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Abstract—Dynamic behaviors of Lotka-Volterra commensal
symbiosis model incorporating Allee effect and a linear harvest-
ing in prey are studied in this paper. Through implementation
of eigenvalue analysis alongside the Dulac-Bendixson criterion,
the study establishes adequate criteria ensuring equilibrium
exists and remains stable. Our results demonstrate that the
interaction of Allee effects and harvesting triggers saddle-node
bifurcations, progressively destabilizing the system. Crucially,
we identify an extinction threshold for the prey population,
prey extinction occurs. A key novel finding is a counterintuitive
positive correlation: heightened Allee effects lead to increased
prey population density — a rare and noteworthy ecological
outcome. Computational simulations corroborate the primary
conclusions.

Index Terms—Commensal Symbiosis Model; Allee Effect;
Harvesting; Bifurcation.

I. INTRODUCTION

AMONG key ecological models, commensalism holds
significant prominence. During the last decades, many

scholars investigater the dynamic behaviors of the com-
mensalism model [1]–[10]. Han and Chen [10] proposed
the continuous symbiotic modeling framework (1), proving
that the distinctive positive equilibrium point for model
(1) is globally asymptotically stable, while other boundary
equilibrium points are unstable.

ẋ = x(b1 − a11x) + a12xy,

ẏ = y(b2 − a22y).
(1)

The Allee effect [11] describes the phenomenon where the
fitness of individuals decreases as the population density
or size declines. In recent years, numerous scholars have
been studying the changes in the dynamical behavior of
biological mathematical models after incorporating the Allee
effect [12]–[23]. Chen [23] investigated a new model (2) by
adding the prey Allee effect to model (1), as follows:

ẋ = x(b1 − a11x)
x

x+ C0
+ a12xy,

ẏ = y(b2 − a22y).
(2)
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According to [23], the Allee effect has no bearing on the
stability properties of the interior equilibrium point. Regula-
tory limits on fishing zones enable sustainable coexistence
of human harvest and resource protection. Scholars have
proposed models incorporating harvesting [24]–[29] druing
the last decades.

However, prior studies have examined Allee effects and
harvesting independently within ecological modeling frame-
works, but their interactive impacts on commensal systems
remain understudied. Based on the aforementioned research,
this article primarily considers a new model (3) by adding
a linear prey harvesting to model (2) and investigates the
changes in its dynamical behavior. This work closes this gap
via a systematic analysis of the interactions among these
factors, resulting in emergent novel dynamics. A key finding
is that harvesting induces two saddle-node bifurcations, a
result scarcely documented for commensalism models. (Re-
fer to Table I for the ecological implications associated with
parameters in the equations and their units).

ẋ = x(b1 − a11x)
x

x+ C0
+ a12xy − r0x,

ẏ = y(b2 − a22y).
(3)

TABLE I: Ecological meanings and units of parameters

Parameter Ecological meaning Units

x Prey concentration indiv.·km-2

y Predator concentration indiv.·km-2

b1 Prey’s inherent growth rate month-1

b2 predator’s inherent growth rate month-1

a11 Prey’s self-competition pa-
rameter

km2·(indiv.·month)-1

a22 predator’s self-competition pa-
rameter

km2·(indiv.·month)-1

a12 Commensalism benefit coeffi-
cient for prey

km2·(indiv.·month)-1

C0 Allee effect threshold density indiv.·km-2

r0 Linear harvesting rate of prey month-1

To simplify calculations, we perform transformation:

x̄ = ḡx, ȳ = h̄y, t = m̄t, m̄ = b1,

a =
a12b2
a22b1

, ḡ =
a11
b1

, h̄ =
a22
b2

, b =
b2
b1
,

C =
a11C0

b1
, r =

r0
b1

.

Therefore we obtain an equivalent formulation of system (2),
denoted as system (4) (identifying t with t, x̄ with x, ȳ with
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y.)

ẋ =
x2(1− x)

x+ C
+ axy − rx,

ẏ = by(1− y).

(4)

The remaining sections of this paper are arranged accord-
ingly: Section 2 addresses solution boundedness. Section 3
covers equilibrium existence, qualitative analysis, and global
stability of the positive equilibrium. Section 4 studies saddle-
node bifurcation. Numerical illustrations and simulations
in Section 5 demonstrate the theoretical outcomes. Lastly,
Section 6 offers a summary and concluding discussions.

