. Assume (1) 𝑏2 > 𝑚𝑎𝑥 {
1

𝑓𝑏2(𝜙)
,

1

𝑓𝑠2(𝜙)
},  

∀𝜙 ∈ [0,1]and (2) 
𝜕𝑝𝑠

∗(𝑤,𝜃)

𝜕𝜃
/

𝜕𝑝𝑏2
∗ (𝑤,𝜃)

𝜕𝜃
≥

𝑏2

𝜃
, if ∃𝑤𝑐 ∈ [0, 𝑐𝑏), 

there exists 𝜃(𝑤𝑐) = 𝑚𝑖𝑛 {𝜃| 𝐽1(𝑤𝑐 , 𝜃) ≥

𝑚𝑎𝑥
𝑐𝑠≤𝑤≤𝑐𝑏

 𝛱𝑠(0, 𝑤),0 ≤ 𝜃 < 𝑏2} , then when 𝜃 ∈ [𝜃(𝑤𝑐), 𝑏2], 

 𝑤∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
0≤𝑤<𝑐𝑏

 𝛱𝑠(𝑤, 𝜃). 

       From Proposition 3, we know that when (1) the price 

elasticity of demand in stage 2 is high enough , and (2) 

𝑝𝑠
∗(𝑤, 𝜃) is more sensitive than 𝑝𝑏2

∗ (𝑤, 𝜃) with respect to 𝜃 

for any 𝑤 ∈ [0, 𝑐𝑏), then there exists a lower bound of θ that 

ensure 𝑤∗ < 𝑐𝑏 . The managerial insight from this 

Proposition is: Given the outsourcing price w , when the 

price elasticity of the products is high enough, and the 

supplier is more sensitive to the intensity of price 

competition, once the intensity of price competition exceeds 

a minimum extent, the outsourcing relationship exists at both 

two stages. For the buyer, on the one hand, she has a certain 

advantage in the face of high-intensity price competition 

after the supplier enters the market; on the other hand, the 

cost reduction by outsourcing improves her net profit, so she 

is inclined to outsource. For the supplier, maintaining the 

outsourcing relationship with the buyer by providing a lower 

outsourcing price w will at least allow him to profit more at 

the end market by value chain climbing. 

Ⅵ. NUMERICAL STUDY 

We present numerical examples to exhibit our analyses 

conducted in this paper. Specifically, we carry out two 

experiments: a baseline experiment and a nonlinear 

experiment. In the baseline experiment, the deterministic 

component of the demand function is in linear form as 𝑄 =
𝑎 − 𝑏𝑝, 𝑎, 𝑏 >0. In contrast, in the nonlinear experiment, the 

deterministic component of a demand function is expressed 

in power form as 𝑄 = 𝑎𝑝−𝑏 , 𝑎, 𝑏 > 0 . The stochastic 

components of demand functions, denoted as 𝜖𝑏2  and 𝜖𝑠2 , 

are independent and identically distributed and are shared 

across both experiments. For ease of calculation, we 

consider two demand distributions: low demand distribution 

𝐹𝐿(⋅)(𝑓𝐿(⋅))  and high demand distribution 𝐹𝐻(⋅)(𝑓𝐻(⋅)) , 

where the probability destiny functions 𝑓𝐿  and 𝑓𝐻  are 

defined as: 

   𝑓𝐿(𝑥): = {
1.5, 0 < 𝑥 ≤ 0.5
0.5, 0.5 < 𝑥 < 1

    

 𝑓𝐻(𝑥): = {
0.5, 0 < 𝑥 ≤ 0.5
1.5, 0.5 < 𝑥 < 1

 

In distribution 𝑓𝐿(⋅), stochastic demand is more likely 

to fall within the low demand interval (0,0.5]. In contrast, 

distribution 𝑓𝐻(⋅)  is more likely to fall within the high 

demand interval (0.5,1). Based on the above two types of 

probability distribution types, we define the following four 

scenarios: 

Type 1: 𝜖1 ∼ 𝐹1(⋅) = 𝐹𝐻(⋅) and 𝜖𝑏2(𝜖𝑠2) ∼ 𝐹2(⋅) = 𝐹𝐿(⋅); 

Type 2: 𝜖1 ∼ 𝐹1(⋅) = 𝐹𝐿(⋅) and 𝜖𝑏2(𝜖𝑠2) ∼ 𝐹2(⋅) = 𝐹𝐻(⋅); 

Type 3: 𝜖1 ∼ 𝐹1(⋅) = 𝐹𝐻(⋅) and 𝜖𝑏2(𝜖𝑠2) ∼ 𝐹2(⋅) = 𝐹𝐻(⋅); 

Type 4: 𝜖1 ∼ 𝐹1(⋅) = 𝐹𝐿(⋅) and 𝜖𝑏2(𝜖𝑠2) ∼ 𝐹2(⋅) = 𝐹𝐿(⋅); 

Since 𝑤∗ in Problem (7) cannot be solved analytically, 

we  design Algorithm 1 to find the approximate optimal 

solutions (𝑤̆∗, 𝑝̆𝑏1
∗ , 𝑝̆𝑏2

∗ , 𝑝̆𝑠
∗, 𝑞̆𝑜𝑢𝑡1

∗ , 𝑞̆𝑖𝑛1
∗ , 𝑞̆𝑜𝑢𝑡2

∗ , 𝑞̆𝑠
∗)  and 

optimal values (𝛱̆𝑏
∗, 𝛱̆𝑠

∗) . All the equilibrium information 
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mentioned hereinafter are referred to 

𝑤̆∗, 𝑝̆𝑏1
∗ , 𝑝̆𝑏2

∗ , 𝑝̆𝑠
∗, 𝑞̆𝑜𝑢𝑡1

∗ , 𝑞̆𝑖𝑛1
∗ , 𝑞̆𝑜𝑢𝑡2

∗ , 𝑞̆𝑠
∗, 𝛱̆𝑏

∗ and 𝛱̆𝑠
∗. 

The design idea of the Algorithm 1 is as follows:  1) In 

Steps 1-2, we initialize the optimal solutions and values.  2) 

In Steps 3 − 20, we enumerate 𝑤tem ∈ [0, 𝑐𝑏) with a step 

size of 0.005 to find if a better solutions for Problem (5) to 

Problem (7). After the loop, we obtain the 

𝑤̆∗, 𝑝̆𝑏1
∗ , 𝑝̆𝑏2

∗ , 𝑝̆𝑠
∗, 𝑞̆𝑜𝑢𝑡1

∗ , 𝑞̆𝑖𝑛1
∗ , 𝑞̆𝑜𝑢𝑡2

∗ , 𝑞̆𝑠
∗, 𝛱̆𝑏

∗, 𝛱̆𝑠
∗ when 𝑤 < 𝑐𝑏. 3) 

In Steps 21-27, we compute 

𝛱𝑏(𝑐𝑏 , 𝑝𝑏1
∗ (𝑐𝑏), 𝑝𝑏2

∗ (0, 𝑐𝑏), 0,0, 𝑞𝑖𝑛1(𝑝𝑏1
∗ (𝑐𝑏)) ,

𝑞out 2(0, 𝑐𝑏 , 𝑝𝑏2
∗ (0, 𝑐𝑏), 0))  and 

𝛱𝑠(𝑐𝑏 , 𝑝𝑏2
∗ (0, 𝑐𝑏), 0,0, 𝑞out 2(0, 𝑐𝑏 , 𝑝𝑏2

∗ (0, 𝑐𝑏), 0), 0)  and 

check whether the optimal solutions and optimal values 

should be updated. 

