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Abstract—Driver state detection is essential for ensuring
traffic safety; however, current research is hindered by
limited generalization across datasets, inadequate exploration
of the spatio-temporal feature coupling inherent in multimodal
physiological signals, and model bias stemming from category
imbalance. This study introduces an innovative hybrid
framework that integrates graph signal processing, empirical
mode decomposition (EEMD), and topological decomposition
for feature extraction. Additionally, it incorporates generative
adversarial network (GAN) data augmentation within a 1D
CNN-BiGRU multimodal fusion architecture, which has been
validated across four diverse datasets. Experimental results
indicate that the average accuracies of individual signals
optimized through feature decomposition achieve 75.5% and
76.7% using traditional models (Decision Trees/K-Nearest
Neighbors), while these figures increase to 79.5% and
81.7% within the 1D CNN-BiGRU network. Notably, the
proposed 1D CNN-BiGRU model attains an impressive
accuracy of 98.1% on the Driver Stress dataset (PSY)
following multimodal fusion, significantly surpassing the
performance of comparative models (CNN: 90-94%, BiGRU:
94%, Transformer: 97%, TCN: 95%) and improving by
16% over the best unimodal results. Furthermore, the model
exhibits remarkable cross-domain generalization capabilities,
maintaining high accuracy levels exceeding 96% on non-driving
scenario datasets (CASE: 98%, DEAP: 96%, EmoWear: 97 %).
Through the implementation of global-local feature decoupling
and an adversarial data balancing mechanism, this study
establishes a novel paradigm characterized by both high
robustness and strong interpretability, effectively addressing the
challenges associated with multi-scene driver state detection.

Index Terms—Driving Behaviour Detection; Graph Signal
Processing; EEMD Decomposition; Topological Decomposition;
1D Convolutional Neural Network (1D CNN); Bidirectional
Gating Unit (BIGRU).

I. INTRODUCTION

The real-time classification of driver behavioral
states poses a significant challenge in the fields of
intelligent transportation and driver safety. Accurately
identifying driver states—such as fatigue, distraction,
and mood fluctuations—is essential for implementing
active safety systems and has the potential to substantially
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reduce the risk of traffic accidents [1], [2]. Although
existing research has demonstrated the effectiveness of
physiological signals—including electrodermal activity
(EDA), electrocardiogram (ECG), blood volume pulse
(BVP), and skin temperature (SKT)—in monitoring driver
states, there is still a need for enhancements in the efficiency
of deep feature extraction and multimodal fusion techniques.
Therefore, developing a robust, low-latency classification
system through advanced signal processing and optimized
model design is an urgent and critical challenge.

In recent years, researchers both nationally and
internationally have engaged in comprehensive investigations
into the recognition of driver states. Xiang et al.[3]
developed a multi-modal dataset (MMDE) that combines
facial expressions and physiological signals, demonstrating
an enhancement in emotion recognition accuracy of
11.28%. However, their study did not provide a thorough
examination of the spatiotemporal topological characteristics
of physiological signals. Lalwani et al.[4] introduced a
CNN-BiLSTM-BiGRU model for analyzing wearable sensor
data, achieving an impressive accuracy of 99.33% in human
activity recognition; nonetheless, their framework was
not tailored to the intricate temporal features inherent in
driving scenarios. Zaki et al.[5] proposed a hybrid deep
learning model, CBGA, which integrates CNN, bidirectional
gated recurrent units, and attention mechanisms, attaining
97.75% accuracy in multi-label classification for sentiment
analysis. However, this model primarily focused on text
classification and did not incorporate physiological signal
processing. Ma et al.[6] presented a method utilizing
Transformers and pseudo-label multi-task learning within
a digital twin framework (DDT), which significantly
enhanced the recognition of distracted behaviors, yet did
not fully leverage the multi-scale information available
from physiological signals. Wei et al.[7] introduced
an explainable recommendation algorithm based on
deep learning, employing Bi-LSTM and MCNN to
extract multi-dimensional features, resulting in a 1.57%
improvement in accuracy; however, their approach is
predominantly applicable to recommendation systems.
Chen et al.[8] and Ying et al.[9] demonstrated the benefits
of multimodal methodologies through the use of EEG
graph neural networks and audio-visual fusion models,
respectively. Nonetheless, the former relies on specialized
equipment, while the latter fails to account for the dynamic
correlations of physiological signals. Hu et al.[10] proposed
a hybrid model that combines CNN and Transformer
architectures to extract multi-scale spatiotemporal features
from EEG signals, achieving an accuracy of 91.26%
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in four-category emotion classification; however, this is
restricted to the single modality of EEG. Hong et al.[11]
attained an identification accuracy exceeding 86% through
an anomaly detection and multispectral imaging-based facial
expression recognition model (AF-MSI), but their focus was
primarily on facial visual features, lacking integration of
physiological signal data. In conclusion, existing research
continues to exhibit limitations concerning deep signal
representation, multimodal collaboration, and adaptability to
driving scenarios.

