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Abstract—Accurately identifying the spatiotemporal driving
mechanisms through which the built environment influences
metro station area vitality is critical for advancing the
coordinated development of urban human-land systems.
Taking Shanghai—a representative megacity—as the case
study, this research quantifies weekend station area vitality
using Baidu heatmap data. A comprehensive built environment
indicator system is constructed by integrating multi-source
datasets, including points of interest (POIs), urban road
networks, and streetscape imagery. To investigate the dynamic
patterns and underlying drivers of vitality across spatial and
temporal dimensions, this study employs a combination of
Exploratory Spatiotemporal Data Analysis (ESTDA),
Optimal-Parameter Geographic Detector (OPGD), and
Spatiotemporal Geographically Weighted Regression (GTWR).
The results indicate that station area vitality demonstrates
strong migratory inertia and spatial lock-in effects over time,
with a high likelihood of maintaining its previous state. Key
influencing factors include the density of functional facilities,
distance to the city center, closeness centrality, sky openness,
and floor area ratio. Moreover, interactions among built
environment variables manifest in three primary forms:
single-factor enhancement, nonlinear enhancement, and
nonlinear suppression. The effects of these variables exhibit
pronounced spatiotemporal heterogeneity, with most factors
exerting both positive and negative impacts depending on the
specific spatial-temporal context. These findings provide
important insights for urban spatial governance and offer
strategic guidance for enhancing station area vitality within a
transit-oriented development (TOD) framework.

Index Terms—built environment; metro station area vitality;
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1. INTRODUCTION

In the context of rapid urbanization, the metro, as the core
of modern urban transportation systems, is not only a vital
component of the urban spatial structure but also a key link
connecting various urban spaces. It accommodates a large
share of residents’ daily travel needs and supports diverse
urban activities [1]. With the continued expansion of
China’s rail transit network, metro station areas are
increasingly exhibiting multifunctional and mixed-use
spatial characteristics [2]. The areas surrounding stations
have evolved beyond mere transportation hubs into urban
"micro-centers" that integrate commerce, services, social
interaction, and cultural activities [3].

The concept of "metro station area vitality" refers to the
comprehensive and dynamic manifestation of vitality that
emerges within a certain spatial range around a metro station,
driven by the interaction and coupling between the station
itself and nearby urban functional units [4]. Compared to the
traditional notion of "urban vitality," metro station area
vitality places greater emphasis on transport dependency,
spatial accessibility, and high-frequency dynamism [5][6].
In terms of representation, early studies primarily relied on
traditional methods such as field observations [7],
questionnaire surveys [8], and face-to-face interviews [9].
While these approaches can partially reveal vitality
characteristics at a local scale, their effectiveness is
constrained by limited sample sizes, data accuracy, and the
subjectivity of respondents, making it difficult to capture the
overall patterns and intrinsic features of urban vitality. In
recent years, with the rise of big data and the rapid
advancement of 3S  technologies,  multi-source
spatiotemporal data—such as mobile signaling data [10],
social media data [11], and population heatmaps [12]—have
been widely applied in urban vitality research. These
emerging data sources offer advantages such as high
timeliness, broad coverage, and strong objectivity,
significantly enriching the dimensions and scope of vitality
measurement and providing new perspectives and tools for
the fine-grained assessment of metro station area vitality.

Meanwhile, existing studies on urban vitality and metro
ridership have provided strong theoretical and
methodological support for the construction and analysis of
metro station area vitality. Current research primarily
focuses on two directions: one is the quantification and
construction of built environment indicator systems, and the
other is the exploration of how the built environment
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influences travel behavior. Early studies established the
“3D” built environment evaluation framework—centering
on density, diversity, and design—which laid the theoretical
foundation for understanding the relationship between urban
spatial structure and transport vitality [13]. Building upon
this, scholars later introduced two additional dimensions:
destination accessibility and distance to transit, thereby
developing a more comprehensive “5D” built environment
indicator system, which has become the mainstream
paradigm in current urban transport research [14].