We first examine the approximate optimal solutions 

(𝑤̆∗, 𝑝̆𝑏1
∗ , 𝑝̆𝑏2

∗ , 𝑝̆𝑠
∗, 𝑞̆𝑜𝑢𝑡1

∗ , 𝑞̆𝑖𝑛1
∗ , 𝑞̆𝑜𝑢𝑡2

∗ , 𝑞̆𝑠
∗) and values (𝛱̆𝑏

∗, 𝛱̆𝑠
∗) in 

the baseline experiment, then conduct a sensitivity analysis 

to investigate the influence of relevant parameters on the 

outsourcing decisions and profits within the supply chain. 

Subsequently, we proceed to explore the approximate 

optimal solutions and values for both parties in the nonlinear 

experiment, similarly performing a sensitivity analysis to 

assess how the relevant parameters affect the outsourcing 

decisions and profits. Finally, we conduct cross-model 

performance comparisons between the two cases, focusing 

specifically on the comparative impacts of the common 

influencing factors. 

A. Baseline  Experiment: Strategies and Sensitivity 

Analysis 

Assume that in the baseline experiment, the 

deterministic components of the demand functions are 

expressed as: 𝐿1(𝑝𝑏1) =  𝑎1 − 𝑏1𝑝𝑏1 , 𝐿𝑏2(𝑝𝑏2, 𝑝𝑠) = 𝑎2 −
𝑏2𝑝𝑏2 + 𝜃𝑝𝑠,  and 𝐿𝑠2(𝑝𝑏2, 𝑝𝑠) = 𝑎2 − 𝑏2𝑝𝑠 + 𝜃𝑝𝑏2,  or 

𝐿𝑏2(𝑝𝑏2, 0) = 𝑎3 − 𝑏3𝑝𝑏2 . Let 𝑐𝑠 = 0.1, 𝑐𝑏 = 0.2, 𝑎1 =
𝑎3 = 1, 𝑎2 = 0.6, 𝑏 = 𝑏1 = 𝑏2 = 𝑏3 = 0.1 , and 𝜃 = 0.01 . 

The approximate solutions and values of Problem (5) to 

Problem (7) are solved by MATLAB R2016a (the 'fmincon' 

function is used to solve the nonlinear optimization problem 

in Algorithm 1). The approximate optimal solutions and 

values under different stochastic demand types are shown in 

Table I. 

From Table I, we can see that: (1) Based on parameters 

𝑐𝑏 , 𝑐𝑠, 𝑎1, 𝑎2, 𝑎3, 𝑏  and 𝜃 , the buyer always outsources in 

stage 1(𝑞̆𝑖𝑛1
∗ = 0) and the approximate optimal wholesale 

price 𝑤̆ approaches 𝑐𝑏 from left for each stochastic demand 

type. (2) A higher retail price and lower outsourcing quantity 

are offered by the buyer in stage 1 when 𝜖1 ∼ 𝐹𝐻(⋅) 

compared to 𝜖1 ∼ 𝐹𝐿(⋅) , and the buyer and supplier also 

make the similar price and quantity decisions in stage 2. This 

phenomenon indicates that the buyer and supplier apply a 

high price to gain more profit when stochastic demands are 

relatively high and set a lower price to increase sales when 

the stochastic demands are relatively low. (3) In stage 2, 𝑝̆𝑏2
∗  

is slightly higher than 𝑝̆𝑠
∗ and 𝑞̆𝑜𝑢𝑡2

∗  is slightly lower than 𝑞̆𝑠
∗.  

(4) When 𝜖1 and 𝜖𝑏2 follow the same distribution (Type 3 

and Type 4), the buyer will decrease the retail price and 

outsourcing quantities from stage 1 to stage 2(𝑝̆𝑏1
∗ > 𝑝̆𝑏2

∗  

and 𝑞̆𝑜𝑢𝑡1
∗ > 𝑞̆𝑜𝑢𝑡2

∗ ). Meanwhile, the sum of quantities at the 

market in stage 2 is large than the quantity in stage 

1 ( 𝑞̆𝑜𝑢𝑡2
∗ + 𝑞̆𝑠

∗ > 𝑞̆𝑜𝑢𝑡1
∗ )  for each stochastic demand type. 

Compared with the market monopolized by the buyer in 

stage 1, the competition brought by the entry of the supplier 

in stage 2 enables consumers to buy more products at lower 

prices. 

In sensitivity analysis, we explore the factors that may 

affect outsourcing decisions under each stochastic demand 

types. Normally, the ratio of production costs between the 

buyer and the supplier (𝑐𝑏/𝑐𝑠)  is a key drive of the 

outsourcing behavior. In this part, we fix 𝑐𝑠 and let 𝑐𝑏 take 

two levels: 𝑐𝑏 = 0.2(𝑐𝑏/𝑐𝑠 = 2)  for low level with label 

CB1 and 𝑐𝑏 = 0.8(𝑐𝑏/𝑐𝑠 = 8) for high level with label CB2. 

In addition, we also explore the impact of price elasticity of 

deterministic demand 𝑏  and the intensity of price 

competition 𝜃 . Let 𝑎1 = 𝑎3 = 1  and 𝑎2 = 0.6. 𝑏 = 0.1  is 

the low level of the price elasticity with label B1, 𝑏 = 0.5 is 

the high level of the price elasticity with label B2. Similarly, 

𝜃 = 0.01 is the low level of intensity of price competition 

between the supplier and buyer with THETA1, and 𝜃 =
0.09  is the high level of intensity of price competition 

between the supplier and buyer with label THETA2. Run the 

Algorithm 1 under different combination of variable 

parameters (𝑐𝑏 , 𝑏 and 𝜃) and stochastic demand type, Table 

II shows the equilibrium type (E.T.) and approximate total 

expected profits of buyer and supplier ( 𝛱̆𝑏
∗ and 𝛱̆𝑠

∗ ), where 

O1 refers to the equilibrium type that the buyer outsources in 

stage 1 with 𝑐𝑠 < 𝑤̆∗ < 𝑐𝑏 . 

From Table II, we find that 𝑤̆∗ = 0.1950 when 𝑐𝑏 =
0.2 and 𝑤̆∗ = 0.7950 when 𝑐𝑏 = 0.8, which means the 𝑤̆∗ 

is the maximum value when the loop in Algorithm 1 (Steps 

3-20) ends. Therefore, 𝑤̆∗  approaches 𝑐𝑏  from left under 

each combination of parameters and stochastic demand type. 

For the buyer, there are two possible reasons to outsource in 

stage 1, regardless of the supplier's value chain climbing in 

stage 2: 1) Given 𝑤 < 𝑐𝑏, the buyer can indirectly adjust her 

market demand and unit profit in each stage by appropriately 

adjusting the retail prices because we apply the additive 

model to describe the stochastic demands in this paper. Even 

if the supplier enters the market in stage 2, the buyer can also 

adjust 𝑝𝑏2  to obtain a reasonable product market demand 

𝐷𝑏2(𝑝𝑏2, 𝑝𝑠 , 𝜖𝑏2)  and unit profit 𝑝𝑏2 − 𝑤  to ensure global 

profit maximization. Unlike the price-based outsourcing 

contract, the buyer cannot adjust the market demand and the 

unit profit in the quantitative outsourcing contract, in which 

the product's retail price is fixed and the stochastic demand 

in each stage is independent of the retail price. So the loss of 

market share derived from value chain climbing in stage 2 

may largely hurt the buyer's profit, and she may choose to 

produce in-house in stage 1.  2) For the deterministic demand 

part 𝐿𝑖(𝑃, 𝜖𝑖) , where 𝑖 ∈ {1, 𝑏2, 𝑠2}, 𝑃 ∈ {{𝑝𝑏1}, {𝑝𝑏2, 𝑝𝑠}} , 

the price elasticity of buyer and supplier under linear form is 

fixed (−𝑏), which may induce the buyer refuse to change 

the outsourcing strategy, and the value of 𝑏  in the 

experiment can ensure that the buyer obtain the enough 

benefit when outsourcing in both stages. 