In recent years, novel methodologies such as graph
signal processing (GSP) [12]], topological decomposition,
and ensemble empirical modal decomposition (EEMD)
have emerged, providing advanced strategies for analyzing
physiological signals [13]. GSP is particularly effective in
capturing the spatial and topological relationships inherent
in physiological signals. When integrated with EEMD, it
enables the adaptive extraction of multiscale features from
nonstationary and non-smooth signals. Furthermore, the 1D
CNN-BiGRU network synergizes localized feature extraction
with long-term dependency modeling, thereby establishing a
robust framework for multimodal fusion. The combination of
these techniques has the potential to overcome the limitations
of conventional methods regarding feature representation
and model generalization.  This study presents a novel
framework in which Graph Signal Processing (GSP),
combined with topological decomposition, constructs a
dynamic graph representation of physiological signals.

Data preprocessing —

Additionally, Empirical Mode Decomposition (EEMD)
is employed to extract their multiscale intrinsic mode
components. Subsequently, a one-dimensional Convolutional
Neural Network-Bidirectional Gated Recurrent Unit (1D
CNN-BiGRU) network is utilized to integrate spatiotemporal
features, facilitating precise classification of driver states.
Experimental findings indicate that the proposed approach
significantly outperforms existing models across four
public datasets, achieving an improvement in classification
accuracy ranging from 6.5% to 12.3%. By elucidating
the intrinsic correlations between physiological signals
and driving behavior, this research contributes to the
theoretical advancement of multimodal fusion technology
and provides substantial support for real-time driving
safety warning systems, with significant implications for
engineering applications.

II. PROPOSED METHOD

This section presents a model for monitoring
driver conditions that employs a multimodal fusion
of spatiotemporal features derived from four distinct
physiological signals.

A. Driver Condition Monitoring Model Architecture

The comprehensive architecture of the driver state
monitoring model is illustrated in Figure 1. This
proposed model consists of two primary components:
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an advanced spatiotemporal feature extraction
module and a one-dimensional Convolutional Neural
Network-Bidirectional ~ Gated Recurrent Unit (1D
CNN-BiGRU) network. The initial module surpasses
conventional neural networks in accurately extracting
spatiotemporal features from the driver’s physiological
signals, while the latter is responsible for learning and
classifying various driver states.

B. Signal Pre-Processing

In the field of physiological signal processing, four distinct
types of signals—namely, electrodermal activity (EDA),
electrocardiographic signals (ECG), blood volume pulse
(BVP), and skin temperature (SKT)—exhibit significant
commonalities. These signals are derived from physiological
processes and encapsulate the intricate dynamics of
the autonomic nervous system. Furthermore, they are
particularly susceptible to noise and disturbances arising
from both physiological and environmental factors. Given
that these signals are typically acquired from complex
physiological systems, the raw data often contain various
forms of unwanted interference, including power-line noise,
baseline drift, physiological artifacts, and instrumental
noise. To address these challenges, we have developed a
comprehensive preprocessing pipeline.

Step 1: Data Quality Assessment. The integrity and
duration of the signal are rigorously evaluated to eliminate
samples that do not meet established minimum criteria,
thereby ensuring the reliability of subsequent analyses.
Samples containing fewer than a specified number of data
points (e.g., 20) are discarded to minimize the impact of
low-quality data on the overall analysis.

Step 2: Outlier Identification and Removal. Specialized
detection algorithms are employed to identify and eliminate
extreme values from the signals. This process effectively
removes isolated noise caused by sensor malfunctions,
human interference, or random variations, thereby
significantly enhancing the stability of the signal.

Step 3: Correction of Baseline Drift. A technique for
removing drift is implemented to eliminate low-frequency
oscillations and gradual signal drifts. This step is essential
for preserving critical signal characteristics and mitigating
long-term fluctuations caused by sensor bias, variations in
skin resistance, and other influencing factors.

