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Abstract—Cross-line Operation (CO) of multi-level rail transit 
effectively achieves resource sharing, functional 
complementarity, and promotes inter-level connectivity. 
Traditional transfer modes often struggle to meet cross-line 
passenger demand during peak hours. To address this problem, 
this paper constructs a passenger travel behavior choice model 
based on prospect theory and the nested Logit model (PT-NL). 
This model describes passenger decision-making mechanisms 
influenced by multiple attributes, including time, cost, and 
comfort. Decision variables, such as train operation frequency 
and turnback station location, are established. The optimization 
model incorporates constraints like passenger flow demand, 
departure frequency, and turnback capacity. Its objectives are 
minimizing passenger travel time and enterprise operating costs. 
Results show that compared to the transfer connection mode, 
the CO mode reduces cross-line passenger travel time by an 
average of 35.8 minutes. Furthermore, total passenger travel 
time decreases by 70.00%, and total enterprise operating costs 
drop by 66.87%. Additional analysis reveals a positive 
correlation between passengers' time value and their 
probability of choosing cross-line trains. High-time-value 
passenger groups show greater sensitivity to direct services, 
increasing their preference for cross-line trains. The proportion 
of rigid passenger flow impacts the optimization effectiveness of 
cross-line train departure frequency. When this proportion 
exceeds 0.6, the benefit of adding more cross-line trains 
gradually weakens. Based on these findings, a time-segmented 
differentiated scheduling strategy is proposed. This strategy 
prioritizes adding cross-line trains during periods dominated by 
rigid passenger flow. Conversely, during flexible passenger flow 
scenarios, frequency can be moderately reduced to optimize 
costs. This study provides theoretical support for the 
collaborative optimization of multi-level rail transit networks. 
 
Index Terms—Cross-line operation; Operation Plan; PT-NL; 
Passenger flow distribution; NSGA-   

 
Manuscript received May 21, 2025; revised August 21, 2025. 
This work was supported in part by the National Natural Science 

Foundation of China (No.72161024) and “Double-First Class” Major 
Research Programs, Educational Department of Gansu Province 
(No.GSSYLXM-04). 

Shuoyue Gao is a postgraduate student at School of Traffic and 
Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China. 
(e-mail: 18049395600@163.com). 

Changfeng Zhu is a professor at School of Traffic and Transportation, 
Lanzhou Jiaotong University, Lanzhou 730070 China (Corresponding 
author, phone: +86 189 1989 1566, e-mail: cfzhu003@163.com). 

Yunqi Fu is a doctoral candidate at School of Traffic and Transportation, 
Lanzhou Jiaotong University, Lanzhou 730070, China. (e-mail: 
13240002@stu.lzjtu.edu.cn). 

Jie Wang is a doctoral candidate at School of Traffic and Transportation, 
Lanzhou Jiaotong University, Lanzhou 730070, China. (e-mail: 
1009696615@qq.com). 

Linna Cheng is a doctoral candidate at School of Traffic and 
Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China. 
(e-mail: chengjj @163.com). 

Rongjie Kuang is a doctoral candidate at School of Traffic and 
Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China. 
(e-mail: kuangrj@126.com). 

I. INTRODUCTION 

RBANIAZTION continues to advance rapidly, and 
urban populations are expanding significantly. This 
trend has spurred regional coordinated development as 

a key strategy [1]. Within urban agglomerations and 
metropolitan areas, Multi-level Rail Transit Networks 
(MRTNs) have emerged as a primary driver for developing 
interconnected urban clusters [2]. MRTNs integrate various 
rail transit types. Unlike traditional single-level networks, 
MRTNs offer greater flexibility to adjust capacity. This 
flexibility helps meet passengers' diverse travel demands. 

However, coordinating multiple rail transit levels within 
MRTNs presents challenges. The high demands of 
operational organization increase the complexity of 
connecting and transferring between different modes [3]. 
Furthermore, as urban agglomerations grow and commuting 
distances extend, traditional transfer connection modes often 
fail to meet passenger needs, especially during peak hours. To 
address this, scholars have proposed the Cross-line Operation 
(CO) model [4]. This model aims to achieve functional 
complementarity and resource sharing across different rail 
transit levels. Crucially, CO breaks through traditional 
organizational boundaries. It enables seamless operation of 
trains across different standards. Existing research on CO 
primarily focuses on three key areas: 

First, studies address the connection problem within 
MRTNs. Considerable research exists on the spatial layout of 
rail transit hubs and transfer systems. This theoretical 
foundation is relatively mature. Research on transfer 
connection modes mainly concentrates on two aspects: 
transfer operation modes and transfer node location selection. 
For instance, Guo Dongbo et al. [5] tackled passenger 
transfer issues in same-platform scenarios. They proposed 
coordinated optimization of train schedules across multiple 
rail transit lines. Bandera and Lemer S [6], along with 
Saffarzadeh [7], investigated optimal airport transfer hub 
shapes. Their goal was minimizing passenger transfer 
walking distances, providing valuable insights for rail transit 
hubs. Regarding node selection, Eiichi Taniguchi, Michihiko 
Noritake et al. [8] optimized rail transit network design and 
transfer node placement. 

Despite this progress, existing transfer connection modes 
increasingly struggle to meet passenger demands as 
urbanization intensifies. Consequently, research has shifted 
towards the CO model. On CO feasibility, Peng Qiyuan et al. 
[9] identified five coordination models for regional 
multi-standard rail transit. They explored suitable models for 
different development stages. Wang Meng et al. [10] detailed 
key technologies for intercity trains crossing into metro lines. 
They also analyzed core CO implementation technologies. 
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Second, research tackles the construction of cross-line 
operation plans. Numerous scholars have examined operation 
schemes under CO conditions. For example, TANG et al. [11], 
[12] developed two mixed integer linear programming 
models. These models addressed cross-line train scheduling 
with and without capacity constraints. Yang et al. [13], [14] 
proposed a mixed integer nonlinear programming (MINLP) 
model. This model explored the benefits of cross-line express 
trains. Tang et al. [15] built an optimization model for 
cross-line train operation schemes from station classification 
and passenger flow allocation perspectives. Building on this, 
some researchers investigated co-optimizing cross-line 
operation with other factors using nonlinear models. Li et al. 
[16] created a MINLP model for co-optimizing train 
operation plans and stop times in cross-line mode. Chen et al. 
[17] considered dynamic passenger flow influence. They 
proposed a nonlinear model to minimize total train deviation 
and enhance passenger service quality. Shao et al. [18] 
developed an integrated optimization model. This model 
combined cross-line train schedules and stop schemes while 
considering resource allocation fairness. 