II. BOUNDEDNESS OF SOLUTIONS

To demonstrate the bounded nature of solutions to system
(4), we first establish a fundamental lemma:

Lemma 2.1. [30] If c∗, d∗ > 0, and dx∗

dt ≤ x∗(t)(c∗ −
d∗x∗(t)) with x∗(t) > 0, then lim sup

t→+∞
x∗(t) ≤ c∗

d∗ ; If c∗,

d∗ > 0, and dx∗

dt ≥ x∗(t)(c∗ − d∗x∗(t)) with x∗(t) > 0,
then lim inf

t→+∞
x∗(t) ≥ c∗

d∗ .

Proposition 2.1. (1) Nonnegative invariance: Solutions
(x(t), y(t)) with initial conditions x(0), y(0) ≥ 0 satisfy
x(t) ≥ 0, y(t) ≥ 0 for all t ≥ 0.

(2) Bounded dynamics: All solutions with x(0), y(0) ≥ 0
remain uniformly bounded in the positive quadrant for t > 0.

Proof: (1) Per ecological principles, initial conditions
x(0) ≥ 0, y(0) ≥ 0 are imposed on (4) as population densi-
ties are nonnegative quantities. The dynamical equations in
(4) can be expressed mathematically as:

dx
dt

= x(
x(1− x)

x+ C
+ ay − r),

dy
dt

= y(b(1− y)).

Performing integration over the interval [0, t] leads to:∫ t

0

dx
x

=

∫ t

0

(
x(1− x)

x+ C
+ ay − r) dt,∫ t

0

dy
y

=

∫ t

0

(b(1− y)) dt.

After simplification, we obtain:

ln
x(t)

x(0)
=

∫ t

0

(
x(1− x)

x+ C
+ ay − r) dt,

ln
y(t)

y(0)
=

∫ t

0

(b(1− y)) dt.

By applying the exponential function to both sides, it
follows that for all t ≥ 0:

x(t) = x(0) exp(

∫ t

0

(
x(1− x)

x+ C
+ ay − r) dt) ≥ 0,

y(t) = y(0) exp(

∫ t

0

b(1− y) dt) ≥ 0.

Given the nonnegativity of initial conditions and the
strictly positive nature of the exponential function, we
deduce that Solutions (x(t), y(t)) with initial conditions
x(0), y(0) ≥ 0 satisfy x(t) ≥ 0, y(t) ≥ 0 for all t ≥ 0,
thereby proving statement (1).

(2) Applying Lemma 2.1 to the y-component of system
(4) provides an asymptotic estimate: lim sup

t→+∞
y(t) ≤ 1. This

implies the existence of a finite upper bound L∗ such that
y(t) ≤ L∗ for all t ≥ 0. Analysis of (4)’s initial equation
further establishes:

ẋ =
x2(1− x)

C + x
+ axy − rx ≤ x(1 + aL∗ − x). (5)

By reapplying Lemma 2.1, we derive the inequality
lim sup
t→+∞

x(t) ≤ 1 + aL∗. This ensures the existence of a

finite constant Q∗ such that x(t) ≤ Q∗ holds for all t ≥ 0.

Integrating these findings, we deduce that All solutions
with x(0), y(0) ≥ 0 remain uniformly bounded in the
positive quadrant for t > 0.

III. EXISTENCE AND STABILITY OF EQUILIBRIA

A. Existence of equilibria

Equilibrium solutions within this domain are first exam-
ined. The following definitions are introduced:

p(x, y) =
x2(1− x)

x+ C
+ axy − rx, q(x, y) = by(1− y).

we obtain two boundary equilibrium points on the xx-axis:
A0(0, 0), A1(0, 1). when y = 0, we have x2−(1−r)x+rC =
0; when y = 1, we have x2 − (1− r+ a)x+ (r− a)C = 0.
Defining

△1 = (1− r)2 − 4rC, △2 = (1− r + a)2 − 4(r − a)C,

x2 =
1− r

2
, x3 =

1− r −
√
△1

2
, x4 =

1− r +
√
△1

2
,

C1 =
(1− r)2

4r
, C∗ =

(1− r + a)2

4(r − a)
, x∗

3 =
1− r + a

2
,

x∗
1 =

1− r + a+
√
△2

2
, x∗

4 =
1− r + a−

√
△2

2
,

leading to the following conclusion

Theorem 3.1.1.