Based on the data in Table II, we further explore 

whether the different levels of 𝑏, 𝑐𝑏/𝑐𝑠 , and 𝜃  have a 

significant effect on the total expected profit of the buyer and 

supplier for each stochastic demand type. We use the 3-Way 
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ANOVA without replication, the confidence level is 0.05 , 

the analysis results are shown in Table III. 

From Table III, we know that for the mean responses of 

𝛱̆𝑏
∗ and 𝛱̆𝑠

∗ in each stochastic demand type are significantly 

different for the levels B1 and B2 of the factor  , but not for 

the levels CB1 and CB2 of the factor 𝑐𝑏/𝑐𝑠, nor the levels of 

THETA1 and THETA2 of the factor 𝜃. Next, we perform 

multiple comparison tests for each combination of three 

grouping variables, 𝑏, 𝑐𝑏/𝑐𝑠, and 𝜃 regarding to 𝛱̆𝑏
∗ and 𝛱̆𝑠

∗, 

respectively. The results are shown in Figure 2 and 3. In each 

sub-figure of these two figures, the group with the maximum 

mean response of 𝛱̆𝑏
∗ or 𝛱̆𝑠

∗ is in blue, and we named it as 

benchmark group. Those groups with a significant 

population margin mean from benchmark group are shown 

in red, while those with a non-significant population margin 

mean are in grey. 

In Figure 2, we show that, for all stochastic demand 

types, the mean responses of 𝛱̆𝑏
∗  are higher under the 

combinations with level B1 than those under the 

combinations with level B2, indicating that the low price 

demand elasticity increases the buyer's total expected profit. 

The maximum mean response of 𝛱̆𝑏
∗  appears under the 

combination of B1, CB1, and THETA 2. Meanwhile, the two 

combinations of B2 and THETA1 are the buyer's worst 

decision-making environment, for the 𝛱̆𝑏
∗  under these two 

combinations are significantly lower than that under the 

combination of B1, CB1, and THETA2. In Figure 3, we find 

that the mean responses of 𝛱̆𝑠
∗ under the combinations of B 

1 are higher than B 2, but not significantly so. 

B. Nonlinear  Experiment: Strategies and Sensitivity 

Analysis 

In this subsection, we analyze the outsourcing strategies 

and profits of the buyer and supplier under the stochastic 

demand with nonlinear deterministic component expressed 

in power function, i.e., 𝐿1(𝑝𝑏1) = 𝑝𝑏1
−0.5 , 𝐿𝑏2(𝑝𝑏2, 𝑝𝑠) = 

𝑝𝑏2
−0.5 + 𝜃𝑝𝑠, and 𝐿𝑠2(𝑝𝑏2, 𝑝𝑠) = 𝑝𝑠

−0.5 + 𝜃𝑝𝑏2  or 

𝐿𝑏2(𝑝𝑏2, 0) = 𝑝𝑏3
−0.5 . To avoid scenarios where 𝑝̆𝑏1

∗  

approaches to infinity and 𝑞̆
out 1

∗  approaches to 0 in cost 

advantage seeking case, or 𝑝̆𝑏1  approaches to infinity and 

𝑞̆𝑜𝑢𝑡2
∗  approaches to 0 in market maintaining case, we 

introduce the parameter 𝑃𝑚𝑎𝑥 as the upper bound of 𝑝𝑏1 and 

𝑝𝑏2 . Let 𝑐𝑠 = 0.1, 𝑐𝑏 = 0.2,  𝑃𝑚𝑎𝑥 = 2  and 𝜃 = 0.01 , the 

approximate solutions and values of Problem (5) to Problem 

(7) are solved by MATLAB R2016a (the 'fmincon' function 

is used to solve the nonlinear optimization problem in 

Algorithm 1). The approximate optimal solutions and values 

are shown in Table IV. 

From Table IV, we can see that: (1) Based on 

parameters 𝑐𝑏 , 𝑐𝑠, 𝑃𝑚𝑎𝑥  and 𝜃, the buyer always outsources 

in stage 1(𝑞̆𝑖𝑛1
∗ = 0) and the approximate optimal wholesale 

price 𝑤̆ approaches 𝑐𝑏 from left for each stochastic demand 

type. (2) In stage 1, the buyer sets a sufficiently high retail 

price to maintain a high margin profit, regardless of the 

demand distribution. In stage 2, the buyer and supplier set 

higher retail prices when 𝜖𝑏2(𝜖𝑠2) ∼ 𝐹𝐻(⋅)  compared to 

𝜖𝑏2(𝜖𝑠2) ∼ 𝐹𝐿(⋅). This phenomenon indicates that the buyer 

and supplier apply a high price to gain more profit when 

stochastic demands are relatively high and set a lower price 

to increase sales when the stochastic demands are relatively 

low. (3) In stage 2, 𝑝̆𝑏2
∗  is slightly higher than 𝑝̆𝑠

∗ and 𝑞̆𝑜𝑢𝑡2
∗  is 

slightly lower than 𝑞̆𝑠
∗.  (4) When 𝜖1 and 𝜖𝑏2 follow the same 

distribution (Type 3 and Type 4), the sum of quantities at the 

market in stage 2 is large than the quantity in stage 

1 ( 𝑞̆𝑜𝑢𝑡2
∗ + 𝑞̆𝑠

∗ > 𝑞̆𝑜𝑢𝑡1
∗ )  for each stochastic demand type. 

Compared with the market monopolized by the buyer in 

stage 1, the competition brought by the entry of the supplier 

in stage 2 enables consumers to buy more products at lower 

prices. 

In sensitivity analysis, we explore the impact of 𝑃𝑚𝑎𝑥 , 

the ratio of production costs between the buyer and supplier 

(𝑐𝑏/𝑐𝑠 = 2) and the intensity of price competition (𝜃) on 

the outsourcing behavior of the buyer and supplier. Let 

𝑃𝑚𝑎𝑥 = 2 be the low level with label PMAX1 and 𝑃𝑚𝑎𝑥 =
10 be the high level with label PMAX2.  𝑐𝑏/𝑐𝑠 = 2 is the 

low level with label CB1 and 𝑐𝑏/𝑐𝑠 = 8 is the high level 

with label CB2; 𝜃 = 0.01  is the low level with label 

THETA1 and 𝜃 = 0.09 is the high level with label THETA2. 

Run the Algorithm 1 under different combination of variable 

parameters (𝑐𝑏 , 𝑃𝑚𝑎𝑥 = 10 and 𝜃  ) and stochastic demand 

type, Table V show the equilibrium type (E.T.) and 

approximate total expected profits of buyer and supplier (𝛱̆𝑏
∗ 

and 𝛱̆𝑠
∗), where O1  refers to the equilibrium type that the 

buyer outsources in stage 1 with 𝑐𝑠 < 𝑤̆∗ < 𝑐𝑏 , and O2 

refers to the equilibrium type that the buyer outsources in 

stage 1 with 𝑤̆∗ = 𝑐𝑏 . 

