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Abstract—Cross-line Operation (CO) of multi-level rail transit
effectively achieves resource sharing, functional
complementarity, and promotes inter-level connectivity.
Traditional transfer modes often struggle to meet cross-line
passenger demand during peak hours. To address this problem,
this paper constructs a passenger travel behavior choice model
based on prospect theory and the nested Logit model (PT-NL).
This model describes passenger decision-making mechanisms
influenced by multiple attributes, including time, cost, and
comfort. Decision variables, such as train operation frequency
and turnback station location, are established. The optimization
model incorporates constraints like passenger flow demand,
departure frequency, and turnback capacity. Its objectives are

minimizing passenger travel time and enterprise operating costs.

Results show that compared to the transfer connection mode,
the CO mode reduces cross-line passenger travel time by an
average of 35.8 minutes. Furthermore, total passenger travel
time decreases by 70.00%, and total enterprise operating costs
drop by 66.87%. Additional analysis reveals a positive
correlation between passengers' time value and their
probability of choosing cross-line trains. High-time-value
passenger groups show greater sensitivity to direct services,
increasing their preference for cross-line trains. The proportion
of rigid passenger flow impacts the optimization effectiveness of
cross-line train departure frequency. When this proportion
exceeds 0.6, the benefit of adding more cross-line trains
gradually weakens. Based on these findings, a time-segmented
differentiated scheduling strategy is proposed. This strategy
prioritizes adding cross-line trains during periods dominated by
rigid passenger flow. Conversely, during flexible passenger flow
scenarios, frequency can be moderately reduced to optimize
costs. This study provides theoretical support for the
collaborative optimization of multi-level rail transit networks.

Index Terms—Cross-line operation; Operation Plan; PT-NL;
Passenger flow distribution; NSGA- 11
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I. INTRODUCTION

RBANIAZTION continues to advance rapidly, and

urban populations are expanding significantly. This

trend has spurred regional coordinated development as
a key strategy [1]. Within urban agglomerations and
metropolitan areas, Multi-level Rail Transit Networks
(MRTNSs) have emerged as a primary driver for developing
interconnected urban clusters [2]. MRTNs integrate various
rail transit types. Unlike traditional single-level networks,
MRTNs offer greater flexibility to adjust capacity. This
flexibility helps meet passengers' diverse travel demands.

However, coordinating multiple rail transit levels within
MRTNs presents challenges. The high demands of
operational organization increase the complexity of
connecting and transferring between different modes [3].
Furthermore, as urban agglomerations grow and commuting
distances extend, traditional transfer connection modes often
fail to meet passenger needs, especially during peak hours. To
address this, scholars have proposed the Cross-line Operation
(CO) model [4]. This model aims to achieve functional
complementarity and resource sharing across different rail
transit levels. Crucially, CO breaks through traditional
organizational boundaries. It enables seamless operation of
trains across different standards. Existing research on CO
primarily focuses on three key areas:

First, studies address the connection problem within
MRTNSs. Considerable research exists on the spatial layout of
rail transit hubs and transfer systems. This theoretical
foundation is relatively mature. Research on transfer
connection modes mainly concentrates on two aspects:
transfer operation modes and transfer node location selection.
For instance, Guo Dongbo et al. [5] tackled passenger
transfer issues in same-platform scenarios. They proposed
coordinated optimization of train schedules across multiple
rail transit lines. Bandera and Lemer S [6], along with
Saffarzadeh [7], investigated optimal airport transfer hub
shapes. Their goal was minimizing passenger transfer
walking distances, providing valuable insights for rail transit
hubs. Regarding node selection, Eiichi Taniguchi, Michihiko
Noritake et al. [8] optimized rail transit network design and
transfer node placement.

Despite this progress, existing transfer connection modes
increasingly struggle to meet passenger demands as
urbanization intensifies. Consequently, research has shifted
towards the CO model. On CO feasibility, Peng Qiyuan et al.
[9] identified five coordination models for regional
multi-standard rail transit. They explored suitable models for
different development stages. Wang Meng et al. [10] detailed
key technologies for intercity trains crossing into metro lines.
They also analyzed core CO implementation technologies.
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Second, research tackles the construction of cross-line
operation plans. Numerous scholars have examined operation
schemes under CO conditions. For example, TANG et al. [11],
[12] developed two mixed integer linear programming
models. These models addressed cross-line train scheduling
with and without capacity constraints. Yang et al. [13], [14]
proposed a mixed integer nonlinear programming (MINLP)
model. This model explored the benefits of cross-line express
trains. Tang et al. [15] built an optimization model for
cross-line train operation schemes from station classification
and passenger flow allocation perspectives. Building on this,
some researchers investigated co-optimizing cross-line
operation with other factors using nonlinear models. Li et al.
[16] created a MINLP model for co-optimizing train
operation plans and stop times in cross-line mode. Chen et al.
[17] considered dynamic passenger flow influence. They
proposed a nonlinear model to minimize total train deviation
and enhance passenger service quality. Shao et al. [18]
developed an integrated optimization model. This model
combined cross-line train schedules and stop schemes while
considering resource allocation fairness.

Third, studies focus on passenger travel choice behavior.
As research advances, experts increasingly examine
passenger choice behavior. Discrete choice models,
particularly the MNL model, and expected utility models are
widely used. For example, Xuan Di et al. [19] reviewed
literature related to bounded rationality. Ma Shuhong [20]
modeled passenger choice behavior by constructing a service
train topological network. Yao Enjian et al. [21] developed a
route selection model based on disaggregate theory. They
introduced the concept of a transfer threshold.

However, these studies typically assume passengers are
fully rational decision-makers. In reality, passenger travel
decisions are influenced by personal experiences, social
factors, and economic conditions. Passengers cannot perceive
all decision-making information, exhibiting bounded
rationality characteristics. Therefore, many scholars have
turned to Prospect Theory (PT) and Cumulative Prospect
Theory (CPT). For instance, Li Xiaojing et al. [22] proposed
a CPT-based commuter route choice model featuring two
reference points. Li Ying et al. [23] developed a peak-hour
commuter transfer behavior decision model using CPT. Han
Baoming et al. [24] defined a generalized time cost
calculation based on travel time and cost. They constructed a
passenger route choice model using the PT-NL (Prospect
Theory-Nested Logit) framework. Key value and weight
functions are summarized in Table 1.