(1) The boundary equilibria A0(0, 0) and A1(0, 1) persist
within the system (4) for all positive parameter settings.

(2) When r < 1, C = C1, system (4) admits a boundary
equilibrium point A2(x2, 0); When q < 1, C < C1,
system (4) possesses boundary equilibrium points A3(x3, 0),
A4(x4, 0).

(3) When r ≥ a, system (4) admits a single positive
equilibrium E1(x

∗
1, 1); When a < r < a + 1, C > C∗,

system (4) possesses no positive equilibrium point; When
a < r < a+1, C = C∗, system (4) possesses a single positive
equilibrium E3(x

∗
3, 1); When a < r < a + 1, C < C∗,

system (4) exactly two positive equilibrium points E1(x
∗
1, 1),

E4(x
∗
4, 1); When r ≥ a+1, system (4) possesses no positive

equilibrium point. A detailed local stability analysis for the
equilibrium solutions of 4 is presented in the following
subsection.
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B. Local stability analysis of equilibria

Derivation of local stability criteria for boundary equilibria
initiates our investigation.

Theorem 3.2.1.
(1) A0(0, 0) is a saddle.

(2) If r < a, A1(0, 1−h2) is a saddle; If r > a, A1(0, 1)
is a stable node; If r = a, A1(0, 1) is a saddle-node.

(3) If r < 1, C = C1, A2(x2, 0) is a saddle-node; If
r < 1, C < C1, A3(x3, 0) is a unstable node, A4(x4, 0) is
a saddle.

Proof:

(1) At equilibrium point A0(0, 0), the Jacobian associated
with (4) is:

J(0, 0) =

 −r 0

0 b

 .

Analysis of the characteristic equation for J(0, 0) identifies
two real eigenvalues: λ1 = −r < 0, λ2 = b > 0 (h2 < 1),
so A0(0, 0) is a saddle.

(2) At equilibrium point A1(0, 1), the Jacobian associated
with (4) is::

J(0, 1) =

 a− r 0

0 −b

 .

Analysis of the characteristic equation for J(0, 1) identifies
two real eigenvalues: λ1 = a − r, and λ2 = −b < 0, if
r < a, the boundary equilibrium A1(0, 1) is a saddle; if
r > a, A1(0, 1) is a stable node; if r = a, A1(0, 1) is non-
hyperbolic. Stability determination employs the coordinate
transformations u = x, v = y − 1, dτ = −bdt (Assigning τ
to t), translating the point A1(0, 1) to M1(0, 0). We expand
system (4) as a Taylor series about the origin, retaining terms
up to fourth order, resulting in the approximate system:

u̇ = P 2(u, v),

v̇ = v +Q2(u, v).
(6)

where

P 2(u, v) = −a

b
uv − u2

bC
+

C + 1

bC2
u3 − C + 1

bC3
u4 + o(u4),

Q2(u, v) = v + v2.
(7)

The trivial solution v = Φ(u) = 0 is obtained from
Q2(u, v) = 0, leading to:

P 2(u, v) = − u2

bC
+

C + 1

bC2
u3 − C + 1

bC3
u4 + o(u4).

Given a second-order lowest term with negative coefficient
− 1

bC , B1(0, 0) is classified as a saddle-node equilibrium via
Zhang’s bifurcation theory (Theorem 7.1, Ch. 2 in [31]). We
identify B1(0, 0) as a saddle-node equilibrium. Thus A1(0, 1)
constitutes an attracting saddle-node with sector distribution:
the attracting parabolic sector (via negative time mapping)
fills the left half-plane, and the repelling hyperbolic sector
populates the right half-plane.

(3) If r < 1, C = C1, at equilibrium point A2(x2, 0), the
Jacobian associated with (4) is:

J(x2, 0) =

 0
a(1− r)

2

0 b

 ,

When Jacobian analysis fails to determine stability for hyper-
bolic equilibrium A2(x2, 0), the coordinate transformation
dτ = 1

β+x , dt (τ identified with t) is employed, resulting in
the polynomial system:

ẋ = x2(1− x) + axy(x+ C)− rx(x+ C),

ẏ = by(1− y)(x+ C).
(8)

Given the topological equivalence between system (8) and
(4), we execute successive transformations:X̄ = x − 1−r

2 ,
Ȳ = y (Assigning X̄ to x, Ȳ to y), translating the point
A2(x2, 0) to M2(0, 0), then we do the coordinate transfor-
mation and time rescaling: u = 2bx − a(1 − q)y, v = y,
dτ = b(1−r+2C)

2 b dt (Assigning τ to t). These operations
convert system (8) to the polynomial form:

u̇ = P 2
′
(u, v),

v̇ = v +Q2

′
(u, v).