Step 4: Noise Reduction and Signal Enhancement.
Initially, a low-pass filter is applied to reduce high-frequency
noise. Subsequently, signal normalization is performed using
zero-mean and unit-variance transformations to eliminate
discrepancies in scale between signals. Further smoothing
is achieved through Gaussian filtering, which mitigates
minor fluctuations while preserving essential signal features.
Finally, the signals are resampled to a standardized length,
ensuring consistency and reliability for feature extraction
and machine learning applications.

Step 5: Data Balancing. To address the issue of class
imbalance present in physiological signal datasets, we
implement a data-balancing strategy utilizing generative
adversarial networks (GANs). First, we determine the target
balanced sample size by dividing the total sample size by the
number of classes. Next, we apply random undersampling to

the majority class and develop a GAN model specifically
for the minority class to augment the dataset. The GAN
architecture consists of a generator and a discriminator; the
generator is responsible for producing realistic physiological
signal samples from a 128-dimensional latent space, while
the discriminator’s role is to distinguish between authentic
and generated samples. During the training process, we
incorporate label smoothing techniques, which involve
adding noise to real labels (0.9 + 0.1) to reduce the risk of
overfitting. Additionally, we implement a dynamic stopping
mechanism, whereby training is automatically halted when
the discriminator’s accuracy exceeds 95% or when the
disparity between the losses of the two networks falls
below 0.01, thereby preventing model collapse. The synthetic
samples generated are subsequently restored to their original
scale through inverse normalization and are randomly
assigned corresponding subject labels to ensure biological
validity. This procedure results in a complete balance
across all emotional categories, thereby establishing a robust
foundation for the training of subsequent classification
models.

This comprehensive preprocessing technique significantly
enhances the signal-to-noise ratio, resulting in a more reliable
dataset for the subsequent analysis and interpretation of
physiological signals.

C. Spatio-Temporal Feature Extraction Utilizing Graph
Signal  Processing, Topological Decomposition, and
Empirical Modal Decomposition.

In the field of physiological signal processing, traditional
neural network methods for feature extraction often fail
to sufficiently capture the complex intrinsic structures and
dynamic characteristics inherent in multimodal physiological
signals. This research introduces an innovative framework
that integrates graph signal processing, topological
decomposition, and empirical modal decomposition
techniques to enhance the depth and accuracy of signal
feature extraction. This improvement is accomplished
through the multidimensional characterization and fusion of
features.

Conventional methods for extracting features from
physiological signals exhibit significant limitations when
addressing non-stationary signals. These limitations are
primarily evident in the incomplete extraction of features
within the time-frequency domain and the inability to
model correlations between different signal modalities.
The proposed approach, which integrates graph signal
processing with Ensemble Empirical Mode Decomposition
(EEMD), effectively addresses these challenges through a
multi-scale spatio-temporal decoupling strategy. Specifically,
EEMD employs adaptive decomposition techniques to
break down complex non-stationary physiological signals
into multiple intrinsic mode functions (IMFs), with each
IMF representing signal components across various time
scales. This decomposition is independent of predefined
basis functions, allowing for the adaptive extraction of
intrinsic temporal patterns within the signal, effectively
distinguishing noise from useful information, and mitigating
the frequency leakage issues associated with traditional
Fourier transforms in the context of non-stationary signals.

Volume 55, Issue 10, October 2025, Pages 3425-3436



TAENG International Journal of Applied Mathematics

Concurrently, graph signal processing constructs a graph
network structure for multi-modal physiological signals,
utilizing graph Laplacian operators and graph filters to extract
topological features in the spatial domain, thereby capturing
cross-modal association patterns. The synergistic interaction
of these two methodologies facilitates a comprehensive
integration of spatio-temporal features: the IMF components
derived from EEMD are processed within the graph domain,
enabling each time scale of the signal to leverage spatial
topological information for enhanced feature extraction. This
collaborative mechanism not only preserves the temporal
dynamics of the signal but also fully capitalizes on the
spatial correlations among multimodal signals, resulting in
richer and more discriminative feature representations and
significantly improving the representation capabilities of
non-stationary physiological signals.
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Fig. 2. Spatio-Temporal Feature Extraction Module.

