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Integrated Optimization of Train Timetabling
and Rolling Stock Circulation for Urban Rail
Transit Under Tidal Passenger Flow

Yuxin Li, Changfeng Zhu, Yungqi Fu, Jie Wang, Linna Cheng, Rongjie Kuang

Abstract—Pronounced tidal passenger flow is manifested in
the urban rail transit system during the peak period, presenting
significant operational and scheduling challenges. An
integrated optimization model that couples the train
timetabling with rolling stock circulation under tidal passenger
flow is developed, aiming to minimize passenger waiting time
and train operation cost. Multiple real-world
factors—including the safe-headway constraint, dwell-time
calculation, and the feasibility of rolling stock connection—are
fully considered in model development. To solve the nonlinear
multi-objective optimization problem efficiently, an improved
algorithm based on NSGA-II is proposed. A two-layer
chromosome encoding scheme is adopted in the algorithm. The
upper layer represents the train departure time, whereas the
lower layer encodes the rolling stock connection. An adaptive
penalty function is introduced to handle the constraints. A
simulation study based on AFC data is conducted for Beijing
Metro Line 6. Compared with the fixed-headway scheme, the
optimized flexible scheme reduces operation cost by 18.2% and
markedly shortens train connection time. Passenger waiting
time increases by only about 9%. Thus, service quality is
maintained and resource utilization is greatly improved by the
optimized scheme. These findings verify the model’s
practicality and effectiveness under tidal passenger flow.

Index Terms—urban rail transit, train timetabling, rolling
stock circulation, integrated optimization

I. INTRODUCTION

etropolitan areas and urban clusters continue to expand.
Urban functional zones now extend further outward,
and the separation between residential and workplace
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locations has intensified. Consequently, the metro plays a
core role in suburb-to-city-center commuting. Most existing
lines still do not fully cover all functional zones. As a result,
pronounced tidal passenger flow occurs on rail lines during
the morning and evening peaks. To accommodate the
temporal and spatial imbalances of passenger demand, a
more flexible train operation scheme is urgently required.
Train departure frequency and the number of rolling stock
units can be dynamically adjusted. Joint optimization of the
timetable and rolling stock circulation then enhances the
match between line capacity and passenger demand.

A. Literature review

A.1. Train Timetabling

Early research on train timetabling optimization focused
mainly on improving operational stability and robustness.
Sparling et al. [1] extended the periodic-event scheduling
problem (PESP) into a variable-period optimization
framework. The framework minimizes the cycle length and
thereby enhances network stability and robustness. Hogdahl
et al. [2] proposed a hybrid approach that combines
microscopic simulation with optimization. By using
simulation data to predict train delays, the method improves
the train timetabling robustness and punctuality. Under
uncertain passenger demand and transfer behavior, Wang et
al. [3] applied a mixed strategy that uses both long and short
train formations. They embedded this strategy in a
multi-agent simulation, an ALNS heuristic and the Gurobi
solver, which increases the train timetabling adaptability and
robustness.

The growing emphasis on energy saving and emission
reduction has shifted timetable optimization toward
improving energy-use efficiency. Su et al. [4] proposed an
“integrated timetable” framework that couples inter-station
running-time allocation with speed-profile control in a
two-layer formulation. They demonstrated its applicability to
automated-train operation systems. Li et al. [5] integrated
speed profile and train timetabling optimization with the
objective of maximizing regenerative energy. Feng et al. [6]
examined both single-train and multi-train settings. They
proposed a hierarchical optimization strategy that delivers
system-wide energy savings, although potential delay
perturbations in real operation were not considered. Feng et
al. [7] focused on train energy consumption. They introduced
a braking-energy recovery mechanism into timetable design
and achieved coordinated optimization of energy efficiency
and passenger travel time.

In recent years, passenger demand orientation has become
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an increasingly important factor in train timetabling
optimization. To address dynamic passenger demand, Niu et
al. [8] built a binary-integer programming model for
timetable optimization. By modelling passenger queuing and
boarding behavior precisely, the model effectively alleviates
boarding congestion under oversaturated flow. Ran et al. [9]
targeted tidal-flow characteristics. They constructed a
bi-objective timetable-optimization model that balances
energy saving with passenger time saving. Zhang et al. [10]
analyzed how differences in passenger load affect operating
energy consumption. They sought Pareto-optimal solutions
that reconcile energy use with running time. Although the
above studies have improved operating efficiency, reduced
energy consumption and enhanced passenger experience,
they seldom examine how rolling stock circulation influences
the overall operation plan. This omission can lead to uneven
capacity allocation and higher operation costs. Consequently,
integrated mechanisms that couple train timetabling
optimization with rolling stock circulation must be explored
to achieve comprehensive improvements in operational
efficiency and resource utilization.