(9)

where

P 2
′
(u, v) = a20u

2 + a11uv + a02v
2 + o(|u, v|2),

Q2

′
(u, v) = b11uv + b02v

2 + b12uv
2 + b03v

3.
(10)

a20 = r−1
2b2(1−r+2C) , a11 = a(2bC−4rC−br+b)

b2(1−r+2C) ,

a02 = a(1−r)(4b(a+b)C+(1−r)(2b(a+b)−ar−a))
2b2(1−r+2C) ,

b11 = 1
b(1−r+2C) , b02 = − (a−b)(1−r)−2bC

b(1−r+2C) ,

b12 = − 1
b(1−r+2C) , b03 = − a(1−r)

b(1−r+2C) .

The trivial solution v = Φ(u) = 0 is obtained from
Q2

′
(u, v) = 0, leading to:

P 2
′
(u, v) = a20u

2 + o(|u, v|2)

Given a second-order lowest term with negative coefficient
r−1

2b2(1−r+2C) , M2(0, 0) is classified as a saddle-node equilib-
rium via Zhang’s bifurcation theory (Theorem 7.1, Ch. 2 in
[31]). We identify M2(0, 0) as a saddle-node equilibrium.
Thus A2(x2, 0) constitutes an repelling saddle-node with
sector distribution: the repelling parabolic sector (via positive
time mapping) fills the left half-plane, and the hyperbolic
sector populates the right half-plane.

If r < 1, C < C1, at equilibrium point A3(x3, 0), the
Jacobian associated with (4) is:

J(x3, 0) =

 r − x3
2(C + 1)

(C + x3)2
ax3

0 b

 ,
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Since

(1− r)2 − (3r − 1)C > 0,

((1− r)2 − (3r − 1)C)2 − (1− r − C)2△1

= 4rC2(C + 1) > 0,

eigenvalues for J(x3, 0) are computed as:

λ1 = r − x3
2(C + 1)

(C + x3)2

=

√
△1((1− r)2 − (3r − 1)C − (1− r + C)

√
△1)

2(C + x3)2
> 0,

λ2 = b > 0,

so the boundary equilibrium A3(x3, 0) is an unstable node.
At equilibrium point A4(x4, 0), the Jacobian associated

with (4) is:

J(x4, 0) =

 r − x4
2(C + 1)

(C + x4)2
ax4

0 b

 ,

Consequently, the Jacobian at (x4, 0) yields two eigenvalues:

λ1 = r − x4
2(C + 1)

(C + x4)2

= −
√
△1((1− r)2 − (3r − 1)C − (1− r + C)

√
△1)

2(C + x4)2
< 0,

λ2 = b > 0,

so the boundary equilibrium A4(x4, 0) is a saddle.

Completing our stability investigation, we characterize
local dynamics near interior equilibria E1(x

∗
1, 1), E3(x

∗
3, 1),

E4(x
∗
4, 1).

Theorem 3.2.2.
(1) When r ≤ a, the unique positive equilibrium point

E1(x
∗
1, 1) is locally asymptotically stable,

(2) When a < r < a + 1, C = C∗, the unique positive
equilibrium point E3(x

∗
3, 1) is a saddle node; When a < r <

a+1, C < C∗, the positive equilibrium point E1(x
∗
1, 1) is a

saddle, while E4(x
∗
4, 1) is locally asymptotically stable.

Proof:

(1) When r ≤ a, at equilibrium point E1(x
∗
1, 1), the

Jacobian associated with (4) is:

J(x∗
1, 1) =

 r − a− x∗
1
2(C + 1)

(C + x∗
1)

2
ax∗

1

0 −b

 ,

when r ≤ a, eigenvalues for J(x∗
1, 1) are computed as:λ1 =

r − a− x∗
1
2(C+1)

(C+x∗
1)

2 < 0, λ2 = −b < 0, so the unique positive
equilibrium point E1(x

∗
1, 1) is locally asymptotically stable.