Third, studies focus on passenger travel choice behavior. 
As research advances, experts increasingly examine 
passenger choice behavior. Discrete choice models, 
particularly the MNL model, and expected utility models are 
widely used. For example, Xuan Di et al. [19] reviewed 
literature related to bounded rationality. Ma Shuhong [20] 
modeled passenger choice behavior by constructing a service 
train topological network. Yao Enjian et al. [21] developed a 
route selection model based on disaggregate theory. They 
introduced the concept of a transfer threshold. 

However, these studies typically assume passengers are 
fully rational decision-makers. In reality, passenger travel 
decisions are influenced by personal experiences, social 
factors, and economic conditions. Passengers cannot perceive 
all decision-making information, exhibiting bounded 
rationality characteristics. Therefore, many scholars have 
turned to Prospect Theory (PT) and Cumulative Prospect 
Theory (CPT). For instance, Li Xiaojing et al. [22] proposed 
a CPT-based commuter route choice model featuring two 
reference points. Li Ying et al. [23] developed a peak-hour 
commuter transfer behavior decision model using CPT. Han 
Baoming et al. [24] defined a generalized time cost 
calculation based on travel time and cost. They constructed a 
passenger route choice model using the PT-NL (Prospect 
Theory-Nested Logit) framework. Key value and weight 
functions are summarized in Table 1. 

Although prior research contributes to multi-level rail 
transit network optimization, most work concentrates on 

transfer connection modes. Further investigation into the CO 
model is lacking. Some studies on cross-line operation 
schemes exist, but they often assume complete passenger 
rationality. They also frequently overlook passengers' 
multi-attribute choice behavior characteristics. To address 
these gaps, this paper makes the following contributions: 

(i) We developed a passenger travel choice behavior model 
based on PT-NL. PT captures passengers' choice behavior 
under bounded rationality when selecting different trains. NL 
determines the probabilities of passengers choosing different 
travel modes. 

(ii) We established a multi-objective cross-line operation 
train scheme model. This model incorporates varying 
passenger time values. It minimizes passenger travel costs 
and enterprise total costs. Key constraints include passenger 
flow demand, train occupancy rates, departure frequencies, 
and turnaround station capacities. 

(iii) We designed a non-dominated sorting genetic 
algorithm. This algorithm rapidly screens non-dominated 
solutions. It then employs fuzzy logic to select the ideal 
solution. We also improved the traditional NSGA-II 
algorithm to obtain the optimal strategy set. 

The remainder of this paper is structured as follows: 
Section 2 analyzes passenger travel choice behavior under 
bounded rationality. Section 3 constructs the cross-line train 
operation plan model. Section 4 details the non-dominated 
sorting genetic algorithm. Section 5 presents a case study. 
Finally, Section 6 concludes the article. 

II. PROBLEM DESCRIPTION 

Consider a multi-level rail transit network denoted as 

1 2{ | , }TN TN TN  . This network contains two 

interconnected lines, denoted as { | , }S RL L L  . The set of 

stations along these lines is 1 2{ | , ,..., }i nx x x x x . Within this 

set, 1 2{ , ,..., ,..., }a mx x x x  represents stations belonging to line 

SL , and { ,..., ,..., }m b nx x x  represents stations belonging to 

line RL . These two lines physically connect at station mx . 

During peak hours, significant cross-line passenger flow 
occurs between the different lines. Passengers traveling 
across lines need to transfer at station mx . To mitigate the 

inconvenience caused by transfers for both passengers and 
operators, cross-line trains are operated. These trains run 
directly between station ax  on line SL  and station bx  on line 

RL . A schematic diagram of the lines is shown in Fig.1. 

TABLE I 
SUMMARY OF VALUE FUNCTIONS AND WEIGHT FUNCTIONS 

Value function Weight function 
Name Expressions Name Expressions 
Linear ( )v x x  Linear ( )p p   

Logarithmic ( ) ln( )v x a x   Power ( )p p   

Power ( ) av x x  Goldstein-Einhorn ( ) / ( (1 ))p sp sp p       

Quadratic 2( )v x ax bx   Tversky-Kahneman 
1

( ) / ( (1 ) )p p p p        

Bell ( ) axv x bx e   Prelec   (ln( ))( ) pp e


   

HARA ( ) ( )av x b x    Prelec   (ln( ))( ) s pp e


   
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Fig.1. Problem Description Diagram 
 

Trains are categorized into two types: local trains and 
cross-line trains. A local train operates solely within a single 
section of either line SL  or line RL . A cross-line train 

operates across both lines. We denote the local train on line 

SL  as S, the cross-line train as G, and the local train on line 

RL  as R. The formation sets for these three train types are 

1 2 3{ | , , }jB B B B B . Their operating frequency sets are 

1 2 3{ | , , }kF f f f f . All three train types follow an all-stop 

pattern. 
Based on the routing of these three train types, the lines are 

divided into 4 sections: 1D , 2D , 3D , and 4D . Specifically, 

1 [1, )D a , 2 [ , )D a m , 3 [ , )D m b , and 4 [ , )D b n . 

III. MODEL CONSTRUCTION 

A. Problem Assumptions 

(1) Assuming the passenger flow is stable and passengers 
can transfer at most once, without considering the situation of 
passenger congestion; 

(2) Assuming that within the scope of the study, the 
direction of passenger departure, the nature of the origin and 
destination points, and the OD passenger flow between 
stations remain unchanged; 

(3) Assuming all trains stop at stations, with a single route, 
fixed formation, and the same turnaround time. 

B. Constraint Analysis 

(1) Flow Conservation Constraint. To meet the passenger 
demand ijQ  for each OD pair, the sum of the passenger 

volumes allocated to all feasible travel modes must equal this 
demand. 

 h
ij ij

h H

q Q


  (1) 

Where, ijQ represents the total passenger flow volume from 

station i to station j. 
(2) Passenger Demand Constraint. The transport capacity 

provided by trains operating on any section must satisfy the 
total passenger demand on that section. 

