
  

Abstract—Pronounced tidal passenger flow is manifested in 

the urban rail transit system during the peak period, presenting 

significant operational and scheduling challenges. An 

integrated optimization model that couples the train 

timetabling with rolling stock circulation under tidal passenger 

flow is developed, aiming to minimize passenger waiting time 

and train operation cost. Multiple real‑world 

factors—including the safe‑headway constraint, dwell‑time 

calculation, and the feasibility of rolling stock connection—are 

fully considered in model development. To solve the nonlinear 

multi-objective optimization problem efficiently, an improved 

algorithm based on NSGA-II is proposed. A two-layer 

chromosome encoding scheme is adopted in the algorithm. The 

upper layer represents the train departure time, whereas the 

lower layer encodes the rolling stock connection. An adaptive 

penalty function is introduced to handle the constraints. A 

simulation study based on AFC data is conducted for Beijing 

Metro Line 6. Compared with the fixed‑headway scheme, the 

optimized flexible scheme reduces operation cost by 18.2% and 

markedly shortens train connection time. Passenger waiting 

time increases by only about 9%. Thus, service quality is 

maintained and resource utilization is greatly improved by the 

optimized scheme. These findings verify the model’s 

practicality and effectiveness under tidal passenger flow. 

 

Index Terms—urban rail transit, train timetabling, rolling 

stock circulation, integrated optimization 

I. INTRODUCTION 

etropolitan areas and urban clusters continue to expand. 

Urban functional zones now extend further outward, 

and the separation between residential and workplace 
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locations has intensified. Consequently, the metro plays a 

core role in suburb-to-city-center commuting. Most existing 

lines still do not fully cover all functional zones. As a result, 

pronounced tidal passenger flow occurs on rail lines during 

the morning and evening peaks. To accommodate the 

temporal and spatial imbalances of passenger demand, a 

more flexible train operation scheme is urgently required. 

Train departure frequency and the number of rolling stock 

units can be dynamically adjusted. Joint optimization of the 

timetable and rolling stock circulation then enhances the 

match between line capacity and passenger demand. 

A. Literature review 

A.1. Train Timetabling 

Early research on train timetabling optimization focused 

mainly on improving operational stability and robustness. 

Sparling et al. [1] extended the periodic-event scheduling 

problem (PESP) into a variable-period optimization 

framework. The framework minimizes the cycle length and 

thereby enhances network stability and robustness. Högdahl 

et al. [2] proposed a hybrid approach that combines 

microscopic simulation with optimization. By using 

simulation data to predict train delays, the method improves 

the train timetabling robustness and punctuality. Under 

uncertain passenger demand and transfer behavior, Wang et 

al. [3] applied a mixed strategy that uses both long and short 

train formations. They embedded this strategy in a 

multi-agent simulation, an ALNS heuristic and the Gurobi 

solver, which increases the train timetabling adaptability and 

robustness.  

The growing emphasis on energy saving and emission 

reduction has shifted timetable optimization toward 

improving energy-use efficiency. Su et al. [4] proposed an 

“integrated timetable” framework that couples inter-station 

running-time allocation with speed-profile control in a 

two-layer formulation. They demonstrated its applicability to 

automated-train operation systems. Li et al. [5] integrated 

speed profile and train timetabling optimization with the 

objective of maximizing regenerative energy. Feng et al. [6] 

examined both single-train and multi-train settings. They 

proposed a hierarchical optimization strategy that delivers 

system-wide energy savings, although potential delay 

perturbations in real operation were not considered. Feng et 

al. [7] focused on train energy consumption. They introduced 

a braking-energy recovery mechanism into timetable design 

and achieved coordinated optimization of energy efficiency 

and passenger travel time. 

In recent years, passenger demand orientation has become 
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an increasingly important factor in train timetabling 

optimization. To address dynamic passenger demand, Niu et 

al. [8] built a binary-integer programming model for 

timetable optimization. By modelling passenger queuing and 

boarding behavior precisely, the model effectively alleviates 

boarding congestion under oversaturated flow. Ran et al. [9] 

targeted tidal-flow characteristics. They constructed a 

bi-objective timetable-optimization model that balances 

energy saving with passenger time saving. Zhang et al. [10] 

analyzed how differences in passenger load affect operating 

energy consumption. They sought Pareto-optimal solutions 

that reconcile energy use with running time. Although the 

above studies have improved operating efficiency, reduced 

energy consumption and enhanced passenger experience, 

they seldom examine how rolling stock circulation influences 

the overall operation plan. This omission can lead to uneven 

capacity allocation and higher operation costs. Consequently, 

integrated mechanisms that couple train timetabling 

optimization with rolling stock circulation must be explored 

to achieve comprehensive improvements in operational 

efficiency and resource utilization. 