(2) When a < r < a + 1, C = C∗, at equilibrium point
E3(x

∗
3, 1), the Jacobian associated with (4) is:

J(x∗
3, 1) =

 0 ax∗
3

0 −b

 ,

Given the topological equivalence between system (8) and
(4), we execute successive transformations:X̄ = x− 1−r+a

2 ,
Ȳ = y− 1 (Assigning X̄ to x, Ȳ to y), translating the point
E3(x

∗
3, 1) to M∗

3 (0, 0), then we do the coordinate transfor-
mation and time rescaling: u = 2bx + a(1 − r)y, v = y,
dτ = − b(1−r+a+2C)

2 dt (Assigning τ to t). Following these
procedures, system (8) adopts the polynomial expression:

u̇ = P 2
∗
(u, v),

v̇ = y +Q2

∗
(u, v).

(11)

where

P 2
∗
(u, v) = c20u

2 + c11uv + c02v
2 + o(|u, v|2),

Q2

∗
(u, v) = d11uv + d02v

2 + d12uv
2 + d03v

3.
(12)

c11 = a(b(r−1−a−2C)−(1−r+a)2)
b2(1−r+a+2C) , c20 = 1−r+a

2b2(1−r+a+2C) ,

c02 = a(1−r+a)(4b(a+b)C+(1−r+a)(a+b)2+a−ar)
2b2(1−r+a+2C)

d11 = 1
b(1−r+a+2C) , d02 = 2bC−(a−b)(1−r+a)

b(1−r+a+2C) ,

d03 = − a(1−r+a)
b(1−r+a+2C) , d12 = 1

b(1−r+a+2C)

The trivial solution v = Φ(u) = 0 is obtained from
Q2

∗
(u, v) = 0, leading to:

P 2
∗
(u, v) = c20u

2 ++o(|u, v|2).

Given a second-order lowest term with positive coefficient
1−r+a

2b2(1−r+a+2C) , B∗
3(0, 0) is classified as a saddle-node equi-

librium via via Zhang’s bifurcation theory (Theorem 7.1,
Ch. 2 in [31]). We identify B∗

3(0, 0) as a saddle-node
equilibrium. Thus E3(x

∗
3, 1) constitutes an attracting saddle-

node with sector distribution: the attracting parabolic sector
(via positive time mapping) fills the right half-plane, and the
hyperbolic sector populates the left half-plane.

If a < r < a+1, C < C∗, at equilibrium point E4(x
∗
4, 1),

the Jacobian associated with (4) is:

J(x∗
4, 1) =

 r − a− x∗
4
2(C + 1)

(C + x∗
4)

2
ax∗

4

0 −b

 ,

Since

(1− r + a)2 − (3a− 3r + 1)C > 0,

((1− r + a)2 + (3a− 3r + 1)C)2 − (1− r + a+ C)2△2

= 4(r − a)C2(C + 1) > 0,

consequently, the Jacobian at (x∗
4, 1) yields eigenvalues:

λ1 = r − a− x∗
4
2(C+1)

(C+x∗
4)

2

=

√
△2((1−r+a)2+(3(a−r)+1)C−(1−r+a+C)

√
△2)

2(C+x∗
4)

2

> 0,

λ2 = −b < 0,
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therefore the positive equilibrium E4(x
∗
4, 1) is a saddle.

At equilibrium point E1(x
∗
1, 1), the Jacobian associated

with (4) is:

J(x∗
1, 1) =

 r − a− x∗
1
2(C + 1)

(C + x∗
1)

2
ax∗

1

0 −b

 ,

consequently, the Jacobian at (x∗
1, 1) yields eigenvalues:

λ1 = r − a− x∗
1
2(C+1)

(C+x∗
1)

2

= −
√

△2((1−r+a)2+(3(a−r)+1)C−(1−r+a+C)
√

△2)

2(C+x∗
4)

2

< 0,

λ2 = −b < 0,

so the positive equilibrium E1(x
∗
1, 1) is locally asymptoti-

cally stable.

C. Global stability analysis of equilibria

This section delineates a systematic investigation of global
asymptotic stability for equilibrium states.

