
 

  

Abstract—To improve the railway dispatching safety 

capabilities and enable early warning of sudden risk events, this 

paper proposes a linear non-Gaussian acyclic model with 

heterogeneous graph neural networks (LiNGAM-HetGNN). 

The proposed method addresses the issues of the complex 

interactions of multi-source heterogeneous data and the lack of 

causal interpretability in railway transport. Firstly, the model 

extracts asymmetric causal relationships from railway incident 

data among entities based on LiNGAM. A causal weight matrix 

is constructed to quantify causal relationships, and we develop 

the causal graph to show the propagation pathways of risk 

events. Secondly, we construct the Causal GAN to effectively 

tackle the problem of data scarcity associated with long-tail risk 

events. Then, we design an interpretable HetGNN and utilize 

GCN to capture spatial dependencies of stations, while GAT to 

model the interactions of trains and signals. The causal weight 

matrix is embedded into the convolutional layers of GCN and 

the attention mechanism of GAT, enabling causality-driven 

graph learning. Finally, a hierarchical risk classifier is 

developed to assess the risk level of each node in the network. 

Experimental validation using the U.S. Federal Railroad 

Administration accident dataset demonstrates the effectiveness 

of the method. The model achieves the precision, recall, and 

F1-score of 98.1%, 98.7%, and 98.5%, respectively. Ablation 

studies further confirm the essential role of the causal discovery 

in the model. This method uncovers causal relationships among 

various risk events, supports early warning and causal 

traceability in railway dispatching progress, and provides 

practical value for intelligent railway transport development. 

 
Index Terms—Railway dispatching safety; Causal discovery; 

LiNGAM; HetGNN; Risk warning 
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I. INTRODUCTION 

S the backbone of modern integrated transport systems, 

railway transport plays a critical role in maintaining 

network stability and ensuring the safety of both passenger 

and freight operations [1]. In recent years, the rapid 

expansion of high-speed rail network and the large-scale 

deployment of trains have significantly increased the 

complexity of railway dispatching system. The system is now 

characterized by tightly coupled entities, multi-dimensional 

heterogeneity, and intricate risk propagation pathways. This 

complexity is further exacerbated by the rising demand for 

coordinated control across multiple stations and lines, 

placing increasing pressure on dispatching operations [2,3]. 

However, current risk management methods primarily rely 

on rule-based systems and expert expertise, which struggle to 

provide the real-time responsiveness and interpretability 

required for effective risk warning [4]. Specifically, within 

high-density railway operations, traditional methods fail to 

accurately identify potential risks and provide timely early 

warnings, resulting in dispatching decisions may exceed 

allowable safety response times [5]. 

Railway dispatching faces multiple challenges, including 

mixed operation of various train types, network collaborative 

control, and environmental influence [6]. During operations, 

many potential risks remain latent and difficult to detect. In 

scenarios involving frequent interactions among railway 

entities, incidents such as dispatching conflicts, track 

occupancy violations, and signal control failures become 

particularly prominent. These risks are especially severe at 

convergence points and on shared track segments, where 

multiple trains operate simultaneously. In such situations, 

dispatching delays or signal anomalies could rapidly escalate 

into serious incidents. Risk events tend to propagate through 

causal pathways, potentially resulting in equipment damage, 

service interruptions, and cascading system failures, posing a 

significant challenge to the safety and reliability of railway 

transport [7]. Consequently, accurately identifying critical 

risk points, assessing the severity, and issuing timely risk 

warning have become priorities in railway dispatching safety 

research. Sari et al. [8] employed the FAHP to identify risk 

factors in urban rail and formulated resource allocation plans. 

Yan et al. [9] developed a risk identification matrix based on 

WBS-RBS to assess the risks in urban rail construction. 

Recently, Lin et al. [10] investigated the safety issues on 

shared passenger and freight corridors, and proposed a 

semi-quantitative risk analysis framework to evaluate the 

probability and impact of incidents on adjacent tracks. 
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In recent years, data-driven methods have been 

increasingly applied in the railway transport [11]. In 

particular, machine learning (ML) has demonstrated superior 

performance in tasks such as risk identification and fault 

diagnosis [12,13]. For instance, Su et al. [14] employed a 

multi-layer perceptron with supervised learning to extract 

associations between vehicle failure instances and optimal 

solutions for different failure scenarios. Similarly, Liu et al. 

[15] focused on detection and warning of abnormal passenger 

flow in urban rail transit by utilizing a depth-first search 

algorithm to identify and respond to emergencies. 

GNN has shown strong capabilities in processing complex 

graph-structured data. Xue et al. [16] proposed a deep 

learning framework to predict risk pathways and utilized 

graph features to address safety issue related to operational 

interruptions caused by fault events. Bi et al. [17] studied the 

flood resilience of urban rail transit by incorporating physical 

network characteristics, flood scenarios, and recovery 

resources into a complex network model, and analyzed 

operational performance under different disaster risk 

conditions. More recently, HetGNN has been introduced to 

better adapt to the actual scenario involving multiple types of 

nodes and edges. Jiao et al. [18] developed a disaster chain 

network for urban rail transit based on network vulnerability 

characteristics of the nodes and edges, and proposed targeted 

chain-breaking strategies for disaster mitigation. 

However, traditional ML methods primarily relies on 

statistical correlations, limiting the ability to uncover causal 

relationships among variables. This lack of causal insight 

reduces the model interpretability and effectiveness of 

decision-making. In contrast, causal analysis facilitates the 

identification of causal dependencies within data, enabling 

the discovery of root causes of risk events and improving 

model transparency. Kim et al. [19] proposed a system for 

analyzing human errors in railway operations by utilizing 

predefined links between contextual information and causal 

factors to identify multi-level error sources and their causal 

relationships. Hadj-Mabrouk et al. [20] proposed a feedback- 

driven approach to extract and analyze incident data, aiming 

to identify safety incidents and their underlying causes. 

Causal analysis is particularly effective for handling 

complex variables, as it can identify causal relationships that 

are difficult to discover through statistical methods alone. In 

addition to identifying these dependencies, causal discovery 

reveals the underlying mechanism of risk propagation and 

provides an interpretable model. This approach facilitates 

root cause tracing and the mapping of risk propagation 

pathways, thereby enhancing early risk warning. Shi et al. [21] 

investigated risk propagation pathways, trigger probability 

and risk level of urban rail transit, proposed a risk chains 

mining method to identify the association between risk 

sources and chains based on path search theory. Belhour et al. 

[22] conducted a post-fault analysis in railway maintenance 

to uncover incident causes. Wu et al. [23] analyzed causal 

pathways originating from root driving factors and proposed 

strategies to manage the interactions among various risk 

factors in urban rail transit. 