The spatiotemporal feature extraction module, as
illustrated in Figure 2, consists of four components: graph
feature extraction, topological feature extraction, EEMD
feature extraction, and the layers for feature selection and
integration. The procedural framework for developing the
spatiotemporal feature extraction module, which is based on
these methodologies, is outlined as follows:

Step 1: The initial phase involves utilizing the K-nearest
neighbor graph construction technique to derive a topological
structure graph from the signal. This process begins with
downsampling and smoothing the original signal using a
sliding window approach, resulting in a filtered signal
denoted as s(t). Subsequently, the signal is quantized with a
specified quantization step size @, expressed mathematically
as

sq(t) = round(sg)) Q (1)

The vertex set V is established based on the unique
values obtained after quantization. The K-nearest neighbor
algorithm is employed to calculate the Euclidean distances
between the vertices, defined as follows:

2

Thereby, the edge set E is constructed, forming an undirected
graph G = (V, E). Multiple global features are extracted
from the graph, including load centrality, which is calculated
as

o(s,tlv)

Crlv) = o(s,t)

>

s,teVv

3)

In this context, o(s,t) denotes the total number of shortest
paths between vertices s and ¢, while o(s,t|v) represents
the number of shortest paths that pass through vertex v.
Additional features include harmonic centrality, group count,
graph diameter, and graph radius. The connectivity analysis
of the graph improves the global characteristics of the feature
description, ensuring the connectivity of each graph. The
formulas for harmonic centrality, graph diameter, and graph
radius are expressed as follows:

1
Cu)= D o 4)
teV\v ’
D(G) = maxvd(u, v) ®)
R(G) = Hél‘I/l max d(u,v) (6)

Step 2: The second phase involves decomposing the
signal using a customized Ensemble Empirical Mode
Decomposition (EEMD) algorithm to extract intrinsic mode
functions (IMFs). Statistical features are then derived from
each IMF, including fundamental statistical metrics such
as mean, variance, peak count, and amplitude, defined as
follows:

A=max(IMF)—min(IMF) (7

Furthermore, three critical Hjorth parameters are computed:
activity, which quantifies signal energy; mobility, which
indicates variations in average frequency; and complexity,
which describes the spectral characteristics of the signal. The
relevant formulas are as follows:

Activity = 0® = var(IMF) (8)
- var(dIMF)
M =\
obility var(IMF) )

In instances where the Information Measure of Complexity
(IMF) is positive, entropy is also employed to assess
the uncertainty of the signal. Collectively, these features
encapsulate the diversity of the signal within the time
domain, with each feature reflecting distinct attributes
of the signal that are subsequently utilized for emotion
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classification tasks. The formulas for complexity and entropy
are presented as follows:

 Mobility(dIMF)
Compleaity = 2 iTity (IMF) (10)

Step 3: The final phase involves applying the discrete
Fourier transform to map physiological signals onto the
complex plane. The geometric boundary representation of
the signal is constructed using the Alpha Shape algorithm,
which facilitates the extraction of geometric features such
as the area of the convex hull and the perimeter of the
boundary. Feature standardization is performed using the
MinMaxScaler, and the valence and arousal parameters are
integrated for the classification of emotional states. This
integration enables multi-dimensional emotional recognition
that encompasses categories ranging from neutral to pleasant,
bored, relaxed, and fearful. The formulas for the discrete
Fourier transform and feature standardization are outlined as
follows:

_ i —j2nkn/N
X[k =) zlnle
=0

=

12)

3

T — Tmin

(13)

Tscaled =
Tmax — Tmin

Step 4: Implement feature selection algorithms, such as
the Anderson-Darling normality test, ReliefF, or Recursive
Feature Elimination (RFE), on the graph, features to identify
the most relevant dimensions for the classification task.
This process reduces feature redundancy, thereby enhancing
computational efficiency and model generalization while
preserving essential information.

Step 5: The refined graph features, along with temporal
features derived from deep learning techniques and
statistical features obtained through Empirical Mode
Decomposition (EEMD), are integrated to create a cohesive
temporal-spatial feature vector. This vector encapsulates both
temporal and spatial information, providing a comprehensive
representation of features for the subsequent classification
model.

By employing multi-scale and multi-dimensional feature
fusion, this approach preserves the intrinsic characteristics
of each modal signal while uncovering complex signal
patterns that conventional methods often overlook. This leads
to a more nuanced and discriminative characterization of
features, thereby enhancing the recognition and prediction
of physiological states.