Although prior research contributes to multi-level rail
transit network optimization, most work concentrates on

transfer connection modes. Further investigation into the CO
model is lacking. Some studies on cross-line operation
schemes exist, but they often assume complete passenger
rationality. They also frequently overlook passengers'
multi-attribute choice behavior characteristics. To address
these gaps, this paper makes the following contributions:

(i) We developed a passenger travel choice behavior model
based on PT-NL. PT captures passengers' choice behavior
under bounded rationality when selecting different trains. NL
determines the probabilities of passengers choosing different
travel modes.

(il) We established a multi-objective cross-line operation
train scheme model. This model incorporates varying
passenger time values. It minimizes passenger travel costs
and enterprise total costs. Key constraints include passenger
flow demand, train occupancy rates, departure frequencies,
and turnaround station capacities.

(iii)) We designed a non-dominated sorting genetic
algorithm. This algorithm rapidly screens non-dominated
solutions. It then employs fuzzy logic to select the ideal
solution. We also improved the traditional NSGA-II
algorithm to obtain the optimal strategy set.

The remainder of this paper is structured as follows:
Section 2 analyzes passenger travel choice behavior under
bounded rationality. Section 3 constructs the cross-line train
operation plan model. Section 4 details the non-dominated
sorting genetic algorithm. Section 5 presents a case study.
Finally, Section 6 concludes the article.

II. PROBLEM DESCRIPTION

Consider a multi-level rail transit network denoted as
Q={TN|TIN,,TN,} This network contains two

interconnected lines, denoted as I' = {L | Ly,L,} . The set of
stations along these lines is x = {x, | x,,x,,...,x, } . Within this
set, {x,,X,,...

L

S >

x,} represents stations belonging to line

s Xyseees

and {x,,...,x,,....X,} represents stations belonging to

line L, . These two lines physically connect at station x,, .
During peak hours, significant cross-line passenger flow
occurs between the different lines. Passengers traveling
across lines need to transfer at station x,,. To mitigate the
inconvenience caused by transfers for both passengers and
operators, cross-line trains are operated. These trains run
directly between station x, online L, and station x, on line

L, . A schematic diagram of the lines is shown in Fig.1.

TABLEI
SUMMARY OF VALUE FUNCTIONS AND WEIGHT FUNCTIONS
Value function Weight function
Name Expressions Name Expressions
Linear v(x)=x Linear z(p)=p
Logarithmic v(x) =In(a + x) Power z(p)=p’
Power v(x)=x" Goldstein-Einhorn z(p)=sp” I (sp” +(1-p"))
Quadratic v(x) = ax + bx’ Tversky-Kahneman z(p)=p"/(p"+(1-p) )
Bell v(x)=bx—e ™ Prelec 1 7(p)=e "
HARA V(x) =—(b+x)° Prelec 1I 7(p) = ey
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Fig.1. Problem Description Diagram

Trains are categorized into two types: local trains and
cross-line trains. A local train operates solely within a single
section of either line Ly or line L,. A cross-line train
operates across both lines. We denote the local train on line
L as S, the cross-line train as G, and the local train on line

L, as R. The formation sets for these three train types are
B={B,|B,,B,,B,} . Their operating frequency sets are
F={f.|/.f,,/;}. All three train types follow an all-stop
pattern.

Based on the routing of these three train types, the lines are
divided into 4 sections: D,, D,, D, and D,. Specifically,

D, =[l,a), D, =[a,m), D, =[m,b),and D, =[b,n).

III. MODEL CONSTRUCTION

A. Problem Assumptions

(1) Assuming the passenger flow is stable and passengers
can transfer at most once, without considering the situation of
passenger congestion;

(2) Assuming that within the scope of the study, the
direction of passenger departure, the nature of the origin and
destination points, and the OD passenger flow between
stations remain unchanged;

(3) Assuming all trains stop at stations, with a single route,
fixed formation, and the same turnaround time.

B. Constraint Analysis
(1) Flow Conservation Constraint. To meet the passenger
demand @, for each OD pair, the sum of the passenger

volumes allocated to all feasible travel modes must equal this

demand.
24=9, (1)
heH

Where, Q, represents the total passenger flow volume from

station i to station j.

(2) Passenger Demand Constraint. The transport capacity
provided by trains operating on any section must satisfy the
total passenger demand on that section.

1) In section D, =[x,,x,) . Only local train S of line L,
operates. Therefore, the transport capacity of local train S
on line L must satisfy the maximum cross-section

passenger flow demand in this section.

Y D4y <BELS, @)

1<k<a
2) In section D, =[x,,x, ). Both local train S of line L
and cross-line train G operate. Therefore, the combined
capacity of local train S and cross-line train G must satisfy
the maximum cross-section passenger flow demand in this

section.
k
py

a<k<m

>y SBAES+ELS) 3)

3) In section D, =[x, ,x,). Local train § of line L,

cross-line train G, and local train R of line L, operate.
Therefore, the combined capacity of local train S, cross-line
train G, and local train R of line L must satisfy the

maximum cross-section passenger flow demand in this
section.

Zle ijkﬂ 4; SP(EG S +E D+ BESf;, (B

ms<k<b
4) In section D, =[x,,x,]. Local train S of line L ,
cross-line train G, and local train R of line L operate.
Therefore, the combined capacity of local train S, cross-line
train G, and local train R of line L must satisfy the

maximum cross-section passenger flow demand in this
section.

Yo Y a4, SBAESAEL)BEL (5

b<k<n J
where: S, and S, represent the load factors for train § and
fixed

passenger capacities (persons) of train S and the cross-line
train G, respectively; E , represents the fixed passenger

r

train R, respectively; E, (i=1,2) represent the

capacity (persons) of train R.