Causal model with structural interpretability could 

effectively uncover the underlying mechanism of risk events 

and their systemic impact, supporting accurate risk warning 

and root cause analysis. Specifically, by constructing a causal 

graph, quantifying the influence of risk events on railway 

dispatching system. Cao et al. [24] proposed a YOLOv8n- 

LiteCBAM model that integrated a lightweight 

DepthStackNet backbone with pruning techniques and 

BiCBAM to accelerate reasoning for defect detection. Wang 

et al. [25] proposed a method to identify urban rail transit 

incident factors and improve safety management capabilities 

by constructing an incident semantic network of the risk 

control chain to evaluate the impact degree of critical items. 

Existing research on railway risks has made progress, 

however, challenges still remain in handling multi-source 

heterogeneous data and the causal propagation of risks. To 

address research gap, this paper proposes a method that 

integrates causal discovery with HetGNN, which provides a 

deep representation of risk propagation in dispatching system 

and addresses the interpretability limitations of traditional 

ML. The main contributions can be summarized as follows: 

(1) Proposing a causal model based on LiNGAM for 

railway dispatching risk events. By constructing the causal 

weight matrix, the model uncovers the asymmetric causal 

dependencies among entities, enabling accurate detection 

risk events and the propagation pathways, and provides a 

causal foundation for risk tracing and early warning. 

(2) Designing the HetGNN tailored to represent 

dispatching entities as heterogeneous nodes. By integrating 

topological structures and feature information, the network 

employs GCN and GAT to model the interactions among 

different entities types, thereby capturing the characteristics 

and structural of risk propagation pathways. 

(3) The causal weight matrix is embedded into HetGNN to 

guide the convolution operations of GCN and the attention 

mechanism of GAT. This integration allows the model to 

prioritize node relationships with causal relationships during 

training, thereby enhancing the ability to identify critical risk 

events and improving the interpretability of the model. 

II. PROBLEM ANALYSIS 

As the core of railway transport, dispatching depends on 

the coordinated operation of multiple critical entities (e.g., 

stations, trains, and signals), as well as their interactions (e.g., 

dispatch commands, track occupancy, and signal 

transmission). This process involves a variety of entity types, 

intricate interaction structures, and heterogeneous data 

attributes, all of which contribute to the risk coupling and 

causal propagation of incidents. Specifically, risks often 

originate from localized incidents, gradually accumulate, and 

propagate through risk propagation pathways. These risks 

may ultimately evolve into systemic incidents through causal 

pathways. Therefore, effective early warning of risks could 

accurately identify potential risks amid high traffic density 

and operational complexity, providing timely warning by 

quantifying causal influence. 

To model the complex interactions among multiple entities 

in railway dispatching, this study represents the railway 

transport network as a heterogeneous graph ( ), ,G V E A= , 

where  , ,s t xV v v v= denotes the set of nodes. Station 

nodes
sv are classified into passenger and freight stations. 

Passenger stations manage the arrival, departure, and 

boarding of passenger trains, with attributes such as yard 
capacity and train frequency. Freight stations handle the 
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loading and unloading of freight trains, with attributes such 

as loading capacity and operational duration. Train nodes
tv  

represent individual train entities, the attributes include train 

speed, train type, etc. Signal nodes
xv  control train movement 

permissions, the attributes include signal status and control 
range, etc. Incorrect commands issued by signals can result in 

dispatching conflicts, or even collisions. 

In railway transport network, trains operate between 

stations and signals, and frequently interacting with both. 

 , ,...s s s t x sE e e e− − −= denotes the set of edges. Specifically, 

physical connection edges
s se −

represent railway tracks that 

connect stations, forming the fundamental topological 

structure of the network. Dispatch coordination edges 
s te −

 

represent interactions between stations and trains, including 

train arrivals, departures, and dwelling time, driven by 

dispatching demands. Resource contention edges
t te −

denote 

conflicts between trains competing for shared track segments 

or signal-controlled blocks, implicitly dispatch priority 

competition. Control dependency edges 
t xe −

 define the 

regulatory relationship between trains and signals, whether a 

train is accessed to a track segment depends on the status of 

the preceding signal. Signal relay edges
x xe −

represent the 

information transmission between signals to maintain 

consistency and continuity in dispatch commands. Dispatch 

interaction edges
x se −

 denote the coordination between 

stations and signals to manage train entry and departure 

sequences, aligning dispatch instructions with station 

resource availability. The connectivity among entities is 

represented by an adjacency matrix A . 

1

0

ij

ij

a
A

a

=
= 

=

                                  (1) 

( )1,2,...,v

iX i m= denote the feature vector of nodeV , and 

( )1, 2,...,e

iX i m m n= + + denote the feature vector of edge E . 

We define a risk level function ( ), , , ,v e

i iR f V E A X X= , 

which integrates structural properties and attribute features of 

the nodes and edges, as illustrated in Table Ⅰ. This level 

reflects the degree of risk associated with nodes and edges 

within the dispatching process. 

Table Ⅰ 

  RISK LEVEL CLASSIFICATION 

Risk Level Illustrate 

High Risks with significantly impact on dispatching operations and 

are deemed operationally unacceptable. Immediate mitigation 

measures are required. 

Medium Risks with moderate impact on dispatching operations. These 

require further assessment based on operational cost and 

potential hazards to determine whether they are acceptable. 

Low Risks with minimal impact on dispatching operations. No 

additional intervention is necessary. 

 
To illustrate the application of heterogeneous graph in 

railway transport network, Figure 1 shows the interaction 

relationships among entities in a dispatching scenario. Red 

circular nodes (PS1-PS8) represent passenger stations, while 

orange circular nodes (FS1-FS5) denote freight stations. Blue 

circular nodes (RS1-RS13) correspond to signals. Yellow 

train icons (Train 1 and Train 2) represent freight trains, and 

green train icons (Train 3 and Train 4) represent passenger 

trains. Edges are colored differently to distinguish different 

types of interactions. Black edges represent physical railway 

tracks connecting adjacent stations (e.g., PS1-PS2, PS6-PS8), 

forming the core topological structure. Brown edges 

represent signal transmission between stations and signals 

(e.g., PS2-RS1). Gray edges represent control dependencies 

between trains and signals (e.g., Train 1-RS9). Dark blue 

edges represent dispatching relationships between trains and 

stations (e.g., Train 2-RS8). 