Theorem 3.3.1
(1) The single interior equilibrium E1(x

∗
1, 1) of system

(4) is globally asymptotically stable provided that

r ≤ a, b ≥ 1

2
. (13)

(2) The boundary equilibrium A1(0, 1) is globally asymp-
totically stable provided that

r ≥ a+ 1, b ≥ 1

2
, or

a < r < a+ 1, C > C∗, b ≥ 1

2
.

(14)

Proof: Under condition (14), local stability of A1(0, 1)
follows from Theorem 3.2.1. When (13) is satisfied, Theorem
3.2.2 guarantees existence and local stability of E1(x

∗
1, 1).

Application of Dulac function u(x, y) = 1
x2y yields:

D(x, y) =
∂(u(x, y)p̄(x, y))

∂x
+

∂(u(x, y)q̄(x, y))

∂y

= −x3 + (2C + b)x2 + C(2b− 1)x+ bC2

xy2(B + x)2

< 0 (b ≥ 1

2
)

(15)
The Dulac-Bendixson theorem [32] excludes closed orbits in
the positive quadrant. Given Theorem 3.1.1’s boundedness
guarantee, we deduce:(1) E1(x

∗
1, 1) is globally asymptoti-

cally stable if (13) is satisfied; (2) A1(0, 1) achieves global
asymptotic stability when (14) holds.

IV. SADDLE-NODE BIFURCATION

This section analyzes bifurcation behavior at equilibria of
system (4).

Theorem 4.1.1

(1) A saddle-node bifurcation is observed near boundary
equilibrium A2(x2, 0) of system (4) at critical parameter
CSN = C1, with B functioning as the control parameter.

(2) A saddle-node bifurcation is observed near interior
equilibrium E3(x

∗
3, 1) of system (4) at critical parameter

C = CSN∗ = C∗, with B functioning as the control
parameter.

Proof:

(1) When R < 1, C = C1, at equilibrium point A2(x2, 0),
the Jacobian associated with (4) is:

J(A2, BSN ) =

 0 ax2

0 b

 ,

The Jacobian matrices J(A2, BSN ) and J(A2, BSN )T each
exhibit a single zero eigenvalue per linear algebraic analysis.
Let V and W denote the corresponding eigenvectors for
J(A2, BSN ) and J(A2, BSN )T respectively, direct compu-
tation yields

V =

(
V1

V2

)
=

(
1
0

)
and

W =

(
W1

W2

)
=

(
1

a(r−1)
2b

)
.

Furthermore, we have

FC(A2, CSN ) =

 x2
2(x2 − 1)

(x2 + C1)2

0

 ,

and

D2FC(A2, CSN )(V, V )

=


∂2F1

∂x2 V 2
1 + 2 ∂2F1

∂x∂uV1V2 +
∂2F1

∂u2 V 2
2

∂2F2

∂x2 V 2
1 + 2 ∂2F2

∂x∂uV1V2 +
∂2F2

∂u2 V 2
2


(A2,CSN )

=

 −2C1(C1 + 1)x2

(x2 + C1)3

0

 .

Obviously, we can get that

WTD2FC(A2, CSN )(V, V ) = −2C1(C1 + 1)x2

(x2 + C1)3
̸= 0,

WTFC(A2, CSN )(V, V ) =
x2

2(x2 − 1)

(x2 + C1)2
̸= 0

Near the boundary equilibrium A2(x2, 0), system (4) ex-
periences a saddle-node bifurcation, as confirmed by So-
tomayor’s theorem [33].

(2) When a < r < a + 1, C = C∗, at equilibrium point
E3(x

∗
3, 1), the Jacobian associated with (4) is:

J(E3, C
∗
SN ) =

 0 ax∗
3

0 −b

 ,

It follows from linear algebra that a zero eigenvalue exists
in both J(E3, C

∗
SN ) and J(E3, C

∗
SN )T . When V and W are
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defined as the corresponding eigenvectors for each matrix,
computational results demonstrate

V =

(
V1

V2

)
=

(
1
0

)
and

W =

(
W1

W2

)
=

(
1

a(1−r+a)
2b

)
.

