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Abstract—To improve the railway dispatching safety
capabilities and enable early warning of sudden risk events, this
paper proposes a linear non-Gaussian acyclic model with
heterogeneous graph neural networks (LINGAM-HetGNN).
The proposed method addresses the issues of the complex
interactions of multi-source heterogeneous data and the lack of
causal interpretability in railway transport. Firstly, the model
extracts asymmetric causal relationships from railway incident
data among entities based on LINGAM. A causal weight matrix
is constructed to quantify causal relationships, and we develop
the causal graph to show the propagation pathways of risk
events. Secondly, we construct the Causal GAN to effectively
tackle the problem of data scarcity associated with long-tail risk
events. Then, we design an interpretable HetGNN and utilize
GCN to capture spatial dependencies of stations, while GAT to
model the interactions of trains and signals. The causal weight
matrix is embedded into the convolutional layers of GCN and
the attention mechanism of GAT, enabling causality-driven
graph learning. Finally, a hierarchical risk classifier is
developed to assess the risk level of each node in the network.
Experimental validation using the U.S. Federal Railroad
Administration accident dataset demonstrates the effectiveness
of the method. The model achieves the precision, recall, and
F1-score of 98.1%, 98.7%, and 98.5%, respectively. Ablation
studies further confirm the essential role of the causal discovery
in the model. This method uncovers causal relationships among
various risk events, supports early warning and causal
traceability in railway dispatching progress, and provides
practical value for intelligent railway transport development.

Index Terms—Railway dispatching safety; Causal discovery;
LINGAM; HetGNN; Risk warning
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|. INTRODUCTION

S the backbone of modern integrated transport systems,

railway transport plays a critical role in maintaining
network stability and ensuring the safety of both passenger
and freight operations[1]. In recent years, the rapid
expansion of high-speed rail network and the large-scale
deployment of trains have significantly increased the
complexity of railway dispatching system. The system is now
characterized by tightly coupled entities, multi-dimensional
heterogeneity, and intricate risk propagation pathways. This
complexity is further exacerbated by the rising demand for
coordinated control across multiple stations and lines,
placing increasing pressure on dispatching operations [2,3].
However, current risk management methods primarily rely
on rule-based systems and expert expertise, which struggle to
provide the real-time responsiveness and interpretability
required for effective risk warning [4]. Specifically, within
high-density railway operations, traditional methods fail to
accurately identify potential risks and provide timely early
warnings, resulting in dispatching decisions may exceed
allowable safety response times [5].

Railway dispatching faces multiple challenges, including
mixed operation of various train types, network collaborative
control, and environmental influence [6]. During operations,
many potential risks remain latent and difficult to detect. In
scenarios involving frequent interactions among railway
entities, incidents such as dispatching conflicts, track
occupancy violations, and signal control failures become
particularly prominent. These risks are especially severe at
convergence points and on shared track segments, where
multiple trains operate simultaneously. In such situations,
dispatching delays or signal anomalies could rapidly escalate
into serious incidents. Risk events tend to propagate through
causal pathways, potentially resulting in equipment damage,
service interruptions, and cascading system failures, posing a
significant challenge to the safety and reliability of railway
transport [7]. Consequently, accurately identifying critical
risk points, assessing the severity, and issuing timely risk
warning have become priorities in railway dispatching safety
research. Sari et al. [8] employed the FAHP to identify risk
factors in urban rail and formulated resource allocation plans.
Yan et al. [9] developed a risk identification matrix based on
WBS-RBS to assess the risks in urban rail construction.
Recently, Lin et al. [10] investigated the safety issues on
shared passenger and freight corridors, and proposed a
semi-quantitative risk analysis framework to evaluate the
probability and impact of incidents on adjacent tracks.
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In recent years, data-driven methods have been
increasingly applied in the railway transport [11]. In
particular, machine learning (ML) has demonstrated superior
performance in tasks such as risk identification and fault
diagnosis [12,13]. For instance, Su et al. [14] employed a
multi-layer perceptron with supervised learning to extract
associations between vehicle failure instances and optimal
solutions for different failure scenarios. Similarly, Liu et al.
[15] focused on detection and warning of abnormal passenger
flow in urban rail transit by utilizing a depth-first search
algorithm to identify and respond to emergencies.

GNN has shown strong capabilities in processing complex
graph-structured data. Xue et al. [16] proposed a deep
learning framework to predict risk pathways and utilized
graph features to address safety issue related to operational
interruptions caused by fault events. Bi et al. [17] studied the
flood resilience of urban rail transit by incorporating physical
network characteristics, flood scenarios, and recovery
resources into a complex network model, and analyzed
operational performance under different disaster risk
conditions. More recently, HetGNN has been introduced to
better adapt to the actual scenario involving multiple types of
nodes and edges. Jiao et al. [18] developed a disaster chain
network for urban rail transit based on network vulnerability
characteristics of the nodes and edges, and proposed targeted
chain-breaking strategies for disaster mitigation.

However, traditional ML methods primarily relies on
statistical correlations, limiting the ability to uncover causal
relationships among variables. This lack of causal insight
reduces the model interpretability and effectiveness of
decision-making. In contrast, causal analysis facilitates the
identification of causal dependencies within data, enabling
the discovery of root causes of risk events and improving
model transparency. Kim et al. [19] proposed a system for
analyzing human errors in railway operations by utilizing
predefined links between contextual information and causal
factors to identify multi-level error sources and their causal
relationships. Hadj-Mabrouk et al. [20] proposed a feedback-
driven approach to extract and analyze incident data, aiming
to identify safety incidents and their underlying causes.

Causal analysis is particularly effective for handling
complex variables, as it can identify causal relationships that
are difficult to discover through statistical methods alone. In
addition to identifying these dependencies, causal discovery
reveals the underlying mechanism of risk propagation and
provides an interpretable model. This approach facilitates
root cause tracing and the mapping of risk propagation
pathways, thereby enhancing early risk warning. Shi et al. [21]
investigated risk propagation pathways, trigger probability
and risk level of urban rail transit, proposed a risk chains
mining method to identify the association between risk
sources and chains based on path search theory. Belhour et al.
[22] conducted a post-fault analysis in railway maintenance
to uncover incident causes. Wu et al. [23] analyzed causal
pathways originating from root driving factors and proposed
strategies to manage the interactions among various risk
factors in urban rail transit.