D. Driver Monitoring Model Based on 1D CNN-BIGRU

The 1D CNN-BIGRU network module, as illustrated in
Figure 3, consists of a one-dimensional convolutional neural
network (CNN) layer, a bidirectional gated recurrent unit
(BIGRU) layer, and a feature fusion layer. The procedure
for constructing this network is outlined as follows:

Step 1: Specify the input and output variables of the
network. The input variables consist of feature-extracted

Dropout
Convolution
filter

~olf K

BIGRU
filter

Dense layer

Dense layer

Dropout Concatenate

Fig. 3. 1D Network Module Diagram of CNN-BIGRU.

signals from electrodermal activity (EDA), electrocardiogram
(ECG), skin temperature (SKT), and blood volume pulse
(BVP), each represented as distinct dimensions. The output
variables are multiclass classification labels that correspond
to various state categories. The input shape of the network
aligns with the dimensions of the features, while the output
reflects the classification results. The input is denoted as
X = {XEDA7 Xecae, XskT, XBVP}, and the output is
represented as Y € {1,2,...,K}.

Step 2: Utilize the StandardScaler method to normalize the
feature data. Each individual signal feature set is normalized
independently to achieve a mean of O and a standard
deviation of 1, thereby mitigating the disparity in magnitude
among the features. This normalization process enhances
the stability of the model and accelerates the speed of
convergence. The formula for normalization is as follows:

X —p
g

(14)

Xnormalized =

Step 3: Partition the normalized dataset into a training set
and a test set. The training set is used for model fitting, while
the test set is employed to evaluate model performance. The
train-test split methodology is implemented, allocating 80%
of the data to the training set and 20% to the test set. This
approach is designed to maintain the consistency of label
distribution, thereby enhancing the model’s generalization
performance.

| Xirain |= 0.8 | X |, ] Xtest |= 0.2 X | (15)

Step 4: Develop the specifications and processing
architecture of the neural network. Construct independent
subnetwork modules for each input signal, which should
include convolutional processing for Electrodermal
Activity (EDA) and Skin Temperature (SKT), as well
as bidirectional Gated Recurrent Unit (GRU) processing for
Electrocardiogram (ECG) and Blood Volume Pulse (BVP).
After aligning the features from the subnetworks, perform
high-level fusion through a fully connected layer. Finally,
incorporate a Softmax classification layer to generate the
prediction outcomes. The equations governing feature fusion
and the final output are represented as follows:

F = Concat(Fepa, Feca, Fsxr, Fpvp)  (16)

P(y|X) = Softmax(WF + b) (17)

Step 5: Finalize the training of the network and the
output of results. Utilize the cross-entropy loss function
in conjunction with the Adam optimizer for model
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training, while establishing a validation set to assess
model performance. Upon completion of the training
phase, evaluate the model using the test set, compute the
classification accuracy, and generate a classification report
that includes precision, recall, and the F1 score. The formulas
for the loss function and accuracy are outlined as follows:

K
L=-> y;log(t) (18)
i=1
| N
Accuracy = N ; I(y; = U;) (19)

In accordance with the modeling phase of the 1D
CNN-BIGRU network, the final outcome yields precise state
predictions.

III. EXPERIMENT

This section outlines the methodology used to examine
driver data and subsequently presents the findings of the
conducted experiments. The following subsections provide a
detailed account of the experimental framework, the dataset
employed, the design of the scenarios, and the analysis of
the results.

A. Dataset

The present study was conducted using the Kaggle online
data science platform. To validate our stress recognition
methodology, we utilized four representative physiological

signal datasets: DEAP [[14]], CASE [15]], EmoWear [16], and
Stress Recognition in Automobile Drivers [17].

The DEAP dataset, established in 2010, comprises
multimodal physiological data collected from 32 participants
who viewed 40 video clips. This dataset includes various
physiological signals, such as electroencephalography
(EEG), electromyography (EMG), electrocardiography
(ECG), and skin conductance response (SCR), thereby
offering a rich multidimensional resource for research
in affective computing. In contrast, the CASE dataset
emphasizes a comprehensive collection of multimodal
emotional signals, acquiring physiological data, including
EEG, heart rate variability, and skin conductance response,
from participants exposed to diverse stimuli within
meticulously designed experimental frameworks. This
highlights the breadth of research within the field of
affective computing. Furthermore, the EmoWear dataset
exemplifies the innovative use of wearable technology
for emotion recognition, as it captures physiological
indicators such as heart rate, skin conductance, and body
temperature through smart wearable devices, facilitating
continuous monitoring of emotional states in everyday
contexts. Lastly, the Stress Recognition in Automobile
Drivers dataset is specifically tailored for the identification
of stress in drivers, gathering critical physiological signals,
including electrocardiograms, skin conductance responses,
and respiratory rates, in real-world driving scenarios. This
dataset provides direct and precise data support for the
analysis of stress related to driving.
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Fig. 4. Emotional Comparative Analysis of Physiological Signals.
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B. Comparison Experiment