During operation at a time step 1 2,T T , dynamic changes 

in train states and scheduling conditions may expose the 

system to the following three major categories of risk: (1) 

Route conflict: A potential route conflict may occur at the 

convergence node PS2 between Train 2 and Train 3. If 

scheduling priorities are misassigned or signal responses are 

delayed, the system faces a heightened risk of train conflicts, 

including rear-end collisions. (2) Station overcapacity: Each 

station has a limited yard capacity. If Train 2 and Train 4 

arrive simultaneously at the same station (e.g., PS1) without 

timely adjustments, track occupancy conflicts may arise, 

leading to train delays and scheduling bottlenecks. (3) Signal 

control failure: Malfunctions in signals (e.g., RS6 or RS7) 

may cause Train 4 entering unauthorized or restricted 

sections. Such failures increase the risk of derailments or 

other critical incidents. 
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Fig.1. Train operation process of railway network 
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III. METHODS 

A. Model Architecture 

To enable effective risk warning in railway diapatching, 

this paper proposes a three-layer HetGNN model based on 

causal discovery, as illustrated in Figure 2. The model 

comprises three components: the causal discovery layer, the 

HetGNN layer, and the risk warning layer. 

In causal discovery layer, the model extracts risk-related 

variables from incident data and applies LiNGAM algorithm 

to identify causal relationships among entities. These 

relationships are used to construct a directed acyclic graph 

(DAG), along with the causal weight matrix that quantifies 

causal influence. In HetGNN layer, the railway transport 

network is represented as a heterogeneous graph consisting 

of diverse node and edge types. This layer integrates GCN 

and GAT to model structural interactions among entities, 

incorporating topological structure and attribute features. In 

risk warning layer, the model utilizes the causal information 

to evaluate the risk level of each entity, thereby enabling 

timely detection and early warning for potential risk events 

throughout the dispatching process. 

B. Risk Indicators 

The data used in this study for railway dispatching are 

collected from multiple sources, as summarized in Table Ⅱ.   

To systematically characterize risk events in the dispatching 

process, a comprehensive risk indicator system is developed 

based on publicly available accident statistics reported by the 

U.S. Federal Railroad Administration (FRA) [26], as shown 

in Table Ⅲ. This indicator system categorizes risks into six 

primary domains, including train-related risks, station-related 

risks, and signal-related risks, etc. Each category is further 

decomposed into a set of quantifiable secondary risk 

indicators, providing a structured and detailed framework for 

analyzing and assessing risk factors in railway dispatching. 

 
Table Ⅱ 

  RAILWAY DISPATCHING DATA SOURCES 

Data source Data categories 

Dispatching log Train arrival and departure time, station throughput, 

signal status transition, etc. 

Train operation Train speed, acceleration, trajectories, headway 

intervals, etc. 

Equipment monitoring Signal status, track occupancy status, 

communication system failure, etc. 

External environment Weather conditions, construction activity, 

unexpected events, etc. 
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Fig.2. Architecture of the LiNGAM-HetGNN 
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Table Ⅲ 

Risk Indicator System for Railway Dispatching 

Risk category Key risk events 

 Train derailment
1A  

 Train collision
2A  

 Departure delay 3A  

Train risks A  Arrival delay 4A  

 Abnormal wheel-rail contact 5A  

 Brake system malfunction 6A  

 Overspeed operation 7A  

 Station equipment failure 1B  

 Passenger fall from platform 2B  

 Improper handling of hazardous materials 3B  

Station risks B  Delay in passenger boarding/alighting 4B  

 Delay in freight loading/unloading 5B  

 Obstruction in station passageway 6B  

 Inadequate worksite protection 7B  

 Signal response delay 1C  

 Signal loss 2C  

 Absence of signal display 3C  

Signal equipment risks C  Signal display error 4C  

 Signal power outage 5C  

 Signal interference 6C  

 Signal obstruction 7C  

 Delay in signal confirmation feedback 1D  

 Signal interference at track junction 2D  

 Signal priority conflict 3D  

Train-signal interaction risks D  Failed to stop at signal 4D  

 Inability to confirm train position 5D  

 Train communication interruption 6D  

 Delay in signal switching 7D  

 Track occupancy conflicts at station 1E  

 Excessive train-platform gap 2E  

 Multi-train convergence congestion 3E  

Train-station interaction risks E  Improper speed adjustment on arrival 4E  

 Train stopping position deviation 5E  

 Incorrect track assignment 6E  

 Insufficient clearance near trackside equipment 7E  

 Power supply instability 1F  

 Command issuance error 2F  

Systemic risks F  Extreme weather impact 3F  

 System communication failure 4F  

 Network transmission delay 5F  

 

C. LiNGAM 

Railway dispatching risks are characterized by structural 

complexity and dynamic temporal evolution. These risks 

typically arise from the interaction of multiple factors, with 

propagation mechanism exhibit strong causal dependencies. 

Consequently, a localized risk event may escalate through 

causal pathways among entities, leading to cascading failures 

and systemic disruptions. Therefore, accurately identifying 

these causal relationships is essential for improving risk 

warning capabilities and optimizing dispatching strategies. 

To address the challenge of uncovering risk propagation in 

railway dispatching system, this study employs LiNGAM to 

uncover the causal relationships, it offers several notable 

advantages: (1) It does not rely on external interventions, 

enabling causal directed edges to be inferred directly from 

observational data. (2) It is well-suited for high-dimensional 

and structurally heterogeneous systems, consistent with the 

multi-entity and multi-relation nature of railway dispatching. 

(3) By assuming non-Gaussian and independent noise in the 

data, LiNGAM effectively resolves the issue of causal 

direction symmetry and effectively avoid causal inversion. 
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The proposed model is constructed based on the following 

assumptions: 

(1) Risk events in railway dispatching exhibit linear causal 

relationships. 

(2) The error terms associated with risk variables follow a 

non-Gaussian distribution. 

Specifically, for an observed dataset  1 2, ,..., dX X X X=  

containing d risk variables, their causal dependencies can be 

modeled using a linear structural equation model defined as: 

X BX E= +                                  (2) 

where d dB  is the causal weight matrix, constrained to 

be strictly lower triangular (i.e., 0ijb = for i j ), ensuring 

each variable is  influenced only by variables with smaller 

indices. E represents independent non-Gaussian noise terms. 

LiNGAM aims to estimate B from X , thereby uncovering 

the directed causal structure among the risk events. This 

method employs independent component analysis (ICA) for 

causal discovery. The procedure steps are as follows. 

To mitigate the influence of system drift and external 

disturbances, the raw observations data are mean-centered so 

that each variable has zero mean: 

( )X X E X = −                             (3) 

where X  is the centered value of variable X , and ( )E X  

denotes its sample mean. 

Secondly, to determine the directionality of the causal 

relationships, ICA is applied to decompose X  into a set of 

non-Gaussian independent components E . This process 

obtains the transformation matrix C . 

( )
1

X I B E CE
−

 = − =                        (4) 

Assuming linear relationships among components and 

leveraging their non-Gaussianity, the causal directions can be 

identified. The causal weight matrix B is computed by 

inverting C . 
1B I C−= −                                 (5) 

where I is the identity matrix. 

To estimate the specific causal effects among variables
iX , 

a linear regression model is constructed for each risk variable 

to calculate its influence strength by the variable jX . 

i ij j i

j i

X b X e


= +                             (6) 

where ijb denotes the causal effect coefficient of jX on
iX , 

and
ie is an independent error term. 