Causal model with structural interpretability could
effectively uncover the underlying mechanism of risk events
and their systemic impact, supporting accurate risk warning
and root cause analysis. Specifically, by constructing a causal

graph, quantifying the influence of risk events on railway
dispatching system. Cao et al. [24] proposed a YOLOv8n-
LittCBAM model that integrated a lightweight
DepthStackNet backbone with pruning techniques and
BiCBAM to accelerate reasoning for defect detection. Wang
et al. [25] proposed a method to identify urban rail transit
incident factors and improve safety management capabilities
by constructing an incident semantic network of the risk
control chain to evaluate the impact degree of critical items.

Existing research on railway risks has made progress,
however, challenges still remain in handling multi-source
heterogeneous data and the causal propagation of risks. To
address research gap, this paper proposes a method that
integrates causal discovery with HetGNN, which provides a
deep representation of risk propagation in dispatching system
and addresses the interpretability limitations of traditional
ML. The main contributions can be summarized as follows:

(1) Proposing a causal model based on LINGAM for
railway dispatching risk events. By constructing the causal
weight matrix, the model uncovers the asymmetric causal
dependencies among entities, enabling accurate detection
risk events and the propagation pathways, and provides a
causal foundation for risk tracing and early warning.

(2) Designing the HetGNN tailored to represent
dispatching entities as heterogeneous nodes. By integrating
topological structures and feature information, the network
employs GCN and GAT to model the interactions among
different entities types, thereby capturing the characteristics
and structural of risk propagation pathways.

(3) The causal weight matrix is embedded into HetGNN to
guide the convolution operations of GCN and the attention
mechanism of GAT. This integration allows the model to
prioritize node relationships with causal relationships during
training, thereby enhancing the ability to identify critical risk
events and improving the interpretability of the model.

Il. PROBLEM ANALYSIS

As the core of railway transport, dispatching depends on
the coordinated operation of multiple critical entities (e.g.,
stations, trains, and signals), as well as their interactions (e.g.,
dispatch commands, track occupancy, and signal
transmission). This process involves a variety of entity types,
intricate interaction structures, and heterogeneous data
attributes, all of which contribute to the risk coupling and
causal propagation of incidents. Specifically, risks often
originate from localized incidents, gradually accumulate, and
propagate through risk propagation pathways. These risks
may ultimately evolve into systemic incidents through causal
pathways. Therefore, effective early warning of risks could
accurately identify potential risks amid high traffic density
and operational complexity, providing timely warning by
guantifying causal influence.

To model the complex interactions among multiple entities
in railway dispatching, this study represents the railway
transport network as a heterogeneous graph G =(V,E, A),

where V ={v,,v,,v,} denotes the set of nodes. Station

trUx
nodes v, are classified into passenger and freight stations.
Passenger stations manage the arrival, departure, and

boarding of passenger trains, with attributes such as yard
capacity and train frequency. Freight stations handle the
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loading and unloading of freight trains, with attributes such
as loading capacity and operational duration. Train nodesy,
represent individual train entities, the attributes include train
speed, train type, etc. Signal nodesv, control train movement
permissions, the attributes include signal status and control
range, etc. Incorrect commands issued by signals can resultin
dispatching conflicts, or even collisions.

In railway transport network, trains operate between
stations and signals, and frequently interacting with both.
E={e_..e..&._]}denotes the set of edges. Specifically,

S-S Ys—t1°""
physical connection edgese,  represent railway tracks that
connect stations, forming the fundamental topological
structure of the network. Dispatch coordination edges e,
represent interactions between stations and trains, including
train arrivals, departures, and dwelling time, driven by
dispatching demands. Resource contention edgese, , denote
conflicts between trains competing for shared track segments
or signal-controlled blocks, implicitly dispatch priority
competition. Control dependency edges e,_, define the
regulatory relationship between trains and signals, whether a
train is accessed to a track segment depends on the status of
the preceding signal. Signal relay edgese, represent the
information transmission between signals to maintain
consistency and continuity in dispatch commands. Dispatch
interaction edges e,_, denote the coordination between
stations and signals to manage train entry and departure
sequences, aligning dispatch instructions with station
resource availability. The connectivity among entities is
represented by an adjacency matrix A .

- {a"' - )

a; =0
X{ (i=12,...,m)denote the feature vector of nodeV , and
X{ (i=m+1,m+2,...,n)denote the feature vector of edge E .

We define a risk level function R=f(V,E,A X/, X},

which integrates structural properties and attribute features of
the nodes and edges, as illustrated in Table 1. This level
reflects the degree of risk associated with nodes and edges
within the dispatching process.

Table I
RISK LEVEL CLASSIFICATION
Risk Level Ilustrate
High Risks with significantly impact on dispatching operations and

are deemed operationally unacceptable. Immediate mitigation
measures are required.
Medium  Risks with moderate impact on dispatching operations. These
require further assessment based on operational cost and
potential hazards to determine whether they are acceptable.
Low Risks with minimal impact on dispatching operations. No
additional intervention is necessary.

To illustrate the application of heterogeneous graph in
railway transport network, Figure 1 shows the interaction
relationships among entities in a dispatching scenario. Red
circular nodes (PS1-PS8) represent passenger stations, while
orange circular nodes (FS1-FS5) denote freight stations. Blue
circular nodes (RS1-RS13) correspond to signals. Yellow
train icons (Train 1 and Train 2) represent freight trains, and
green train icons (Train 3 and Train 4) represent passenger
trains. Edges are colored differently to distinguish different
types of interactions. Black edges represent physical railway
tracks connecting adjacent stations (e.g., PS1-PS2, PS6-PS8),
forming the core topological structure. Brown edges
represent signal transmission between stations and signals
(e.g., PS2-RS1). Gray edges represent control dependencies
between trains and signals (e.g., Train 1-RS9). Dark blue
edges represent dispatching relationships between trains and
stations (e.g., Train 2-RS8).

During operation at a time step[T1 Tz], dynamic changes

in train states and scheduling conditions may expose the
system to the following three major categories of risk: (1)
Route conflict: A potential route conflict may occur at the
convergence node PS2 between Train 2 and Train 3. If
scheduling priorities are misassigned or signal responses are
delayed, the system faces a heightened risk of train conflicts,
including rear-end collisions. (2) Station overcapacity: Each
station has a limited yard capacity. If Train 2 and Train 4
arrive simultaneously at the same station (e.g., PS1) without
timely adjustments, track occupancy conflicts may arise,
leading to train delays and scheduling bottlenecks. (3) Signal
control failure: Malfunctions in signals (e.g., RS6 or RS7)
may cause Train 4 entering unauthorized or restricted
sections. Such failures increase the risk of derailments or
other critical incidents.