In terms of methodology, traditional studies often adopt
classical statistical approaches such as Ordinary Least
Squares (OLS) regression [15] and spatial autoregression
[16], which mainly aim to reveal the overall linear
relationship between the built environment and travel
behavior. However, as understanding of the complexity of
urban systems deepens, researchers have increasingly
recognized the nonlinear nature of this relationship. In
response, some studies have begun incorporating machine
learning models to uncover potential nonlinear relationships
between the built environment and travel behavior from a
more flexible modeling perspective [17][18]. Although these
models offer significant advantages in terms of improving
fitting accuracy and predictive power, they remain
essentially global models and thus struggle to address the
non-stationarity and local heterogeneity commonly present
in urban spatial structures [19]. To overcome these
limitations, some scholars have turned to local spatial
models such as Geographically Weighted Regression (GWR)
[20] and Multiscale Geographically Weighted Regression
(MGWR) [21], which introduce spatial weighting functions
to capture spatially varying relationships between variables
across different geographic locations. These methods are
more aligned with the complex realities of urban dynamics.

In summary, although existing research on urban vibrancy
has generated numerous valuable insights, notable gaps
remain in the following three areas: (1) Systematic
investigations specifically addressing vibrancy in metro
station areas are still relatively scarce. Most studies either
adopt a broad perspective on “urban vibrancy” or focus
narrowly on “metro ridership,” offering limited in-depth
analysis at the station-area scale. (2) Many studies examine
built environment factors in isolation, overlooking the
synergistic effects that emerge from the interaction among
multiple variables. (3) The prevailing spatial and temporal
analytical approaches are often static and conventional,
resulting in a disconnection between spatial and temporal
dimensions—a phenomenon that can be described as
“spatiotemporal fragmentation.”

To address these research gaps, this study selects
Shanghai—a representative Transit-Oriented Development
(TOD) city—as the case study. Adopting a spatiotemporal
interaction perspective, Exploratory Spatiotemporal Data
Analysis (ESTDA) is employed to investigate the dynamic
patterns of vibrancy in metro station areas. Building upon
this, the study integrates the Optimal Parameter-based
Geographical Detector (OPGD) and the Geographically and
Temporally Weighted Regression (GTWR) model to
uncover the spatiotemporal driving mechanisms of built
environment factors influencing metro station area vibrancy
at both global and local scales. The findings aim to provide
a scientific foundation for refined spatial governance and the
sustainable enhancement of station-area vibrancy in
metro-oriented cities.

II. DATA AND METHOD

A. Study Area and Research Scope

Shanghai is located at the estuary of the Yangtze River
and serves as a strategic intersection between the Yangtze
River Economic Belt and the Coastal Economic Axis
(Figure 1). As of December 2024, the Shanghai Metro
system comprises 21 lines, with a total of 517 stations and
an operating length of 896 kilometers. In this study, an 800
meter buffer around each metro station is used as the spatial
analysis unit. This delineation is based on the widely
accepted threshold of walking accessibility (10-15 minutes)
and the service radius of rail transit under the
Transit-Oriented Development framework [22]. To address
the issue of spatial overlap among multiple station service
areas, Thiessen polygon partitioning is applied to eliminate
spatial coupling effects between adjacent stations.
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5 Putuo
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Fig. 1. The study area

B. Data Sources and Indicator System Construction

B.1. Quantification of Metro Station Area Vitality
Population heatmap data from the Baidu Huiyan platform
(https://huiyan.baidu.com/products/platform) is used as the
quantitative benchmark for measuring metro station area
vitality. This dataset is derived from the spatiotemporal
aggregation of anonymized mobile phone location and
location service requests, and dynamic heatmaps are
generated through kernel density analysis to objectively
reflect the intensity of human activity. Considering that
weekday foot traffic is heavily influenced by institutional
activities such as commuting—making it difficult to
accurately capture the impact of the built environment on
spontaneous and recreational activities [23]—four weekends
between April and July 2024 (April 13-14, May 18-19,
June 15-16, and July 27-28) are selected as the study period.
Based on the first and last train schedules of the Shanghai
Metro, data is sampled hourly from 6:00 to 23:00 each day.
To ensure the ecological validity of the data, a dual control
strategy is employed: (1) dates are selected to avoid periods
of extreme weather, severe air pollution, and the
commencement of new metro lines; (2) sampling is
conducted across multiple months to minimize short-term
event-driven disturbances and to emphasize the stable
mechanisms through which spatial structure affects vitality.
Based on relevant literature [24], the original data were
processed through the following steps: (1) hourly population
heatmap CSV files were imported into ArcGIS and
converted into point features; (2) kernel density analysis was
conducted on these point features to produce a continuous
surface representing spatial density; (3) the resulting kernel
density surface was spatially joined with metro station areas
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to perform zonal statistics, thereby obtaining the spatial
distribution of vibrancy. Finally, the average vibrancy across
four consecutive weekends was calculated to represent the
vibrancy intensity of each metro station area.