1) In section 1 1[ , )aD x x . Only local train S  of line sL  

operates. Therefore, the transport capacity of local train S  
on line sL  must satisfy the maximum cross-section 

passenger flow demand in this section. 

  1 1 111

k n
i ij s sj kk a

q E f   
   (2) 

2) In section 2 a[ , )mD x x . Both local train S  of line sL  

and cross-line train G  operate. Therefore, the combined 
capacity of local train S  and cross-line train G  must satisfy 
the maximum cross-section passenger flow demand in this 
section. 

 1 1 1 2 21
( )

k n
i ij s s sj ka k m

q E f E f   
    (3) 

3) In section 3 [ , )m bD x x . Local train S  of line sL , 

cross-line train G , and local train R  of line rL  operate. 

Therefore, the combined capacity of local train S , cross-line 
train G , and local train R  of line rL  must satisfy the 

maximum cross-section passenger flow demand in this 
section. 

 1 1 1 2 2 3 31
( )

k n
i ij s s s r rj km k b

q E f E f E f 


 
     (4) 

4) In section 4 [ , ]b nD x x . Local train S  of line sL , 

cross-line train G , and local train R  of line rL  operate. 

Therefore, the combined capacity of local train S , cross-line 
train G , and local train R  of line rL  must satisfy the 

maximum cross-section passenger flow demand in this 
section. 

 1 1 1 2 2 3 31
( )

k n
i ij s s s r rj kb k n

q E f E f E f    
     (5) 

where: s  and r  represent the load factors for train S and 

train R, respectively;  ( =1,2)siE i  represent the fixed 

passenger capacities (persons) of train S and the cross-line 
train G, respectively; 3rE  represents the fixed passenger 

capacity (persons) of train R. 
(3) Departure Frequency Constraint. To ensure operational 

service levels, the departure frequency on each line must 
meet specific requirements. For lines sL  and rL , the 

combined frequencies of operating trains must satisfy the 
minimum headway constraint. Additionally, considering that 
passenger waiting times should not be excessive, the sum of 
the frequencies of the two train types must not fall below the 
minimum departure frequency for the line. 

1) For line sL . Both local train S  and cross-line train G  

operate. The sum of their frequencies must not exceed the 
line capacity cap

sN  of line sL . Furthermore, to prevent 

excessively long passenger waiting times, the sum of their 
frequencies must not fall below the minimum departure 
frequency for line sL . 

 cap
Smin 1 2 Sf f f N    (6)  

2) For line rL . Both local train R  and cross-line train G  

operate. The sum of their frequencies must not exceed the 
line capacity cap

rN  of line rL . Furthermore, to prevent 

excessively long passenger waiting times, the sum of their 
frequencies must not fall below the minimum departure 
frequency for line rL . 

 Cap
Rmin 2 3 Rf f f N    (7) 

where: cap
SN  and cap

RN  represent the line capacities of line sL  

and line rL , respectively; Sminf  and Rminf  represent the 

minimum departure frequencies for line sL  and line rL , 

respectively. 
(4) Operating Vehicle Quantity Constraint. To prevent 

excessively high operating costs, the number of vehicles put 
into operation must satisfy certain conditions. That is: 
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 1 21
1 1 2 2 maxmax{ , }

60 60
zh e

e e

L t V L
f B f B B

V V

    
       

 (8) 

1) Within routing range [1, ]m . Both local train S  and 

cross-line train G  operate. The maximum number of 
operating train S  and train G  must not exceed the 
maximum number of vehicle utilization maxB . 

 

21 2
1 1 2 2

22
3 3 max

( / ) ( / )
max{ , ,

60 60

(( / ) )
}

60

e zh e zh

e zh

L V t L V t
f B f B

L V t
f B B

    
      

    

 (9) 

2) Within routing range [ , ]a b . Local trains S and R, as well 

as cross-line train G , operate. The maximum number of 
operating trains (all three types) must not exceed the 
maximum number of vehicle utilization maxB . 

 3 22
3 3 2 2 maxmax{ , }

60 60
zh zh e

e e

L t L t V
f B f B B

V V

     
       

 (10) 

where: 1 2 3, ,L L L  represent the routing range lengths (km) of 

local train S, cross-line train G, and local train R, respectively; 

21 22,L L  represent the routing range lengths (km) of [ , ]a m  

and [ , ]m b , respectively; maxB  represents the maximum 

number of vehicle utilization (units); eV  represents the train 

operating speed (km/h);     denotes the ceiling function 

(rounding up). 
(5) Turn-back Station Capacity Constraint. To prevent 

frequent turn-back operations of cross-line trains at the 
turn-back station, a limit is imposed on their departure 
frequency. That is 

 2 2 min max

60
, ,  [ , ]i

zh

f f Z f f f
t

 
    
 

 (11) 

where: zht  represents the train turn-back time. 

To mitigate the impact of frequent cross-line train 
turn-backs on the capacity of the cross-line section, a 
minimum over-track section length N  must be ensured. That 
is 
 N a b N n     (12) 
where: N  denotes the ceiling function (rounding up); A is 
determined based on specific line conditions. 

(6) Cross-line Routing Range Constraint. To ensure 
cross-line trains turn back at appropriate stations, the location 
of the turn-back station must be constrained. That is 
 1     { , , , N }a m b n a m b n       (13) 

(7) Variable integer constraint 
 1 2 3, , , ,  f f f a b Z   (14) 

C. Objective Function Analysis 

(1) Analysis of Passenger Travel Time 

Passenger travel time includes in-vehicle time 
dT , waiting 

time 
wT , and transfer time 

zT . Waiting time 
wT  is expressed 

as 

 
w

1 60 30
{1,2,3}

2 v v

T v
f f

  = ，  (15) 

Where, 
vf  represents the departure frequency of the 

train;
1 2 3f f f、 、 respectively represent the operating 

frequencies (in pairs /h) of the train S, the cross-line train G, 
and the train R. 

Considering all trains operate under a station-stop pattern 
with unchanged parameters, in-vehicle time 

dT  remains 

constant. Therefore, only waiting time and transfer time are 
considered. Transfer time includes transfer walking time 

iw  

and transfer waiting time 
ie . Transfer time 

zT  is expressed as 

 z ( )  i iT e w a < i < b    (16) 

Where,  is the transfer penalty coefficient, describing 
physical exertion during transfers. 