(3) Departure Frequency Constraint. To ensure operational
service levels, the departure frequency on each line must
meet specific requirements. For lines L and L , the
combined frequencies of operating trains must satisfy the
minimum headway constraint. Additionally, considering that
passenger waiting times should not be excessive, the sum of
the frequencies of the two train types must not fall below the
minimum departure frequency for the line.

1) For line L . Both local train S and cross-line train G
operate. The sum of their frequencies must not exceed the
line capacity N of line L . Furthermore, to prevent
excessively long passenger waiting times, the sum of their
frequencies must not fall below the minimum departure
frequency for line L .

Ssmin S Ji+ Sy S NG™ (6)
2) For line L, . Both local train R and cross-line train G
operate. The sum of their frequencies must not exceed the
line capacity N of line L, . Furthermore, to prevent
excessively long passenger waiting times, the sum of their
frequencies must not fall below the minimum departure
frequency for line L .
Jomin S L+ f3 S NR” (7
where: N and N;* represent the line capacities of line L,
and line L , respectively; f.. and f.. represent the
minimum departure frequencies for line L and line L, ,

respectively.

(4) Operating Vehicle Quantity Constraint. To prevent
excessively high operating costs, the number of vehicles put
into operation must satisfy certain conditions. That is:
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L+t,-V L,
max{| ——< | f,B,,
{[ 60-, ]fl 1{60%

1) Within routing range [1,m] . Both local train S and

L‘ZBZ} <B,. (8

cross-line train G operate. The maximum number of
operating train S and train G must not exceed the
maximum number of vehicle utilization B__ .

max{[(lm /Ve)+tzh—|lel”7(L2 /I/e)+tzh—‘f‘232’

60 60 ©)
(L, V) +1,)
’7 60 —|f333}SBmax

2) Within routing range [a,b]. Local trains S and R, as well

as cross-line train G, operate. The maximum number of
operating trains (all three types) must not exceed the
maximum number of vehicle utilization B__ .

L3 L Lzz th'l
max = B , = = B,}<B 10
{’7 60V; —lfS 3 ’7 SOV; JFZ 2} max ( )

where: L, L,,L, represent the routing range lengths (km) of

local train S, cross-line train G, and local train R, respectively;
L,,,L,, represent the routing range lengths (km) of [a,m]

and [m,b] , respectively; B__ represents the maximum

max

number of vehicle utilization (units); V, represents the train
operating speed (km/h); [-| denotes the ceiling function
(rounding up).

(5) Turn-back Station Capacity Constraint. To prevent
frequent turn-back operations of cross-line trains at the

turn-back station, a limit is imposed on their departure
frequency. That is

2 {f—ﬂ,fz TRV VI

zh

(11)

where: ¢, represents the train turn-back time.

To mitigate the impact of frequent cross-line train
turn-backs on the capacity of the cross-line section, a
minimum over-track section length N must be ensured. That
is

N<a+b<N+n (12)
where: N denotes the ceiling function (rounding up); A is
determined based on specific line conditions.

(6) Cross-line Routing Range Constraint. To ensure
cross-line trains turn back at appropriate stations, the location
of the turn-back station must be constrained. That is

l<a<m<b<n {a,mbneN"} (13)
(7) Variable integer constraint
S Lo frrasbeZ” (14)

C. Objective Function Analysis

(1) Analysis of Passenger Travel Time

Passenger travel time includes in-vehicle time 7, waiting
time T,, and transfer time T,. Waiting time T, is expressed

as

LN LU

Y2,

Where, f represents the departure frequency of the

(15)

train;  f,, f,. f, respectively represent the operating

frequencies (in pairs /h) of the train S, the cross-line train G,
and the train R.

Considering all trains operate under a station-stop pattern
with unchanged parameters, in-vehicle time 7, remains

constant. Therefore, only waiting time and transfer time are
considered. Transfer time includes transfer walking time w,

and transfer waiting time ¢ . Transfer time 7 is expressed as
1 z

(16)

Where, 7 is the transfer penalty coefficient, describing

T, =t(e,+w,) Va<i<b

physical exertion during transfers.
To account for differences in passengers’ time value, a cost
conversion weight & is introduced to convert travel expenses

into time. The total passenger travel time 7 is

Tmin> S (T 4Ty )+ Eaq-2, /x)  (17)

o=l o=l

Where, T, ,and T,

od,z

denote the waiting time and transfer

time for passengers traveling from zone o to zone d; T,
represents the travel time from zone o to zone d; & is the cost
conversion weight, reflecting passengers’ sensitivity
differences to travel time and costs, set according to income
and trip purpose; a is the daily working hours; ¢ is the
statutory working days; z , indicates the travel cost from
zone o to zone d; Q) is the annual per capita income.
Assume a set of travel modes H = {&|be,cr}, where cr
and be denote passengers choosing cross-line trains and
local-line trains, respectively. Considering passengers’ travel
choices are influenced by factors such as time and cost,
passengers’ time value vot(h) is introduced to convert time

to cost. The generalized travel time u”, for choosing travel
mode / between interval o and interval d is
u', =(T! . +T,)-vot(h)+z!, (18)

od ,w
Where, ;" is the monetary cost (yuan) of choosing travel

mode / between interval o and interval d; vot(h) is the time
value coefficient (yuan/min) for mode 4.