This study conducted a systematic examination of
electrodermal activity (EDA) signals to elucidate their unique
characteristics across various emotional states, specifically
neutral, pleasant, sad, angry, and fearful conditions. As
illustrated in Figure 4, EDA signals corresponding to
different emotional states reveal significant variations in their
temporal characteristics. A comparative analysis of signals
from multiple participants indicated that, despite individual
physiological baseline differences, the trajectories of signal
changes across emotional categories exhibited a high degree
of consistency among participants. Statistical evaluations
demonstrated that the amplitude of EDA responses during
pleasant and angry emotional states was significantly greater
than that observed in neutral conditions, while sad emotions
were associated with comparatively lower activation levels.
The mean curves, along with their standard error of the mean
(SEM) and standard deviation (SD) intervals, suggest that
EDA signals across different emotional states possess distinct
statistical characteristics, thereby establishing a physiological
basis for subsequent multimodal feature fusion.

To evaluate the reproducibility and stability of
electrodermal activity (EDA) signal measurements, this
study conducted a comprehensive analysis of multiple
repeated measurements from a single participant exposed
to identical emotional stimuli. Figure 5 illustrates the EDA
signal change patterns for this participant across neutral
(36 trials), pleasant (7 trials), sad (2 trials), and angry
emotional conditions. Statistical analysis reveals that the
standard error of the mean for signals across all emotional
categories remained within 0.001 pS, with a mean of 0.001
+ 0.001 wpS for the neutral state, 0.000 + 0.001 uS for
sadness (-0.002 = 0.000 uS), and anger (-0.001 + 0.000
1S). The high consistency observed in the multi-trial data
highlights the stability of the EDA signal acquisition system
and the effectiveness of the employed signal preprocessing
methods. Furthermore, it affirms the reproducibility of the
emotion-induced paradigm, thereby providing a robust data
foundation for subsequent pattern recognition algorithms.

Further statistical feature analysis of electrodermal activity
(EDA) signals elucidates the quantitative distinctions among
various emotional states. Figure 6a indicates that the
mean distribution range for each emotional category spans
from -3 to 3 wuS, with fear demonstrating the highest
mean response and sadness reflecting a negative shift. The
standard deviation analysis presented in Figure 6b reveals
that the signal variability for each emotional state ranges
from 0.988 to 0.998 uS, with fear and anger exhibiting
relatively high fluctuations. The mean-variability scatter plot
in Figure 6c illustrates the distribution patterns of different
emotions within a two-dimensional feature space, where each
emotional category forms relatively independent clustering
regions. Additionally, the signal range analysis depicted
in Figure 6d indicates that the dynamic range for each
emotional state is distributed between 3.0 and 5.0 uS, with
fear displaying the most extensive signal variation range.
These systematic differences in statistical features provide
a significant feature space for emotion recognition based
on EDA signals, further demonstrating the effectiveness
and feasibility of utilizing physiological signals in emotion

computing applications.
Figure 7 illustrates the characteristics of time-domain
waveforms for four physiological signals—electrodermal

activity (EDA), blood volume pulse (BVP),
electrocardiogram  (ECG), and skin  temperature
(SKT)—across three distinct emotional states: neutral,

happy, and sad. The findings reveal that these physiological
signals exhibit varying levels of sensitivity to emotional
states. Specifically, EDA signals show an increased baseline
during emotional activation, BVP signals display dynamic
patterns associated with different emotions, ECG signals
reflect emotion-dependent variations in heart rate variability,
and SKT signals maintain a relatively stable baseline with
emotion-specific alterations. These variations in waveform
characteristics establish a significant physiological basis for
recognizing emotions through multimodal approaches.

Figure 8 evaluates the efficacy of four physiological
signals in emotion classification from a statistical feature
analysis perspective. Panel (a) presents box plots that
indicate significant differences in the mean distributions
of each signal across various emotional states. Panel (b)
features histograms that illustrate the variability distributions,
revealing that skin temperature (SKT) signals exhibit
relatively concentrated variability characteristics. Panel
(c¢) includes a correlation matrix that demonstrates a
strong negative correlation between electrodermal activity
(EDA) and SKT (r = -0.94), as well as a positive
correlation between electrocardiogram (ECG) and SKT
(r = 0.71), highlighting the interdependent relationships
among different physiological systems. Panel (d) presents a
separability analysis, indicating that SKT signals exhibit the
highest discriminative capability for emotion classification
(separability = 1.75), followed by EDA signals (separability
= 1.17). These findings provide quantitative criteria for
feature selection in the development of emotion recognition
systems that utilize the fusion of multimodal physiological
signals.