A.2. Rolling stock circulation

Early studies on rolling stock circulation focused on model
formulation and algorithm design. Using the Dutch
Noord—Oost line as a case study, Fioole et al. [11] developed
a circulation plan that accommodates train coupling and
uncoupling. They solved the train-composition and routing
problem with a mixed-integer linear program (MILP), laying
a mathematical foundation for rolling-stock -circulation.
Under a fixed-depot assumption, Frelin et al. [12] examined
routing optimization for several task-allocation schemes and
built separate models for linear, symmetric, and asymmetric
assignments. Inspired by the vehicle-routing problem, Szeto
et al. [13] used an artificial bee colony algorithm to handle
capacity-constrained scheduling. The study demonstrates the
potential of heuristic algorithms in complex rolling stock
circulation. Mahmoudi et al. [14] employed a space—time
state network and dynamic programming to obtain exact
solutions for pickup-and-delivery tasks with time windows.
Their method enhances synchronized vehicle routing and
timetabling in time-dependent networks.

As models and algorithms matured, researchers introduced
visualization to improve structural representation and
controllability. Zheng et al. [15] abstracted train states into a
rolling stock connection graph and solved it with a MILP. He
et al. [16] formulated the Urban Transit Rolling-Stock
Assignment Problem (UTRSAP) using column generation
and a large neighborhood search algorithm. Driven by
intelligent-dispatching needs, recent work has moved toward
real-time optimization and adaptability to flexible train
composition. Wang et al. [17] proposed a convex
optimization model that integrates passenger demand, energy
consumption, and travel time. The model moves real-time
rolling-stock circulation closer to practical use. To manage
demand uncertainty, Cacchiani et al. [18] embedded
disturbance tolerances in their model. This enhancement
improves schedule adaptability, service level, and capacity
utilization. Zhou et al. [19] addressed the dynamism,
imbalance, and randomness of passenger demand by
formulating a two-stage stochastic program. The model

couples flexible train compositions with a robust
passenger-flow control strategy. Zhu et al. [20] compared
coupled or uncoupled trains with fixed compositions. They
proposed a “shadow-train” connection method for coupled
and uncoupled train service.

Substantial progress has been achieved in model
formulation, algorithm design, and dispatch responsiveness
for rolling-stock circulation. Nevertheless, most studies
assume a fixed train timetabling and seldom consider its
coupling with rolling stock circulation, which limits the
flexibility required in practice.

A.3. Integrated optimization of train timetabling and rolling
stock circulation

In recent years the research focus has shifted to integrated
optimization of train timetabling and rolling stock circulation.
The goal is to harmonize resource allocation with passenger
service quality. The traditional sequential approach optimizes
the timetable and rolling-stock circulation independently,
which causes decoupling. To resolve this issue, Wang et al.
[21] proposed a two-stage framework. Stage 1 generates a
demand-oriented timetable using a mixed-integer nonlinear
program (MINLP). Stage 2 then refines this timetable with a
mixed-integer linear program (MILP) to reduce the number
of required trainsets. Building on this idea, Yao et al. [22]
presented an integrated model. The linearized MILP
formulation achieves high rolling stock utilization and
service quality. Zhao et al. [23] observed that sequential
optimization struggles to reconcile passenger experience with
operating cost. They therefore unified running time, dwell
time, and coupling—decoupling operations in a single model.
Logical and piecewise-linearization techniques converted the
resulting MINLP into a MILP, which greatly improved
computational efficiency.