Furthermore, we have

FC(E3, C
∗
SN ) =

 x∗
3
2(x∗

3 − 1)

(x∗
3 + C∗)2

0

 .

and

D2FC(E3, C
∗
SN )(V, V )

=


∂2F1

∂x2 V 2
1 + 2 ∂2F1

∂x∂uV1V2 +
∂2F1

∂u2 V 2
2

∂2F2

∂x2 V 2
1 + 2 ∂2F2

∂x∂uV1V2 +
∂2F2

∂u2 V 2
2


(E3,CSN )

=

 −2C∗(C∗ + 1)x∗
3

(x∗
3 + C∗)3

0

 .

Obviously, we can get that

WTD2FC(A
∗
3, C

∗
SN )(V, V ) = −2C∗(C∗ + 1)x∗

3

(x∗
3 + C∗)3

̸= 0,

WTFC(A
∗
3, C

∗
SN )(V, V ) =

x∗
3
2(x∗

3 − 1)

(x∗
3 + C∗)2

̸= 0

Near the boundary equilibrium E3(x
∗
3, 1), system (4) ex-

periences a saddle-node bifurcation, as confirmed by So-
tomayor’s theorem [33].

V. NUMERICAL SIMULATIONS

We verify analytical results through numerical experiments
below.

We begin by analyzing the system (16) (a particular instance
of system (4) characterized by a = 1, b = 1 > 1

2 , r = 3 ≥
a+ 1 and C = 0.125 separately.

Example 5.1

ẋ =
x2(1− x)

x+ 0.125
+ xy − 3x,

ẏ = 2y(1− y).

(16)

As shown in Figure 1 that trivial equilibrium A0(0, 0) of
system (16) is a saddle, and boundary equilibrium A1(0, 0.5)
is globally asymptotically stable, which drives the prey
population to extinction.

Secondly we analyze the system (17) (a particular instance
of system (4)) characterized by a = 1, b = 1 > 1

2 , a < r =
1.5 < a+ 1 separately.

Example 5.1.2

ẋ =
x2(1− x)

x+ C
+ xy − 1.5x,

ẏ = y(1− y).

(17)

Fig. 1: Case 1 of r ≥ a+ 1.

A0(0, 0) of system (17) is a saddle, and A1(0, 0.5) is a stable
node (see Figure 2). (a) if C = 0.1 < 0.125 = C∗, as
shown in Figure 2a, the interior equilibrium E4(0.138, 1) is
a saddle, E1(0.36, 1) is a stable node. (b) if C = 0.125 =
C∗, as shown in Figure 2b, E3(0.25, 1) is a saddle. (c) if
C = 0.5 > C∗, there is no interior equilibrium, whose phase
diagram is similar to Figure 1. System bifurcates saddle-node
at E3 when C = C∗ = 0.125.

Thirdly we analyze the system (18) (a particular instance
of system (4)) characterized by a = 0.2, b = 1 > 1

2 , a < r =
0.5 < 1 < a+ 1 separately.

Example 5.1.3

ẋ =
x2(1− x)

x+ C
+ 0.2xy − 0.5x,

ẏ = y(1− y).

(18)

For system (18), A0(0, 0) is a saddle, and A1(0, 0.5) is
a stable node (see Figure 3). (a) if C = 0.05 < C1 <
C∗, as shown in Figure 3a, A3(0.056, 0) is an unstable
node, A4(0.44, 0) is a saddle. The interior equilibrium
E4(0.022, 1) is a saddle, E1(0.678, 1) is a stable node. (b)
if C = 0.125 = C1 < C∗, as shown in Figure 3b, the
equilibrium A2(0.25, 0) is characterized as a saddle-node:
repelling parabolic dynamics dominate the left half-plane,
while hyperbolic repulsion governs the right half-plane. The
interior equilibrium E4(0.058, 1) is a saddle, E1(0.64, 1) is
a stable node. (c) if C1 < C = 0.2 < C∗, as shown in
Figure 3c, the interior equilibrium E4(0.1, 1) is a saddle,
E1(0.6, 1) is a stable node. (d) if C = 0.5 > C∗, there
is no interior equilibrium, the phase diagram is similar to
Figure 1. System experiences saddle-node bifurcation at A2

for the bifurcation parameter value C = 0.125 = C1.

Fourthly we analyze the system (19) (a particular instance
of system (4)) characterized by a = 1, b = 1 > 1

2 , r = a =
1, C = 0.125 separately.

Example 5.1.4

ẋ =
x2(1− x)

x+ 0.125
+ xy − x,

ẏ = y(1− y).