In preliminary experiments, we employed three feature
extraction techniques—graph signal processing, topological
decomposition, and empirical mode decomposition
(EEMD)—in conjunction with conventional machine
learning classifiers, including k-nearest neighbors, decision
trees, and naive Bayes, to classify driver states. The
results indicate significant discrepancies in classification
performance across various datasets when different feature
extraction methods are utilized. Data obtained from
experiments conducted on the DEAP, CASE, EmoWear,
and Stress Recognition in Automobile Drivers datasets, as
illustrated in Table 1, highlight the performance metrics
of decision trees and k-nearest neighbors. It was noted
that the classification accuracy achieved through traditional
feature engineering and machine learning methodologies
was relatively modest, with the highest accuracy recorded
at only 68.5%. This observation suggests that reliance
on a single feature extraction technique and conventional
classifiers is insufficient for effectively capturing the
complex physiological signal patterns exhibited by drivers.

In light of the limitations associated with conventional
feature engineering and classification techniques, we
investigated the efficacy of neural networks for feature
extraction. By employing graph signal processing,
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TABLE I
TRADITIONAL CLASSIFICATION RESULTS AFTER THREE FEATURE
EXTRACTIONS FOR DIFFERENT SIGNALS

Signal Balanced Accuracy F1

EDA 0.753 (0.769) 0.663 (0.679)

ECG 0.756 (0.769) 0.676 (0.678)

BVP 0.755 (0.762) 0.672 (0.675)

SKT 0.755 (0.769) 0.677 (0.679)
topological ~ decomposition, and  empirical mode

decomposition (EEMD) in conjunction with convolutional
neural networks (CNNs) and bidirectional gated recurrent
units (BiGRUs), we present a comparative analysis of the two
neural network architectures in Table 2. The findings indicate
a significant enhancement in classification performance.
Specifically, the classification accuracy achieved through
various feature extraction techniques across different neural
network frameworks consistently surpasses that of traditional
machine learning approaches, with the highest recorded
accuracy reaching 75.3%. This outcome underscores the
advantages of neural networks in the domain of automatic
feature learning and extraction, while also highlighting the
substantial impact of physiological signal feature extraction
methods on classification efficacy.

TABLE 1T
NEURAL NETWORK CLASSIFICATION RESULTS AFTER THREE FEATURE
EXTRACTIONS FOR DIFFERENT SIGNALS

Signal Balanced Accuracy F1

EDA 0.765 (0.781) 0.658 (0.676)
ECG 0.763 (0.775) 0.656 (0.685)
BVP 0.765 (0.786) 0.662 (0.674)
SKT 0.764 (0.781) 0.673 (0.686)

To enhance the precision of driver state recognition,
we propose a novel feature fusion strategy. This
approach involves the parallel integration of three feature
extraction techniques: graph signal processing, topological
decomposition, and empirical mode decomposition (EEMD).
These techniques are subsequently combined with a hybrid
architecture that includes a one-dimensional convolutional
neural network and a bidirectional gated recurrent unit
(1D CNN-BiGRU). Our findings indicate that this fused
feature extraction method significantly improves the
accuracy of driver state recognition, achieving an accuracy
rate of 82.7% across four datasets. This represents a
substantial enhancement in performance compared to
individual feature extraction methods and conventional
classification techniques. The synergistic combination of
parallel multi-feature extraction and deep learning models
offers a promising new methodology for analyzing complex
physiological signals.

C. Analysis of Results

This research has made significant advancements in
the field of driver state recognition by utilizing a
combination of multi-signal feature extraction techniques
and deep learning methodologies. The experimental findings,

as illustrated in Table 3, highlight the exceptional
performance of the proposed 1D CNN-BiGRU network
across four publicly available datasets. In comparison
to traditional machine learning approaches, such as
decision trees, k-nearest neighbors, and naive Bayes,
our model demonstrates a substantial improvement in
accuracy. Furthermore, the superiority of this method is
supported by a comparative analysis with contemporary
mainstream deep learning architectures. Specifically, when
compared to a standalone CNN architecture, our approach
achieves accuracy improvements of 6%, 6%, 6%, and
13% on the CASE, DEAP, PSY, and EMO datasets,
respectively. In comparison to the BiGRU network, the
accuracy enhancements are 2%, 3%, 4%, and 11%,
respectively. Importantly, comparative experiments with
the currently prevalent Transformer architecture reveal
that, despite the theoretical advantages of Transformers
in sequence modeling, the proposed 1D CNN-BiGRU
fusion architecture demonstrates superior adaptability and
stability in multimodal physiological signal processing tasks,
outperforming the Transformer model by an average margin
of 2 to 4 percentage points across the four datasets. These
comparative results validate the effectiveness of multi-signal
feature extraction and innovative deep-learning network
architectures, while also emphasizing the importance of
architecture optimization tailored to specific application
contexts.