A.2. Rolling stock circulation 

Early studies on rolling stock circulation focused on model 

formulation and algorithm design. Using the Dutch 

Noord–Oost line as a case study, Fioole et al. [11] developed 

a circulation plan that accommodates train coupling and 

uncoupling. They solved the train-composition and routing 

problem with a mixed-integer linear program (MILP), laying 

a mathematical foundation for rolling-stock circulation. 

Under a fixed-depot assumption, Frelin et al. [12] examined 

routing optimization for several task-allocation schemes and 

built separate models for linear, symmetric, and asymmetric 

assignments. Inspired by the vehicle-routing problem, Szeto 

et al. [13] used an artificial bee colony algorithm to handle 

capacity-constrained scheduling. The study demonstrates the 

potential of heuristic algorithms in complex rolling stock 

circulation. Mahmoudi et al. [14] employed a space–time 

state network and dynamic programming to obtain exact 

solutions for pickup-and-delivery tasks with time windows. 

Their method enhances synchronized vehicle routing and 

timetabling in time-dependent networks.  

As models and algorithms matured, researchers introduced 

visualization to improve structural representation and 

controllability. Zheng et al. [15] abstracted train states into a 

rolling stock connection graph and solved it with a MILP. He 

et al. [16] formulated the Urban Transit Rolling-Stock 

Assignment Problem (UTRSAP) using column generation 

and a large neighborhood search algorithm. Driven by 

intelligent-dispatching needs, recent work has moved toward 

real-time optimization and adaptability to flexible train 

composition. Wang et al. [17] proposed a convex 

optimization model that integrates passenger demand, energy 

consumption, and travel time. The model moves real-time 

rolling-stock circulation closer to practical use. To manage 

demand uncertainty, Cacchiani et al. [18] embedded 

disturbance tolerances in their model. This enhancement 

improves schedule adaptability, service level, and capacity 

utilization. Zhou et al. [19] addressed the dynamism, 

imbalance, and randomness of passenger demand by 

formulating a two-stage stochastic program. The model 

couples flexible train compositions with a robust 

passenger-flow control strategy. Zhu et al. [20] compared 

coupled or uncoupled trains with fixed compositions. They 

proposed a “shadow-train” connection method for coupled 

and uncoupled train service. 

Substantial progress has been achieved in model 

formulation, algorithm design, and dispatch responsiveness 

for rolling-stock circulation. Nevertheless, most studies 

assume a fixed train timetabling and seldom consider its 

coupling with rolling stock circulation, which limits the 

flexibility required in practice. 

A.3. Integrated optimization of train timetabling and rolling 
stock circulation 

In recent years the research focus has shifted to integrated 

optimization of train timetabling and rolling stock circulation. 

The goal is to harmonize resource allocation with passenger 

service quality. The traditional sequential approach optimizes 

the timetable and rolling-stock circulation independently, 

which causes decoupling. To resolve this issue, Wang et al. 

[21] proposed a two-stage framework. Stage 1 generates a 

demand-oriented timetable using a mixed-integer nonlinear 

program (MINLP). Stage 2 then refines this timetable with a 

mixed-integer linear program (MILP) to reduce the number 

of required trainsets. Building on this idea, Yao et al. [22] 

presented an integrated model. The linearized MILP 

formulation achieves high rolling stock utilization and 

service quality. Zhao et al. [23] observed that sequential 

optimization struggles to reconcile passenger experience with 

operating cost. They therefore unified running time, dwell 

time, and coupling–decoupling operations in a single model. 

Logical and piecewise-linearization techniques converted the 

resulting MINLP into a MILP, which greatly improved 

computational efficiency. 

As tidal flow characteristics intensify, dynamic passenger 

demand has become a crucial component of integrated 

optimization models. On a line with pronounced tidal flows, 

Liu et al. [24] combined train coupling–uncoupling strategies 

with platform-flow control. They dynamically adjusted train 

headways and on-board capacity constraints. This approach 

deeply integrates the timetable with the circulation plan. A 

Lagrangian-relaxation heuristic solves the peak-period 

dispatching problem. Zhou et al. [25] incorporated 

passenger-flow control and used a tabu-search algorithm with 

the CPLEX solver to jointly optimize the timetable and 

rolling stock circulation. Yuan et al. [26] studied Beijing 

Metro Line 6 and introduced a short-turn strategy. They 

formulated a multi-objective MINLP and coupled a genetic 

algorithm with a commercial solver. The resulting plan 

integrates the timetable with rolling stock circulation and 

reduces average passenger waiting time. 