Given the high dimensionality and complex dependencies 

of risk variables in railway dispatching, LASSO 

regularization is applied to matrix B to obtain a sparse causal 

weight matrix B . This approach mitigates overfitting and 

enhances the interpretability of the causal structure. 
2

1 ,

arg min
d

i ij j ij
B

i j i i j

B X b X b
= 

 
  = − +
 
 
             (7) 

where  is the regularization parameter that controls the 

sparsity level of the matrix B . 

The B is a strictly lower triangular matrix, ensuring that 

the causal structure conforms to the properties of a DAG. 

Risk propagation often involves complex interactions and 

cascading effects among multiple risk variables. These causal 

relationships not only influence the evolution of individual 

events but can also escalate into system-wide incidents, 

affecting overall operational stability. To model these 

interdependencies, this study constructs a risk causal graph 

based on matrix B . This graph represents the indirect risk 

propagation pathways among risk events, enabling the 

identification of critical risk nodes that serve as hubs in the 

risk propagation process. 

Assume an initial risk event
dX triggers an intermediate 

variable
eX , which subsequently leads to a high-risk event 

fX . This cascade can be represented as a causal pathway. 

dc ceb b

d c eX X X⎯⎯→ ⎯⎯→                       (8) 

In practice, risk propagation is often driven by multiple 

concurrent pathways originating from diverse sources. To 

evaluate the influence of each propagation pathway and 

quantify its importance within the causal graph, we define the 

risk pathway propagation strength
StrengthP  . This metric 

measures the cumulative impact of causal interactions along 

a specific pathway and is calculated as the product of causal 

weights of edges in the pathway. 

( )
Strength

,

ij

i j Path

P b


=                              (9) 

For the given risk propagation pathway d e fX X X→ → , 

its 
Strength de efP b b=  , which reflects the degree to which risk 

is amplified or weakened during its propagation. This 

measure reveals the cumulative effect of causal interactions 

within the pathway, allowing for the track of risk propagation 

mechanism through the complex network. 

To explicitly model the cascading effects of interacting 

risk events, we construct a DAG based on matrix B . In this 

causal graph, nodes  1 2, ,..., nd d d represent risk variables, 

edges ijb represent the causal dependencies, and the non-zero 

elements of B determine the presence and direction of the 

edge in causal graph. 

Assume a submatrix of B is given by: 

 

0 0 0

0.6 0 0

0.4 0.8 0

subB

 
  =
 
  

 

The corresponding risk propagation pathway is: 
0.8 0.6

3 2 1X X X⎯⎯→ ⎯⎯→                      (10) 

According to matrix B , the direct causal weight from 

3X to
1X is 0.4. However, when considering the risk 

propagation pathways, with intermediate causal weights of 

0.6 and 0.8, the pathway strength is Strength 0.6 0.8 0.48P =  = . 

This result indicates that the cumulative influence of the 

indirect causal pathway exceeds the direct effect (0.48>0.4). 

Therefore, relying solely on direct causal weight may 

underestimate the true potential for risk propagation. To more 

accurately characterize the risk propagation mechanism, we 

propose a weighted average causal matrix B̂  that 

incorporates both direct and indirect causal weight. The 

comprehensive causal weight matrix is defined through 

 that balance the direct and indirect pathways: 

( ) Strength
ˆ 1ijB b P = + −                   (11) 
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D. Causal GAN 

Railway dispatching data is often scarce and incomplete, 

limiting the effectiveness of data-driven methods for risk 

warning. However, GAN fail to account for causal 

relationships among variables, resulting in data that lacks 

interpretability and undermines the reliability of models. 

To address this issue, this study proposes a Causal GAN 
guided by the causal graph derived from LiNGAM. By 

embedding the causal mechanisms of railway risks into prior 

constraints of the generator, the model produces high-quality 

synthetic data that adheres to underlying causal structure. 

Causal GAN not only enhances the accuracy of risk event 

modeling, but also uncovers causal chains within multi- 

source heterogeneous data, improving the interpretability of 

the model and the reliability of dispatching decisions. 
The Causal GAN comprises two components: a generator 

and a discriminator. The innovation lies in incorporating the 

causal graph as a prior constraint on the generator. This 

ensures that the generated data conforms to the causal 

dependencies inherent in railway dispatching risk scenarios. 

The overall architecture is illustrated in Figure 3. 

The generator is designed to synthesize high-quality data 

that conforms to the underlying causal structure. Unlike 
conventional generators that produce data directly from 

random noise, the Causal GAN generator leverages the 

causal graph to constrain the noise propagation, thereby 

ensuring consistency in the causal relationships in the 

generated data. The input to the generator consists of noise 

variables and a causal controller. Through the edge weights 

from the causal graph, the generator enforces structural 

constraints on the dependency patterns during data 
generation, ensuring that the output data adheres conforms to 

the causal pathways defined by the causal graph. 

( )ˆX BX G Z E= + +                          (12) 

where, ( )1 2, ,...,
T

nX x x x= denotes the generated variables, 

( )1 2, ,...,
T

nZ z z z= represents an independent random noise 

vector, and ( )G Z is a nonlinear transformation function. 

Subsequently, a MLP is employed to extract features from 

the input, with a causal weighting mechanism used to adjust 

the connection weights across layers. This design ensures that 

the generator not only synthesizes data resembling actual 
observations but also adheres to the risk propagation 

mechanisms inherent in the causal structure of the railway 

dispatching system. The final output is a set of multi- 

dimensional synthetic data samples representing railway 

dispatching risk events, which preserve the causal structure 

and distributional characteristics of real data. 

To enforce consistency with causal priors, we incorporate 

an L1 regularization term into loss function of the generator: 

( )( ), 1

,

|| ||causal ij gen i j gen

i j

L b X f X= −      (13) 

Here,
,gen iX denotes the i variable in the generated sample, 

( )jf  represents the causal function determining
jX based on 

its direct causes, and  is the regularization coefficient. 

The overall loss function as follows: 

( )( ) log ( )G z p z gen causalL E D X L = − +
 

          (14) 

The primary function of the discriminator is to distinguish 

between real and synthetic data, while also verifying the 

causal consistency of the generated samples to ensure the 

outputs align with the causal structure of railway dispatching 

risk. The discriminator receives both real samples
realX and 

generated samples
genX , and utilizes the CNN to model the 

dependencies within the data. In addition, the discriminator 

incorporates a causal consistency checking function that 

computes the causal weight matrix B̂ for the generated 

samples
genX . The final output is a probability score 

( )  0,1D X  , indicating the authenticity and causal validity 

of the input data. 