FS1 ! FS1 |
| Passenger Station \ I I \ I
| Freight Station RS 1 | | RS 1 |
| Signal | | @\\w |
I Passenger Train AT <
| Freight Train sz N | | T2 # Fs2 :
| PS 10~ RS2 | | ., PS1 AR 2 I
.8
| / \RS 3 | | & / \RS 3 I
\ Train 2 Train 4 RS 4 Train 1
l e RS7 \ /PS 7 l l RS 7 RS4/PS 7 l
| = [T 2 | / / |
3
— Y 2
| / fl FS3RS8  [psy 2 o8 \ %o | S3RS8 ps —7ss P 6\ |
| “Rs 9 / rRs N\ ~Rs 9 / RS B\
FS4 Rrs1o RS 11 | | Fs4 o sy |
| PS8 RS 10// <F
l / | | / PS8 |
| PS3 RSlZ//l PS4 | | PS3 Rs 12 #4)PS4 |
| = I | -~ I
| FS5 I RS 13 | | FS5 I RS 13 |
l PS5 l l PS5 l
- - = 4 - L - J

Fig.1. Train operation process of railway network
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I1l. METHODS

A. Model Architecture

To enable effective risk warning in railway diapatching,
this paper proposes a three-layer HetGNN model based on
causal discovery, as illustrated in Figure 2. The model
comprises three components: the causal discovery layer, the
HetGNN layer, and the risk warning layer.

In causal discovery layer, the model extracts risk-related
variables from incident data and applies LINGAM algorithm
to identify causal relationships among entities. These
relationships are used to construct a directed acyclic graph
(DAG), along with the causal weight matrix that quantifies
causal influence. In HetGNN layer, the railway transport
network is represented as a heterogeneous graph consisting
of diverse node and edge types. This layer integrates GCN
and GAT to model structural interactions among entities,
incorporating topological structure and attribute features. In
risk warning layer, the model utilizes the causal information
to evaluate the risk level of each entity, thereby enabling
timely detection and early warning for potential risk events
throughout the dispatching process.

Causal Discovery Layer

Risk Date

TIME

et Railway Accident

— Datebase TS SPEED

Risk Causal Graph

— |
7 i
\ LiINGAM

-—

Output

B. Risk Indicators

The data used in this study for railway dispatching are
collected from multiple sources, as summarized in Table II.
To systematically characterize risk events in the dispatching
process, a comprehensive risk indicator system is developed
based on publicly available accident statistics reported by the
U.S. Federal Railroad Administration (FRA) [26], as shown
in Table III. This indicator system categorizes risks into six
primary domains, including train-related risks, station-related
risks, and signal-related risks, etc. Each category is further
decomposed into a set of quantifiable secondary risk
indicators, providing a structured and detailed framework for
analyzing and assessing risk factors in railway dispatching.

Table I1
RAILWAY DISPATCHING DATA SOURCES

Data categories

Data source

Dispatching log  Train arrival and departure time, station throughput,
signal status transition, etc.
Train speed, acceleration, trajectories, headway
intervals, etc.

Signal status, track occupancy status,
communication system failure, etc.
Weather conditions, construction activity,
unexpected events, etc.

Train operation
Equipment monitoring

External environment

| —

Weight distribution

HetGNN Layer
©® Passenger Station

Freight Station
Signal A
Passenger Train /)
Freight Train 7
— Station-Train
Signal-Train
Train-Train
— Station-Station
—— Station-Signal

4

§ Node(V):

§ Edge(E):

Step(b):Update Node Representation

Fig.2. Architecture of the LINGAM-HetGNN
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Table III
Risk Indicator System for Railway Dispatching

Risk category

Key risk events

Train risks A

Train derailment A
Train collision A,
Departure delay A,
Arrival delay A,
Abnormal wheel-rail contact A,
Brake system malfunction A
Overspeed operation A,

Station risks B

Station equipment failure B;
Passenger fall from platform B,
Improper handling of hazardous materials B,
Delay in passenger boarding/alighting B,
Delay in freight loading/unloading B
Obstruction in station passageway B

Inadequate worksite protection B,

Signal equipment risks C

Signal response delay C,
Signal loss C,
Absence of signal display C,
Signal display error C,
Signal power outage C
Signal interference C

Signal obstruction C,

Train-signal interaction risks D

Delay in signal confirmation feedback D,
Signal interference at track junction D,
Signal priority conflict D,

Failed to stop at signal D,
Inability to confirm train position D,
Train communication interruption D

Delay in signal switching D,

Train-station interaction risks E

Track occupancy conflicts at station E;
Excessive train-platform gap E,
Multi-train convergence congestion E,
Improper speed adjustment on arrival E,
Train stopping position deviation E;
Incorrect track assignment E

Insufficient clearance near trackside equipment E,

Systemic risks F

Power supply instability F,

Command issuance error F,

Extreme weather impact F,
System communication failure F,

Network transmission delay F,

C. LINGAM

Railway dispatching risks are characterized by structural
complexity and dynamic temporal evolution. These risks
typically arise from the interaction of multiple factors, with
propagation mechanism exhibit strong causal dependencies.
Consequently, a localized risk event may escalate through
causal pathways among entities, leading to cascading failures
and systemic disruptions. Therefore, accurately identifying
these causal relationships is essential for improving risk
warning capabilities and optimizing dispatching strategies.

To address the challenge of uncovering risk propagation in
railway dispatching system, this study employs LINGAM to
uncover the causal relationships, it offers several notable
advantages: (1) It does not rely on external interventions,
enabling causal directed edges to be inferred directly from
observational data. (2) It is well-suited for high-dimensional
and structurally heterogeneous systems, consistent with the
multi-entity and multi-relation nature of railway dispatching.
(3) By assuming non-Gaussian and independent noise in the
data, LINGAM effectively resolves the issue of causal
direction symmetry and effectively avoid causal inversion.
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The proposed model is constructed based on the following
assumptions:

(1) Risk events in railway dispatching exhibit linear causal
relationships.

(2) The error terms associated with risk variables follow a
non-Gaussian distribution.