B. Research gap 

Existing studies consider integrated optimization under 

unbalanced demand. However, they often reduce 

multi-objective problems to single-objective problems 

through simplistic aggregation by using weighting 

coefficients. This simplification limits the diversity of 

trade-offs and solution possibilities. Consequently, the 

resulting models cannot fully capture the complex 

multidimensional trade-off between service quality and 

operational cost. 
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C. Contributions 

To overcome these limitations, a multi-objective 

mixed-integer nonlinear programming (MINLP) model is 

formulated to simultaneously minimize passenger waiting 

time and operation cost, subject to headway, dwell-time, 

depot, and rolling stock connection constraints. The model is 

based on a rolling-stock connection network and explicitly 

captures the coupling between train timetabling and rolling 

stock circulation under tidal passenger flow conditions. A 

hybrid-encoding NSGA-II algorithm is developed to solve 

this model. The feasibility and effectiveness of the proposed 

approach are demonstrated through a case study on Beijing 

Metro Line 6. 

II. PROBLEM STATEMENTS  

A. System description  

Consider a metro line shown in Fig. 1. The line exhibits 

tidal passenger flow pattern and comprises s stations, whose 

set is denoted by  , ,=S J J D . Stations 1 and s serve as 

turn-back terminals. Within the study horizon  0 1, ,..., nT t t t= , 

the set of train services is denoted by  , ,I I I K= , and the set 

of rolling stock is denoted by  1,2,...,= =o oR r r m . 

 

 
Fig. 1.  The subway line layout 

 

A passenger-demand-oriented train operation plan must 

simultaneously consider train arrival time, departure pattern, 

and rolling stock circulation. Train timetabling and rolling 

stock circulation are tightly interdependent: the departure 

frequency and the number of scheduled services determine 

how many trainsets are required, whereas the circulation plan 

constrains the timetabling. Under pronounced spatiotemporal 

heterogeneity of passenger demand, integrated optimization 

must achieve three objectives. First, it must closely match 

dynamically changing demand. Second, it must ensure a 

unique and feasible rolling stock succession for each service i. 

Third, it must prevent conflicts between revenue operations 

on the main line and depot movements. 

B. Rolling stock connection network construction 

Define the rolling stock connection graph ,G V E=（ ） as 

shown in Fig. 2, where 1 2V V V=  .  1 1 1 1,2,...,= =d dV v v n is 

the set of depot nodes and  2 2 2 1,2,...,= =i iV v v n  is the set of 

train-service nodes. Each train-service node is annotated with 

its origin station dSi , terminal station aSi
, departure time d

it , 

and arrival time a

it . The edge set is denoted by 

 '

2 2 1 2, , ,= =（ ）（ ）i i d iE e e v v v v . An edge e is created only if a 

feasible connection exists between its incident nodes 
1

dv and 

2

iv . Each connection edge e carries a weight 
, 'i i

c , defined as 

the time interval between the completion of service i and the 

start of service i′. By constructing this rolling stock 

connection graph, train dispatching status and rolling stock 

connection relationships are comprehensively displayed. 

 

 
Fig. 2.  Rolling stock connection graph 

 

C. Assumptions 

For the purpose of modeling the problem under study, the 

following assumptions are introduced: 

Assumption 1. Passengers follow an alight-before-board 

rule, and the passenger arrival rate is derived from AFC data. 

Assumption 2. Train operation is based on the 

all-station-stop scheme, and the section running time is 

pre-given. 

Assumption 3. Train overtaking is not permitted on the 

line. 

D. Notation 

The sets, parameters, and indicators of the optimization 

model are listed in Table I, and the decision variables are 

shown in Table II.  