Causal consistency f is central to the design of the 

discriminator. To ensure the generated data reflects the causal 

relationships inherent in actual dispatching risks, we 

introduce a causal consistency loss function. This quantifies 

the discrepancy between the causal dependency matrix 

( )genCausal X  estimated from the generated samples and the 

true causal influence matrix B̂ : 

( ) ˆ
genconsistency X gen

F
L Causal X B  =  −

 
       (15) 

where, ( )genCausal X denotes the causal matrix estimated 

from the generated data,  is a weight coefficient, and 

F
 represents the Frobenius norm. 

The loss function of the discriminator is defined as: 

( )

( )( )

log

log 1

real

gen

Del X real

X real consistency

L E D X

E D X L

= +  

          − + 

   (16) 

where ( )log
realX realE D X   reflects the ability of the 

discriminator to distinguish real from generated samples, and 

( )( )log 1
genX realE D X −   reflects the effectiveness in 

detecting generated samples. 
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Fig.3. Architecture of Causal GAN 
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E. HetGNN 

In railway dispatching network, entities engage in frequent 

multi-source information exchanges, characterized by 

significant structural heterogeneity. Meanwhile, various risk 

events exhibit complex causal dependencies. To address the 

challenges posed by diverse risk types and heterogeneity 

incident data, this study employs HetGNN to model the 

dispatching network, as illustrated in Figure 4. Furthermore, 

to improve the accuracy of risk propagation pathways 

modeling and causal influence analysis, the causal weight 

matrix B̂ is integrated into the message-passing process of 

HetGNN. By embedding causal learning into the HetGNN 

architecture, the proposed model could capture the intricate 

associations among risk events within the railway 

dispatching and enhance risk detection and early warning 

capabilities for potential risk events. 

E.1 GCN 

In railway network, station nodes possess well-defined 

spatial positions and structural attributes, with adjacency 

relationships are determined by geographic layout and track 

connectivity. To capture spatial dependencies among stations, 

the GCN is employed to model the information transmission 

between station nodes. Specifically, GCN updates each node 

representations through layer-wise aggregation of features 

from its neighboring nodes, enabling each node to integrate 

information from an increasingly broader range of the 

network. For node embedding update at layer k , the features 

of each station node
iv neighbor set ( )i are normalized and 

weighted before aggregation. This process allows the model 

to progressively incorporates information from more distant 

neighbors and generates updated node representations 

through a nonlinear activation function. 

To incorporate causal dependencies among risk events, we 

embed the causal weight matrix B̂  into the standard 

adjacency structure. Since the diagonal elements of B̂  are 

zero (i.e., self-influences are not included), we add the 

identity matrix I to retain self-loop information, resulting in 

the enhanced adjacency matrix ˆA B I= + . The augmented 

matrix enables GCN to model not only topological 

connectivity but also the causal influences among risk 

variables during the propagation process, thereby improving 

the accuracy and interpretability of risk propagation. 

( ) ( ) ( 1)

( )

k k k

i j

j i ij

A
h W h

c
 −



 
=   

 
 

                    (17) 

where, ( )k

ih denotes the embedding of station node
iv at 

layer k , an activation function, ( )i represents the set of 

neighbors of node
iv ,

ijc is the normalization coefficient, and 

( )kW is the learnable weight matrix at layer k . 

E.2 GAT 

In contrast to station nodes, the interactions between trains 

and signals are more dynamic and complex. To effectively 

model these heterogeneous interactions, we adopt the GAT, 

which allows the model to adaptively learn the relative 

importance of neighboring nodes with respect to the target 

node, thereby improving the feature aggregation process. 

In GAT, information propagation is governed by attention 

weights ij , which quantify the influence of the neighboring 

node
jv on the target node

iv . To better capture the underlying 

causal relationships in risk propagation, we incorporate the 

matrix B̂  into the attention mechanism. Specifically, the 

enhanced causal matrix A  is used to reweight the attention 

coefficients, allowing the model to prioritize neighbors based 

on the causal influence. The modified attention mechanism is 

defined as follows: 

( )( )
( )( )

( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1)

( )

exp LeakyReLU

exp LeakyReLU

T k k k k

i j

ij
T k k k k

i k

k i

a W h W h A

a W h W h A






− −

− −



  + 
=

  + 
(18) 
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Fig.4. Railway network heterogeneity graph 
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where Ta denotes the learnable weight vector, ( )kW is the 

feature transformation matrix, represents the concatenation 

operation, LeakyReLU is the non-linear activation 

function,  serves as a causal influence factor. 

Finally, the updated representation of node
iv is obtained 

by aggregating the transformed features of its neighbors, 

weighted by the causally informed attention coefficients. 

( ) ( ) ( 1)

( )

k k k

i ij j

j i

h W h  −



 
=  

 
                   (19) 

F. Risks Level Assessment 

Each node in the network may be associated with multiple 

risk events. To estimate the likelihood of these events, we 

calculate the occurrence probabilities ( )|k iP R v for a set of 

risk events ( )  1 2, ,...,i kR x R R R=  associated with node
iv . 

Specifically, nodes with causal feature ( )k

ih are input into a 

multi-layer perceptron (MLP) consisting of two hidden layers. 

The first layer projects the input features into 128 dimensions, 

while the second layer compresses the representation to 64 

dimensions. Both layers utilize the ReLU activation function 

to introduce non-linearity. 

To obtain the final event probability distribution, the 64 

dimensions feature vectors are passed through the Softmax 

layer, producing a normalized probability vector over 

K predefined risk event categories. To enhance 

generalization and reduce overfitting, Dropout regularization 

is applied to the hidden layers during training. 
( ) ( )1

1 1=ReLUih W H b+                        (20) 

( ) ( )( )( )2 1

2 2=Dropout ReLUi ih W h b+              (21) 

( ) ( )( )2

3 3| Softmaxk i iP R v W h b= +               (22) 

where 128

1

dW R  , 64

2

dW R  , 3 64

3W R  denote the 

weight matrices,
1b , 

2b , 
3b  denote the corresponding bias 

terms for each layer. 

To mitigate the impact of low-probability events on risk 

level assessment, we introduce a probability threshold  . 

Only risk events with occurrence probabilities exceeding this 

threshold are retained for further analysis. 

( ) ( ) ( ) * | |i k i k iR v R R v P R v =             (23) 

To comprehensively assess node risk level, we calculate 

the composite risk score
tR by averaging the top three highest 

probabilities among the retained risk events associated with 

node
iv . This score reflects risk level of the node based on its 

most significant potential events. 

( )
3

1

1
|t k i

k

R P R v
k =

=                           (24) 

IV. EXPERIMENTS 

A. Datasets 

To assess the effectiveness of the proposed 

LiNGAM-HetGNN model for railway dispatching risk 

warning, we conduct experiments using a publicly available 

dataset from 2014 to 2024 released by the FRA. This dataset 

contains records of operational conditions, safety incidents, 

and dispatching anomalies. It integrates heterogeneous data, 

including train operation logs, equipment status reports, 

weather conditions, and maintenance records. 