We find that 𝑤̆∗ = 0.1950  when 𝑐𝑏 = 0.2  and w̆∗ =
0.7950  when 𝑐𝑏 = 0.8  if the equilibrium type is 𝑂1 . 

Compared to the case of linear deterministic demand part, 

when 𝑃𝑚𝑎𝑥 = 2  (PMAX1, low level) and 𝜃 = 0.09 

(THETA2, high level) and stochastic demand type is 'Type 

1' (𝜖1 ∼ 𝐹1(⋅) = 𝐹𝐻(⋅)  and 𝜖𝑏2(𝜖𝑠2) ∼ 𝐹2(⋅) = 𝐹𝐿(⋅)) , the 

equilibrium type with nonlinear deterministic demand part is 

𝑂2 (supplier outsources at 𝑤̆∗ = 𝑐𝑆 ): On the one hand, the 

lower price ceiling makes the buyer unwilling to outsource 

unless the outsourcing price is low in stage 1. Furthermore, 

when stochastic demand in the second stage is relatively low, 

and the price competition between the buyer and supplier is 

fierce, only the cost advantage of outsourcing can enable the 

buyer to obtain reasonable profit margins and competitive 

advantages. On the other hand, the low stochastic demand in 

stage 2 limits the supplier into the market because of the 

limited benefits provided by outsourcing. Also, 𝑝̆𝑏1
∗ = 𝑃𝑚𝑎𝑥  

indicating that the buyer sells product at the highest price in 

a monopoly market when the deterministic demand part is in 

power function form. 

Based on the data in Table V, we further explore 

whether the different levels of 𝑝𝑚𝑎𝑥 , 𝑐𝑏/𝑐𝑠 , and 𝜃  have a 

significant effect on the total expected profit of the buyer and 

supplier for each stochastic demand type. We use the 3 -Way 

ANOVA without replication, and the confidence level is 

0.05 . The analysis results are shown in Table VI. 

From Table VI, we know that the mean responses of 𝛱̆𝑏
∗ 

and 𝛱̆𝑠
∗  in each stochastic demand type are significantly 

different for the levels PMAX1 and PMAX2 of the factor 

𝑝max , but not for the levels CB1 and CB2 of the factor 𝑐𝑏/𝑐𝑠. 

For the buyer, the mean responses of 𝛱̆𝑏
∗  are significantly 

different for the levels THETA1 and THETA2 of 𝜃 only in 

stochastic demand Type 1 and Type 4 . For the supplier, the 

levels of 𝜃 do not affect the mean response of 𝛱̆𝑠
∗. 
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Next, we perform multiple comparison tests for each 

combination of three grouping variables, 𝑝𝑚𝑎𝑥, 𝑐𝑏/𝑐𝑠, and 𝜃 

regarding to 𝛱̆𝑏
∗ and 𝛱̆𝑠

∗, respectively. The results are shown 

in Figure 4 and 5. In each subfigure of these two figures, the 

group with the maximum mean response of 𝛱̆𝑏
∗ or 𝛱̆𝑠

∗ is in 

blue, and we named it as benchmark group. Those groups 

with a significant population margin mean from benchmark 

group are shown in red or pink (the mean responses of 

groups in red are also significantly different from those in 

pink), while those with a non-significant population margin 

mean are in grey. 

In Figure 4, we show that, for all stochastic demand 

types, the mean responses of 𝛱̆𝑏
∗  are higher under the 

combinations with level B1 than those under the 

combinations with level PMAX2, indicating that the high 

price ceiling in stage 1 increases the buyer's total expected 

profit. The maximum mean response of 𝛱̆𝑏
∗  appears under 

the combination of PMAX2, CB2, and THETA2. 

Meanwhile, the two combinations of PMAX1 and THETA1 

are the buyer's worst decision-making environment, for the 

𝛱̆𝑏
∗  under these two combinations are significantly lower 

than under the combination of PMAX2, CB2, and THETA2 

except in Type 2. Specifically, in Figure 4(a) and Figure 

4(d), the eight groups are divided into three clusters, and the 

mean responses of each cluster are significantly different, 

indicating that the high stochastic demand in stage 2 (Type 

1 and Type 4) makes the impact of the combinations of 

𝑝𝑚𝑎𝑥 , 𝑐𝑏/𝑐𝑠, and 𝜃 more differentiated on 𝛱̆𝑏
∗. In Figure 5, 

we find that the mean responses of 𝛱̆𝑠
∗  under the 

combinations of PMAX2 are higher than PMAX1, but not 

significantly so. 

C. Cross-Model Performance Comparisons 

In this subsection, we synthesize the core insights from 

the baseline experiment and nonlinear experiment. We 

examine the comparative impacts of the common factors in 

both experiments—production cost ratio (𝑐b/cs), competition 

intensity (𝜃), and stochastic demand types —on the profits 

of supply chain members. We omit the impact on 

outsourcing decisions because, under all existing conditions, 

the buyer always chooses to outsource. 

We first compare the impact of the production cost ratio 

(𝑐b/cs) on baseline and nonlinear experiments. Using data 

from Table II, we compute the profit change rates for the 

buyer and the supplier under each stochastic distribution 

combination (Type 1 to Type 4) during the shift from CB1 

(low level, 𝑐b/cs=2) to CB2 (high level, 𝑐b/cs=8) across the 

four factor combinations (B1+THETA1, B1+THETA2, 

B2+THETA1, B2+THETA2) in the baseline experiment, 

then we calculate their means and standard deviations. 

Similarly, we compute the profit change rates for the buyer 

and the supplier under each stochastic distribution 

combination (Type 1 to Type 4) during the shift from CB1 

(low level, 𝑐b/cs=2) to CB2 (high level, 𝑐b/cs=8) across the 

four factor combinations (PMAX1+THETA1, 

PMAX1+THETA2, PMAX2+THETA1, 

PMAX2+THETA2) in the nonlinear experiment, then 

compute their means and standard deviations.  Figure 6 

displays these statistics as a bar chart with error bars. 

From the upper chart of Figure 6, we observe that 

buyer’s profit change rates are predominantly negative (-

30.8% to 2.9%) in the baseline experiment, indicating a 

general profit decrease as the production cost ratio (𝑐b/cs) 

rises. This demonstrates that higher cost ratios significantly 

adversely affect buyer’s profits when the deterministic 

component of the stochastic demand is linear. In contrast, 

buyer’s profit change rate in the nonlinear experiment shows 

a more complex pattern. Though still generally declining, the 

rates span a wider range (-2.0% to 6.0%), indicating that cost 

ratio increases do not uniformly impact the buyer’s profit 

change rate and other factors also influence the outcome, 

leading to a mix of positive and negative profit changes.  

The lower chart of Figure 6 displays the supplier’s 

profit change rates, which remain consistently positive (45.4% 

to 68.4%), showing that supplier profits increase with higher 

cost ratios. In the Nonlinear Experiment, supplier’s profit 

change rates are also positive but show greater increases 

(52.0% to 70.3%) compared to Baseline experiment, 

demonstrating a more pronounced positive effect from the 

cost ratio increase. Overall, these patterns reveal the 

complex impact of production cost ratio changes on supply 

chain profit distribution. While Baseline experiment proves 

detrimental to the buyer’s profit but beneficial to the 

supplier’s, the nonlinear experiment shows more complex 

impact on the buyer’s profit combined with significantly 

enhanced supplier’s benefit. These findings are crucial for 

understanding how cost ratio changes affect all supply chain 

participants. 