In comparison to temporal convolutional networks
(TCNs), which have demonstrated remarkable efficacy in
modeling time-series data in recent years, the methodology
presented in this paper offers significant advantages.
Specifically, it achieves a 5% improvement in accuracy on the
CASE and DEAP datasets, a 1% increase on the PSY dataset,
and a 7% enhancement on the EMO dataset. Although
TCNs possess commendable parallelization capabilities and
effectively manage receptive fields to address long-term
dependencies, their performance is inferior to the proposed
1D CNN-BIGRU architecture, particularly in the context of
the complex feature fusion task associated with multimodal
physiological signals. These comparative findings validate
the effectiveness of multi-signal feature extraction and the
innovative deep learning network architectures employed,
while also highlighting the importance of optimizing
architectural design for specific application contexts.

Figure 9 presents the confusion matrix for driver state
detection on the DRIVEDB dataset, which encompasses
three categories: normal state (0.0), mild fatigue (1.0), and
severe fatigue (2.0). The model accurately predicted 200,145
samples in the normal state category, 755,663 samples in the
mild fatigue category, and 341,370 samples in the severe
fatigue category. These outcomes provide valuable insights
for future model optimization efforts.

The technological advancements presented in this
study primarily stem from the synergistic optimization of
several critical components. Initially, the representation of
physiological signals was enhanced through the application
of sophisticated extraction methodologies, including graph
signal processing, topological decomposition, and empirical
mode decomposition (EEMD). The multidimensional
integration of physiological signals—specifically
electrodermal activity (EDA), electrocardiogram (ECG),
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TABLE III
RESULTS OF SPATIO-TEMPORAL FEATURE EXTRACTION IN FIVE NEURAL NETWORKS

Model CASE DEAP DRIVEDB EMOWEAR
CNN 0.92 (0.90) 0.92 (0.94) 0.92 (0.92) 0.84 (0.79)
BIGRU 0.96 (0.94) 0.95 (0.91) 0.94 (0.90) 0.86 (0.83)
Transformer 0.95 (0.96) 0.94 (0.94) 0.97 (0.96) 0.92 (0.93)
TCN 0.93 (0.94) 0.91 (0.95) 0.95 (0.96) 0.89 (0.9)
1D CNN-BIGRU 0.98 (0.95) 0.98 (0.96) 0.98 (0.96) 0.97 (0.94)
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Fig. 9. Confusion Matrix.
blood volume pulse (BVP), and skin temperature

(SKT)—produces a more comprehensive and discriminative
set of input features for the model. Furthermore, the
architecture of the 1D CNN-BiGRU network effectively
combines the local feature extraction strengths of
convolutional neural networks with the long-range
dependency modeling capabilities of bi-directional gated
recurrent units. This integration enables the model to
more accurately discern the intricate patterns present in
driver physiological signals. Additionally, the joint training
conducted on four distinct datasets significantly enhances
the model’s generalization capacity and robustness, thereby
providing substantial technical support for the recognition
of driver states across various scenarios.

IV. CONCLUSION

This study presents a novel method for detecting
driver behavior states that integrates spatiotemporal feature
extraction with a one-dimensional convolutional neural
network and bidirectional gated recurrent unit (1D
CNN-BiGRU) model, with the goal of enhancing driving
safety. The approach employs three distinct feature extraction
techniques to effectively capture complex data relationships,
thereby improving the representation of both local and
global signal characteristics and facilitating the identification
of changes in driver states. To classify a range of
driver behaviors and emotional responses, a neural network
architecture that combines 1D CNN with BiGRU has
been developed. This network utilizes various features and

[a]
o
c
=]
=

structural components, including deep convolution, feature
fusion, and attention mechanisms, to achieve an optimal
balance between complexity and accuracy. The robustness
of the proposed method is strengthened by the use of
multiple datasets, which encompass both dynamic and
static emotional states, as well as diverse data types for
activity classification. Simulation results demonstrate that
the proposed deep learning model outperforms existing
alternatives in terms of reducing complexity while enhancing
accuracy.
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