To account for differences in passengers’ time value, a cost 
conversion weight   is introduced to convert travel expenses 

into time. The total passenger travel time T  is 

 
4 4

,w ,z
1 1

min( ( ) ( / ))od od od
o o

T T T a q z x
 

       (17) 

Where, ,wodT and ,zodT  denote the waiting time and transfer 

time for passengers traveling from zone o to zone d; odT  

represents the travel time from zone o to zone d;   is the cost 

conversion weight, reflecting passengers’ sensitivity 
differences to travel time and costs, set according to income 
and trip purpose; a is the daily working hours; q is the 
statutory working days; odz  indicates the travel cost from 

zone o to zone d;   is the annual per capita income. 
Assume a set of travel modes { | , }H h be cr , where cr 

and be denote passengers choosing cross-line trains and 
local-line trains, respectively. Considering passengers’ travel 
choices are influenced by factors such as time and cost, 
passengers’ time value ( )vot h  is introduced to convert time 

to cost. The generalized travel time h
odu  for choosing travel 

mode h between interval o and interval d is 
 

,w z( ) ( )h h h
od od odu T T vot h z     (18) 

Where, h
odz  is the monetary cost (yuan) of choosing travel 

mode h between interval o and interval d; ( )vot h  is the time 

value coefficient (yuan/min) for mode h. 
Considering the bounded rationality of passengers’ travel 

choices, prospect theory is introduced to characterize the 
choice probability. Passengers’ travel types are divided into 
rigid travel and flexible travel. A penalty coefficient   is 

introduced to characterize the time value of rigid travelers. 
Under flexible travel conditions, the travel time value 
function ( )h

odv u  for passengers choosing mode h from zone o 

to zone d is 

 
( )      ,

( )
( ) ,

o h o h
od od od odh

od h o o h
od od od od

u u u u
v u

u u u u



 

   
   

 (19) 

Where,  is the gain sensitivity coefficient 0 1   ;   is 

the loss sensitivity coefficient 0 1   ; is a 0-1 variable 

(1 if the passenger’s travel type is rigid, otherwise 0); o
odu  is 

the reference point for travel time. 
Let the proportion h

od  of passenger flow choosing travel 

mode h between zone o and zone d to the total flow serve as 
the actual probability in the weight function. The decision 
function ( )h

od   considering passenger behavior is 
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( )

( ) ,
(1 ) ( )

h
h od
od h h

od od



 

 
  

  
 

 
 (20) 

Where,  is the discrimination parameter;  is the 

attractiveness parameter. 

The probability h
odP  of passengers choosing travel mode h 

from zone o to zone d is 

 
exp(( ( ) ( )) / )

exp(( ( ) ( )) / )

h h
h od od

od H h h
od odh

U u
P

U u

  

  



 (21) 

Where,   indicates the correlation between travel modes, 
valued in [0,1]. 

Passenger travel types are classified as direct flow  , 
transfer flow  , and mixed flow  . The travel times for 
these three flow types , ,    are as follows: 

Direct flow   has only direct routes. The 
origin-destination zones are 1 1[ , ]D D , 2 2[ , ]D D , 3 3 [ , ]D D  and 

4 4[ , ]D D  . Direct flow   is shown in Fig.2. 

Type

11Q 22Q 33Q 44Q


1D 2D 3D 4D

 

Fig.2. Passenger Flow of Type   

33T , 22T , and 44T are respectively 

 
2 1

11
1 1 1

30a a

ij
i j i

T q
f

 

  

    (22) 

 
2 1

22 22 22
1 1 2

30 30
( )

m m
be cr

ij
i a j i

T q p p
f f

 

  

      (23) 

 
2 1

33 33 33
1 2 3

30 30
( )

b b
cr be

ij
i m j i

T q p p
f f

 

  

    (24) 

 
1

44
1 3

30n n

ij
i b j i

T q
f



  

    (25) 

Transfer flow  requires transfers. The origin-destination 

zones are 
1 3 1 4 2 4[ , ],  [ , ],  [ , ]D D D D D D  Transfer flow   is 

shown in Fig.3. 

Type

13Q 14Q


1D 2D 3D 4D

24Q
 

Fig.3. Passenger Flow of type   

14T , 13T , 24T are respectively 
1 1

13 13 13
1 1 3 1 2

30 30 30 30
( ( ) ( ))

a b
be cr

ij z
i j m

T q p p T
f f f f

 

 

      (23) 

 
1

14
1 1 3

30 30
(( ) )

a n
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Mixed flow   has both direct and transfer options with at 

most one transfer. The origin-destination zones are 
1 2[ , ]D D , 

2 3[ , ]D D , and
3 4[ , ]D D . Mixed flow   is shown in Fig.4. 
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Fig.4. Passenger Flow of type   
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(2) Enterprise operating cost function 
Transportation enterprise costs are divided into fixed costs 

and variable costs. Fixed costs consider only vehicle 
purchase costs and depreciation costs. Variable costs include 
expenses related to train operation volume. The fixed costs 

scZ  and rcZ  for lines SL  and RL are respectively: 

 sc 1 1 1 2 2 2( ) sZ f B T f B T C   (29) 

 rc 3 3 3 rZ f B T C  (30) 

Where, 1 2 3  B B B、 、  denote the fixed formation sizes (cars) of 

the three train types; 1 2 3,T T T,  represent the turnaround times 

of the three train types; sC  and rC  indicate the fixed vehicle 

costs per unit time (yuan) on lines Ls  and Lr . 

Turnaround time includes running time, dwell time, and 
turnback time. The turnaround times 1T , 2T , and 3T  for the 

three train types are: 
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Where, run
it is the running time (s) in section [i,i+1]; stop

it  is 

the dwell time (s) at station i; turnt is the turnback time (min) 

at turnback stations. 
The variable cost of trains is related to the number of 

kilometers traveled and the number of running pairs. The 
operating cost per unit kilometer of trains running on this line 
is calculated according to the standards of this line. Cross line 
trains are calculated according to the standards of this line Ls  

or Lr  within the scope of this line, and after crossing the line, 

they are calculated according to the standards of the line they 
cross. Therefore, the variable costs seZ and reZ of the line Ls  

and Lr  are respectively 
1 1 1

se 1 1 2 2 2 2
1

m m b

s i s i r i
i i a i m

Z f B e L f B e L f B e L
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Where, se and re  are the system operating costs per 

car-kilometer (yuan/car-km) on lines Ls  and Lr ; iL  is the 

station spacing (km) for section [i, i+1]. 
The total cost Z of the transportation enterprise is 

expressed as 
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 se re sc rcZ Z Z Z Z     (34) 