In this study, we construct a representative railway 

transport network consisting of 17 stations, 17 signals, and 6 

trains, as illustrated in Figure 5. Table Ⅳ presents a sample of 

the raw operational data, including train IDs, station names, 

scheduled and actual arrival/departure times, train types, and 

corresponding weather conditions. The dataset encompasses 

the diverse range of safety-related events such as scheduling 

conflicts, operational delays, and equipment failures, 

supporting the robustness and generalizability of the 

proposed model under complex dispatching scenarios. 
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Fig.5. Railway line structure 

B. Experimental Environment Settings 

The experiments are conducted in a Python 3.12 

environment using the PyTorch framework on a personal 

computer equipped with an NVIDIA RTX 3090 GPU. 

The model is trained with the following hyperparameters: 

a learning rate of 0.001, a batch size of 64, the is 0.1, and the 

maximum training epochs of 100. To enhance generalization, 

the dropout rate is 0.5, utilizing the Adam optimizer, and L2 

regularization is incorporated to mitigate overfitting. The loss 

function is set to cross-entropy. 

 

Table Ⅳ 

RAILWAY OPERATION DATA 

Train number Station Actual arrival Actual departure Scheduled arrival Scheduled departure Train type Weather 

1T  1S  08:20 08:23 08:23 08:25 Passenger Rainy 

2T  2S  09:10 09:12 09:03 09:06 Passenger Sunny 

3T  3S  10:45 10:22 10:40 11:00 Freight Cloudy 

4T  3S  11:30 11:35 11:30 11:35 Passenger Cloudy 

4T  3S  11:30 11:35 11:30 11:35 Passenger Sunny 
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To mitigate the risk of overfitting in causal modeling, this 

study adopts a sparsity control method to select the optimal 

regularization parameter  . This approach determines the 

value of  by targeting a desired sparsity level in the causal 

weight matrix, thereby promoting a parsimonious and 

interpretable causal graph structure. Specifically, during the 

LASSO regression for each risk variable, a range of 

candidate λ values is evaluated. For each candidate, the 

proportion of non-zero elements in the causal weight matrix 

B̂  is calculated. The optimal  is selected as the smallest 

value that ensures the proportion of non-zero elements 

in B̂ meets a predefined sparsity threshold. 

( )
0

ˆ

1

B

d d


−
                              (25) 

where
0

B̂ represents the number of non-zero elements, 

and d is the total number of risk variables. The sparsity 

threshold  is set to 0.3 

C. Results Analysis 

Based on LiNGAM, we construct a causal weight matrix 

for 40 representative risk events. To visualize the strengths of 

these causal influences, a lower triangular heatmap is 

generated, as shown in Figure 6, highlighting the 

irreversibility and hierarchical structure of risk relationships. 

To emphasize the significant causal influence, only events 

pairs with weights exceeding a predefined threshold are 

displayed. For instance, the weight from
7B  to

6B is 0.92, 

indicating insufficient construction protection has a 

significant causal influence on obstruction in station 

passageways, suggesting that
7B serves as a source risk node, 

and should be prioritized for monitoring and intervention. 

Notably, the high-weight edges ( ijb > 0.8), shown in bright 

yellow, are primarily concentrated among train-related risks 

(Risk A ), signal-related risks (Risk C ), and train-signal 

interaction risks (Risk D ), suggesting these risks form a 

tightly coupled risk cluster. 

 

 
Fig.6. Causal influence of risk events 

 

Additionally, clusters with moderate weights (0.2~0.5), 

such as
4 6F C− and

4 6E E− , shown in light green, indicate 

structural causal dependencies among risk C , F and E . 

Blocks with consistently yellowish coloration, such as 

6 7A A− and
1 2A A− , with weights 0.6 to 1.0, reflect the 

internal propagation and linkage within risk A , implying that 

occurrence of one event is likely to trigger cascading failures 

among related risks. Moreover, top-ranked nodes such as 

3F ,
1F , and

4F exhibit high out-degrees, indicating them as 

critical initiators in the causal propagation pathways, with the 

potential to trigger system-wide chain reactions. In contrast, 

nodes like
1B ,

2A , and
1A  have higher in-degrees, situating 

them at the receiving end of risk propagation pathways and 

indicating them as vulnerable nodes under systemic stress. 

Figure 7 illustrates the risk causal graph in railway 

dispatching, where each node represents a distinct risk event, 

and directed edges denote causal relationships. The color 

intensity of edges reflects the strength of the causal influence, 

while node size is proportional to out-degree, indicating 

potential of the node to impact other risk events. Meanwhile, 

to avoid result deviation caused by excessively long paths, 

the maximum propagation pathways for acyclic paths
ijP is set 

to 3. At the local structural level, the subgraph formed by 

nodes
1B  through 

7B exhibits dense connections and darker 

edge coloring, indicating strong coupling among station risks. 

This high-density cluster reveals a tightly interlinked of 

station risks with significant mutual influence. 

 

 
Fig.7. Risk events causal graph 

 

From a global topological perspective, centrally located 

nodes in the causal network, such as
2C ,

6D , and
3F , exhibit 

larger sizes, indicating their high out-degrees and substantial 

causal influence. These nodes often serve as primary 

initiators within the dispatching system. Once disturbed, they 

may propagate risks through multiple pathways and various 

risk categories, potentially triggering cascading failures. 

Therefore, these central nodes should be prioritized for 

monitoring and intervention as critical control points. 

By leveraging the topological structure of the causal graph, 

both backward and forward tracing of risk propagation 

pathways becomes possible. This enables the identification 
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of root causes and potential impacts of high-risk events, 

thereby uncovering the risk propagation pathways within the 

system. Furthermore, by calculating and ranking pathway 

strength based on causal weights, the cascading influence of 

globally influential risk events can be quantified. This 

method provides a basis for identifying vulnerable nodes and 

critical trigger points, supporting more effective system-level 

risk mitigation strategies. 

D. Risks Assessment 

Based on the risk scores produced by evaluation function, 

all nodes are classified into three risk levels: low, medium, 

and high, as defined in Table Ⅴ. The statistical distribution of 

risk event probabilities across various entity nodes is 

presented in Table Ⅵ. 

 
Table Ⅴ 

  RISK LEVEL DETERMINATION CRITERIA 

Risk Level Illustrate 

High 0.3tR   

Medium 0.3 0.6tR   

Low 0.6tR   

 

Among the high-risk nodes, multiple events associated 

with nodes such as
13S ,

4X ,
7X , and

1T , exhibit scores 

exceeding 0.6. This indicating the significant triggering 

potential, suggesting these nodes serve as potential risk 

sources. Medium-risk nodes, such as
6X ,

9X ,
4T , and

6T , 

show dominant event probabilities in the range of 0.5 to 0.6, 

implying a moderate risk propagation capability and 

suggesting them as secondary transmission hubs. In contrast, 

low-risk nodes like
11X ,

15X , and
3T demonstrate below 0.3,

reflecting limited influence and a relatively low risk profile. 