We then compare the impact of competition intensity (θ) 

on baseline and nonlinear experiments. Using data from 

Table V, we compute the profit change rates for the buyer 

and the supplier under each stochastic distribution 

combination (Type 1 to Type 4) during the shift from 

THETA1 (low level, θ=0.01) to THETA2 (high level, 

θ=0.09) across the four factor combinations (B1+CB1, 

B1+CB2, B2+CB1, B2+CB2) in the baseline experiment, 

then calculate their means and standard deviations. Similarly, 

we compute the profit change rates for the buyer and the 

supplier under each stochastic distribution combination 

(Type 1 to Type 4) during the shift from THETA1 (low level, 

θ=0.01) to THETA2 (high level, θ=0.09) across the four 

factor combinations (PMAX1+CB1, PMAX1+CB2, 

PMAX2+CB1, PMAX2+CB2) in the nonlinear experiment, 

then calculate their means and standard deviations.  Figure  

7 displays these statistics as a bar chart with error bars. 

From the upper chart of Figure 7, we observe that the 

buyer’s profit change rates in the baseline experiment show 

significant fluctuations (35.6% to 170.4%), indicating 

considerable variation in buyer’s profit growth under lower 

competition intensity. Notably, the buyer experienced the 

highest profit increase in Type1 and endured a relatively 

lower growth in Type 4. The standard deviations reveal 

profit change rate volatility, demonstrating different 

stochastic demand scenario (Type 1, Type 2, Type 3 and 

Type 4) varying sensitivity to competition intensity changes. 

In nonlinear experiment, buyer’s profit change rates span a 
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broader range (46.1% to 205.5%), suggesting that under 

higher competition intensity, buyer’s profit change rates are 

generally higher with greater volatility—particularly for 

Type 4 in which buyer’s profit change rate reaches 205.5%. 

This indicates more complex and variable impacts of 

competition intensity on buyer’s profit when the 

deterministic component of stochastic demand is nonlinear. 

From the lower chart of Figure 7, we observe that the 

supplier’s profit change rates in the baseline experiment vary 

(95.7% to 177.8%), showing considerable differences in 

profit growth under lower competition intensity. Specifically, 

the supplier achieved the greatest increase in Type 1 and 

showed a relatively smaller growth in Type 2. The relatively 

high standard deviations indicate significant profit change 

rate volatility, reflecting the supplier’s diverse responses to 

competition intensity changes. In the nonlinear experiment, 

the supplier’s profit change rates show greater consistency 

across types (96.4% to 182.9%). Although the standard 

deviations remain high, volatility is somewhat reduced 

compared to the baseline experiment. This indicates that 

when the deterministic component of stochastic demand is 

nonlinear, increased competition intensity significantly 

impacts the supplier’s profit while diminishing differences 

among stochastic demand distribution scenarios. Overall, 

Figure 7 analysis reveals that increased competition intensity 

notably affects supply chain profit change rates for both 

parties. Nonlinear experiment typically show higher profit 

change rates and greater volatility, indicating profound and 

complex profit effects from competition intensity changes. 

Ⅶ. CONCLUSION 

In this paper, we develop a two-stage game-theoretic 

model based on price competition to examine the vertical co-

opetition resulting from value chain climbing in a supply 

chain under uncertain demand. In Stage 1, the supplier sets 

the outsourcing price, followed by the buyer's decisions on 

retail price and outsourcing/in-house production quantities. 

In Stage 2, if outsourcing occurred in Stage 1, the supplier 

enters the market to compete with the buyer, and both parties 

simultaneously make price and quantity decisions. 

Otherwise, only the buyer decides on retail price and 

outsourcing quantity. In both stages, stochastic demand is a 

function of retail prices. The supplier may set the 

outsourcing price at or below its production cost to gain 

market entry and climb the value chain. 

Our equilibrium analysis identifies two key scenarios: 

the market maintaining case, where the buyer fully 

outsources in Stage 1, and the cost advantage seeking case, 

where the buyer produces entirely in-house. We derive the 

fundamental properties of each equilibrium for additive 

stochastic demand with a linear deterministic component. 

Specifically, we explore the optimal retail prices and 

order/production quantities under different equilibria and 

compare the competitive and non-competitive cases. Results 

indicate that when the price elasticity of demand is 

sufficiently high, the optimal prices in both stages increase 

with the supplier's cost advantage, while the buyer's 

outsourcing and in - house quantities decrease. Moreover, 

under certain conditions, a lower bound of price competition 

intensity ensures that full outsourcing remains optimal in 

Stage 1. 

The numerical study further illustrates, under linear and 

nonlinear deterministic demand, the optimal outsourcing 

strategies and their impact on total expected profits. Results 

show that buyers tend to outsource in the presence of price 

competition, as value chain climbing by suppliers can 

effectively expand the market. This finding underscores the 

importance of balancing cost advantages with the potential 

risks of vertical competition. Specifically, buyers are more 

likely to outsource when facing high price elasticity of 

demand and intense price competition, as these factors can 

mitigate the impact of potential competition from suppliers. 

Conversely, when demand is less elastic or price competition 

is weaker, buyers may prefer in-house production to avoid 

direct competition. Additionally, the study highlights the 

significant role of demand uncertainty in shaping 

outsourcing decisions. In highly uncertain environments, 

buyers may opt for outsourcing to leverage the supplier's 

economies of scale and flexibility, while in stable demand 

conditions, in-house production may be preferred to 

maintain control over quality and supply chain oversight. 

Our study provides valuable insights into strategic decision-

making in supply chains, highlighting the critical role of 

price competition and demand uncertainty in shaping 

outsourcing strategies. These findings offer practical 

guidance for firms navigating complex supply chain 

dynamics, particularly in balancing the benefits of cost 

reduction with the risks of supplier competition. 

The numerical study demonstrates that buyer 

consistently maintains outsourcing strategies irrespective of 

supplier’s value chain climbing risk, the various stochastic 

demand types and other factors. This persistence stems from 

the buyer’s ability to dynamically adjust retail prices in 

response to stochastic demand, offsetting the competition 

from the supplier. In baseline experiment (the deterministic 

component of the stochastic demand is linear), a higher 

degree of price elasticity is positively correlated with 

increased buyer profitability, whereas the level of 

competition intensity does not exert a statistically significant 

influence on the buyer’s profit. Conversely, in the nonlinear 

experiment (the deterministic component of the stochastic 

demand is nonlinear), increased competitive intensity leads 

to heightened profit volatility for the buyer, characterized by 

greater fluctuations in realized profits. Furthermore, 

production cost disparities asymmetrically affect the buyer 

and supplier: the supplier consistently gains from rising cost 

ratios in both two experiments, whereas the buyer faces 

profit erosion in baseline experiment. These findings 

collectively validate that strategic outsourcing endures under 

competition primarily through adaptive pricing. 