In summary, the dual objectives are to minimize total 
enterprise operating cost (Z1) and passenger travel time (Z2). 
That is: 

In summary, the objective functions are to minimize the 
total operating cost of the enterprise Z1 and minimize the 
travel time of passengers Z2. approach 

 re rc se sc1 min ( )Z Z Z Z Z Z      (35) 
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IV. ALGORITHM DESIGN 

The cross-line train operation plan model is a large-scale 
integer programming problem, and the computational 
complexity increases with the increase of the number of 
stations on the line. Based on the constructed cross line 
operation plan model, an improved Non dominated Sorting 
Genetic Algorithm (NSGA-II) is designed to optimize the 
model. Compared with traditional genetic algorithms, 
NSGA-II can efficiently obtain the Pareto optimal solution 
set for multi-objective optimization problems in a single run 
through non dominated sorting and diversity preservation 
mechanisms, overcoming the single objective limitations of 
traditional genetic algorithms. 

A. Algorithm steps 

Step 1: Chromosome encoding and population 
initialization. Each set of chromosomes corresponds to a 
development plan, and the decision variables of the model 

1 2 3, , , ,f f f a b jointly participate in chromosome encoding. 

Based on the characteristics of decision variables, this article 
adopts dual chromosome binary encoding. The first 
chromosome carries the frequency information of train 
operation at once, while the second chromosome carries the 
range information of cross line intervals. The location of the 
turnaround station is determined by analyzing the encoding 
of the second chromosome. The schematic diagram of 
chromosome encoding is shown in Fig.5. 

1 0 1 0 0 0 0 0 1 1 1 1 1 0 0

1 0 0 1 1 0 1 0 1 1 0 1 1 0 1

Chromosome 
coding

1f 2f 3f

a b

{

 
Fig.5. Schematic diagram of chromosome encoding 

Step 2: Fitness calculation. Directly using the objective 
function as the fitness function. 

Step 3: Fast non dominated sorting and crowding 
sorting. 

Using travel time cost and enterprise operating cost as 
fitness functions, calculate the fitness value corresponding to 
each individual, and stratify the population based on 
dominance relationships. The first layer is the optimal 
solution set of the existing population, which is the Pareto 
boundary. The next layer is a fast non dominated sorting, as 
shown in Fig.6. 

...

Current population

Fitness 
calculation

Non-dominated classification

Level 1

Level 2

Level n

 
Fig.6. Schematic diagram of non dominated sorting 

Step 4: Use crowding algorithm instead of fitness value 
in genetic algorithm to make the Pareto front as evenly 
distributed as possible, ensuring population diversity and 
forming a population cP . The c crowding degree of an 

individual refers to the c distance between two adjacent 
individuals in the target space. 
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[ 1] [ 1]
[ ] [ ] m m

d d
m m

L c L c
L c L c

Z Z

  
 


 (37) 

Where, max min,m mZ Z represent the m maximum and minimum 

values of the objective function value at the same level; 
[ ]dL c  represent s the c crowding level of an individual, with 

an initial value of 0; [ 1]mL c   represents the m value 1c  of 

the individual's 2th objective function; [ 1]mL c  Represents 

the m value 1c  of the individual's objective function. 

Start

Gen＞maxGen 

Selection, crossover, variation

NO

Yes

Calculate the fitness values of individuals in P(Gen), and 
perform fast non-dominated ranking and congestion 
degree calculation on P(Gen)

Set the evolutionary algebra Gen=0 and initialize the 
population P(Gen).

Binary tournament selection, crossover and mutation 
were conducted on P(Gen) to generate the 
corresponding offspring population Q(Gen).

Combine the populations P(Gen) and Q(Gen) to 
generate R(Gen), and calculate the fitness of 
individuals in population R(Gen)

Perform fast non-dominated ranking and congestion 
degree calculation on the population R(Gen)

Combined with the elite strategy, suitable individuals 
are selected from population R(Gen) to form the new 
generation population P(Gen+1).

Gen=Gen+1

End

 
Fig.7. NSGA-II algorithm flowchart 

Step 5: Genetic manipulation. 
According to the elite selection strategy, the excellent 

individuals from the parent generation are directly placed in 
the offspring to prevent them from being lost in mutation 
crossover and improve the accuracy of optimization results. 
New offspring populations are generated through selection, 
crossover, mutation, and other operations until the end 
condition is met, and genetic operations are stopped to retain 
the non-dominated solution set of the Pareto front. 
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Fig.8. Schematic diagram of cross line operation line

Step 6: Ideal solution screening method. Using fuzzy 
logic methods to screen ideal solutions. 

Firstly, calculate the i evaluation values of each 
candidate solution under the target i : 
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Where, min max,i iZ Z represents the i maximum and minimum 

values of the objective function value of the candidate 
solution in the Pareto solution set. 

Finally, the k evaluation value of the candidate solution 
in the Pareto solution set is calculated based on the target 
evaluation value [ ]k . The higher the evaluation value, the 

more ideal the corresponding candidate solution is. 
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i i
i j i
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    (39) 

Where, M  represents the target number; paretoN  represents 

the number of k solutions i in the Pareto solution set, and 
[ ]i k represents the evaluation value of the candidate 

solution for the 2th objective. The NSGA-II algorithm flow is 
shown in Fig 7. 