Considering the bounded rationality of passengers’ travel
choices, prospect theory is introduced to characterize the
choice probability. Passengers’ travel types are divided into
rigid travel and flexible travel. A penalty coefficient g is

introduced to characterize the time value of rigid travelers.
Under flexible travel conditions, the travel time value
function V(”:d) for passengers choosing mode % from zone o

to zone d is
o h \a o h
h _ (uud _uud) ’uod 2 uod
Wity ) = h o \f o h
_Z(uud - uud ) - 80 : W’uod < uod
Where, « is the gain sensitivity coefficient 0<a <1 ; g is

(19)

the loss sensitivity coefficient 0 < # <1 ; is a 0-1 variable
(1 if the passenger’s travel type is rigid, otherwise 0); u_, is

the reference point for travel time.
Let the proportion ’7:',1 of passenger flow choosing travel

mode % between zone o and zone d to the total flow serve as
the actual probability in the weight function. The decision
function (5" ) considering passenger behavior is
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, o (17)"
w(’];d): > . >
(1- 770d) +O'(770d)
Where, o is the discrimination parameter; p is the

,p>1 (20)

attractiveness parameter.
The probability P! of passengers choosing travel mode 4

from zone o to zone d is

p U (5 )0(17,,)) 1 0) @1

T exp (Ul 16)
Where, 6 indicates the correlation between travel modes,
valued in [0,1].

Passenger travel types are classified as direct flow I,
transfer flow II, and mixed flow III. The travel times for
these three flow types I,II1II are as follows:

Direct flow 1 has only direct
origin-destination zones are[D,,D,],[D,,D,],

[D,,D,] . Direct flow I is shown in Fig.2.

routes. The
[D,,D,] and

Dl DZ D3 D4
. .-, .

o0on ® © @ A A H A A
Qu“' zz“.‘ Q{z" Q44~"'

Fig.2. Passenger Flow of Type I

Type 1

T, T,

o 1, and T, are respectively

a=2 a-l 30
TH=ZZ%'7 (22)
i=1 j=i+l

S e 30 o
Tzz—z ;lqg‘ p22 f1+ f)
b=2 b-1

T, = < j:Mqij Pcr :j,(z) P33 fs)
$ 3,2
i=b j=[+1qij f3

Transfer flow 17 requires transfers. The origin-destination
zones are [D,D,], [D,,D,], [D,,D,] Transfer flow y is

shown in Fig.3.

(23)

24)

(25)

D D D D

TypeIIQ..I.Q..AAAIAAA

Fig.3. Passenger Flow of type 11

L..T,

15> I, are respectively

30,30 30 30

Tl3 Pz . T 23
Flj:mq f f3) )28 (f1 fz)) (23)
Zi g ((@+;—°)+T> (24)

et 30 .30, .30 30
Tz4 - ij 24 _ Tz 25
;;q (ps; 7 f3) i fg)) (25)

Mixed flow 1y1 has both direct and transfer options with at
most one transfer. The origin-destination zones are | D,,D,],

[D,,D,],and[D,,D,]. Mixed flow 1y is shown in Fig.4.

D, D D D

2
Type ]I @ © ®H ©
Ql; ---------- T e "st e Q34
Fig.4. Passenger Flow of type 111
T,,1,,T, are respectively
atgcd 30 30 . 30
T, = q,(By - (——+—)+T)+B - —) (26)
12 £ jzz,; i 12 A 12 7
m=1 b-1 e 30 30 " 30
Ty =2.2.4;(By -(+)+T)+ B =) (27)
ia jom ho A />
bl 30 30 .30
Ly=2.2.4; (P -(+=)+T)+ R -—5)  (28)

A 1,

(2) Enterprise operating cost function
Transportation enterprise costs are divided into fixed costs
and variable costs. Fixed costs consider only vehicle
purchase costs and depreciation costs. Variable costs include
expenses related to train operation volume. The fixed costs
Z. and Z _ forlines Ly and L, are respectively:
Zsc =(_lelji +f‘232712)c1x (29)
Zrc = f?B3T3C) (30)
Where, B~ B,~ B, denote the fixed formation sizes (cars) of
the three train types; 7}, 7,,7, represent the turnaround times
of the three train types; C, and C, indicate the fixed vehicle
costs per unit time (yuan) on lines L_ and L, .

Turnaround time includes running time, dwell time, and
turnback time. The turnaround times 7;,7,, and 7, for the

three train types are:

m-1 £ stap
DI
Zz 1 i=2 ‘ ) !

+- (k=1,2,3 31
3600 60( ) GD

Where, £ is the running time (s) in section [i,i+1]; £ is

T, =

the dwell time (s) at station i is the turnback time (min)

> [Wn
at turnback stations.

The variable cost of trains is related to the number of
kilometers traveled and the number of running pairs. The
operating cost per unit kilometer of trains running on this line
is calculated according to the standards of this line. Cross line
trains are calculated according to the standards of this line L,

or L, within the scope of this line, and after crossing the line,
they are calculated according to the standards of the line they
cross. Therefore, the variable costs Z, and Z_ of the line L,

and L are respectively

m=1 m=1

fBeZL+szeZL +szeZL

i=m

(32)

Zrc :f‘SBBerzLi (33)

Where, e, and e are the system operating costs per

car-kilometer (yuan/car-km) on lines L and L, ; L, is the

station spacing (km) for section [7, i+1].
The total cost Z of the transportation enterprise is
expressed as
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Z=2 V2 +Z +Z, (34)

In summary, the dual objectives are to minimize total
enterprise operating cost (Z1) and passenger travel time (Z2).
That is:

In summary, the objective functions are to minimize the
total operating cost of the enterprise Z1 and minimize the
travel time of passengers Z2. approach

Zl=minZ=(Z +Z +Z +Z,) (35)

Z2=minT=min(Z4:Z4:TOd +$(a-q-z,/x) (36)

o=1 d=1

IV. ALGORITHM DESIGN

The cross-line train operation plan model is a large-scale
integer programming problem, and the computational
complexity increases with the increase of the number of
stations on the line. Based on the constructed cross line
operation plan model, an improved Non dominated Sorting
Genetic Algorithm (NSGA-II) is designed to optimize the
model. Compared with traditional genetic algorithms,
NSGA-II can efficiently obtain the Pareto optimal solution
set for multi-objective optimization problems in a single run
through non dominated sorting and diversity preservation
mechanisms, overcoming the single objective limitations of
traditional genetic algorithms.