 
TABLE I 

SETS, PARAMETERS AND INDICATORS FOR THE OPTIMIZATION 

Notations Definition 

S  Set of stations,  , ,S J J D= ; 

J  Set of stations in the up direction,  1,2J s= ，..., ; 

J  Set of stations in the down direction,  1,...,2 1,2J s s s= + − ; 

D  Set of depots,  1,2D = ; 

j,d Index of stations, ,j d S ; 

I  Set of the train services,  , ,I I I K= ; 

I  Set of train services in the up direction,  1,2,...,I i= ; 

I  Set of train services in the down direction,  1,2,..., 'I i= ; 

K  
Set of the train services which out of/into the depots, 

 1,2,...,K k= ; 

i,k Index of the train services, ,i k I ; 

T Set of operational time,  0 1, ,..., nT t t t= ; 

  Set of time interval, 1n nt t −= − ; 

run
,i jt  The time for service i running between station j-1 and j; 

up
,p jt  The time for passenger to board at station j; 

o n
,

d w
p jt  The time for passenger to alight at station j; 

door
ot  The time for the rolling stock to open the door; 

door
ct  The time for the rolling stock to close the door; 

braket  The time for the rolling stock to brake; 

w
,minit  the minimum time for service i to dwell; 

w
,maxit  the maximum time for service i to dwell; 
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min
,i jt  the minimum headways for two consecutive services; 

max
,i jt  the maximum headways for two consecutive services; 

min
turnt  

the minimum time standards for the rolling stock to turn 

around from the station s to s+1/2s to 1; 

x
turn
mat  

the maximum time standards for the rolling stock to turn 

around from the station s to s+1/2s to 1; 

cleaningt  The time for cleaning the conveys; 

1c  Operation cost for one rolling stock to run; 

  
Operation cost for one rolling stock to turnaround per 

minute; 

maxC  Maximum capacity of one rolling stock; 

M  A large positive number; 

Nd  The capacity of the depots; 

w
,j tN  The number of passengers waiting the train. 

 

TABLE II  

DECISION VARIABLES FOR THE OPTIMIZATION MODEL 

Variables Definition 

a
,i jt  continuous variable, time for service i to arrive at station j; 

d
,i jt  

continuous variable, time for service i to departure from 

station j; 

,o d
i
r

  
Binary variable, if rolling stock ro takes service i, 

,
1o

i
r m

 = , 

otherwise 
,

0o

i
r m

 = ; 

,
, '
o dr

i i  
Binary variable, if rolling stock ro continues from service i 

to i′, 
,

, ' 1or m
i i = , otherwise 

,
, ' 0or m

i i = . 

 

III. MATHEMATICAL MODEL 

A. Constraint conditions  

A.1. Timetable constraints 

The arrival and departure time of each train at each station 

are determined by the section running time and the station 

dwell time. Accordingly, the arrival and departure time of 

each train service i at station j are expressed as: 
a d run
, , 1 ,  , 1 or ,i j i j i jt t t i I j j J i I j J−= +   −    ， ，  (1) 

d a w
, , , , 1 or ,i j i j i jt t t i I j j J i I j J= +   −    ， ，  (2) 

The station dwell time consists mainly of three 

components: the door opening-closing time, the average 

boarding-and-alighting time of platform passengers, and the 

braking time. The dwell time is given by the following 

formula: 

 

down door
b

o
rak

upw d or
, ,, e

, or ,

i j p j o cp jt t t t t t

i I j J i I j J

= + + + +

     

，
 (3) 

To ensure both operation efficiency and safety, the dwell 

time must also satisfy the following constraint:  
w w w
,min , ,max , , or ,i i j it t t i I j J i I j J         (4) 

The train headway is a key indicator of service quality in 

urban railway transit. it directly affects both line capacity and 

passenger waiting time. The headway between two 

successive trains is defined as following: 

 
, , 1 1, 1 , 1,

, 1 , , 1 or , 1 , , 1

w w
i j i j i j i jt t t t

i i I j j J i i I j j J

− + − −= + −

 +  −   +  − 
 (5) 

To guarantee operation safety service efficiency, the 

headway between a two successive trains must satisfy the 

following: 

t min max
, , , , , or ,i j i j i jt t t i I j J i I j J         (6) 

A.2. Rolling stock constraints 

Each rolling stock unit ro can only serve at most one train 

service at any time: 

 
,

1 , '  or , 'o

o

d
i

d D

r

r R

i I i I i I i I
 

=        ，  (7) 

Each rolling stock  ro must have exactly one predecessor 

and one successor, ensuring a complete and error-free 

connection order:

 , ,
, , 0 oro o

o o

d d
i i i i

d D R i I d D I

r r

ir Rr

i I i I  
     

− =          ， (8) 

At a depot-departure node, rolling stock can flow only 

outward; at a depot-arrival node, it can flow only inward: 