V. CASE STUDY 

There are 13 stations on a certain urban rail transit line 

SL and 16 stations on a suburban railway line RL . The 

subway stations and suburban railway stations are combined 

1 2 13{ , ,..., }S x x x and 13 14 27 28{ , ,..., , }R x x x x , the urban rail 

transit line and suburban railway line 13x operate across lines 

through junction stations. The per capita disposable income 
of citizens is 00818x   yuan/person, the working hours for 
one day are 480mina  , the statutory working 
days 250q d , and the penalty for passengers who are late 

for rigid travel is yuan 300B  , 1  . The parameters of the 

weight function under profit conditions 0.72,   =1.19  ; 

In the case of loss 0.76,   =1.21  , the time attribute 

conversion parameters 0.7hr
u  , congestion attribute 

conversion parameters 0.3hf
c  , the formation of different 

types of trains 1 2 7s s rB B B   , the fixed capacity of trains 

is 1460 people, the full load rate r 0.8s   , the 

turnaround time of trains at turnaround stations turn 4mint  , 

the minimum turnaround time interval zh 2mint  , and the 

passenger transfer travel time 0.5minhT  , 

SL = 32 km , RL = 28km . Selecting the research time as 

peak hours, the analysis of long-term peak hour passenger 
flow data is shown in Fig.8. The schematic diagram of the 
cross line operation route is shown in Fig.9. 
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(a) Full day cross-sectional passenger flow 
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Fig.9. Analysis of Long term Peak Hour Passenger Flow Data 
 

As shown in Fig 9, the distribution of inbound passenger 

flow time throughout the day follows a unimodal pattern, 

with significant morning peak characteristics. The 

SL morning peak period of the line is RL about 6:30-9:00, 

and the morning peak period of the line is about 7:00-9:00. 

The selected study time is 7:00-8:00. 

A. Model solution results 

Use the Python 3.9.13 programming platform to solve the 

problem, where the parameters of the NSGA-II algorithm are: 

population size 200M  , external storage quantity 100N  .  

The performance of the improved NSGA-II algorithm was 

compared with that of the traditional Genetic Algorithm (GA) 

and the traditional NSGA-II algorithm. The comparison of 

algorithm performance is shown in the table below. 
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Table 2 Algorithm Performance Comparison 

Metric GA Traditional NSGA-ΙΙ  Improved NSGA-ΙΙ  
Z2 28.4 8.3 8.1 
Z1 12.9 12.1 12.9 

Number of non-dominated solutions 1 22 38 
Convergence generation 300 500 350 
Constraint violation rate 41% 15% 0% 

Computation time (s) 120 380 420 

 
The iteration curves of the three algorithms are shown in 

Fig.11. 
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Fig.11. The iteration curves of the three algorithms 

As can be seen from Fig 11, the improved algorithm is 
significantly superior to the traditional algorithms. 
Comparatively, the improved algorithm converges faster, 
achieving convergence at 350 generations with a higher 
quality solution set. It obtains 38 non-dominated solutions, 
far more than both the traditional and classical algorithms, 
and exhibits stronger constraint satisfaction capability. 
Although the computation time is slightly higher than that of 
the traditional algorithm, it is exchanged for higher solution 
set quality and constraint satisfaction capability. Therefore, 
the effectiveness of the designed non-dominated sorting 
genetic algorithm is validated. The dual objective curve and 
Pareto front set are shown in Fig.12. 
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(b) Pareto frontier set 

Fig.12. Dual objective iteration curve with Pareto front set 

As can be seen from Fig 12, the bi-objective values 

converge at 350 generations. As the total passenger travel 

time increases, the total cost of the enterprise gradually 

decreases, showing a negative correlation. 

The enterprise total cost optimal solution, intermediate 

solution, and passenger travel time optimal solution were 

selected separately to further analyze the Pareto front. The 

Pareto images corresponding to these three special solutions 

are shown in Fig 13. The corresponding specific train 

operation plans are shown in Fig 14(a), 14(b), and 14(c) 

respectively. The optimal solution is shown in Fig 15. 
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Fig.13. shows the pareto frontier sets corresponding to the three special 
solutions 
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(a) The optimal solution for enterprise operating costs 
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(b) Intermediate solution 
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(c) The optimal solution for passengers' travel time 

Fig.14. The optimized train operation plan 
 

 
Fig.15. Optimized Train Operation Plan 

 
As shown in Fig. 14(a), the "optimal solution for enterprise 

operating costs" maximizes cost savings. This is achieved by 

reducing the operating frequencies of all three train types. It 

also shortens the cross-line section distance and decreases the 

number of cross-line train pairs. These measures are taken 

while ensuring a basic service level. However, this solution 

exhibited issues such as excessively low passenger service 

levels and poor passenger comfort. Under the cross-line 

operation mode, passenger travel distance is lengthened. 

Passenger comfort significantly impacts satisfaction. Clearly, 

this solution is only suitable for a transitional phase. This 

phase occurs when vehicle equipment and facilities are not 

yet fully equipped. It also applies when the organizational 

methods for cross-line operation are not yet mature. 

Fig. 14(b) illustrates the "intermediate solution." This 

solution is feasible. It maintains a certain service level while 

minimizing enterprise operating costs and passenger travel 

time as much as possible. It achieves a balance between 

minimizing total passenger travel time and total enterprise 

cost. 

Fig. 14(c) presents the "optimal solution for passenger 

total travel time." This solution aims to maximize passenger 

benefits. It is based on passenger preference for taking 

cross-line trains. It primarily reduces total passenger travel 

time. This reduction is achieved mainly by increasing the 

departure frequency of cross-line trains. Passenger ride 

comfort is also enhanced. However, this solution requires a 

large number of operational vehicles. Vehicle procurement 

costs are high. Line capacity for regional trains becomes 

constrained. 

Under unchanged passenger flow and other parameters 

during peak hours, Line SL  operated at a frequency of 17 

pairs/h pairs/h under the transfer connection mode. Line RL  
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operated at 12 pairs/h. The operation plans under the transfer 

connection mode and the cross-line operation mode were 

compared. A comparison of operation plans under these two 

modes is presented in Table 3. 

 
TABLE III 

COMPARISON OF OPERATION PLANS UNDER TWO OPERATING MODES 

operation 
scheme 

Z2/min  
Relative 
savings  

Z1/yuan  
Relative 
savings  

Transfer 
connection  

264691.76  -  390498.06  -  

Cross line 
operation  

83131.51 70.00%  129345.34 66.87% 

 
Table 3 shows that compared to the transfer connection 

mode, the cross-line operation mode saved 70.00% for Z1 

and 66.87% for Z2. This indicates the effectiveness of the 

cross-line operation plan. It effectively optimizes both 

passenger travel time and enterprise operating costs.  