A. Algorithm steps

Step 1: Chromosome encoding and population
initialization. Each set of chromosomes corresponds to a
development plan, and the decision variables of the model
fi» f55 15-a,b jointly participate in chromosome encoding.

Based on the characteristics of decision variables, this article
adopts dual chromosome binary encoding. The first
chromosome carries the frequency information of train
operation at once, while the second chromosome carries the
range information of cross line intervals. The location of the
turnaround station is determined by analyzing the encoding
of the second chromosome. The schematic diagram of
chromosome encoding is shown in Fig. 5.

f A A

< »le » »

olofo[t][t]t]:i]1]o]o

Chromf)some1 |0|1|0|0
codne tofoft|t]oft]o]t]t]o]t]1]o]1

€

< »

a b

Fig.5. Schematic diagram of chromosome encoding

Step 2: Fitness calculation. Directly using the objective
function as the fitness function.

Step 3: Fast non dominated sorting and crowding
sorting.

Using travel time cost and enterprise operating cost as
fitness functions, calculate the fitness value corresponding to
each individual, and stratify the population based on
dominance relationships. The first layer is the optimal
solution set of the existing population, which is the Pareto
boundary. The next layer is a fast non dominated sorting, as
shown in Fig.6.

® Level 1
. (@) .E) Level 2
Fitness >
calculation »
® O O Level n
O & @ O

Current population Non-dominated classification

Fig.6. Schematic diagram of non dominated sorting

Step 4: Use crowding algorithm instead of fitness value
in genetic algorithm to make the Pareto front as evenly
distributed as possible, ensuring population diversity and
forming a population P, . The c crowding degree of an
individual refers to the c distance between two adjacent
individuals in the target space.

Llc+1], —L[c-1],

Z -z

Where, Z7™,Z™ represent the m maximum and minimum

Lc), = L[c], + (37)

values of the objective function value at the same level;
L[c], represent s the c crowding level of an individual, with

an initial value of 0; L[c+1], represents the m value c¢+1 of
the individual's 2th objective function; L[c—1], Represents
the m value ¢ —1of the individual's objective function.

Set the evolutionary algebra Gen=0 and initialize the
population P(Gen).

Calculate the fitness values of individuals in P(Gen), and
perform fast non-dominated ranking and congestion
degree calculation on P(Gen)

|
' <

Binary tournament selection, crossover and mutation
were conducted on P(Gen) to generate the
corresponding offspring population Q(Gen).

Combine the populations P(Gen) and Q(Gen) to
generate  R(Gen), and calculate the fitness of
individuals in population R(Gen)

Perform fast non-dominated ranking and congestion
degree calculation on the population R(Gen)

Combined with the elite strategy, suitable individuals
are selected from population R(Gen) to form the new
generation population P(Gen+1).

| Selection, crossover, variation |

End

Fig.7. NSGA-II algorithm flowchart

Step 5: Genetic manipulation.

According to the elite selection strategy, the excellent
individuals from the parent generation are directly placed in
the offspring to prevent them from being lost in mutation
crossover and improve the accuracy of optimization results.
New offspring populations are generated through selection,
crossover, mutation, and other operations until the end
condition is met, and genetic operations are stopped to retain
the non-dominated solution set of the Pareto front.
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Finally, the k evaluation value of the candidate solution
in the Pareto solution set is calculated based on the target
evaluation value g[k]. The higher the evaluation value, the

more ideal the corresponding candidate solution is.
Npareto M

Where, M represents the target number

(39)

represents

pareta
the number of % solutions i in the Pareto solution set, and
u,[k] represents the evaluation value of the candidate

solution for the 2th objective. The NSGA-II algorithm flow is
shown in Fig 7.

V. CASE STUDY

There are 13 stations on a certain urban rail transit line
Lsand 16 stations on a suburban railway line L, . The
subway stations and suburban railway stations are combined
S={x,%,,..,x; and R ={x;,X,,..., Xy, X4} , the urban rail
transit line and suburban railway line x,, operate across lines
through junction stations. The per capita disposable income
of citizens is x = 81800 yuan/person, the working hours for
one day are ¢=480min , the statutory working
days g =250d , and the penalty for passengers who are late
for rigid travel is yuan B =300, £ =1. The parameters of the
weight function under profit conditions 6 =0.72, p=1.19;
In the case of loss § =0.76, p=1.21,

conversion parameters 9" =0.7 ,

the time attribute
congestion attribute
conversion parameters 8" = 0.3, the formation of different
types of trains B, = B, = B, =7, the fixed capacity of trains
the full load rate B =8 =0.8, the

turnaround time of trains at turnaround stations ¢

is 1460 people,
=4min,

turn

the minimum turnaround time intervaltz, =2min, and the
passenger 7,=05min ,
Ly =32km, L, =28km . Selecting the research time as

peak hours, the analysis of long-term peak hour passenger
flow data is shown in Fig.8. The schematic diagram of the
cross line operation route is shown in Fig.9.

transfer travel time
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(a) Full day cross-sectional passenger flow
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(b) Passenger flow of the entire section
Fig.9. Analysis of Long term Peak Hour Passenger Flow Data

—_ =

Passenger flow and number of people

As shown in Fig 9, the distribution of inbound passenger
flow time throughout the day follows a unimodal pattern,
with The

Lsmorning peak period of the line is L, about 6:30-9:00,

significant morning peak characteristics.

and the morning peak period of the line is about 7:00-9:00.
The selected study time is 7:00-8:00.

A. Model solution results

Use the Python 3.9.13 programming platform to solve the
problem, where the parameters of the NSGA-II algorithm are:
population size M =200, external storage quantity N =100.