 
,

, 1o

od D R

d

i I

r
k i

r

k K
  

=     ，  (9) 

 
,

, 1o

od D R

d

i I

r
i k

r

k K
  

=     ，  (10) 

The depot capacity must be sufficient to accommodate the 

number of trainsets required for the daily service: 

 

o

,
,
o d

dk i
R k Kr I

r

i

d DN
  

    ，  (11) 

For operational flexibility, a trainset may depart from one 

depot and return to another, but each depot’s departures must 

equal its returns: 

 
, ,

, , ,o o

o o

r r

K

d

r

d
k i i k

R k K r R k

i I d D 
   

=       ，  (12) 

After completing service i, a rolling stock may proceed to 

service i+1 only if the connection-capability criterion and the 

turnaround-time requirement are both satisfied: 

 
'

,a d min
, turn ,',

' '

(1 ),

, 1, , 2 or , 1, ,

o
j

r d
i i ii j

t t t M

i I j i I j s i I j s i I j s

 

 

−  − −

  =  =  = +  =

 (13) 

 
' '

,a d max
, turn ,,

' '

(1 ),

, 1, , 2 or , 1, ,

o
j

r d
i i ii j

t t t M

i I j i I j s i I j s i I j s

 

 

− −

  =  = 

 +

 = + =

 (14) 

 ''
,

turn cleaning,

a d

, i ji i ij
t tt c t− = = +  (15) 

B. Objective function 

B.1. Passenger waiting time 

The average passenger waiting time is generally assumed 

to be one-half of the train departure headway; hence, 

optimizing passenger waiting time is tantamount to 

optimizing the train departure headway. Passenger waiting 

time is expressed as: 

 

1

w
1 , ,

1 1

1
min

2

ntI S

j t i j
i j t t

Z N t

= = =

=    (16) 

B.2. Train operation cost 

Operation cost comprises two components: the fixed cost 

of each trainset and the cost associated with succession time. 

These terms capture, respectively, the number of trainsets in 
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service and the quality of rolling stock connection. The total 

operating cost is given by:

 ,2 '
,

1 ',
, '

,min o

o

d
i ik i

d D R k i I i
i

I i

r
i

r I

c cZ  
    

= +      (17) 

IV. ALGORITHM DESIGN 

Uder the tidal flow condition, train timetabling and rolling 

stock circulation are tightly coupled. Even small adjustments 

to departure and arrival time can disrupt connection 

feasibility and degrade resource utilization. Conversely, 

deployment limits on rolling stock constrain timetable 

feasibility. The resulting optimization model contains 

coupled integer and continuous variables and nonlinear 

objectives under complex constraints, so conventional 

mathematical-programming methods are unsuitable. 

Therefore, the model is solved using the NSGA-II algorithm. 

A. Chromosome encoding design 

Timetabling variables are continuous, and headways must 

satisfy safety constraints. Rolling stock circulation, by 

contrast, is discrete and requires a unique, feasible 

connection. Therefore, a two-layer hybrid chromosome 

encoding scheme is adopted. 

The upper layer uses real-valued 

encoding
a d a d

1 1,1 1,1 , ,{ , , , , }I S I Sy t t t t=  to represent train departure 

times, whereas the lower layer uses integer encoding 

 ,

2

,o
, ' ,
r d r do
i i iy =  to represent rolling stock connection. This 

design facilitates precise headway control and provides an 

intuitive representation of rolling stock connection. 

B. Construction of the fitness evaluation 

During algorithm execution, some individuals 

1 2,Z Z Z=（ ）violate hard constraints such as insufficient 

headway or depot overcapacity. The fitness evaluation 

therefore incorporates a penalty mechanism ( ) ( ) ( )i i iZ Z P= + g g g . 

The objective-function values of infeasible individuals are 

downgraded, guiding the population toward the feasible 

solution space. 

C. Evolutionary strategy and constraint handling 

During the evolutionary process, the following procedure 

is implemented within the NSGA-II framework : 

Step 1—Population initialization: an initial population 

0
is generated that satisfies the basic constraints. 

Step 2—Non-dominated sorting: each individual in the 

population is rapidly ranked according to 1 2( , )Z Z and 

assigned to a non-dominated front 1, 2,F F . 

Step 3—Crowding-distance calculation: the crowding 

distance CD( )kg  is computed for every individual within 

each non-dominated front. 

Step 4—Selection: tournament selection based on rank 

and crowding distance is applied to generate the parent set 
p
.  