To analyze the impact of the two operation modes on 

passenger travel time, the average travel times were 

compared. Comparisons were made for urban rail mainline 

passenger flow, suburban mainline passenger flow, and 

cross-line passenger flow. The comparison of average travel 

times for different passenger flow types is shown in Fig.16. 
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Fig.16. Comparison of average travel time for different types of passenger 
flow 
 

Fig.16. reveals that compared to the transfer connection 

mode, cross-line passenger flow travel time shortened under 

cross-line operation. The average saving was approximately 

35.8 minutes. However, the average travel time increased for 

urban rail mainline passenger flow. It increased by 9.6 

minutes. The average travel time also increased for suburban 

mainline passenger flow. It increased by 2.36 minutes. This 

indicates that cross-line operation can reduce travel time for 

cross-line passenger flow. However, it also leads to an 

increase in travel time for some local passenger flow. This 

increase is due to the reallocation of line resources. Therefore, 

actual operations should analyze passenger flow demand as 

needed. Line resources should be allocated reasonably. This 

ensures an overall improvement in transportation efficiency. 

B. Parameter analysis 

(1) Influence of ( )vot h  on Passenger Choice Probability 

h
ijP  

The complex mechanism between passenger time value 
and choice probability was explored. Taking the time value 

( )vot k  of passengers choosing cross-line trains as an 

example, the variation of k
ijP  under different values of 

( )vot k  was analyzed. The influence of time value on 

passenger choice probability is shown in Fig.17. 
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Fig.17. The Influence of Time Value on Passenger Choice Probability 
 

Fig.17. shows that the probability of passengers choosing 

cross-line trains is positively correlated with time value 

( )vot k . When ( ) 0.5vot k  , the probability reached its peak 

for passenger flows 2 3[ , ]D D  and 2 4[ , ]D D  choosing 

cross-line trains. This indicates their most urgent demand for 

cross-line trains. Consequently, operating cross-line trains is 

highly necessary when ( ) 0.5vot k   and significant 

cross-track passenger flow exists. When ( ) 0.5vot k  , the 
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probability of passengers choosing cross-line trains is 

relatively low. The demand for operating cross-line trains is 

also relatively small. In summary, operating cross-line trains 

can effectively meet passenger travel demands when 

passenger time value is high. It also improves transportation 

efficiency. In actual rail transit operation, cross-line train 

operation plans should be formulated reasonably. This should 

be based on passenger time value and passenger flow 

characteristics. The goal is to maximize operational benefits. 

(2) Influence of Rigid Passenger Flow Proportion on 

Operation Plan 

The proportion of rigid passenger flow was adjusted in 

steps of 0.1. The intrinsic relationship between this 

proportion and total passenger travel time Z2 was 

systematically analyzed. The relationship with cross-line 

train departure frequency 2f  was also analyzed. The 

influence of rigid passenger flow proportion on Z2 and 2f  is 

shown in Fig.18. 
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(a)Double Y curve chart of rigid passenger flow ratio 
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(b) Three-dimensional surface graph 

Fig.18. The impact of rigid passenger flow ratio on Z2 and 2f  

 

Fig.18 shows that as the proportion of rigid travel 

passenger flow increases, total passenger travel time Z2 

gradually decreases. In contrast, 2f  exhibits a nonlinear 

characteristic. It first rises rapidly and then stabilizes. 

However, when the ratio exceeds 0.6, the marginal benefit of 

2f  weakens. This weakening is due to constraints in line 

capacity and vehicle operation capacity. Therefore, the 

proportion of rigid travel passenger flow directly affects the 

departure frequency 2f  of cross-line trains. Planning the 

departure frequency of cross-line trains reasonably based on 

passenger travel demand is key. It is key to optimizing 

passenger travel time. 

(3) Fairness Analysis of Cross-line Operation 

The impact of operating cross-line trains on resource 

allocation under cross-line operation was analyzed. The 

travel time change   was defined as passenger travel time 

under the traditional transfer mode minus that under 

cross-line operation.   positive   indicates time savings 

from cross-line operation. A negative   indicates time loss 

caused by cross-line operation. The travel time change   for 

different passenger types in different travel zones was 

analyzed separately. Changes in travel time for different 
passenger flows in different zones are shown in Fig.19. 
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Fig.19. shows the changes in travel time of different passenger flows in 
different regions 
 

As shown in Fig.19, cross-line passenger flow experiences 

the most travel time savings due to cross-line operation, 

regardless of whether they are in the urban rail zone, 

cross-line zone, or suburban zone. Therefore, cross-line 

operation has a direct advantage, reducing transfer time, 

waiting time, etc., for passengers compared to the traditional 

transfer mode. Operating cross-line trains provides 

significant advantages for cross-line passenger flow. 

However, for urban rail local passenger flow, travel time to 

suburban areas increased by 2.3 minutes after operating 

cross-line trains. For suburban local passenger flow, travel 

time to cross-line areas increased by 1.1 minute. Therefore, a 

resource competition relationship exists between cross-line 

trains and local trains. Operating cross-line trains occupies 

resources originally allocated to local trains, leading to 

increased travel time for some local passenger flow. 
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To further analyze the fairness of cross-line operation, the 

Lorenz curve is used to calculate the Gini coefficient to 

measure the unfairness degree of passenger travel time 

changes. The cumulative proportion of time savings for each 

passenger under the cross-line operation mode is calculated. 

The Lorenz curve is shown in Fig.20. 
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Fig.20. Shows the changes in travel time of different passenger flows in 
different regions 

 
Fig.20 shows that the curve approaches 100% on the 

vertical axis at the 60% point on the horizontal axis. This 

indicates that time savings are highly concentrated among 

cross-line passenger flow. It also explains the curve's rapid 

rise. Meanwhile, the Gini coefficient is 0.118. This is far 

below the international warning line of 0.4. It indicates a 

balanced distribution of passenger time savings/losses under 

cross-line operation. Combined with Fig. 19, cross-line 

operation increases travel time for some local passenger flow. 

Overall, however, by reasonably distributing travel time 

losses and gains among passengers, serious unfairness in 

travel time between passenger flows is avoided. 

(4) The Impact of MA-CPT Model Parameters on 

Cumulative Prospect Value U 

The impact of the gain sensitivity coefficient, loss 

sensitivity coefficient, discrimination coefficient, and 

attractiveness coefficient on the comprehensive travel utility 

U is analyzed separately. The impact of MA-CPT model 

parameters on U is shown in Fig.21. 