Specifically, for an observed dataset X =[X,, X,, ..., X]

containing d risk variables, their causal dependencies can be
modeled using a linear structural equation model defined as:
X =BX+E 2

where B e R is the causal weight matrix, constrained to
be strictly lower triangular (i.e., b, =0for i< j), ensuring

each variable is influenced only by variables with smaller
indices. E represents independent non-Gaussian noise terms.

LiINGAM aims to estimate B from X , thereby uncovering
the directed causal structure among the risk events. This
method employs independent component analysis (ICA) for
causal discovery. The procedure steps are as follows.

To mitigate the influence of system drift and external
disturbances, the raw observations data are mean-centered so
that each variable has zero mean:

X'=X-E(X) ®)
where X'is the centered value of variable X , and E(X)

denotes its sample mean.

Secondly, to determine the directionality of the causal
relationships, ICA is applied to decompose X' into a set of
non-Gaussian independent components E . This process
obtains the transformation matrix C .

X'=(1-B) E=CE (4)
Assuming linear relationships among components and
leveraging their non-Gaussianity, the causal directions can be
identified. The causal weight matrix B is computed by
inverting C .

B=I1-C* (5)

where | is the identity matrix.
To estimate the specific causal effects among variables X, ,

a linear regression model is constructed for each risk variable
to calculate its influence strength by the variable X .
X, =2 b X, +e (6)
j<i
where b; denotes the causal effect coefficient of X;on X;,

and e, is an independent error term.

Given the high dimensionality and complex dependencies
of risk variables in railway dispatching, LASSO
regularization is applied to matrix B to obtain a sparse causal
weight matrix B’ . This approach mitigates overfitting and
enhances the interpretability of the causal structure.

2
szargmgn[i X; =Y b X, +lZ|bij|] (7
i-1 i

= j<i

where 1 is the regularization parameter that controls the
sparsity level of the matrix B’ .

The B’ is a strictly lower triangular matrix, ensuring that
the causal structure conforms to the properties of a DAG.
Risk propagation often involves complex interactions and
cascading effects among multiple risk variables. These causal

relationships not only influence the evolution of individual
events but can also escalate into system-wide incidents,
affecting overall operational stability. To model these
interdependencies, this study constructs a risk causal graph
based on matrix B'. This graph represents the indirect risk
propagation pathways among risk events, enabling the
identification of critical risk nodes that serve as hubs in the
risk propagation process.

Assume an initial risk event X, triggers an intermediate

variable X, , which subsequently leads to a high-risk event

X, . This cascade can be represented as a causal pathway.
Xy —2es X, —25X, (8)
In practice, risk propagation is often driven by multiple
concurrent pathways originating from diverse sources. To
evaluate the influence of each propagation pathway and
quantify its importance within the causal graph, we define the

risk pathway propagation strength R, . This metric

measures the cumulative impact of causal interactions along
a specific pathway and is calculated as the product of causal
weights of edges in the pathway.

IT b 9)

PStrength =
(i,j)ePath
For the given risk propagation pathway X, — X, = X, ,
its P,

wwengn = Dae XD, Which reflects the degree to which risk
is amplified or weakened during its propagation. This
measure reveals the cumulative effect of causal interactions
within the pathway, allowing for the track of risk propagation
mechanism through the complex network.

To explicitly model the cascading effects of interacting
risk events, we construct a DAG based on matrix B . In this

causal graph, nodes {d,,d,,....d,} represent risk variables,
edgesb; represent the causal dependencies, and the non-zero

elements of B’ determine the presence and direction of the
edge in causal graph.
Assume a submatrix of B’ is given by:

0 0 0
B, =/06 0 0
04 08 0

The corresponding risk propagation pathway is:
X, —25 X, —225 X, (10)

According to matrix B’ , the direct causal weight from
X, to X, is 0.4. However, when considering the risk

propagation pathways, with intermediate causal weights of
0.6 and 0.8, the pathway strength is P, =0.6x0.8=0.48.

This result indicates that the cumulative influence of the
indirect causal pathway exceeds the direct effect (0.48>0.4).
Therefore, relying solely on direct causal weight may
underestimate the true potential for risk propagation. To more
accurately characterize the risk propagation mechanism, we

propose a weighted average causal matrix B that
incorporates both direct and indirect causal weight. The
comprehensive causal weight matrix is defined through
a that balance the direct and indirect pathways:

B =ab, +(1-a)PR

Strength

trength

(11)
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D. Causal GAN

Railway dispatching data is often scarce and incomplete,
limiting the effectiveness of data-driven methods for risk
warning. However, GAN fail to account for causal
relationships among variables, resulting in data that lacks
interpretability and undermines the reliability of models.

To address this issue, this study proposes a Causal GAN
guided by the causal graph derived from LINGAM. By
embedding the causal mechanisms of railway risks into prior
constraints of the generator, the model produces high-quality
synthetic data that adheres to underlying causal structure.
Causal GAN not only enhances the accuracy of risk event
modeling, but also uncovers causal chains within multi-
source heterogeneous data, improving the interpretability of
the model and the reliability of dispatching decisions.

The Causal GAN comprises two components: a generator
and a discriminator. The innovation lies in incorporating the
causal graph as a prior constraint on the generator. This
ensures that the generated data conforms to the causal
dependencies inherent in railway dispatching risk scenarios.
The overall architecture is illustrated in Figure 3.

The generator is designed to synthesize high-quality data
that conforms to the underlying causal structure. Unlike
conventional generators that produce data directly from
random noise, the Causal GAN generator leverages the
causal graph to constrain the noise propagation, thereby
ensuring consistency in the causal relationships in the
generated data. The input to the generator consists of noise
variables and a causal controller. Through the edge weights
from the causal graph, the generator enforces structural
constraints on the dependency patterns during data
generation, ensuring that the output data adheres conforms to
the causal pathways defined by the causal graph.

X =BX +G(Z)+E (12)

where, X = X )T denotes the generated variables,

(%%
Z=(z,

)T
vector, and G( ) is a nonlinear transformation function.