The performance of the improved NSGA-II algorithm was
compared with that of the traditional Genetic Algorithm (GA)
and the traditional NSGA-II algorithm. The comparison of

algorithm performance is shown in the table below.
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Table 2 Algorithm Performance Comparison

Metric GA Traditional NSGA-II Improved NSGA-II
Z2 28.4 8.3 8.1
Z1 12.9 12.1 12.9
Number of non-dominated solutions 1 22 38
Convergence generation 300 500 350
Constraint violation rate 41% 15% 0%
Computation time (s) 120 380 420
The iteration curves of the three algorithms are shown in x10°
Fig.11. 14 o e Pareto points
2 K
'=30.0 °
E 12+ %
~ 275 o 8
— = o,
L 25.0 .
S0 . Eiot ‘q,
5 22.5 .* ‘Convergence point :350 g%nerations (N\]] %
8—420'0 ’ ‘Convergence point :500 generations 08 r ®
G
3175 \t._‘.'
E150 06 0...
: (1) @
g 12.5 1 1 1 1 1 I‘ ..., .
g 10.0 @ [mproved NSGA-II 8 10 12 14 16 18 20 22x10
> x = = = Traditional NSGA-TI Z1/yuan
g 73| Standard GA Y
ﬁ (b) Pareto frontier set
0 100 200 300 400 500 600 Fig.12. Dual objective iteration curve with Pareto front set

Number of iterations

Fig.11. The iteration curves of the three algorithms

As can be seen from Fig 11, the improved algorithm is
significantly superior to the traditional algorithms.
Comparatively, the improved algorithm converges faster,
achieving convergence at 350 generations with a higher
quality solution set. It obtains 38 non-dominated solutions,
far more than both the traditional and classical algorithms,
and exhibits stronger constraint satisfaction capability.
Although the computation time is slightly higher than that of
the traditional algorithm, it is exchanged for higher solution
set quality and constraint satisfaction capability. Therefore,
the effectiveness of the designed non-dominated sorting
genetic algorithm is validated. The dual objective curve and
Pareto front set are shown in Fig.12.

17 10 ‘ ‘

——— The total travel time of passengers
The total operating cost of the enterprise

x10
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€13

~

(@\]
N2

m
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0.8

S

200 300 400 500
Number of iterations

(a) Dual objective iterative curve

100

As can be seen from Fig 12, the bi-objective values
converge at 350 generations. As the total passenger travel
time increases, the total cost of the enterprise gradually
decreases, showing a negative correlation.

The enterprise total cost optimal solution, intermediate
solution, and passenger travel time optimal solution were
selected separately to further analyze the Pareto front. The
Pareto images corresponding to these three special solutions
are shown in Fig 13. The corresponding specific train
operation plans are shown in Fig 14(a), 14(b), and 14(c)
respectively. The optimal solution is shown in Fig 15.

x10
L4 0‘\ Z, =80056 e Pareto points
Z, =14689
e
12+
= %
é .~ Z, =129345
SRR ~."\/ Z, =83131
N
0.8 ° Z,=220156
\‘o..‘ Z, =41786
L LY
0.6 ®ecee o
L, Te%
8 10 12 14 16 18 20 22x10
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Fig.13. shows the pareto frontier sets corresponding to the three special
solutions
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Fig.15. Optimized Train Operation Plan

As shown in Fig. 14(a), the "optimal solution for enterprise
operating costs" maximizes cost savings. This is achieved by
reducing the operating frequencies of all three train types. It
also shortens the cross-line section distance and decreases the
number of cross-line train pairs. These measures are taken
while ensuring a basic service level. However, this solution
exhibited issues such as excessively low passenger service
levels and poor passenger comfort. Under the cross-line
operation mode, passenger travel distance is lengthened.
Passenger comfort significantly impacts satisfaction. Clearly,
this solution is only suitable for a transitional phase. This
phase occurs when vehicle equipment and facilities are not
yet fully equipped. It also applies when the organizational
methods for cross-line operation are not yet mature.

Fig. 14(b) illustrates the "intermediate solution." This
solution is feasible. It maintains a certain service level while
minimizing enterprise operating costs and passenger travel

time as much as possible. It achieves a balance between
minimizing total passenger travel time and total enterprise
cost.

Fig. 14(c) presents the "optimal solution for passenger
total travel time." This solution aims to maximize passenger
benefits. It is based on passenger preference for taking
cross-line trains. It primarily reduces total passenger travel
time. This reduction is achieved mainly by increasing the
departure frequency of cross-line trains. Passenger ride
comfort is also enhanced. However, this solution requires a
large number of operational vehicles. Vehicle procurement
costs are high. Line capacity for regional trains becomes
constrained.

Under unchanged passenger flow and other parameters
during peak hours, Line Lg operated at a frequency of 17

pairs/h pairs/h under the transfer connection mode. Line L,
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operated at 12 pairs/h. The operation plans under the transfer
connection mode and the cross-line operation mode were
compared. A comparison of operation plans under these two
modes is presented in Table 3.

TABLE III
COMPARISON OF OPERATION PLANS UNDER TWO OPERATING MODES
ti Relati Relati
operation 72/min c a Ve Zl/yuan € a 1ve
scheme savings savings
Transfer 264691.76 - 390498.06 -
connection
Cross line 83131.51 70.00% 129345.34 66.87%
operation

Table 3 shows that compared to the transfer connection
mode, the cross-line operation mode saved 70.00% for Z1
and 66.87% for Z2. This indicates the effectiveness of the
cross-line operation plan. It effectively optimizes both
passenger travel time and enterprise operating costs.

To analyze the impact of the two operation modes on
passenger travel time, the average travel times were
compared. Comparisons were made for urban rail mainline
passenger flow, suburban mainline passenger flow, and
cross-line passenger flow. The comparison of average travel
times for different passenger flow types is shown in Fig.16.

100 - [ Transfer connection I
Cross-line operation 358 440

=)
£ 2ol =
E 80 £
.5 o
= i Q
T 60F 20 &
g =
& 40 a
5] 10
>
< 20

0 -20

urban rail  Suburban rail  Cross-line
Passenger flow type

Fig.16. Comparison of average travel time for different types of passenger
flow

Fig.16. reveals that compared to the transfer connection
mode, cross-line passenger flow travel time shortened under
cross-line operation. The average saving was approximately
35.8 minutes. However, the average travel time increased for
urban rail mainline passenger flow. It increased by 9.6
minutes. The average travel time also increased for suburban
mainline passenger flow. It increased by 2.36 minutes. This
indicates that cross-line operation can reduce travel time for
cross-line passenger flow. However, it also leads to an
increase in travel time for some local passenger flow. This
increase is due to the reallocation of line resources. Therefore,
actual operations should analyze passenger flow demand as

needed. Line resources should be allocated reasonably. This
ensures an overall improvement in transportation efficiency.