This study offers insights into the strategic interactions 

between outsourcing and value chain climbing but has 

limitations that point to future research directions. Firstly, 

the study employs a simplified demand model with linear 

and nonlinear deterministic components, which might not 

fully capture real - world complexities like nonlinear 

relationships and dynamic customer preferences. Future 

research could be enhanced by using more sophisticated 

demand models to better reflect market realities. Secondly, 

the study centers on binary decision - making (full 
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outsourcing vs. full in - house production), possibly ignoring 

hybrid strategies that merge both approaches. Future 

research could look into these mixed strategies to present a 

more realistic view of supply chain management. By 

tackling these limitations, future research can build on the 

current findings to offer practical advice for firms dealing 

with complex supply chains. 
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Algorithm 1: Find the approximate optimal solutions and values of Problem (5) to Problem (7) 

Input:  𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝜃, 𝑐𝑏 , 𝑐𝑠

Output:  𝑤̆∗, 𝑝̆𝑏1
∗ , 𝑝̆𝑏2

∗ , 𝑝̆𝑠
∗, 𝑞̆

out 1
∗ , 𝑞̆

in1 
∗ , 𝑞̆

out 2
∗ , 𝑞̆𝑠

∗, 𝛱̌𝑏
∗, 𝛱̆𝑠

∗

       1. 𝑝̆𝑏1
∗ ← 0, 𝑝̆𝑏2

∗ ← 0, 𝑝̆𝑠
∗ ← 0, 𝑞̆𝑜𝑢𝑡1

∗ ← 0, 𝑞̆𝑖𝑛1
∗ ← 0, 𝑞̆𝑜𝑢𝑡2

∗ ← 0, 𝑞̆𝑠
∗ ← 0

          2. 𝛱𝑏
∗ ← 0, 𝛱𝑠

∗ ← 0

       3. for w=0:0.005:𝑐𝑏 − 0.0001 do 

       4.       𝑝𝑏2
mar 

← 𝑝𝑏2
∗ (0, 𝑤) 𝑣𝑖𝑎 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1(𝑖) 

       5.       (𝑝𝑏2
𝑜𝑢𝑡, 𝑝𝑠

out 
) ← (𝑝𝑏2

∗ (1, 𝑤), 𝑝𝑠
∗(1, 𝑤)) via Theorem 1(ii) 

       6.       𝑝𝑏1
mar 

← 𝑝𝑏1
∗ (𝑐𝑏), 𝑝𝑏1

out 
← 𝑝𝑏1

∗ (𝑤) 𝑣𝑖𝑎 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2

       7.       𝑞
in 1

mar 
← 𝑞in 1 (𝑝𝑏1

mar 
) , 𝑞

out 1

out 
← 𝑞out 1 (𝑤, 𝑝𝑏1

out 
)  via Lemma 1(1) 

       8.       𝑞
out 2

mar 
← 𝑞out (0, 𝑤, 𝑝𝑏2

mar 
, 0) , 𝑞

out 2

out 
← 𝑞out 2 (1, 𝑤, 𝑝𝑏2

out 
, 𝑝𝑠

out 
) , 𝑞𝑠

out 
← 𝑞𝑠 (1, 𝑤, 𝑝𝑏2

out 
, 𝑝𝑠

out 
)  via Lemma 1(2) 

       9.       𝛱𝑏
mar 

← 𝛱𝑏 (𝑤, 𝑝𝑏1
mar 

, 𝑝𝑏2
mar 

, 0,0, 𝑞𝑖𝑛1
𝑚𝑎𝑟 , 𝑞𝑜𝑢𝑡2

𝑚𝑎𝑟 ) , 𝛱𝑠
mar 

← 𝛱𝑠 (𝑤, 𝑝𝑏2
mar 

, 0,0, 𝑞𝑜𝑢𝑡2
𝑚𝑎𝑟 , 0)

       10.     𝛱𝑏
out 

← 𝛱𝑏 (𝑤, 𝑝𝑏1
out 

, 𝑝𝑏2
out 

, 𝑝𝑠
out 

, 𝑞𝑜𝑢𝑡1
out 

, 0, 𝑞𝑜𝑢𝑡2
out 

) , 𝛱𝑠
out 

← 𝛱𝑠 (𝑤, 𝑝𝑏2
out 

, 𝑝𝑠
out 

, 𝑞𝑜𝑢𝑡1
out 

, 𝑞𝑜𝑢𝑡2
out 

, 𝑞𝑠
out 

)

       11.     if (𝛱𝑠
𝑚𝑎𝑟 ≥ 𝛱̌𝑠

∗ or 𝛱𝑠
out 

≥ 𝛱̆𝑠
∗)  then 

       12.           if (𝛱𝑠
mar 

> 𝛱𝑠
out 

)  then 

       13.               𝑤̆ ∗← 𝑤, 𝑝̆𝑏1
∗ ← 𝑝𝑏1

mar 
, 𝑝̆𝑏2

∗ ← 𝑝𝑏2
mar 

, 𝑝̆𝑠
∗ ← 0, 𝑞̆

out 1
∗ ← 0, 𝑞̆

in 1
∗ ← 𝑞

in 1
𝑚𝑎𝑟 , 𝑞̆𝑜𝑢𝑡2

∗ ← 𝑞𝑜𝑢𝑡2
𝑚𝑎𝑟 , 𝑞̆𝑠

∗ ← 0

       14.               𝛱̌𝑏
∗ ← 𝛱𝑏

mar 
, 𝛱̌𝑠

∗ ← 𝛱𝑠
mar 

       15.           else 

           16.               𝑤̆ ∗← 𝑤, 𝑝̆𝑏1
∗ ← 𝑝𝑏1

out 
, 𝑝̆𝑏2

∗ ← 𝑝𝑏2
out 

, 𝑝̆𝑠
∗ ← 𝑝𝑠

out 
, 𝑞̆𝑜𝑢𝑡1

∗ ← 𝑞
out 1

out 
, 𝑞̆

in 1
∗ ← 0, 𝑞̆𝑜𝑢𝑡2

∗ ← 𝑞𝑜𝑢𝑡2
out 

, 𝑞̆𝑠
∗ ← 𝑞𝑠

out 

       17.               𝛱̌𝑏
∗ ← 𝛱𝑏

out 
, 𝛱̌𝑠

∗ ← 𝛱𝑠
out 

,

       18.           end if 

       19.      end if 

       20. end for 

       21. 𝑤 ← 𝑐𝑏, 𝑝𝑏2
mar 

← 𝑝𝑏2
∗ (0, 𝑐𝑏) via Theorem 1(i), 𝑝𝑏1

mar 
← 𝑝𝑏1(𝑐𝑏) via Theorem 2

       22. 𝑞
in1 

mar 
← 𝑞in 1 (𝑝𝑏1

mar 
)  via Lemma 1(1), 𝑞𝑜𝑢𝑡2

mar 
← 𝑞out 2 (0, 𝑤, 𝑝𝑏2

mar 
, 0)  via Lemma 1(2). 