As tidal flow characteristics intensify, dynamic passenger
demand has become a crucial component of integrated
optimization models. On a line with pronounced tidal flows,
Liu et al. [24] combined train coupling—uncoupling strategies
with platform-flow control. They dynamically adjusted train
headways and on-board capacity constraints. This approach
deeply integrates the timetable with the circulation plan. A
Lagrangian-relaxation heuristic solves the peak-period
dispatching problem. Zhou et al. [25] incorporated
passenger-flow control and used a tabu-search algorithm with
the CPLEX solver to jointly optimize the timetable and
rolling stock circulation. Yuan et al. [26] studied Beijing
Metro Line 6 and introduced a short-turn strategy. They
formulated a multi-objective MINLP and coupled a genetic
algorithm with a commercial solver. The resulting plan
integrates the timetable with rolling stock circulation and
reduces average passenger waiting time.

B. Research gap

Existing studies consider integrated optimization under
unbalanced demand. However, they often reduce
multi-objective problems to single-objective problems
through simplistic aggregation by using weighting
coefficients. This simplification limits the diversity of
trade-offs and solution possibilities. Consequently, the
resulting models cannot fully capture the complex
multidimensional trade-off between service quality and
operational cost.
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C. Contributions

To overcome these limitations, a multi-objective
mixed-integer nonlinear programming (MINLP) model is
formulated to simultaneously minimize passenger waiting
time and operation cost, subject to headway, dwell-time,
depot, and rolling stock connection constraints. The model is
based on a rolling-stock connection network and explicitly
captures the coupling between train timetabling and rolling
stock circulation under tidal passenger flow conditions. A
hybrid-encoding NSGA-II algorithm is developed to solve
this model. The feasibility and effectiveness of the proposed
approach are demonstrated through a case study on Beijing
Metro Line 6.

II. PROBLEM STATEMENTS

A. System description

Consider a metro line shown in Fig. 1. The line exhibits
tidal passenger flow pattern and comprises s stations, whose
set is denoted by S:{j, J, D} . Stations 1 and s serve as

turn-back terminals. Within the study horizon 7 ={t,1,....1,} ,
the set of train services is denoted by [ = {7, LK } , and the set

of rolling stock is denoted by R:{”o

T :1,2,...,m} .

[ Stations |
[Station s+1]

A passenger-demand-oriented train operation plan must
simultaneously consider train arrival time, departure pattern,
and rolling stock circulation. Train timetabling and rolling
stock circulation are tightly interdependent: the departure
frequency and the number of scheduled services determine
how many trainsets are required, whereas the circulation plan
constrains the timetabling. Under pronounced spatiotemporal
heterogeneity of passenger demand, integrated optimization
must achieve three objectives. First, it must closely match
dynamically changing demand. Second, it must ensure a
unique and feasible rolling stock succession for each service i.
Third, it must prevent conflicts between revenue operations
on the main line and depot movements.

» Up Direction

Station | |
[ Station 2s |

Fig. 1. The subway line layout

[ Station 2 ]-- - [Station s-1]

Depot |
Depot 2

[Station 2s-1] . . . [Station s+2]

B. Rolling stock connection network construction

Define the rolling stock connection graph G =(V,E) as
shown in Fig. 2, where V =V UV, ¥, :{vl‘i |v1" :1,2,...,;1} is

the set of depot nodes and V, = {v;|v‘2 = 1,2,...,n} is the set of
train-service nodes. Each train-service node is annotated with
its origin station S/, terminal station S, departure time ¢,

and arrival time ¢ . The edge set is denoted by

E={e|e=(v;,v§),(v{j,v;)} . An edge e is created only if a
feasible connection exists between its incident nodes v and

v; . Each connection edge e carries a weight ¢, ., defined as

the time interval between the completion of service i and the

start of service i'. By constructing this rolling stock

connection graph, train dispatching status and rolling stock
connection relationships are comprehensively displayed.

I'rain connection arc

[] Depotnode -

(O Train service node —  Depot entry—exit arc

Fig. 2. Rolling stock connection graph

C. Assumptions

For the purpose of modeling the problem under study, the
following assumptions are introduced:

Assumption 1. Passengers follow an alight-before-board
rule, and the passenger arrival rate is derived from AFC data.

Assumption 2. Train operation is based on the
all-station-stop scheme, and the section running time is
pre-given.

Assumption 3. Train overtaking is not permitted on the
line.

D. Notation

The sets, parameters, and indicators of the optimization
model are listed in Table I, and the decision variables are
shown in Table II.