Subsequently, a MLP is employed to extract features from
the input, with a causal weighting mechanism used to adjust
the connection weights across layers. This design ensures that
the generator not only synthesizes data resembling actual
observations but also adheres to the risk propagation
mechanisms inherent in the causal structure of the railway
dispatching system. The final output is a set of multi-
dimensional synthetic data samples representing railway
dispatching risk events, which preserve the causal structure
and distributional characteristics of real data.

represents an independent random noise

Generator

Causal
Controller

Synthetic data

To enforce consistency with causal priors, we incorporate
an L1 regularization term into loss function of the generator:

Lcausal = /12” bij (Xgen,i - ( gen)) ”1 (13)
L]

Here, X ,,; denotes thei variable in the generated sample,

f, (-) represents the causal function determining X ; based on

its direct causes, and A is the regularization coefficient.
The overall loss function as follows:

Lo =—Er pi [100(D(X o)) [+ L~ (19)

The primary function of the discriminator is to distinguish
between real and synthetic data, while also verifying the
causal consistency of the generated samples to ensure the
outputs align with the causal structure of railway dispatching
risk. The discriminator receives both real samples X, and

generated samples X and utilizes the CNN to model the

dependencies within the data. In addition, the discriminator
incorporates a causal consistency checking function that
computes the causal weight matrix B for the generated
samples X, . The final output is a probability score

gen ?

D(X)e[0,1], indicating the authenticity and causal validity

of the input data.

Causal consistency f is central to the design of the
discriminator. To ensure the generated data reflects the causal
relationships inherent in actual dispatching risks, we
introduce a causal consistency loss function. This quantifies
the discrepancy between the causal dependency matrix

Causal (Xgen) estimated from the generated samples and the
true causal influence matrix B :
Lconsistency = :uEXgen |:||Cau3a| (xgen ) - B||F :|

where, Causal (X

(15)

gen)denotes the causal matrix estimated
from the generated data, x is a weight coefficient, and
|| represents the Frobenius norm.

The loss function of the discriminator is defined as:
Log = Ex_, [10gD (X, )]+

Ex,.. [100(1= D (X ea)) ]+ Loonsiteney

[logD (X, )] reflects the ability of the

discriminator to distinguish real from generated samples, and
Ey. [Iog (1-D (X ))] reflects the effectiveness in

detecting generated samples.

(16)

where E,

Discriminator

Fig.3. Architecture of Causal GAN
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E. HetGNN

In railway dispatching network, entities engage in frequent
multi-source information exchanges, characterized by
significant structural heterogeneity. Meanwhile, various risk
events exhibit complex causal dependencies. To address the
challenges posed by diverse risk types and heterogeneity
incident data, this study employs HetGNN to model the
dispatching network, as illustrated in Figure 4. Furthermore,
to improve the accuracy of risk propagation pathways
modeling and causal influence analysis, the causal weight

matrix B is integrated into the message-passing process of
HetGNN. By embedding causal learning into the HetGNN
architecture, the proposed model could capture the intricate
associations among risk events within the railway
dispatching and enhance risk detection and early warning
capabilities for potential risk events.

E.1 GCN

In railway network, station nodes possess well-defined
spatial positions and structural attributes, with adjacency
relationships are determined by geographic layout and track
connectivity. To capture spatial dependencies among stations,
the GCN is employed to model the information transmission
between station nodes. Specifically, GCN updates each node
representations through layer-wise aggregation of features
from its neighboring nodes, enabling each node to integrate
information from an increasingly broader range of the
network. For node embedding update at layer k , the features

of each station node v, neighbor setN (i) are normalized and

weighted before aggregation. This process allows the model
to progressively incorporates information from more distant
neighbors and generates updated node representations
through a nonlinear activation function.

To incorporate causal dependencies among risk events, we

embed the causal weight matrix B into the standard
adjacency structure. Since the diagonal elements of B are

GAT

° Self Attention

/.
| N
|
@ oo — | <7
.- Neighboring Attention
[ | e
|

zero (i.e., self-influences are not included), we add the
identity matrix I to retain self-loop information, resulting in

the enhanced adjacency matrix A= B+1 . The augmented
matrix enables GCN to model not only topological
connectivity but also the causal influences among risk
variables during the propagation process, thereby improving
the accuracy and interpretability of risk propagation.

o = o{ > _Awwm}kh] an

jeN G
where, h® denotes the embedding of station node v, at
layerk , o an activation function, N(i) represents the set of
neighbors of nodev, , c; is the normalization coefficient, and

W ® is the learnable weight matrix at layer k .

E.2 GAT

In contrast to station nodes, the interactions between trains
and signals are more dynamic and complex. To effectively
model these heterogeneous interactions, we adopt the GAT,
which allows the model to adaptively learn the relative
importance of neighboring nodes with respect to the target
node, thereby improving the feature aggregation process.

In GAT, information propagation is governed by attention

weights ¢; , which quantify the influence of the neighboring

node v; on the target node v, . To better capture the underlying
causal relationships in risk propagation, we incorporate the
matrix B into the attention mechanism. Specifically, the

enhanced causal matrix A is used to reweight the attention
coefficients, allowing the model to prioritize neighbors based
on the causal influence. The modified attention mechanism is
defined as follows:

exp(LeakyReLU(aT [W R ||W(k)hj§k—l):|+ﬂA)) 18)

o =

> exp(LeakyReLU(aT [WORED W ORkD 4 yA))

keN (i)

Train
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Fig.4. Railway network heterogeneity graph
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where a" denotes the learnable weight vector, W ® is the
feature transformation matrix, || represents the concatenation
operation, LeakyReLU is the non-linear activation
function, x serves as a causal influence factor.

Finally, the updated representation of nodev, is obtained

by aggregating the transformed features of its neighbors,
weighted by the causally informed attention coefficients.

jeN(i)

(19)

F. Risks Level Assessment

Each node in the network may be associated with multiple
risk events. To estimate the likelihood of these events, we

calculate the occurrence probabilities P(R, |v, ) for a set of
risk events R(x ) ={R,,R,,...,R} associated with node v, .

Specifically, nodes with causal feature h are input into a

multi-layer perceptron (MLP) consisting of two hidden layers.
The first layer projects the input features into 128 dimensions,
while the second layer compresses the representation to 64
dimensions. Both layers utilize the ReLU activation function
to introduce non-linearity.

To obtain the final event probability distribution, the 64
dimensions feature vectors are passed through the Softmax
layer, producing a normalized probability vector over
K predefined risk event categories. To enhance
generalization and reduce overfitting, Dropout regularization
is applied to the hidden layers during training.

h®=ReLU(W,H +b,) (20)
h(® =Dropout ( ReLU (W2 h +b, )) (21)
P (R |V, ) = Softmax (Wshim + b3) (22)

where W, e R®** | W, e R*“ | W, e R** denote the
weight matrices, b, , b,, b, denote the corresponding bias
terms for each layer.