       23. 𝛱𝑏
mar 

← 𝛱𝑏 (𝑐𝑏 , 𝑝𝑏1
mar 

, 𝑝𝑏2
mar 

, 0,0, 𝑞𝑖𝑛1
mar 

, 𝑞𝑜𝑢𝑡2
𝑚𝑎𝑟 ) , 𝛱𝑠

mar 
← 𝛱𝑠 (𝑐𝑏, 𝑝𝑏2

mar 
, 0,0, 𝑞𝑜𝑢𝑡2

𝑚𝑎𝑟 , 0)

       24. if  (𝛱𝑠
mar 

≥ 𝛱̆𝑠
∗)  then 

       25.        𝑤̆ ∗← 𝑐𝑏 , 𝑝̆𝑏1
∗ ← 𝑝𝑏1

mar 
, 𝑝̆𝑏2

∗ ← 𝑝𝑏2
mar 

, 𝑝̆𝑠
∗ ← 0, 𝑞̆𝑜𝑢𝑡1

∗ ← 0, 𝑞̆
in 1
∗ ← 𝑞

in1 
𝑚𝑎𝑟 , 𝑞̆𝑜𝑢𝑡2

∗ ← 𝑞𝑜𝑢𝑡2
𝑚𝑎𝑟 , 𝑞̆𝑠

∗ ← 0

       26.        𝛱̌𝑏
∗ ← 𝛱𝑏

mar 
, 𝛱̌𝑠

∗ ← 𝛱𝑠
mar 

       27. end if 

    

 

Table I. The approximate optimal solutions and values in the baseline experiment 

 𝑤̆∗ 𝑝̆𝑏1
∗  𝑝̆𝑏2

∗  𝑝̆𝑠
∗ 𝑞̆𝑜𝑢𝑡1

∗  𝑞̆𝑖𝑛1
∗  𝑞̆𝑜𝑢𝑡2

∗  𝑞̆𝑠
∗ 𝛱̆𝑏

∗ 𝛱̆𝑠
∗ 

Type 1 0.1950 8.1741 5.2250 5.1891 1.1667 0 1.0548 1.0948 8.8121 2.7375 

Type 2 0.1950 6.9210 6.5464 6.5067 1.2515 0 0.9906 1.0046 8.4707 4.2750 

Type 3 0.1950 8.1741 6.5464 6.5067 1.1667 0 0.9906 1.0046 10.3543 4.2669 

Type 4 0.1950 6.9210 5.2250 5.1891 1.2515 0 1.0548 1.0948 6.9285 2.7455 
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Table Ⅱ. The sensitivity analysis in the baseline experiment 

𝑏 B1 B2 

cb/cs CB1 CB2 CB1 CB2 

𝜃 THETA1 THETA2 THETA1 THETA2 THETA1 THETA2 THETA1 THETA2 

Type 1 

E.T. 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 

𝛱̌𝑏
∗ 8.8121 14.0906 7.6781 13.0615 1.4233 1.5056 0.6865 0.7315 

𝛱̌𝑠
∗ 2.7375 8.0931 3.8819 9.9360 0.5559 0.6530 1.1557 1.3122 

Type 2 

E.T. 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 

𝛱̌𝑏
∗ 8.4707 16.7901 7.3913 15.9056 1.3338 1.4698 0.6738 0.7729 

𝛱̌𝑠
∗ 4.2750 12.6865 5.4612 14.6953 0.8488 1.0001 1.4484 1.6736 

Type 3 

E.T. 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 

𝛱̌𝑏
∗ 10.3543 18.6736 9.2129 17.7272 1.7020 1.8380 0.8240 0.9232 

𝛱̌𝑠
∗ 4.2669 12.6785 5.4867 14.7208 0.8552 1.0064 1.6243 1.8495 

Type 4 

E.T. 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 

𝛱̌𝑏
∗ 6.9285 12.2070 5.8565 11.2400 1.0550 1.1374 0.5362 0.5812 

𝛱̌𝑠
∗ 2.7455 8.1011 3.8564 9.9104 0.5495 0.6466 0.9798 1.1362 

 

Table Ⅲ. Three-Way ANOVA result in the baseline experiment 

 Type 1: 𝚷̌𝒃
∗  Type 1: 𝚷̌𝒔

∗ 

Source 𝑏 𝑐𝑏/𝑐𝑠 𝜃 Error Total 𝑏 𝑐𝑏/𝑐𝑠 𝜃 Error Total 

Sum Sq. 193.0210 1.6877 14.5495 13.9397 223.1880 54.9776 2.2537 17.0035 16.0542 90.2889 

d.f. 1 1 1 4 7 1 1 1 4 7 

Mean Sq. 193.0210 1.6877 14.5495 3.4820  54.9776 2.2537 17.0035 4.0135  

F 55.4300 0.4800 4.1800   13.7000 0.5600 4.2400   

𝑝-value 0.0017** 0.5247 0.1104   0.0208* 0.4953 0.1087   

 Type 2: 𝚷̌𝒃
∗  Type 2: 𝚷̌𝒔

∗ 

Source 𝑏 𝑐𝑏/𝑐𝑠 𝜃 Error Total 𝑏 𝑐𝑏/𝑐𝑠 𝜃 Error Total 

Sum Sq. 245.4030 1.3790 36.4140 34.4990 317.6950 129.1843 2.4948 40.5968 37.9128 210.1888 

d.f. 1 1 1 4 7 1 1 1 4 7 

Mean Sq. 245.4032 1.3792 36.4142 8.6247  129.1843 2.4948 40.5968 9.4782  

F 28.4536 0.1599 4.2221   13.6296 0.2632 4.2832   

𝑝-value 0.0059** 0.7097 0.1091   0.0210* 0.6350 0.1073   

 Type 3: 𝚷̌𝒃
∗  Type 3: 𝚷̌𝒔

∗ 

Source 𝑏 𝑐𝑏/𝑐𝑠 𝜃 Error Total 𝑏 𝑐𝑏/𝑐𝑠 𝜃 Error Total 

Sum Sq. 321.0705 1.8826 36.4171 34.4599 393.8301 126.5442 2.9699 40.5995 37.7894 207.9029 

d.f. 1 1 1 4 7 1 1 1 4 7 

Mean Sq. 321.0705 1.8826 36.4171 8.6150  126.5442 2.9699 40.5995 9.4473  

F 37.2689 0.2185 4.2272   13.3947 0.3144 4.2975   

𝑝-value 0.0036** 0.6645 0.1089   0.0216* 0.6049 0.1069   

 Type 4: 𝚷̌𝒃
∗  Type 4: 𝚷̌𝒔

∗ 

Sum Sq. 135.4856 1.2123 14.5509 13.9920 165.2407 56.7192 1.8431 17.0029 16.1809 91.7462 

d.f. 1 1 1 4 7 1 1 1 4 7 

Mean Sq. 135.4856 1.2123 14.5509 3.4980  56.7192 1.8431 17.0029 4.0452  

F 38.7324 0.3466 4.1598   14.0212 0.4556 4.2032   

𝑝-value 0.0034** 0.5877 0.1110   0.0200* 0.5367 0.1097   

 

Table  Ⅳ.  The approximate optimal solutions and values in the nonlinear experiment 

 𝑤̆∗ 𝑝̆𝑏1
∗  𝑝̆𝑏2

∗  𝑝̆𝑠
∗ 𝑞̆𝑜𝑢𝑡1

∗  𝑞̆𝑖𝑛1
∗  𝑞̆𝑜𝑢𝑡2

∗  𝑞̆𝑠
∗ 𝛱̆𝑏

∗ 𝛱̆𝑠
∗ 

Type 1 0.1950 1.9999  1.0482  1.0269  1.4350  0 1.2106  1.4000  2.7427  1.0975  

Type 2 0.1950 1.9999  1.3282  1.2872  1.3050  0 1.3667  1.4276  2.6951  1.5301  

Type 3 0.1950 1.9999  1.3282  1.2872  1.4350  0 1.3667  1.4276  3.1824  1.5424  

Type 4 0.1950 1.9999  1.0482  1.0269  1.3050  0 1.2106  1.4000  2.2554  1.0851  
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Table V. The sensitivity analysis in the nonlinear experiment 