Notably, strong central nodes such as
1D ,

4B , and
4C , 

which consistent with the propagation pathways in Figure 7. 

These nodes not only occupy core positions within the 

network topology but also exhibit strong influence in risk 

propagation. Therefore, they are regarded as critical risk hubs 

in railway dispatching system. 

From the perspective of risk event probability distribution, 

nodes of risk B , C , and D occur frequently across multiple 

target nodes and are consistently associated with higher 

probabilities. For instance, 
1B ,

2B ,
4B , and

5B  repeatedly 

observed at various station nodes, with probability exceeding 

0.6, indicating strong propagation capabilities. Similarly, 

node
4C exhibits probabilities above 0.65 in multiple train 

nodes, such as
1T ,

2T , and
6T , underscoring its bridging role 

between dispatching and physical entities. 

To comprehensively evaluate the effectiveness of the 

proposed method, we employ three standard metrics: 

Accuracy, Recall, and F1-score.  

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
               (26) 

TP
Recall

TP FN
=

+
                            (27) 

TP
Precision

TP FP
=

+
                          (28) 

1 2
Precision Recall

F
Precision Recall


= 

+
                    (29) 

where , , ,TP TN FP FN represent true positives, true 

negatives, false positives and false negatives, respectively 

 
Table Ⅵ 

  PROBABILITY OF RISK EVENTS 

Node Probability Node Probability 

1S   4 1 1: 0.45, : 0.35, : 0.40B B E  4X   7 5 5: 0.85, : 0.59, : 0.58C C F  

2S   2 1 2: 0.50, : 0.42, : 0.23E F B  5X   3 2 2: 0.72, : 0.70, : 0.38D D F  

3S   3 7 4: 0.55, : 0.48, : 0.36E B F  6X   4 5 5: 0.57, : 0.32, : 0.26D D A  

4S   3 5 6: 0.60, : 0.52, : 0.52B B E  7X   7 1 7: 0.74, : 0.70, : 0.60D C D  

5S   5 6 2: 0.73, : 0.40, : 0.35E B F  8X   5 3 5: 0.63, : 0.57, : 0.50C C D  

6S   4 7 4: 0.65, : 0.44, : 0.44E E B  9X   4 6 3: 0.84, : 0.72, : 0.39C C D  

7S   1 6 1: 0.70, : 0.64, : 0.48E E B  10X   2 7 4: 0.78, : 0.45, : 0.41D C D  

8S   3 4 4: 0.75, : 0.60, : 0.42E F B  11X   7 5 2: 0.33, : 0.25, : 0.16D D F  

9S   5 4 5: 0.63, : 0.65, : 0.42B A A  12X   3 4 6: 0.72, : 0.50, : 30D D D  

10S   2 2 6: 0.49, : 0.45, : 0.40B E E  13X   5 7 1: 0.81, : 0.75, : 0.57D D F  

11S   3 5 1: 0.82, : 0.65, : 0.42B E F  14X   1 2 4: 0.63, : 0.60, : 0.45C C C  

12S   4 7 4: 0.80, : 0.70, : 0.52B E E  15X   3 4 4: 0.56, : 0.52, : 0.22C C F  

13S   1 1 5: 0.88, : 0.74, : 0.56E B B  16X   6 5 5: 0.72, : 0.68, : 0.55C C F  

14S   3 7 6: 0.78, : 0.67, : 0.65E B B  17X   1 6 5: 0.80, : 0.53, : 0.38D D D  

15S   2 4 2: 0.46, : 0.45, : 0.42E F F  1T   4 6 1: 0.88, : 0.65, : 0.42A D A  

16S   6 3 6: 0.62, : 0.58, : 0.50E B B  2T   3 4 2: 0.70, : 0.65, : 0.42A D A  

17S   5 4 5: 0.75, : 0.68, : 0.63E E E  3T   3 2 5: 0.42, : 0.35, : 0.33A E E  

1X   1 2 1: 0.86, : 0.68, : 0.54C C F  4T   3 3 4: 0.58, : 0.65, : 0.42E A A  

2X   3 6 4: 0.55, : 0.48, : 0.42C C D  5T   5 6 7: 0.7, : 0.65, : 0.42A A E  

3X   4 1 4: 0.73, : 0.66, : 0.53C D F  6T   7 4 5: 0.7, : 0.65, : 0.42A E E  
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To verify the rationality of the parameter  in the 

comprehensive weight, we test the impact of different   

values on the model performance, as shown in Table Ⅶ. 

 
Table Ⅶ 

  COMPARISON INDICATORS OF DIFFERENT WEIGHT 

  Accuracy Recall F1-score 

0.3 0.92 0.93 0.93 

0.4 0.98 0.99 0.99 

0.5 0.94 0.90 0.92 

0.6 0.89 0.87 0.87 

 

To further verify the effectiveness of the proposed 

LiNGAM-HetGNN method in risk warning, we compare its 

performance with three traditional ML methods: Logistic 

Regression (LR), Support Vector Machine (SVM), and 

Random Forest (RF), as well as two widely adopted graph 

learning models: GCN and GAT. The experimental results 

are presented in Table Ⅷ. 

 
Table Ⅷ 

  COMPARISON INDICATORS OF DIFFERENT METHODS 

Model Accuracy Recall F1-score 

LR 0.64 0.90 0.87 

RF 0.61 0.87 0.75 

SVM 0.81 0.97 0.81 

GCN 0.83 0.85 0.83 

GAT 0.80 0.80 0.79 

LiNGAM-HetGNN 0.98 0.99 0.99 

 

As shown in Figure 8, LiNGAM-HetGNN achieves the 

best performance across three evaluation metrics, with 

Accuracy of 0.98, Recall of 0.99, and F1-score of 0.99, 

significantly outperforming all baseline methods. Notably, 

compared to the second-best GCN, our method improves 

F1-score by 16%. Although SVM achieves a comparable 

Recall, its F1-score remains relatively low at 0.81, indicating 

a higher false positive rate. In contrast, our method achieves 

high recall while demonstrates superior accuracy. 

The performance improvement can be attributed to two 

critical design components. First, the LiNGAM-based causal 

structure enables the model to explicitly capture the directed 

dependencies among risk events, thereby identifying 

potential propagation pathways and improving global 

reasoning capability of the model. Second, The HetGNN 

framework integrates features from heterogeneous entities 

types and relationships, thereby enriching node-level 

semantic representations and enhancing the accuracy and 

robustness of risk identification and assessment. 