TABLE I
SETS, PARAMETERS AND INDICATORS FOR THE OPTIMIZATION
Notations  Definition
S Set of stations, S = {7,1,D} ;
T Set of stations in the up direction, J = (1,2, ...,s};
g Set of stations in the down direction, J = {s+1,...,25 —1,2s} R
D Set of depots, D={1,2} ;
j.d Index of stations, j,d €S ;
I Set of the train services, / = {f,l,K} ;
7 Set of train services in the up direction, / = {L2,..,i} ;
I Set of train services in the down direction, /= { 1,2,...,0 '} ;
Set of the train services which out of/into the depots,
K K={12,..k};
ik Index of the train services, i,k el ;
T Set of operational time, 7 = {to,tl,...,tn} ;
T Set of time interval, 7 =1, —1,_; ;
4y The time for service i running between station j-1 and j;
0 The time for passenger to board at station j;
tﬁ?}m The time for passenger to alight at station j;
ydoor The time for the rolling stock to open the door;
tcd""r The time for the rolling stock to close the door;
torake The time for the rolling stock to brake;
4 in the minimum time for service i to dwell;

the maximum time for service i to dwell,
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tlmj'" the minimum headways for two consecutive services;
t}l}?x the maximum headways for two consecutive services;
(min the minimum time standards for the rolling stock to turn
turn around from the station s to s+1/2s to 1;
(max the maximum time standards for the rolling stock to turn
turn around from the station s to s+1/2s to 1;
Teleaning The time for cleaning the conveys;
q Operation cost for one rolling stock to run;
0 Operation cost for one rolling stock to turnaround per
minute;
Criax Maximum capacity of one rolling stock;
M A large positive number;
Ng The capacity of the depots;
N}t’, The number of passengers waiting the train.
TABLEII
DECISION VARIABLES FOR THE OPTIMIZATION MODEL
Variables  Definition
tft J continuous variable, time for service i to arrive at station j;
/A continuous variable, time for service i to departure from
hJ station j;
" Binary variable, if rolling stock r, takes service i, ;""" =1,
7"
otherwise ;" =0
4 Binary variable, if rolling stock 7, continues from service i
g "

to 7, {H =1, otherwise Q =0.

III. MATHEMATICAL MODEL
A. Constraint conditions

A.1. Timetable constraints

The arrival and departure time of each train at each station
are determined by the section running time and the station
dwell time. Accordingly, the arrival and departure time of
each train service i at station j are expressed as:

£=0 " viel,j, j-leJorViel,jel (1)
t‘b l +t Vief,j,j—lejor‘v’iel,jel 2)
The station dwell time consists mainly of three

components: the door opening-closing time, the average
boarding-and-alighting time of platform passengers, and the
braking time. The dwell time is given by the following
formula:

t . _tup +tdowr1 tdoor +tdoor + o raker

’ 3)
Vie[,jeJorVieLjel
To ensure both operation efficiency and safety, the dwell
time must also satisfy the following constraint:

<Y Vze[,jeJor‘v’leI]eJ 4

i,min = z]— zmaxa
The train headway is a key indicator of service quality in
urban railway transit. it directly affects both line capacity and
passenger waiting time. The headway between two
successive trains is defined as following:
ti =t o T o 5)
Vii+lel,j,j—leJorVii+lel,j,j-leJ

To guarantee operation safety service efficiency, the

headway between a two successive trains must satisfy the
following:

t <y <g™ Viel,jeJorViel,jeJ  (6)

A.2. Rolling stock constraints

Each rolling stock unit 7, can only serve at most one train
service at any time:
S Sy =1, vieli'elorVieLi'el ()
deDr,eR

Each rolling stock r, must have exactly one predecessor
and one successor, ensuring a complete and error-free

connection order:
PIDIDNAED WD I Wt
deDr,eRi'el

deDr,eRi'el

=0, VielorViel(8)

At a depot-departure node, rolling stock can flow only
outward; at a depot-arrival node, it can flow only inward:

Y > >t =1 vkek 9)
deDr,eRiel
SN St =1, vkek (10)
deDr,eRiel

The depot capacity must be sufficient to accommodate the
number of trainsets required for the daily service:

> S S <N,, vdeD

r,eRkeKiel

(In

For operational flexibility, a trainset may depart from one
depot and return to another, but each depot’s departures must

equal its returns:
Y Y =% Y
r,eRkekK

r,eRkek

Viel,deD (12)
After completing service i, a rolling stock may proceed to

service i+1 only if the connection-capability criterion and the
turnaround-time requirement are both satisfied:

t~a. ! tld] —ttrgll’g _M(l_é/i}:(:i’d):

iy (13)

‘v’ief,jzl,i' e!,j' :2sorie£,j=s+l,i’ e;,j' =5

d ood

1 =t <ty + M1,

i) (14)

‘v’ief,j:l,i' el,j':ZsorieLj:s+l,i' e;,jvzs

(15)

Lo =t +1, ;
i i ii turn T ‘cleaning

B. Objective function

B.1. Passenger waiting time

The average passenger waiting time is generally assumed
to be one-half of the train departure headway; hence,
optimizing passenger waiting time is tantamount to
optimizing the train departure headway. Passenger waiting
time is expressed as:

min Z; ——ZZ Z 1ttz j

11] 1=t

(16)

B.2. Train operation cost

Operation cost comprises two components: the fixed cost
of each trainset and the cost associated with succession time.
These terms capture, respectively, the number of trainsets in
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service and the quality of rolling stock connection. The total
operating cost is given by:

minZ, =¢ Z Z z 5;:‘jl~’d +6’ZZCi',i7i',i

deDr,eRk,iel ieli'el

(17

IV. ALGORITHM DESIGN

Uder the tidal flow condition, train timetabling and rolling
stock circulation are tightly coupled. Even small adjustments
to departure and arrival time can disrupt connection
feasibility and degrade resource utilization. Conversely,
deployment limits on rolling stock constrain timetable
feasibility. The resulting optimization model contains
coupled integer and continuous variables and nonlinear
objectives under complex constraints, so conventional
mathematical-programming  methods are unsuitable.
Therefore, the model is solved using the NSGA-II algorithm.

A. Chromosome encoding design

Timetabling variables are continuous, and headways must
satisfy safety constraints. Rolling stock circulation, by
contrast, is discrete and requires a unique, feasible
connection. Therefore, a two-layer hybrid chromosome
encoding scheme is adopted.

The upper layer

encoding y, = {tﬁl,tfl,. . .,t,a’s,t}i,s} to represent train departure

uses real-valued

times, whereas the lower layer uses integer encoding
Vv, = {é’l’f" , ;/[."0"’} to represent rolling stock connection. This
design facilitates precise headway control and provides an
intuitive representation of rolling stock connection.

B. Construction of the fitness evaluation

During  algorithm  execution, some individuals
Z=(Z,,Z,) violate hard constraints such as insufficient

headway or depot overcapacity. The fitness evaluation

therefore incorporates a penalty mechanism Zi (©)=Z(g)+4-Pg).

The objective-function values of infeasible individuals are
downgraded, guiding the population toward the feasible
solution space.

C. Evolutionary strategy and constraint handling

During the evolutionary process, the following procedure
is implemented within the NSGA-II framework :

Step 1—Population initialization: an initial population
Glis generated that satisfies the basic constraints.

Step 2—Non-dominated sorting: each individual in the
population is rapidly ranked according to (ZI,ZZ) and
assigned to a non-dominated front F'1, F2,....

Step 3—Crowding-distance calculation: the crowding
distance CD(g, ) is computed for every individual within
each non-dominated front.

Step 4—Selection: tournament selection based on rank
and crowding distance is applied to generate the parent set

gr.
Step 5—Crossover and mutation: simulated binary crossover
and Gaussian-perturbation mutation are performed on #

whereas single-point crossover and swap mutation are
applied to 4. ¢w? .

Step 6—Repair mechanism: if a new individual g’
violates the train headway or the connection rule, local
reordering or departure time adjustment is carried out.

Step 7—Elitism: the parent and offspring populations are
merged, and the best N individuals are selected to form the

next generation gt

D. Evolutionary convergence criteria and solution out-put

In each iteration, the algorithm merges the parent and
offspring populations and selects elite individuals jointly on
the basis of non-dominated rank and crowding distance. The
procedure terminates when either (i) the maximum number of

generations G, is reached or (ii) the variation in the

Pareto set remains below the threshold € for & consecutive
generations; the final output is the non-dominated solution

set P = {gik,. . .,g}} . The overall flowchart of the algorithm
is presented in Fig. 3.