𝑃max  PMAX1 PMAX2 

𝑐𝑏/𝑐𝑠 CB1 CB2 CB1 CB2 

𝜃 THETA1 THETA2 THETA1 THETA2 THETA1 THETA2 THETA1 THETA2 

Type 1 

E.T. 𝑂1 𝑂2 𝑂1 𝑂2 𝑂1 𝑂1 𝑂1 𝑂1 

Π̆𝑏
∗  2.7427 8.6540 2.1709 8.6540 9.6565 18.0171 11.3983 20.6259 

Π̆𝑠
∗ 1.0975 3.1038 2.4059 3.1038 2.9092 11.4232 5.0717 15.5672 

Type 2 

E.T. 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 

Π̆𝑏
∗  2.6951 2.9175 2.2664 2.4959 9.4426 23.3249 11.4322 26.4205 

Π̆𝑠
∗ 1.5301 1.7746 2.9327 3.3856 5.1862 19.2665 7.5978 24.1238 

Type 3 

E.T. 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 𝑂1 

Π̆𝑏
∗  3.1824 3.4048 2.5847 2.8142 11.9400 25.8224 13.8900 28.8784 

Π̆𝑠
∗ 1.5424 1.7870 3.1644 3.6173 5.1886 19.2690 7.6715 24.1975 

Type 4 

E.T. 𝑂1 𝑂2 𝑂1 𝑂2 𝑂1 𝑂1 𝑂1 𝑂1 

Π̆𝑏
∗  2.2554 8.1573 1.8526 8.1573 7.1590 15.5197 8.9404 18.1680 

Π̆𝑠
∗ 1.0851 3.1038 2.1742 3.1038 2.9067 11.4208 4.9980 15.4935 

 

Table VI. Three-Way ANOVA results in the nonlinear experiment 

Type 1: 𝚷̌𝒃
∗  Type 1: 𝚷̌𝒔

∗ 

Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total 

Sum Sq. 175.5550 1.7850 112.3720 6.6710 296.3820 Sum Sq. 79.7603 7.2483 58.9356 37.7650 183.7093 

d.f. 1 1 1 4 7 d.f. 1 1 1 4 7 

Mean Sq. 175.5550 1.7850 112.3720 1.6680  Mean Sq. 79.7603 7.2483 58.9356 9.4413  

F 105.2700 1.0700 67.3800   F 8.4481 0.7677 6.2423   

p-value 0.0005*** 0.3593 0.0012**   p-value 0.0438* 0.4304 0.0669   

Type 2: 𝚷̌𝒃
∗  Type 2: 𝚷̌𝒔

∗ 

Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total 

Sum Sq. 453.6870 2.2418 107.4761 105.6624 669.0673 Sum Sq. 270.8779 13.2162 122.4902 115.5875 522.1718 

d.f. 1 1 1 4 7 d.f. 1 1 1 4 7 

Mean Sq. 453.6870 2.2418 107.4761 26.4156  Mean Sq. 270.8779 13.2162 122.4902 28.8969  

F 17.1750 0.0849 4.0687   F 9.3740 0.4574 4.2389   

p-value 0.0143* 0.7853 0.1139   p-value 0.0376* 0.5359 0.1086   

Type 3: 𝚷̌𝒃
∗  Type 3: 𝚷̌𝒔

∗ 

Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total 

Sum Sq. 587.2970 1.8219 107.4776 106.0562 802.6527 Sum Sq. 266.9841 14.7525 122.4918 115.2832 519.5115 

d.f. 1 1 1 4 7 d.f. 1 1 1 4 7 

Mean Sq. 587.2970 1.8219 107.4776 26.5141  Mean Sq. 266.9841 14.7525 122.4918 28.8208  

F 22.1504 0.0687 4.0536   F 9.2636 0.5119 4.2501   

p-value 0.0093** 0.8062 0.1144   p-value 0.0383* 0.5139 0.1083   

Type 4: 𝚷̌𝒃
∗  Type 4: 𝚷̌𝒔

∗ 

Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total Source 𝑃max  𝑐𝑏/𝑐𝑠 𝜃 Error Total 

Sum Sq. 107.7813 2.0266 110.9700 6.7681 227.5460 Sum Sq. 80.3411 6.5759 60.2687 36.7430 183.9287 

d.f. 1 1 1 4 7 d.f. 1 1 1 4 7 

Mean Sq. 107.7813 2.0266 110.9700 1.6920  Mean Sq. 80.3411 6.5759 60.2687 9.1858  

F 63.6992 1.1977 65.5838   F 8.7463 0.7159 6.5611   

p-value 0.0013** 0.3353 0.0013**   p-value 0.0417* 0.4451 0.0625   

 

 

 

Figure 1. Sequence of decisions 
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(a) The comparison of Π̆𝑏

∗  in Type 1: 4 groups have population  

marginal means significantly different from B1, CB1,THETA2 
(b) The comparison of Π̆𝑏

∗  in Type 2: 2 groups have population  

marginal means significantly different from B1, CB1,THETA2 

  
(c) The comparison of Π̆𝑏

∗  in Type 3: 2 groups have population  

marginal means significantly different from B1, CB1,THETA2 
(d) The comparison of Π̆𝑏

∗  in Type 4: 3 groups have population  

marginal means significantly different from B1, CB1,THETA2 

Figure 2. Multiple comparison tests for each combination of three grouping variables regarding to 𝛱̆𝑏
∗ : Baseline 

scenario 

 

  
(a) The comparison of Π̆𝑠

∗ in Type 1: No groups have population  

marginal means significantly different from B1, CB1,THETA2 
(b) The comparison of Π̆𝑠

∗ in Type 2: No groups have population  

marginal means significantly different from B1, CB1,THETA2 

  
(c) The comparison of Π̆𝑠

∗ in Type 3: No groups have population  

marginal means significantly different from B1, CB1,THETA2 
(d) The comparison of Π̆𝑠

∗ in Type 4: No groups have population  

marginal means significantly different from B1, CB1,THETA2 

Figure 3. Multiple comparison tests for each combination of three grouping variables regarding to 𝛱̆𝑠
∗ : Baseline 

scenario 
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(a) The comparison of Π̆𝑏

∗  in Type 1: 6 groups have population 

marginal means significantly different from PMAX2, CB2, 

THETA2 

 (b) The comparison of Π̆𝑏
∗  in Type 2: No groups have population 

marginal means significantly different from PMAX2, CB2, THETA2 

 

 

 
(c) The comparison of Π̆𝑏

∗  in Type 3: 2 groups have population 

marginal means significantly different from PMAX2, CB2, 

THETA2 

 (d) The comparison of Π̆𝑏
∗  in Type 4: 6 groups have population 

marginal means significantly different from PMAX2, CB2, THETA2 

Figure 4.  Multiple comparison tests for each combination of three grouping variables regarding to 𝛱̆𝑏
∗ : Nonlinear 

deterministic demand part 

 

 

 

 
(a) The comparison of Π̆𝑠

∗ in Type 1: No groups have population  

marginal means significantly different from PMAX2, CB2, 

THETA2 

 (b) The comparison of Π̆𝑠
∗ in Type 2: No groups have population  

marginal means significantly different from PMAX2, CB2, THETA2 

 

 

 
(c) The comparison of Π̆𝑠

∗ in Type 3: No groups have population  

marginal means significantly different from PMAX2, CB2, 

THETA2 

 (d) The comparison of Π̆𝑠
∗ in Type 4: No groups have population  

marginal means significantly different from PMAX2, CB2, THETA2 

Figure 5. Multiple comparison tests for each combination of three grouping variables regarding to 𝛱̆𝑠
∗ : Nonlinear 

deterministic demand part 
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Figure 6. Cross-model comparisons: the impact of the production cost ratio (cb/cs) change 

 

  
Figure 7. Cross-model comparisons: the impact of the competitive intensity (θ) change 
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