Figure 9 compares the differences in node risk scoring 

across various methods. ML methods such as LR in Figure 

9(b) and RF in Figure 9(c) show dispersed score distributions, 

primarily concentrated in the range of 0.3 to 0.6. These 

methods fail to form distinct high-risk clusters, indicating 

limited ability to exploit the spatial correlations inherent in 

graph structures. Although SVM in Figure 9(d) demonstrates 

partial risk aggregation at specific nodes, the overall lack of 

spatial continuity indicates inadequate modeling of the 

topological dependencies. 

 

 
(a)                                                                                                               (b) 

 
(c)                                                                                                          (d) 

Fig.8. Iteration curves of different methods 
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(a)                                                                        (b)                                                                         (c) 

 

 
(d)                                                                       (e)                                                                         (f) 

Fig.9. Risk level scores by different methods 

 

As shown in Figure 9(a), the proposed method integrates 

the causal discovery with heterogeneous graph learning, 

significantly improving structural sensitivity and precision of 

node-level risk scoring. High-risk areas appear as well- 

connected clusters within the causal graph, accurately 

revealing potential risk propagation pathways in railway 

dispatching system. More importantly, the high-risk nodes 

identified by the model show strong spatial alignment with 

historical dispatching incidents, validating the interpretability 

and practical applicability of the model. 

E. Ablation Studies 

To validate the effectiveness of each core component in the 

proposed method, we conducted ablation studies to evaluate 

the impact of individual components on overall performance. 

The experimental results are summarized in Table Ⅸ. 

When the causal learning component is removed, the 

Recall and F1-score drop to 0.94 and 0.97, respectively, 

representing decreases of 5.1% and 2.0% compared to the full 

model. This decline indicates that the absence of causal 

discovery impairs the ability of model to identify risk events, 

making it difficult to accurately capture potential causal 

pathways in the dispatching process. By uncovering the 

structural causal dependencies among variables, LiNGAM

 provides more interpretable reasoning pathways, thereby 

improving the accuracy and credibility of risk warning. 

 
Table Ⅸ 

  COMPARISON INDICATORS OF DIFFERENT COMPONENTS 

Components Accuracy Recall F1-score 

No-LiNGAM 0.97 0.94 0.97 

No-HetGNN 0.72 0.75 0.61 

Full 0.98 0.99 0.99 

 

The exclusion of HetGNN component leads to an even 

more significant impact, as shown in Figure 10. Without the 

ability to incorporate heterogeneous information and model 

the graph structure information, the model relies solely on 

local node features. Consequently, Accuracy and Recall drop 

by 26% and 24%, respectively, and the F1-score plummets to 

0.61. These results underscore the essential role of HetGNN 

in integrating multi-source heterogeneous data and modeling 

risk propagation pathways across railway network. Given the 

inherent graph structure nature of railway dispatching system, 

where topological connections reflect geographic adjacency 

and operational routes, HetGNN enables global awareness of 

risk propagation by aggregating information from each node 

and its neighbors. 
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(a)                                                                                                               (b) 

 
(c)                                                                                                          (d) 

Fig.10. Iteration curve of ablation study 
 

In conclusion, the complete LiNGAM-HetGNN model 

integrates causal discovery with HetGNN. The former 

enhances causal reasoning and interpretability of the model, 

while the latter strengthens the representation of 

graph-structured data. This synergy leads to more accurate 

and reliable risk warning for railway dispatching system. 

The risk level scores are visualized in Figure 11. The 

complete model in Figure 11(a) exhibits a clear spatial 

clustering pattern, with risk scores highly correlated across 

nodes and demonstrating strong structural connectivity. This 

facilitates a distinct separation between high-risk and 

low-risk regions. Additionally, several clusters of critical 

nodes form continuous risk propagation pathways, indicating 

strong effectiveness of the model in causal pathways 

reasoning and structural pattern recognition. These findings 

confirm the effectiveness of the model in uncovering the 

underlying risk propagation mechanisms within the railway 

transport network. 

 

 
(a)                                                                        (b)                                                                         (c) 

Fig.11. Risk level scores of ablation study 
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When the causal learning component is removed in Figure 

11(b), the spatial coherence of risk scores is noticeably 

reduced. Connections among high-risk nodes become sparse, 

local connectivity weakens, and the continuity of risk 

propagation pathways is significantly disrupted. These 

results indicate that without causal structure modeling, the 

model struggles to accurately infer causal relationships 

among variables. Relying solely on HetGNN for features 

aggregation is insufficient to capture the deeper causal 

mechanisms underlying complex dispatching progress. 

Similarly, when removing HetGNN component in Figure 

11(c), the risk level scores map becomes highly fragmented. 

Inter-node risk correlations diminish significantly, resulting 

in scattered high-risk points and indistinct high-risk regions. 

Recognizable propagation pathways are nearly absent. These 

outcomes underscore the essential role of structural 

information modeling. Without leveraging the heterogeneity 

and topology of the railway network, risk identification 

performance of the model degrades substantially. In contrast, 

integrating HetGNN enables the model to capture global risk 

aggregation patterns by modeling interactions among diverse 

entity types and relationships, thereby improving structural 

sensitivity and interpretability. 

V. CONCLUSION 

This paper proposes a LiNGAM-HetGNN method to 

enhance early risk warning in railway dispatching system. By 

incorporating LiNGAM algorithm, the model effectively 

identifies asymmetric causal relationships among critical 

entities in incident data. It constructs a causal weight matrix 

of risk events, uncovering causal structures and modeling the 

risk propagation pathways within railway transport network. 

Compared with traditional ML methods, this method 

leverages data-driven causal discovery to uncover deep 

structural dependencies, thereby providing support for risk 

tracing and propagation analysis. 

In terms of model design, this work innovatively integrates 

GCN and GAT to construct the HetGNN framework tailored 

for multi-source and multi-typed data in railway dispatching. 

By capturing complex interactions among diverse node types 

and integrating causal discovery into HetGNN, the model 

significantly improves the identification of risk propagation 

pathways. This design enhances the interpretability and 

accuracy of risk assessment, while also facilitates an intuitive 

understanding of risk propagation mechanism. Furthermore, 

experimental results confirm that the proposed method 

consistently outperforms baseline models in terms of risk 

recognition, causal interpretability, and generalization, as 

validated through risk scoring and ablation studies. These 

advantages contribute to improved safety and more efficient 

decision-making in railway operations. 

Despite its demonstrated performance, this method has 

certain limitations. First, its effectiveness relies on the quality 

of input data, which may limit adaptability in complex or 

uncertain environments. Future research will explore the 

reinforcement learning to improve robustness to noise and 

data variability. Second, the computational cost of causal 

discovery and heterogeneous graph modeling limits real- 

time response. To address this, future work will focus on 

employing lightweight architectures to enhance deployment 

efficiency in large-scale systems. 
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