Step 5—Crossover and mutation: simulated binary crossover 

and Gaussian-perturbation mutation are performed on td 

whereas single-point crossover and swap mutation are 

applied to , ,
, '

o od d
i i i
r r

 、 . 

Step 6—Repair mechanism: if a new individual g  

violates the train headway or the connection rule, local 

reordering or departure time adjustment is carried out. 

Step 7—Elitism: the parent and offspring populations are 

merged, and the best N individuals are selected to form the 

next generation
1+t

.  

D. Evolutionary convergence criteria and solution out-put 

In each iteration, the algorithm merges the parent and 

offspring populations and selects elite individuals jointly on 

the basis of non-dominated rank and crowding distance. The 

procedure terminates when either (i) the maximum number of 

generations maxG  is reached or (ii) the variation in the 

Pareto set remains below the threshold  for   consecutive 

generations; the final output is the non-dominated solution 

set 
* * *

1{ , , }=  Kg g . The overall flowchart of the algorithm 

is presented in Fig. 3. 

 

 
Fig. 3.  The algorithm flow chart  

 

V. NUMERICAL EXPERIMENTS 

A. Case introduction 

This study examines a bidirectional urban rail line with a 

total length of 28.38 km. Stabling yards and depots are 

located at the two terminals, and the line operates with 

fixed-consist train formations. The line comprises 20 stations 

in total, and both terminal stations serve as turn-back points. 

The analysis horizon is the morning period T=[6:00-10:00], 

with a time interval of 10min = . Parameter settings for the 

integrated timetabling and rolling stock optimization model 

are provided in Table III. 
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TABLE III 

VALUE OF THE RELEVANT PARAMETERS 

parameters value parameters value 
door
ot  3s min

,i jt  1.5min 
door
ct  3s m x

,
a

i jt  15min 
w
,minit  20s 1c  10000 

w
,maxit  60s   100 
min
turnt  1.5min maxC  1860 

x
turn
mat  10min   

 

Passenger arrival rates for each time interval are extracted 

from the AFC system for both the up and down directions. 

These rates are plotted in Fig. 4(a) and Fig. 4(b), respectively. 

Both directions exhibit pronounced morning peaks within the 

6:00–10:00 horizon. The up-direction peak occurs earlier and 

is stronger, producing a single-peak profile. By contrast, the 

down-direction peak occurs later, has lower intensity, and 

lasts longer, showing several smaller sub-peaks. Overall, the 

line exhibits a clear tidal-flow pattern. 

 

 
Fig. 4(a).  The entry rate of passengers in the up direction 

 

 
Fig. 4(b).  The entry rate of passengers in the down direction 

 

B. Computational results 

The model is solved in a Python environment. To balance 

solution diversity with convergence speed—and to maintain 

reasonable runtime—the algorithm parameters are set as 

follows: 300=SN , 100=gN , 0.8=crN , 0.6=mrN .The 

HV iteration curve and Pareto frontier obtained under these 

settings are displayed in Fig. 5 and Fig. 6, respectively. 

Fig. 5 shows that the HV curve rises steeply in the early 

generations, indicating that high-quality solutions are 

obtained quickly at the outset. The growth rate slows between 

generations 20 and 30, and a knee point appears around 

generations 30–40, after which the algorithm enters its 

late-convergence phase. By generations 80–100, the HV 

stabilizes at 0.95–0.96 and hardly increases further, 

indicating algorithm convergence. 

The HV metric reflects the overall quality and spread of 

the solution set; however, the detailed optimization effect is 

best examined through the Pareto frontier. Fig. 6 

demonstrates a clear trade-off between objectives: as 

Objective 1 increases, Objective 2 gradually decreases, 

confirming a marked conflict.  

 

 
Fig. 5.  The HV iteration curve 

 

 
Fig. 6.  The pareto front scheme 

 

The Pareto solutions and their classifications are 

summarized in Table IV. Table IV reveals a pronounced 

trade-off between operating cost and passenger waiting time. 

As the operating cost decreases from 420339 in Scheme 1 to 

378399 in Scheme 4, the total waiting time rises from 293537 

min to 350566 min. Among the four schemes, Scheme 2 

delivers the smallest increase in waiting time per unit of cost 

saved, marking the best marginal-benefit pivot. Beyond this 

point, further cost reductions lead to disproportionately large 

losses in service quality. Hence, Scheme 2 represents the 

optimal compromise on the multi-objective Pareto frontier 

and is the preferred choice when both economy and service 

quality matter. Scheme 1 and Scheme 4 represent the two 

extremes—“service-first” and “cost-first,” respectively. 