As seen from Fig.21, the cumulative prospect value U 

increases with the increase of α and β. At the same time, it can 

be seen that the gain sensitivity coefficient α has a greater 

influence on the cumulative prospect value than the loss 

sensitivity coefficient β. This indicates that when the route 

travel time is less than the passenger's expectation, 

passengers tend to have a risk-averse mentality. Meanwhile, 

the cumulative prospect value U increases with the increase 

of σ, but decreases with the increase of ρ. It is evident that the 

discrimination parameter σ has a far greater impact on the 

cumulative prospect value than the attractiveness parameter 

ρ. 
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(a) The influence of the discrimination coefficient and the attraction 

parameter on U 
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(b) The influence of the gain sensitivity coefficient and the loss sensitivity 

coefficient on U 

Fig.21. The influence of NL-MA-CPT model parameters on travel utility 

Therefore, passengers pay more attention to "gaining time 

savings" than "avoiding losses," reflecting a gain preference 

orientation in decision-making. When optimizing services, it 

is necessary to focus on meeting the timeliness demands of 

high-α passengers (such as business commuters). Shortening 

waiting/transfer times can significantly improve their 

satisfaction. At the same time, passengers pay more attention 

to the actual travel time than psychological expectations. 

Operational strategies should focus on optimizing actual 

timeliness rather than psychological anchoring. 

(4) Impact Analysis of Cross-line Train Proportion 

To optimize the allocation of rail transit network resources 
while achieving the optimal balance between operational 
costs and service quality in meeting passenger travel 
demands, this study analyzes the impact of cross-line train 
operation frequency on both passenger travel time and 
enterprise operational costs. 

As seen from Fig.22. The line chart reveals a nonlinear 

relationship between cross-line train proportion and both 

operational costs (Z1) and passenger travel time (Z2). The 
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operational cost exhibits a monotonically increasing trend, 

rising from 389,000 CNY at 10% proportion to 446,000 CNY 

at 30%, after which it stabilizes. This indicates that increasing 

the cross-line train proportion incurs additional operational 

costs, with saturation occurring beyond 30%. In contrast, 

passenger travel time follows a more complex U-shaped 

curve. It decreases significantly from 234 minutes at 10% to 

168 minutes at 25% (a 28.2% reduction), then slightly 

rebounds to 172 minutes at 30%, and ultimately reaches 175 

minutes at 50%. This pattern suggests an optimal cross-line 

train proportion range (20%-30%) where passenger travel 

time is minimized. 
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(b) Departure Frequency Distribution of Different Train Types under 

Varying Cross-line Proportions 

Fig.22. Departure Frequency Distribution of Different Train Types under 
Varying Cross-line Proportions 
 

The departure frequency distribution illustrates the 

dynamic scheduling strategy for different train types under 

varying cross-line train proportions. The frequency of 

regional local trains first decreases from 16 pair/h at 10% to 

10 pair/h at 40%, then rebounds to 14 pair/h at 50%, 

reflecting adaptive resource allocation across operational 

modes. The cross-line train frequency generally increases 

from 8 pair/h at 10% to 14 pair/h at 30%, but experiences an 

anomalous drop to 10 pair/h at 40%, likely due to line 

capacity constraints. Meanwhile, the urban rail local train 

frequency remains stable at 12-14 pair/h, reinforcing its role 

as a foundational service. 

The two charts collectively validate the existence of an 

optimal cross-line train proportion range (20%-30%). Within 

this range, the system achieves minimized passenger travel 

time (~168-172 minutes) while maintaining acceptable 

operational costs (~417,000-446,000 CNY), aligning with 

the paper's core argument on the "optimal balance in resource 

allocation." The frequency adjustment strategy further 

demonstrates the model's intelligence. By dynamically 

reallocating regional local train resources to accommodate 

cross-line train demand while preserving urban rail service 

stability, the system optimizes overall efficiency. Notably, at 

30% cross-line train proportion, a balanced frequency 

distribution (regional local: 12 pair/h; cross-line: 14 pair/h; 

urban rail: 12 pair/h) coincides with near-minimal travel time, 

confirming the model's scheduling efficacy. Beyond 30%, 

despite higher cross-line train frequencies, passenger travel 

time shows no further improvement and even slightly 

deteriorates, while operational costs remain elevated. This 

phenomenon supports the paper's thesis on "diminishing 

marginal returns of cross-line train services," providing 

quantitative guidance for practical proportion-setting in 

operations. 

 

VI. CONCLUSION 

1) This study proposes the innovative application of the 

NL-MA-CPT theory to multi-level rail transit cross-line 

operation research. We developed an optimization model for 

cross-line train operation plans that integrates passengers' 

multi-attribute choice behaviors. The model reveals the 

complex mechanism of passenger flow allocation and 

operational resource coordination under bounded rationality. 

It provides a theoretical foundation for the collaborative 

optimization of multi-level rail networks. In practical 

applications, model parameters should be dynamically 

adjusted based on specific line characteristics to enhance 

adaptability. 

2) Compared to the transfer connection mode, the 

cross-line operation mode significantly reduces the average 

travel time for cross-line passenger flow by 35.8 minutes. It 

also lowers the total passenger travel time by 70.00% and 

reduces enterprise operating costs by 66.87%. 

3) The probability of passengers choosing cross-line trains 

is positively correlated with their value of time, with high 

time-value passenger groups exhibiting particularly strong 

demand for direct services. When the cross-line train 
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operation proportion reaches 30% (corresponding to 12 

trains/h for regional local trains, 14 trains/h for cross-line 

trains, and 12 trains/h for urban rail trains), passenger travel 

time approaches its optimal level. Beyond this threshold, 

further increases in cross-line services lead to diminishing 

marginal returns—travel time ceases to improve and may 

even deteriorate slightly, while operational costs continue to 

rise. Concurrently, when the proportion of rigid demand 

exceeds 0.6, the marginal benefits of increasing cross-line 

train frequency diminish significantly due to line capacity 

constraints. Consequently, priority should be given to 

augmenting cross-line train frequency during rigid 

demand-dominated periods, whereas frequency may be 

moderately reduced in flexible demand scenarios to optimize 

costs. Equity analysis demonstrates that while cross-line 

operations may marginally increase travel time for some local 

passengers, the overall distribution of time savings and losses 

across passenger groups remains balanced, effectively 

preventing significant inequities. 

4) Future research should focus on incorporating real-time 

passenger flow data. Building a time-varying parameter 

framework will enhance the adaptability of operation plans to 

sudden demand fluctuations. Exploring collaborative 

scheduling mechanisms between cross-line operation and 

other transportation modes could further improve the 

resilience of regional transportation networks. 
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