Initialize population:
mixed encoding: chromosome={#*, *, 7, ¢}

A 4

Evaluate fitness

| Crossover and mutation I

Elite preservation

Yes , Gen=Gen+1

| Output pareto front |

Fig. 3. The algorithm flow chart

V. NUMERICAL EXPERIMENTS

A. Case introduction

This study examines a bidirectional urban rail line with a
total length of 28.38 km. Stabling yards and depots are
located at the two terminals, and the line operates with
fixed-consist train formations. The line comprises 20 stations
in total, and both terminal stations serve as turn-back points.
The analysis horizon is the morning period T=[6:00-10:00],
with a time interval of 7 =10min . Parameter settings for the
integrated timetabling and rolling stock optimization model
are provided in Table III.
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TABLE IIT
VALUE OF THE RELEVANT PARAMETERS

parameters value parameters value
gdoor 3s gme 1.5min
gdoor 3s G 15min
£ min 20s a 10000
4 max 60s 6 100
£min 1.5min Conax 1860
[ 10min

Passenger arrival rates for each time interval are extracted
from the AFC system for both the up and down directions.
These rates are plotted in Fig. 4(a) and Fig. 4(b), respectively.
Both directions exhibit pronounced morning peaks within the
6:00—10:00 horizon. The up-direction peak occurs earlier and
is stronger, producing a single-peak profile. By contrast, the
down-direction peak occurs later, has lower intensity, and
lasts longer, showing several smaller sub-peaks. Overall, the
line exhibits a clear tidal-flow pattern.

Passenger entry rate (people/min)
O
<

S o 2 9o 29 <
S 0N 9
o o -~ ©~ 0

9:00
9:30
0:00

Fig. 4(a). The entry rate of passengers in the up direction

—_ D W B oW
S S O O O

Passenger entry rate (people/min)

=

6:00

=3
D
o

Fig. 4(b). The entry rate of passengers in the down direction

B. Computational results

The model is solved in a Python environment. To balance
solution diversity with convergence speed—and to maintain
reasonable runtime—the algorithm parameters are set as
follows: Ng =300, N, =100, N, =08, N, =0.6 .The

HYV iteration curve and Pareto frontier obtained under these
settings are displayed in Fig. 5 and Fig. 6, respectively.

Fig. 5 shows that the HV curve rises steeply in the early
generations, indicating that high-quality solutions are
obtained quickly at the outset. The growth rate slows between
generations 20 and 30, and a knee point appears around
generations 30—40, after which the algorithm enters its
late-convergence phase. By generations 80-100, the HV
stabilizes at 0.95-0.96 and hardly increases further,

indicating algorithm convergence.

The HV metric reflects the overall quality and spread of
the solution set; however, the detailed optimization effect is
best examined through the Pareto frontier. Fig. 6
demonstrates a clear trade-off between objectives: as
Objective 1 increases, Objective 2 gradually decreases,
confirming a marked conflict.

1.0
0.9}
0.8}
0.7}
0.6}
0.5}
0.4
0.3
0.2
0.1

0

Hyper volume

0 20 40 60 80 100
Iteration

Fig. 5. The HV iteration curve

43
= 3 h 1
g 42 E|—>sc eme
-
Z 41t .
x
Z 40t .
9
g L]
2 39
£ E—.schcmc 2 scheme 4
o El—»schuch
< 38t .,
37 . . . . . .
29 30 31 32 33 34 35 36

Waiting time (x10*s)
Fig. 6. The pareto front scheme

The Pareto solutions and their classifications are
summarized in Table IV. Table IV reveals a pronounced
trade-off between operating cost and passenger waiting time.
As the operating cost decreases from 420339 in Scheme 1 to
378399 in Scheme 4, the total waiting time rises from 293537
min to 350566 min. Among the four schemes, Scheme 2
delivers the smallest increase in waiting time per unit of cost
saved, marking the best marginal-benefit pivot. Beyond this
point, further cost reductions lead to disproportionately large
losses in service quality. Hence, Scheme 2 represents the
optimal compromise on the multi-objective Pareto frontier
and is the preferred choice when both economy and service
quality matter. Scheme 1 and Scheme 4 represent the two
extremes—“service-first” and “cost-first,” respectively.
Scheme 3 also lies on the frontier, but its marginal benefit is
weaker than that of Scheme 2. Operators can therefore select
among these Pareto solutions according to their strategic
priorities.