To mitigate the impact of low-probability events on risk
level assessment, we introduce a probability threshold & .

Only risk events with occurrence probabilities exceeding this
threshold are retained for further analysis.

R"(v)={R, eR(%)IP(R Iv)=6} (23)
To comprehensively assess node risk level, we calculate
the composite risk score R, by averaging the top three highest

probabilities among the retained risk events associated with
node v, . This score reflects risk level of the node based on its

most significant potential events.

IV. EXPERIMENTS

A. Datasets

To assess the effectiveness of the proposed
LINGAM-HetGNN model for railway dispatching risk
warning, we conduct experiments using a publicly available
dataset from 2014 to 2024 released by the FRA. This dataset
contains records of operational conditions, safety incidents,
and dispatching anomalies. It integrates heterogeneous data,
including train operation logs, equipment status reports,
weather conditions, and maintenance records.

In this study, we construct a representative railway
transport network consisting of 17 stations, 17 signals, and 6
trains, as illustrated in Figure 5. Table I'V presents a sample of
the raw operational data, including train IDs, station names,
scheduled and actual arrival/departure times, train types, and
corresponding weather conditions. The dataset encompasses
the diverse range of safety-related events such as scheduling
conflicts, operational delays, and equipment failures,
supporting the robustness and generalizability of the
proposed model under complex dispatching scenarios.

Fig.5. Railway line structure

B. Experimental Environment Settings

The experiments are conducted in a Python 3.12
environment using the PyTorch framework on a personal
computer equipped with an NVIDIA RTX 3090 GPU.

The model is trained with the following hyperparameters:
a learning rate of 0.001, a batch size of 64, the #is 0.1, and the
maximum training epochs of 100. To enhance generalization,
the dropout rate is 0.5, utilizing the Adam optimizer, and L2

13 regularization is incorporated to mitigate overfitting. The loss
R==Y>P(RIv) (24) M
ki< function is set to cross-entropy.
Table IV
RAILWAY OPERATION DATA
Train number Station Actual arrival Actual departure Scheduled arrival Scheduled departure Train type Weather
T, S, 08:20 08:23 08:23 08:25 Passenger Rainy
T, S, 09:10 09:12 09:03 09:06 Passenger Sunny
T, S, 10:45 10:22 10:40 11:00 Freight Cloudy
T, S, 11:30 11:35 11:30 11:35 Passenger Cloudy
T, S, 11:30 11:35 11:30 11:35 Passenger Sunny
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To mitigate the risk of overfitting in causal modeling, this
study adopts a sparsity control method to select the optimal
regularization parameter A . This approach determines the
value of A by targeting a desired sparsity level in the causal
weight matrix, thereby promoting a parsimonious and
interpretable causal graph structure. Specifically, during the
LASSO regression for each risk variable, a range of
candidate A values is evaluated. For each candidate, the
proportion of non-zero elements in the causal weight matrix

B is calculated. The optimal A is selected as the smallest
value that ensures the proportion of non-zero elements
in B meets a predefined sparsity threshold.

BO
— <
d(d-1 "

(25)

where ||B||O represents the number of non-zero elements,

and d is the total number of risk variables. The sparsity
threshold p issetto 0.3

C. Results Analysis

Based on LINGAM, we construct a causal weight matrix
for 40 representative risk events. To visualize the strengths of
these causal influences, a lower triangular heatmap is
generated, as shown in Figure 6, highlighting the
irreversibility and hierarchical structure of risk relationships.

To emphasize the significant causal influence, only events
pairs with weights exceeding a predefined threshold are
displayed. For instance, the weight from B, to B;is 0.92,
indicating insufficient construction protection has a
significant causal influence on obstruction in station
passageways, suggesting that B, serves as a source risk node,

and should be prioritized for monitoring and intervention.
Notably, the high-weight edges (b; > 0.8), shown in bright

yellow, are primarily concentrated among train-related risks
(Risk A '), signal-related risks (Risk C ), and train-signal
interaction risks (Risk D ), suggesting these risks form a
tightly coupled risk cluster.
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Additionally, clusters with moderate weights (0.2~0.5),
such asF, —C,and E, — E,, shown in light green, indicate

structural causal dependencies among risk C, F and E .
Blocks with consistently yellowish coloration, such as
A, —A and A — A, , with weights 0.6 to 1.0, reflect the
internal propagation and linkage within risk A, implying that
occurrence of one event is likely to trigger cascading failures
among related risks. Moreover, top-ranked nodes such as
F,, F,, and F, exhibit high out-degrees, indicating them as
critical initiators in the causal propagation pathways, with the
potential to trigger system-wide chain reactions. In contrast,
nodes like B, A,, and A have higher in-degrees, situating

them at the receiving end of risk propagation pathways and
indicating them as vulnerable nodes under systemic stress.
Figure 7 illustrates the risk causal graph in railway
dispatching, where each node represents a distinct risk event,
and directed edges denote causal relationships. The color
intensity of edges reflects the strength of the causal influence,
while node size is proportional to out-degree, indicating
potential of the node to impact other risk events. Meanwhile,
to avoid result deviation caused by excessively long paths,
the maximum propagation pathways for acyclic paths P is set

to 3. At the local structural level, the subgraph formed by
nodes B, through B, exhibits dense connections and darker

edge coloring, indicating strong coupling among station risks.
This high-density cluster reveals a tightly interlinked of
station risks with significant mutual influence.
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Fig.7. Risk events causal graph

From a global topological perspective, centrally located
nodes in the causal network, such asC,, D,, and F,, exhibit

larger sizes, indicating their high out-degrees and substantial
causal influence. These nodes often serve as primary
initiators within the dispatching system. Once disturbed, they
may propagate risks through multiple pathways and various
risk categories, potentially triggering cascading failures.
Therefore, these central nodes should be prioritized for
monitoring and intervention as critical control points.

By leveraging the topological structure of the causal graph,
both backward and forward tracing of risk propagation
pathways becomes possible. This enables the identification
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of root causes and potential impacts of high-risk events,
thereby uncovering the risk propagation pathways within the
system. Furthermore, by calculating and ranking pathway
strength based on causal weights, the cascading influence of
globally influential risk events can be quantified. This
method provides a basis for identifying vulnerable nodes and
critical trigger points, supporting more effective system-level
risk mitigation strategies.