(19)

A0(0, 0) of system (19) is a saddle, whlie boundary equilib-
rium A1(0, 0.5) is a saddle-node (whose hyperbolic sector
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(a) C = 0.1 < 0.125 = C∗.

(b) C = 0.125 = C∗.

Fig. 2: Case 2 of a < r < a+ 1, r > 1.

located in the right half plane), the unique interior equilib-
rium E1(1, 1) is globally asymptotically stable. The phase
diagram is similar to Figure 4a).

Finally we analyze the system (19) (a particular instance
of system (4)) characterized by a = 1, b = 1 > 1

2 , r = 0.5 <
a, r < 1 separately.

Example 5.1.5

ẋ =
x2(1− x)

x+ C
+ xy − 0.5x,

ẏ = y(1− y).

(20)

Trivial equilibrium A0(0, 0) of system (18) is a saddle, and
boundary equilibrium A1(0, 0.5) is a saddle (see Figure 4).
(a) if C = 1.5 > C1, as shown in Figure 4a, the single
interior equilibrium E1(1.896, 1) is globally asymptotically
stable. (b) if C = 0.125 = C1, as shown in Figure 4b,
A2(0.25, 0) is a saddle-node (with its repelling parabolic
(hyperbolic) sector governs the left(right) half plane). The
unique interior equilibrium E1(1.54, 1) is globally asymp-
totically stable. (c) if C = 0.1 < C1, as shown in Figure 4c,
A3(0.138, 0) is an unstable node, A4(0.36, 0) is a saddle. The
unique interior equilibrium E1(1.54, 1) is globally asymptot-
ically stable. The critical parameter value C = 0.125 = C1

triggers saddle-node bifurcation at A2.

(a) C = 0.05 < C1 < C∗.

(b) C = 0.125 = C1 < C∗.

(c) C1 < C = 0.2 < C∗.

Fig. 3: Case 2 of a < r < 1 < a+ 1.

VI. CONCLUSION

The introduction of the Allee effect and non-selective
harvesting into a commensalism model in prey significantly
complicates its dynamical behavior. System (4) demonstrates
notable variations in the numerical configuration of equilibria
(boundary/internal) induced by key parameter modulation..
Specifically, the system can undergos two saddle-node bi-
furcations depending on parameter values. A key finding
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(a) C = 1.5 > C1.

(b) C = 0.125 = C1.

(c) C = 0.1 < C1.

Fig. 4: Case 4 of r ≥ a, r < 1.

is that the prey abundance at the globally asymptotically
stable interior equilibrium is directly influenced by the Allee
parameter. Mathematical analysis reveals that the derivative
dx∗

1(C)

dC
= a−r√

△2

> 0 (r < a) indicates a positive correlation

between Allee intensity and equilibrium prey density. This
implies that, under controlled harvesting (r < a), an increase
in the Allee effect paradoxically leads to higher prey popu-
lation levels—a counterintuitive result that contrasts sharply

with most ecological models incorporating Allee effects.
However, excessive harvesting (r ≥ a + 1) drives the prey
population toward extinction, destabilizing the entire system.
This highlights a critical trade-off: while moderate harvesting
and Allee effects can sustain or even enhance prey density,
overexploitation inevitably leads to collapse. To ensure long-
term species coexistence, adaptive management strategies
must be implemented. Specifically, establishing harvest-free
protected zones can mitigate overexploitation risks, allowing
both prey and predator populations to stabilize and thrive
under sustainable conditions.

This study underscores the delicate balance between ex-
ploitation and conservation in ecological systems subject
to Allee effects. The unusual positive relationship between
Allee intensity and prey abundance challenges conventional
ecological theory and suggests that species responses to Allee
thresholds may be more complex than previously assumed.

Remark

This research provides foundational insights into the ex-
istence and stability properties of equilibria within a Lotka-
Volterra commensalism framework adding both weak Allee
effect and linear harvesting in the prey population. In the
future, translating these theoretical findings into practical
applications represents the critical next step. Key priori-
ties include: (1) Experimentally validating predicted critical
resilience points in regulated ecosystems (e.g., mesocosm
studies or fisheries with documented harvest histories); (2)
Comparative efficacy assessment of extant harvest protocols
via historical resource depletion archives.
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