From the Pareto frontier, Scheme 2 is selected as the best
compromise between economy and service quality. Under
this scheme, the total passenger waiting time Z; is 318883

min, and the operating cost Z, is 387425.
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TABLE IV
PARETO FRONT SCHEME

Scheme Waiting Time/min

Operation Cost Classification

1 293537
2 318883

3 325219
4 350566

420339 Service-level priority.

387425 Best marginal benefit.

383605
378399

Moderate compromise.

Cost-priority.

P

Depot 2

Station 20
Station 19

Station 18
Station 17

Station 16
Station 15

Station 14

Station 13
tation

Station 11

Station 10

Station 9
Station 8§
Statjon 7
Station 6
Station 3
Station 4
Station 3
Station 2
Station 1

yf
Jia

Depot 1

7
L

E 4 p-J

6:00

g

Fig. 7. The optimized train timetable

The optimized train timetable is presented in Fig. 7. Fig. 7
shows that 73 train services are scheduled within the horizon

T= [6 :00,10: 00] : 47 train services in the up direction and

26 in the down direction. A total of 27 trainsets are deployed.
The departure frequency first increases and then decreases as
time progresses.

A statistical and time-series analysis is performed on the
headway data in Fig. 8(a) and Fig. 8(b) for the 6:00-10:00
operation window.

The mean departure interval is 4.46 min in the up direction
and 8.43 min in the down direction. Headways are aggregated
in 15-min bins to reveal a typical tidal pattern.

In the up direction, the interval shortens rapidly after 6:00,
reaches approximately 3 min during the 7:30-8:30 peak, and
then rises to 5-7 min.
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Fig. 8 (a) The departure interval of trains in the up direction
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In the down direction, the interval initially decreases and
then increases: it is roughly 20 min between 6:00 and 7:00,
falls to about 5 min between 8:00 and 9:00, and widens to 13
min before 10:00.
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Fig. 8 (b) The departure interval of trains in the down direction

These results show that the optimized rolling stock plan
adjusts headways to match asymmetric demand. However,
some down-direction headways remain long; introducing
flexible train compositions could further improve service

quality.
C. Results analysis

C.1. Sensitivity analysis of population size

To evaluate how the population size Ng influences the
convergence of NSGA-II in the integrated optimization of the
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timetabling and rolling stock circulation, a single-factor
experiment is constructed based on the previous case.
All model parameters are fixed except Ng . Four values of

Ny are tested: 200, 250, 300, 350. The evolution of HV

metric under each setting is plotted in Fig. 9.

HYV is highly sensitive to a population size of 350. With the
population size of 350, the algorithm reaches 90% of its final
HV by generation 7. In contrast, a population size of 200
requires at least 12 generations to achieve the same level. A
larger initial population thus enhances diversity, accelerating
the global search.

All curves eventually converge and cluster at an HV of
approximately 0.86; the final gap among settings narrows to
0.01-0.02. Thus, NSGA-II demonstrates strong robustness to
population size once it enters this “low-sensitivity” phase.

Increasing the population size Ng from 300 to 350 yields

only about a 1% gain in HV, yet the computation time nearly
triples. Such a marginal benefit does not offset the substantial
increase in computational cost.

Balancing convergence speed, solution quality, and
runtime, a population size of 300 is the best compromise for
the present model. With this setting, the algorithm attains
95% of its final HV within roughly ten generations.
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Fig. 9 Convergence analysis plot

C.2. Comparative analysis of different headway schemes

To evaluate how different headway settings affect the
performance of the timetable and rolling stock plan, three
schemes are compared: a 5-min uniform headway, a 15-min
uniform headway, and the optimized flexible-headway
scheme. Evaluation indicators for the three schemes are listed
in Table V.

Table V shows that although the 15-min uniform scheme
consumes the fewest resources, it fails to meet actual
passenger demand and is therefore infeasible in practice.

Compared with the 5-min uniform scheme, the
flexible-headway scheme increases passenger waiting time
by only about 11.7% while reducing operating cost by
approximately 21%, demonstrating superior cost-control
capability.