B. Parameter analysis
(1) Influence of vot(h) on Passenger Choice Probability
h
Rj
The complex mechanism between passenger time value

and choice probability was explored. Taking the time value
vot(k) of passengers choosing cross-line trains as an

example, the variation of P[}‘ under different values of

vot(k) was analyzed. The influence of time value on

passenger choice probability is shown in Fig.17.
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Fig.17. The Influence of Time Value on Passenger Choice Probability

Fig.17. shows that the probability of passengers choosing
cross-line trains is positively correlated with time value
vot(k) . When vot(k) > 0.5, the probability reached its peak

and [D,,D,] choosing

cross-line trains. This indicates their most urgent demand for

for passenger flows [D,,D;]

cross-line trains. Consequently, operating cross-line trains is

highly necessary when vof(k)>0.5 and significant

cross-track passenger flow exists. When vot(k)<0.5, the
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probability of passengers choosing cross-line trains is
relatively low. The demand for operating cross-line trains is
also relatively small. In summary, operating cross-line trains
can effectively meet passenger travel demands when
passenger time value is high. It also improves transportation
efficiency. In actual rail transit operation, cross-line train
operation plans should be formulated reasonably. This should
be based on passenger time value and passenger flow
characteristics. The goal is to maximize operational benefits.

(2) Influence of Rigid Passenger Flow Proportion on
Operation Plan

The proportion of rigid passenger flow was adjusted in
steps of 0.1. The intrinsic relationship between this
proportion and total passenger travel time Z2 was
systematically analyzed. The relationship with cross-line
train departure frequency f, was also analyzed. The

influence of rigid passenger flow proportion on Z2 and f, is

shown in Fig.18.
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Fig.18. The impact of rigid passenger flow ratio on Z2 and f2

Fig.18 shows that as the proportion of rigid travel
passenger flow increases, total passenger travel time Z2
gradually decreases. In contrast, f, exhibits a nonlinear

characteristic. It first rises rapidly and then stabilizes.
However, when the ratio exceeds 0.6, the marginal benefit of
f, weakens. This weakening is due to constraints in line

capacity and vehicle operation capacity. Therefore, the
proportion of rigid travel passenger flow directly affects the
departure frequency f, of cross-line trains. Planning the

departure frequency of cross-line trains reasonably based on
passenger travel demand is key. It is key to optimizing
passenger travel time.

(3) Fairness Analysis of Cross-line Operation

The impact of operating cross-line trains on resource
allocation under cross-line operation was analyzed. The
travel time change O was defined as passenger travel time
under the traditional transfer mode minus that under
cross-line operation. U positive O indicates time savings
from cross-line operation. A negative U indicates time loss
caused by cross-line operation. The travel time change O for
different passenger types in different travel zones was
analyzed separately. Changes in travel time for different
passenger flows in different zones are shown in Fig.19.

50.0 B Cross-line passengers
501 ’ Passengers of the main line of the urban rail transit
Passengers of this suburban line
40.1
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=
= 30.1
E£30
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20¢
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10y 6.0
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Urban rail area Cross-line area Suburban area

Fig.19. shows the changes in travel time of different passenger flows in
different regions

As shown in Fig.19, cross-line passenger flow experiences
the most travel time savings due to cross-line operation,
regardless of whether they are in the urban rail zone,
cross-line zone, or suburban zone. Therefore, cross-line
operation has a direct advantage, reducing transfer time,
waiting time, etc., for passengers compared to the traditional
transfer mode. Operating cross-line trains provides
for cross-line passenger flow.
However, for urban rail local passenger flow, travel time to

suburban areas increased by 2.3 minutes after operating

significant advantages

cross-line trains. For suburban local passenger flow, travel
time to cross-line areas increased by 1.1 minute. Therefore, a
resource competition relationship exists between cross-line
trains and local trains. Operating cross-line trains occupies
resources originally allocated to local trains, leading to
increased travel time for some local passenger flow.
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To further analyze the fairness of cross-line operation, the
Lorenz curve is used to calculate the Gini coefficient to
measure the unfairness degree of passenger travel time
changes. The cumulative proportion of time savings for each
passenger under the cross-line operation mode is calculated.
The Lorenz curve is shown in Fig.20.
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Fig.20. Shows the changes in travel time of different passenger flows in
different regions

Fig.20 shows that the curve approaches 100% on the
vertical axis at the 60% point on the horizontal axis. This
indicates that time savings are highly concentrated among
cross-line passenger flow. It also explains the curve's rapid
rise. Meanwhile, the Gini coefficient is 0.118. This is far
below the international warning line of 0.4. It indicates a
balanced distribution of passenger time savings/losses under
cross-line operation. Combined with Fig. 19, cross-line
operation increases travel time for some local passenger flow.
Overall, however, by reasonably distributing travel time
losses and gains among passengers, serious unfairness in
travel time between passenger flows is avoided.

(4) The Impact of MA-CPT Model Parameters on
Cumulative Prospect Value U

The impact of the gain sensitivity coefficient, loss
sensitivity coefficient, discrimination coefficient, and
attractiveness coefficient on the comprehensive travel utility
U is analyzed separately. The impact of MA-CPT model
parameters on U is shown in Fig.21.