Scheme 3 also lies on the frontier, but its marginal benefit is 

weaker than that of Scheme 2. Operators can therefore select 

among these Pareto solutions according to their strategic 

priorities. 

From the Pareto frontier, Scheme 2 is selected as the best 

compromise between economy and service quality. Under 

this scheme, the total passenger waiting time 1Z  is 318883 

min, and the operating cost 2Z  is 387425. 
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TABLE IV 

PARETO FRONT SCHEME 

Scheme Waiting Time/min Operation Cost Classification 

1 293537 420339 Service-level priority. 

2 318883 387425 Best marginal benefit. 

3 325219 383605 Moderate compromise. 

4 350566 378399 Cost-priority. 

 

 
Fig. 7.  The optimized train timetable 

 

The optimized train timetable is presented in Fig. 7. Fig. 7 

shows that 73 train services are scheduled within the horizon 

 6 : 00,10 : 00=T : 47 train services in the up direction and 

26 in the down direction. A total of 27 trainsets are deployed. 

The departure frequency first increases and then decreases as 

time progresses. 

A statistical and time-series analysis is performed on the 

headway data in Fig. 8(a) and Fig. 8(b) for the 6:00-10:00 

operation window.  

The mean departure interval is 4.46 min in the up direction 

and 8.43 min in the down direction. Headways are aggregated 

in 15-min bins to reveal a typical tidal pattern. 

 In the up direction, the interval shortens rapidly after 6:00, 

reaches approximately 3 min during the 7:30-8:30 peak, and 

then rises to 5-7 min. 
 

 
Fig. 8 (a)  The departure interval of trains in the up direction 

In the down direction, the interval initially decreases and 

then increases: it is roughly 20 min between 6:00 and 7:00, 

falls to about 5 min between 8:00 and 9:00, and widens to 13 

min before 10:00. 

 

 
Fig. 8 (b)  The departure interval of trains in the down direction 

 

These results show that the optimized rolling stock plan 

adjusts headways to match asymmetric demand. However, 

some down-direction headways remain long; introducing 

flexible train compositions could further improve service 

quality. 

C. Results analysis 

C.1. Sensitivity analysis of population size 

To evaluate how the population size SN  influences the 

convergence of NSGA-II in the integrated optimization of the 
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timetabling and rolling stock circulation, a single-factor 

experiment is constructed based on the previous case.  

All model parameters are fixed except SN . Four values of 

SN  are tested: 200, 250, 300, 350. The evolution of HV 

metric under each setting is plotted in Fig. 9.  

HV is highly sensitive to a population size of 350. With the 

population size of 350, the algorithm reaches 90% of its final 

HV by generation 7. In contrast, a population size of 200 

requires at least 12 generations to achieve the same level. A 

larger initial population thus enhances diversity, accelerating 

the global search. 

All curves eventually converge and cluster at an HV of 

approximately 0.86; the final gap among settings narrows to 

0.01-0.02. Thus, NSGA-II demonstrates strong robustness to 

population size once it enters this “low-sensitivity” phase. 

Increasing the population size SN from 300 to 350 yields 

only about a 1% gain in HV, yet the computation time nearly 

triples. Such a marginal benefit does not offset the substantial 

increase in computational cost.  

Balancing convergence speed, solution quality, and 

runtime, a population size of 300 is the best compromise for 

the present model. With this setting, the algorithm attains 

95% of its final HV within roughly ten generations. 

 

 
Fig. 9  Convergence analysis plot 
 

C.2. Comparative analysis of different headway schemes 

To evaluate how different headway settings affect the 

performance of the timetable and rolling stock plan, three 

schemes are compared: a 5-min uniform headway, a 15-min 

uniform headway, and the optimized flexible-headway 

scheme. Evaluation indicators for the three schemes are listed 

in Table V. 

Table V shows that although the 15-min uniform scheme 

consumes the fewest resources, it fails to meet actual 

passenger demand and is therefore infeasible in practice. 

Compared with the 5-min uniform scheme, the 

flexible-headway scheme increases passenger waiting time 

by only about 11.7% while reducing operating cost by 

approximately 21%, demonstrating superior cost-control 

capability. 

Regarding fleet size, the flexible-headway scheme requires 

approximately 18.2% fewer trainsets than the 5-min uniform 

scheme, thus saving resources while still satisfying passenger 

demand. The unequal-headway scheme also provides a more 

flexible succession plan, reducing train succession time by 

about 50% relative to the 5-min uniform scheme. 