Regarding fleet size, the flexible-headway scheme requires
approximately 18.2% fewer trainsets than the 5-min uniform
scheme, thus saving resources while still satisfying passenger
demand. The unequal-headway scheme also provides a more
flexible succession plan, reducing train succession time by
about 50% relative to the 5-min uniform scheme.

In summary, the unequal-headway scheme effectively
combines the advantages of passenger service quality and
economic efficiency. It outperforms the uniform-headway
schemes in resource conservation, cost control, demand
matching, and balanced rolling-stock utilization, making it
better suited to operational conditions under tidal passenger
flow.

C.3. Average load factor comparison

To evaluate how different departure-headway schemes
affect rolling stock utilization, we compared the average train
load factors under the balanced schemes (5 min, 15 min) and
the unequal-headway scheme. The average load factors for
the up and down directions are given in Fig. 10(a) and Fig.
10(b), respectively.

Fig. 10(a) shows that the 15 min uniform scheme produces
the highest overall average load factor in the up direction;
most trains exceed the full-load threshold, indicating
insufficient capacity, serious crowding, and poor service
quality. The 5 min uniform scheme keeps the load factor
roughly within 0.85-1.2, and the cars remain crowded. The
flexible headway scheme is more balanced, demonstrating a
good match between capacity and demand and a more
reasonable allocation of train capacity.

In the down direction, the 15 min uniform scheme yields
intermediate load factors of 0.4-0.8; the value is high in the
early and middle portions of the period and then falls,
showing large fluctuations and moderate stability. The 5 min
uniform scheme keeps the load factor low, always between
0.1 and 0.6, indicating obvious excess capacity and low
resource utilization. The flexible headway scheme
consistently performs best: its load factor stays steadily at
0.7-0.9, and its curve is markedly more stable than those of
the other schemes, better matching actual demand and
providing higher resource-utilization efficiency and
enhanced service stability.

Thus, the optimized unequal-headway scheme offers clear
advantages in both directions. It effectively matches
tidal-flow demand, maintains passenger service quality, and
significantly improves overall resource utilization and
operational stability.

TABLE V

PERFORMANCE COMPARISON UNDER DIFFERENT HEADWAY SCHEMES

Scheme Headway Connection time/min Waiting time/min Operating cost Rolling stock
Uniform headway 5 min 464 297811 495870 33
Uniform headway 15 min 175 887388 166550 12
Flexible headway Variable 252 325219 383605 27
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VI. CONCLUSION AND DISCUSSION

(1) Development of a space-time tidal flow multi-objective

2)

(3) Population size sensitivity analysis and optimal setting.

model. Focusing on the spatiotemporal distribution of
tidal passenger flow, this study adopts a rolling stock
succession graph to describe train-node attributes and
edge constraints. A mixed integer multi-objective
nonlinear program is formulated to minimize passenger
waiting time and train operation cost. The model
integrates train arrival-departure time, dwell time,
headway limits, and rolling stock constraints, thereby
capturing the coupling between train operation and
resource scheduling and providing a theoretical basis for
efficient metro operation.

Design and implementation of an enhanced NSGA-II
algorithm. An empirical analysis is carried out with real
metro data. The model is solved by an NSGA-II-based
evolutionary algorithm with a two-layer chromosome.
Simulation results show that the optimized
unequal-headway scheme outperforms the 5-min uniform
scheme and 15-min uniform scheme. Passenger waiting
time falls by nearly 21% while operation cost rises by
only about 11.7%. Average load factors become more
balanced, and carrying efficiency improves in both
directions.

A sensitivity test on population sizes 200, 250, 300, 350
indicates a “high-sensitivity” phase in the first 20

generations, during which larger populations raise the
HV value faster. After generation 50, all curves converge
at an HV of about 0.86, with final differences below 0.02.
Considering convergence speed, solution quality, and
runtime, a population of 300 reaches 95% of the final HV
within about ten generations and offers the best
cost-benefit balance.

(4) Application prospects. The present model assumes fixed

(1

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

train consists and does not fully account for flexible
coupling-uncoupling strategies such as “add cars in peaks,
cut cars in off-peaks.” Future work should treat consist
size as a decision variable, allowing dynamic adjustment
by time period and direction. This extension is expected
to raise capacity utilization, accommodate demand
fluctuations, and further improve service quality.
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