D. Risks Assessment

Based on the risk scores produced by evaluation function,
all nodes are classified into three risk levels: low, medium,
and high, as defined in Table V. The statistical distribution of
risk event probabilities across various entity nodes is
presented in Table VI.

Table V
RISK LEVEL DETERMINATION CRITERIA
Risk Level Illustrate
High R <0.3
Medium 0.3<R <0.6
Low R >0.6

Among the high-risk nodes, multiple events associated

with nodes such as S,,, X,, X, , and T, , exhibit scores

exceeding 0.6. This indicating the significant triggering
potential, suggesting these nodes serve as potential risk
sources. Medium-risk nodes, such as X, , X, ,T,, and T, ,
show dominant event probabilities in the range of 0.5 to 0.6,
implying a moderate risk propagation capability and
suggesting them as secondary transmission hubs. In contrast,
low-risk nodes like X,,, X,;, and T, demonstrate below 0.3,

reflecting limited influence and a relatively low risk profile.
Notably, strong central nodes such as D, , B,, andC,,

which consistent with the propagation pathways in Figure 7.
These nodes not only occupy core positions within the
network topology but also exhibit strong influence in risk
propagation. Therefore, they are regarded as critical risk hubs
in railway dispatching system.

From the perspective of risk event probability distribution,
nodes of risk B ,C, and D occur frequently across multiple
target nodes and are consistently associated with higher
probabilities. For instance, B, , B, , B,, and B, repeatedly
observed at various station nodes, with probability exceeding
0.6, indicating strong propagation capabilities. Similarly,
node C, exhibits probabilities above 0.65 in multiple train
nodes, such asT,,T,, andT,, underscoring its bridging role
between dispatching and physical entities.

To comprehensively evaluate the effectiveness of the
proposed method, we employ three standard metrics:
Accuracy, Recall, and F1-score.

TP+TN

Accuracy = (26)
TP+TN +FP+FN
Recall = —— (27)
TP+FN
Precision = — (28)
TP+FP
Fl_2. Pl’eC-IS-IOFI -Recall (29)
Precision + Recall
where TP,TN,FP,FN represent true positives, true

negatives, false positives and false negatives, respectively

110 M5
Table VI
PROBABILITY OF RISK EVENTS
Node Probability Node Probability
S, {B,:0.45,B,:0.35, E, : 0.40} X, {C,:0.85,C,:0.59, F; :0.58}
S, {E,:0.50,F,:0.42,B,:0.23} Xs {D,:0.72,D,:0.70,F, :0.38}
S, {E,:0.55,B, :0.48,F, : 0.36} Xs {D,:0.57,D,:0.32, A, :0.26}
S, {B,:0.60,B,:0.52,E,:0.52} X, {D, :0.74,C, :0.70, D, : 0.60}
S, {E,:0.73,B; :0.40,F, : 0.35} X {C,:0.63,C,:0.57,D,:0.50}
Ss {E,:0.65,E, :0.44,B, :0.44} X, {C,:0.84,C;:0.72,D,:0.39}
S, {E,:0.70,E; :0.64,B, : 0.48} X {D,:0.78,C,:0.45,D, : 0.41}
Se {E;:0.75,F, :0.60,B,:0.42} X {D,:0.33,D,:0.25,F, :0.16}
S, {B,:0.63,A,:0.65, A, :0.42} X5, {D,:0.72,D, :0.50, D, : 30}
S {B,:0.49,E, :0.45,E, : 0.40} X3 {D,:0.81,D,:0.75,F, :0.57}
SH {B,:0.82,E,:0.65, F, :0.42} Xia {C,:0.63,C,:0.60,C, :0.45}
S, {B,:0.80,E,:0.70,E, :0.52} Xis {C,:0.56,C,:0.52,F,:0.22}
Sis {E,:0.88,B,:0.74,B, : 0.56} X {C;:0.72,C,:0.68, F; :0.55}
S {E,:0.78,B,:0.67,B;:0.65} Xy {D,:0.80,D,:0.53, D, : 0.38}
Sis {E,:0.46,F,:0.45,F, :0.42} T, {A,:0.88,D,:0.65,A :0.42}
S {E;:0.62,B,:0.58,B,:0.50} T, {A,:0.70,D, : 0.65, A, : 0.42}
Sy {E,:0.75,E, :0.68, E, :0.63} T, {A,:0.42,E,:0.35,E;:0.33}
X, {C,:0.86,C,:0.68, F; :0.54} T, {E;:0.58,A,:0.65,A, :0.42}
X, {C,:0.55,C,:0.48,D, :0.42} Ts {A;:0.7,A,:0.65,E, :0.42}
X, {C,:0.73,D,:0.66,F, :0.53} Ts {A,:0.7,E, :0.65,E, :0.42}
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To verify the rationality of the parameter « in the
comprehensive weight, we test the impact of different «
values on the model performance, as shown in Table VII.

Table VII
COMPARISON INDICATORS OF DIFFERENT WEIGHT
a Accuracy Recall Fl1-score
0.3 0.92 0.93 0.93
0.4 0.98 0.99 0.99
0.5 0.94 0.90 0.92
0.6 0.89 0.87 0.87

To further verify the effectiveness of the proposed
LiINGAM-HetGNN method in risk warning, we compare its
performance with three traditional ML methods: Logistic
Regression (LR), Support Vector Machine (SVM), and
Random Forest (RF), as well as two widely adopted graph
learning models: GCN and GAT. The experimental results
are presented in Table VIII.

Table VIII
COMPARISON INDICATORS OF DIFFERENT METHODS
Model Accuracy Recall F1-score
LR 0.64 0.90 0.87
RF 0.61 0.87 0.75
SVM 0.81 0.97 0.81
GCN 0.83 0.85 0.83
GAT 0.80 0.80 0.79
LINGAM-HetGNN 0.98 0.99 0.99

As shown in Figure 8, LINGAM-HetGNN achieves the
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best performance across three evaluation metrics, with
Accuracy of 0.98, Recall of 0.99, and F1-score of 0.99,
significantly outperforming all baseline methods. Notably,
compared to the second-best GCN, our method improves
Fl-score by 16%. Although SVM achieves a comparable
Recall, its F1-score remains relatively low at 0.81, indicating
a higher false positive rate. In contrast, our method achieves
high recall while demonstrates superior accuracy.