In summary, the unequal-headway scheme effectively 

combines the advantages of passenger service quality and 

economic efficiency. It outperforms the uniform-headway 

schemes in resource conservation, cost control, demand 

matching, and balanced rolling-stock utilization, making it 

better suited to operational conditions under tidal passenger 

flow. 

C.3. Average load factor comparison 

To evaluate how different departure-headway schemes 

affect rolling stock utilization, we compared the average train 

load factors under the balanced schemes (5 min, 15 min) and 

the unequal-headway scheme. The average load factors for 

the up and down directions are given in Fig. 10(a) and Fig. 

10(b), respectively. 

Fig. 10(a) shows that the 15 min uniform scheme produces 

the highest overall average load factor in the up direction; 

most trains exceed the full-load threshold, indicating 

insufficient capacity, serious crowding, and poor service 

quality. The 5 min uniform scheme keeps the load factor 

roughly within 0.85-1.2, and the cars remain crowded. The 

flexible headway scheme is more balanced, demonstrating a 

good match between capacity and demand and a more 

reasonable allocation of train capacity. 

In the down direction, the 15 min uniform scheme yields 

intermediate load factors of 0.4-0.8; the value is high in the 

early and middle portions of the period and then falls, 

showing large fluctuations and moderate stability. The 5 min 

uniform scheme keeps the load factor low, always between 

0.1 and 0.6, indicating obvious excess capacity and low 

resource utilization. The flexible headway scheme 

consistently performs best: its load factor stays steadily at 

0.7-0.9, and its curve is markedly more stable than those of 

the other schemes, better matching actual demand and 

providing higher resource-utilization efficiency and 

enhanced service stability. 

Thus, the optimized unequal-headway scheme offers clear 

advantages in both directions. It effectively matches 

tidal-flow demand, maintains passenger service quality, and 

significantly improves overall resource utilization and 

operational stability. 

 

TABLE  V 
PERFORMANCE COMPARISON UNDER DIFFERENT HEADWAY SCHEMES 

Scheme Headway Connection time/min Waiting time/min Operating cost Rolling stock 

Uniform headway 5 min 464 297811 495870 33 

Uniform headway 15 min 175 887388 166550 12 

Flexible headway Variable 252 325219 383605 27 
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Fig. 10 (a)  The average train load factor in the up direction 

 

 
Fig. 10 (b)  The average train load factor in the down direction 

 

VI. CONCLUSION AND DISCUSSION 

(1) Development of a space-time tidal flow multi-objective 

model. Focusing on the spatiotemporal distribution of 

tidal passenger flow, this study adopts a rolling stock 

succession graph to describe train‑node attributes and 

edge constraints. A mixed integer multi‑objective 

nonlinear program is formulated to minimize passenger 

waiting time and train operation cost. The model 

integrates train arrival–departure time, dwell time, 

headway limits, and rolling stock constraints, thereby 

capturing the coupling between train operation and 

resource scheduling and providing a theoretical basis for 

efficient metro operation. 

(2) Design and implementation of an enhanced NSGA-II 

algorithm. An empirical analysis is carried out with real 

metro data. The model is solved by an NSGA-II-based 

evolutionary algorithm with a two-layer chromosome. 

Simulation results show that the optimized 

unequal-headway scheme outperforms the 5-min uniform 

scheme and 15-min uniform scheme. Passenger waiting 

time falls by nearly 21% while operation cost rises by 

only about 11.7%. Average load factors become more 

balanced, and carrying efficiency improves in both 

directions. 

(3) Population size sensitivity analysis and optimal setting. 

A sensitivity test on population sizes 200, 250, 300, 350 

indicates a “high-sensitivity” phase in the first 20 

generations, during which larger populations raise the 

HV value faster. After generation 50, all curves converge 

at an HV of about 0.86, with final differences below 0.02. 

Considering convergence speed, solution quality, and 

runtime, a population of 300 reaches 95% of the final HV 

within about ten generations and offers the best 

cost-benefit balance. 

(4) Application prospects. The present model assumes fixed 

train consists and does not fully account for flexible 

coupling-uncoupling strategies such as “add cars in peaks, 

cut cars in off-peaks.” Future work should treat consist 

size as a decision variable, allowing dynamic adjustment 

by time period and direction. This extension is expected 

to raise capacity utilization, accommodate demand 

fluctuations, and further improve service quality. 
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