As seen from Fig.21, the cumulative prospect value U
increases with the increase of o and . At the same time, it can
be seen that the gain sensitivity coefficient a has a greater
influence on the cumulative prospect value than the loss
sensitivity coefficient . This indicates that when the route
travel time is less than the passenger's expectation,
passengers tend to have a risk-averse mentality. Meanwhile,
the cumulative prospect value U increases with the increase
of o, but decreases with the increase of p. It is evident that the
discrimination parameter ¢ has a far greater impact on the

cumulative prospect value than the attractiveness parameter
p.
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(a) The influence of the discrimination coefficient and the attraction

parameter on U

(b) The influence of the gain sensitivity coefficient and the loss sensitivity
coefficient on U

Fig.21. The influence of NL-MA-CPT model parameters on travel utility

Therefore, passengers pay more attention to "gaining time
savings" than "avoiding losses," reflecting a gain preference
orientation in decision-making. When optimizing services, it
is necessary to focus on meeting the timeliness demands of
high-a passengers (such as business commuters). Shortening
waiting/transfer times can significantly improve their
satisfaction. At the same time, passengers pay more attention
to the actual travel time than psychological expectations.
Operational strategies should focus on optimizing actual
timeliness rather than psychological anchoring.

(4) Impact Analysis of Cross-line Train Proportion

To optimize the allocation of rail transit network resources
while achieving the optimal balance between operational
costs and service quality in meeting passenger travel
demands, this study analyzes the impact of cross-line train
operation frequency on both passenger travel time and
enterprise operational costs.

As seen from Fig.22. The line chart reveals a nonlinear
relationship between cross-line train proportion and both
operational costs (Z;) and passenger travel time (Z>). The
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operational cost exhibits a monotonically increasing trend,
rising from 389,000 CNY at 10% proportion to 446,000 CNY
at 30%, after which it stabilizes. This indicates that increasing
the cross-line train proportion incurs additional operational
costs, with saturation occurring beyond 30%. In contrast,
passenger travel time follows a more complex U-shaped
curve. It decreases significantly from 234 minutes at 10% to
168 minutes at 25% (a 28.2% reduction), then slightly
rebounds to 172 minutes at 30%, and ultimately reaches 175
minutes at 50%. This pattern suggests an optimal cross-line
train proportion range (20%-30%) where passenger travel
time is minimized.
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(a) Impact of Cross-line Train Proportion on Operational Cost and Passenger
Travel Time
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Fig.22. Departure Frequency Distribution of Different Train Types under
Varying Cross-line Proportions

The departure frequency distribution illustrates the
dynamic scheduling strategy for different train types under
varying cross-line train proportions. The frequency of
regional local trains first decreases from 16 pair/h at 10% to

10 pair/h at 40%, then rebounds to 14 pair/h at 50%,

reflecting adaptive resource allocation across operational
modes. The cross-line train frequency generally increases
from 8 pair/h at 10% to 14 pair/h at 30%, but experiences an
anomalous drop to 10 pair/h at 40%, likely due to line
capacity constraints. Meanwhile, the urban rail local train
frequency remains stable at 12-14 pair/h, reinforcing its role
as a foundational service.

The two charts collectively validate the existence of an
optimal cross-line train proportion range (20%-30%). Within
this range, the system achieves minimized passenger travel
time (~168-172 minutes) while maintaining acceptable
operational costs (~417,000-446,000 CNY), aligning with
the paper's core argument on the "optimal balance in resource
allocation." The frequency adjustment strategy further
demonstrates the model's intelligence. By dynamically
reallocating regional local train resources to accommodate
cross-line train demand while preserving urban rail service
stability, the system optimizes overall efficiency. Notably, at
30% cross-line train proportion, a balanced frequency
distribution (regional local: 12 pair/h; cross-line: 14 pair/h;
urban rail: 12 pair/h) coincides with near-minimal travel time,
confirming the model's scheduling efficacy. Beyond 30%,
despite higher cross-line train frequencies, passenger travel
time shows no further improvement and even slightly
deteriorates, while operational costs remain elevated. This
phenomenon supports the paper's thesis on "diminishing
marginal returns of cross-line train services," providing
quantitative guidance for practical proportion-setting in
operations.

VI. CONCLUSION

1) This study proposes the innovative application of the
NL-MA-CPT theory to multi-level rail transit cross-line
operation research. We developed an optimization model for
cross-line train operation plans that integrates passengers'
multi-attribute choice behaviors. The model reveals the
complex mechanism of passenger flow allocation and
operational resource coordination under bounded rationality.
It provides a theoretical foundation for the collaborative
optimization of multi-level rail networks. In practical
applications, model parameters should be dynamically
adjusted based on specific line characteristics to enhance
adaptability.

2) Compared to the transfer connection mode, the
cross-line operation mode significantly reduces the average
travel time for cross-line passenger flow by 35.8 minutes. It
also lowers the total passenger travel time by 70.00% and
reduces enterprise operating costs by 66.87%.

3) The probability of passengers choosing cross-line trains
is positively correlated with their value of time, with high
time-value passenger groups exhibiting particularly strong

demand for direct services. When the cross-line train
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operation proportion reaches 30% (corresponding to 12
trains/h for regional local trains, 14 trains/h for cross-line
trains, and 12 trains/h for urban rail trains), passenger travel
time approaches its optimal level. Beyond this threshold,
further increases in cross-line services lead to diminishing
marginal returns—travel time ceases to improve and may
even deteriorate slightly, while operational costs continue to
rise. Concurrently, when the proportion of rigid demand
exceeds 0.6, the marginal benefits of increasing cross-line
train frequency diminish significantly due to line capacity
constraints. Consequently, priority should be given to

augmenting cross-line train frequency during rigid

demand-dominated periods, whereas frequency may be
moderately reduced in flexible demand scenarios to optimize
costs. Equity analysis demonstrates that while cross-line
operations may marginally increase travel time for some local
passengers, the overall distribution of time savings and losses
across passenger groups remains balanced, effectively
preventing significant inequities.

4) Future research should focus on incorporating real-time
passenger flow data. Building a time-varying parameter
framework will enhance the adaptability of operation plans to

sudden demand fluctuations. Exploring collaborative

scheduling mechanisms between cross-line operation and
other transportation modes could further improve the
resilience of regional transportation networks.
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