The performance improvement can be attributed to two
critical design components. First, the LINGAM-based causal
structure enables the model to explicitly capture the directed
dependencies among risk events, thereby identifying
potential propagation pathways and improving global
reasoning capability of the model. Second, The HetGNN
framework integrates features from heterogeneous entities
types and relationships, thereby enriching node-level
semantic representations and enhancing the accuracy and
robustness of risk identification and assessment.

Figure 9 compares the differences in node risk scoring
across various methods. ML methods such as LR in Figure
9(b) and RF in Figure 9(c) show dispersed score distributions,
primarily concentrated in the range of 0.3 to 0.6. These
methods fail to form distinct high-risk clusters, indicating
limited ability to exploit the spatial correlations inherent in
graph structures. Although SVM in Figure 9(d) demonstrates
partial risk aggregation at specific nodes, the overall lack of
spatial continuity indicates inadequate modeling of the
topological dependencies.
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Fig.8. Iteration curves of different methods
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Fig.9. Risk level scores by different methods

As shown in Figure 9(a), the proposed method integrates
the causal discovery with heterogeneous graph learning,
significantly improving structural sensitivity and precision of
node-level risk scoring. High-risk areas appear as well-
connected clusters within the causal graph, accurately
revealing potential risk propagation pathways in railway
dispatching system. More importantly, the high-risk nodes
identified by the model show strong spatial alignment with
historical dispatching incidents, validating the interpretability
and practical applicability of the model.

E. Ablation Studies

To validate the effectiveness of each core component in the
proposed method, we conducted ablation studies to evaluate
the impact of individual components on overall performance.
The experimental results are summarized in Table IX.

When the causal learning component is removed, the
Recall and F1-score drop to 0.94 and 0.97, respectively,
representing decreases of 5.1% and 2.0% compared to the full
model. This decline indicates that the absence of causal
discovery impairs the ability of model to identify risk events,
making it difficult to accurately capture potential causal
pathways in the dispatching process. By uncovering the
structural causal dependencies among variables, LINGAM

provides more interpretable reasoning pathways, thereby
improving the accuracy and credibility of risk warning.

Table IX
COMPARISON INDICATORS OF DIFFERENT COMPONENTS
Components Accuracy Recall F1-score
No-LiINGAM 0.97 0.94 0.97
No-HetGNN 0.72 0.75 0.61
Full 0.98 0.99 0.99

The exclusion of HetGNN component leads to an even
more significant impact, as shown in Figure 10. Without the
ability to incorporate heterogeneous information and model
the graph structure information, the model relies solely on
local node features. Consequently, Accuracy and Recall drop
by 26% and 24%, respectively, and the F1-score plummets to
0.61. These results underscore the essential role of HetGNN
in integrating multi-source heterogeneous data and modeling
risk propagation pathways across railway network. Given the
inherent graph structure nature of railway dispatching system,
where topological connections reflect geographic adjacency
and operational routes, HetGNN enables global awareness of
risk propagation by aggregating information from each node
and its neighbors.
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In conclusion, the complete LINGAM-HetGNN model
integrates causal discovery with HetGNN. The former
enhances causal reasoning and interpretability of the model,
while the latter strengthens the representation of
graph-structured data. This synergy leads to more accurate
and reliable risk warning for railway dispatching system.

The risk level scores are visualized in Figure 11. The
complete model in Figure 11(a) exhibits a clear spatial
clustering pattern, with risk scores highly correlated across
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urve of ablation study

nodes and demonstrating strong structural connectivity. This
facilitates a distinct separation between high-risk and
low-risk regions. Additionally, several clusters of critical
nodes form continuous risk propagation pathways, indicating
strong effectiveness of the model in causal pathways
reasoning and structural pattern recognition. These findings
confirm the effectiveness of the model in uncovering the
underlying risk propagation mechanisms within the railway
transport network.
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Fig.11. Risk level scores of ablation study
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When the causal learning component is removed in Figure
11(b), the spatial coherence of risk scores is noticeably
reduced. Connections among high-risk nodes become sparse,
local connectivity weakens, and the continuity of risk
propagation pathways is significantly disrupted. These
results indicate that without causal structure modeling, the
model struggles to accurately infer causal relationships
among variables. Relying solely on HetGNN for features
aggregation is insufficient to capture the deeper causal
mechanisms underlying complex dispatching progress.

Similarly, when removing HetGNN component in Figure
11(c), the risk level scores map becomes highly fragmented.
Inter-node risk correlations diminish significantly, resulting
in scattered high-risk points and indistinct high-risk regions.
Recognizable propagation pathways are nearly absent. These
outcomes underscore the essential role of structural
information modeling. Without leveraging the heterogeneity
and topology of the railway network, risk identification
performance of the model degrades substantially. In contrast,
integrating HetGNN enables the model to capture global risk
aggregation patterns by modeling interactions among diverse
entity types and relationships, thereby improving structural
sensitivity and interpretability.

V. CONCLUSION

This paper proposes a LINGAM-HetGNN method to
enhance early risk warning in railway dispatching system. By
incorporating LINGAM algorithm, the model effectively
identifies asymmetric causal relationships among critical
entities in incident data. It constructs a causal weight matrix
of risk events, uncovering causal structures and modeling the
risk propagation pathways within railway transport network.
Compared with traditional ML methods, this method
leverages data-driven causal discovery to uncover deep
structural dependencies, thereby providing support for risk
tracing and propagation analysis.

In terms of model design, this work innovatively integrates
GCN and GAT to construct the HetGNN framework tailored
for multi-source and multi-typed data in railway dispatching.
By capturing complex interactions among diverse node types
and integrating causal discovery into HetGNN, the model
significantly improves the identification of risk propagation
pathways. This design enhances the interpretability and
accuracy of risk assessment, while also facilitates an intuitive
understanding of risk propagation mechanism. Furthermore,
experimental results confirm that the proposed method
consistently outperforms baseline models in terms of risk
recognition, causal interpretability, and generalization, as
validated through risk scoring and ablation studies. These
advantages contribute to improved safety and more efficient
decision-making in railway operations.

Despite its demonstrated performance, this method has
certain limitations. First, its effectiveness relies on the quality
of input data, which may limit adaptability in complex or
uncertain environments. Future research will explore the
reinforcement learning to improve robustness to noise and
data variability. Second, the computational cost of causal
discovery and heterogeneous graph modeling limits real-
time response. To address this, future work will focus on
employing lightweight architectures to enhance deployment
efficiency in large-scale systems.
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