B.2. Quantification of Built Environment Metrics

Building on previous studies [12][25][26], this study
develops an indicator system grounded in the "5D"
framework of the built environment. It encompasses five
dimensions: land use intensity, population and facility
distribution,  transportation and accessibility, street
environment quality, and metro station characteristics. A
total of 22 indicators are selected, as presented in Table I.

Building outline and road network data were obtained
from OpenStreetMap; POI data were collected through
Amap (https://Ibs.amap.com/) and cleaned to retain about
1.71 million valid entries. Population raster data were
sourced from WorldPop and calibrated using zonal statistics
in combination with district-level population census data
from the Shanghai Municipal Statistics Bureau as of early
2024. Street view images were acquired through the Baidu
Panorama platform (https:/quanjing.baidu.com/). Metro
network data were retrieved from the official website of
Shanghai Metro (http://www.shmetro.com/). All data used
in this study were collected in 2024. To ensure the
robustness and reliability of the subsequent modeling
process, multicollinearity among the independent variables
was assessed using the Variance Inflation Factor (VIF). Two
variables—street closeness and interface enclosure—were
excluded due to their high VIF values, indicating potential
multicollinearity issues. For the remaining 20 indicators,
VIF values ranged from 1.3 to 5.2, suggesting that
multicollinearity was within an acceptable and manageable
range. The detailed calculation methods for the selected
indicators are described as follows:

(1) Functional Mix Index

The functional mix index is a key metric used to evaluate
the balance and diversity of facility types within a given
area, reflecting the degree of land-use heterogeneity and
urban vitality. Drawing on the Gaode POI (Point of Interest)
Classification and Coding system, facilities are categorized
into 23 primary classes and 261 secondary subcategories,
including catering services, commercial enterprises, and
daily life services. The functional mix within each spatial
analysis unit is quantified using location entropy, which
captures the distributional evenness of different facility
types. A higher entropy value indicates a more balanced and
diverse functional composition. The calculation formula is
as follows:
L3 1 1
IH(N);pU npif ( )

Where: E; represents the functional mix degree of metro
station area i; N denotes the total number of POI categories;
pij indicates the proportion of POIs of category j within
metro station area i to the total number of POIs in that area.

(2) Street Network Morphology

The Spatial Design Network Analysis (SDNA) method
was utilized to quantify two key indicators of Shanghai’s
street network—closeness and betweenness—in order to
capture the morphological characteristics of the actual urban
road system [27]. Street closeness reflects the topological
integration of a street node by evaluating its minimum
cumulative topological depth relative to all other nodes

E =

within the network. This indicator serves as a proxy for
spatial accessibility, highlighting how easily a location can
be reached from elsewhere in the network. The
corresponding formula is as follows:

NOPDA(x)= Y w»rQ)
YER, dm ()C,y)

Where: NOPDA(x) represents the closeness value of node
x; R, denotes the set of all nodes within the search radius R
centered on node x; W(y) is the weight of the road segment
associated with node y; p(y) is the weight of node y; du(x,))
indicates the shortest topological distance from node x to
node y.

Street betweenness is quantified using the topological
choice metric, which captures the likelihood of a street
segment being traversed as part of the shortest paths
between all pairs of nodes in the network. This measure
reflects the street’s potential to function as an intermediary
or transfer point within the broader circulation system,
indicating its importance as a traffic distribution hub. A
higher betweenness value suggests a greater capacity to
facilitate movement and connect different parts of the urban
fabric. The calculation formula is as follows:

TPBt ()C) = Z Z OD(y,Z,X)M
yeN zeR, TotalWeight(y)
Where: TPB(x) represents the through-movement value
of node x; N denotes the set of all nodes in the network;R,
refers to the set of nodes connected to node y; OD(y,z,x)
indicates the shortest path between y and z that passes
through x within the search radius; TotalWeight(y) is the
total node weight within the search radius of node y.
(3) Street Environment Quality
Based on the road centerline data of Shanghai, street view
sampling points were generated at 100 meter intervals. A
Python script was developed to capture street view images
in four directions (0°, 90°, 180°, and 270°), resulting in a
total of 98,676 images. These images were horizontally
stitched into panoramic views with a resolution of 2048 X
512 pixels. To enhance the understanding and segmentation
accuracy of complex urban scenes, a PSPNet model was
constructed, integrating a multi-scale dilated convolution
module with an encoder—decoder architecture [28]. The
model was pre-trained using transfer learning on the
ADE20K dataset to facilitate multi-scale perception and
hierarchical semantic interpretation of street view elements.
Based on the extracted semantic information from the street
view imagery, visual entropy was subsequently calculated to
quantify the complexity and structural disorder of the street
environment. The corresponding calculation formula is as
follows:

2)

3)

K ) )
SVE, =— ! > P 1y P 4)
InK I\ P ~ Pisky F, ~Pisiy

Where: SVE; represents the normalized visual information
entropy of streetscape point i; K denotes the total number of
visual element categories; P; is the total number of original
pixels at streetscape point i; Pjgu, indicates the number of
sky pixels at streetscape point i; P;;represents the number of
pixels belonging to the k-th visual element at streetscape
point 7.

(4) Metro Station Network Centrality

In the analysis of metro network centrality, closeness
centrality and betweenness centrality are two widely
adopted indicators used to evaluate the structural importance
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of individual stations within the network topology. These
measures offer insights into the accessibility and mediating
roles of stations in facilitating passenger flow across the
system. Their respective formulations are presented as
follows:

n—1
2.d(i. )
J#i

Where: C(i) is the closeness centrality of subway station
i; n is the total number of subway stations in the network;
d(i,) is the shortest path distance between subway stations i
and ;.

C.(i)= (5)

¢, =y 20 ©)
S#I#L st
Where: Cp(i) is the betweenness centrality of subway
station i; s, ¢ are two distinct subway stations in the network;
oy 1s the total number of shortest paths between subway
stations s and ¢ that pass through station i.

C. Research Methods and Models

C.1. Exploratory Spatiotemporal Data Analysis

The ESTDA extends traditional static spatial analysis by
incorporating the temporal dimension, enabling the
integrated and dynamic examination of spatial and temporal
elements [29]. The methodological framework encompasses
techniques such as spatial autocorrelation (Moran's I), LISA
time paths and spatiotemporal transitions, and spatial
Markov chains. These approaches are capable of revealing

the temporal evolution of spatial units and the dynamic
transformation of spatial structures over time.

The LISA time path traces the movement of local spatial
units within the Moran's I scatter plot, thereby illustrating
the joint temporal variation of station-area vitality and its
spatial lag term. This approach provides a continuous
dynamic representation of the LISA Markov transition
matrix. The geometric properties of the LISA time path are
primarily characterized by two indicators: relative length
and curvature, which are calculated as follows:

7-1
nx Zd(lﬁ,: > L[,1+1)

1=
T-—

N,

i

(7

ALy, L)
1

d(L;;, L)

t=1

D=
d(L;y,Lir)

Where: N; and D; represent the relative length and
curvature, respectively; n denotes the number of metro
station areas; T is the time interval; L;, represents the LISA
coordinate (y;,yL;;) of metro station area i at time ¢
d(L;Lis+1) indicates the movement distance of metro station
area i from time ¢ to ¢+1.

LISA spatiotemporal transitions are used to capture the
dynamic evolution of local spatial relationships among
neighboring units. These transitions can be classified into
four main types, as summarized in Table II.

)

TABLE
SELECTION AND DESCRIPTION OF BUILT ENVIRONMENT INDICATORS

Dimension Indicator Name Indicator Description
Land use Floor area ratio (Building footprint area X number of floors) within the buffer zone divided by the station area.
Intensity Functional mix The richness/diversity of POI facilities within the buffer zone.
Resident population density ~ Total population within the buffer zone divided by the station area (10,000 people/km® ).
Commermgi;:itr\;lce facility Number of shopping, dining, and similar facilities within the buffer zone per unit area (facilities/km?*).
Population i i
and facility Business ezine(ilsift‘f}‘jce facility Number of companies, financial institutions, etc., within the buffer zone per unit area (facilities/km?).
distribution i
Educathl_lal and gultural Number of schools, research institutions, etc., within the buffer zone per unit area (facilities/km?).
facility density
Leisure and entertainment . . e . e N
facility density Number of sports, leisure, parks, and scenic spots within the buffer zone per unit area (facilities/km*).
Bus stop density Number of bus stops within the buffer zone divided by the station area (stops/km).
Road density Total length of roads within the buffer zone divided by the station area (km/km? ).
Transpo(ritation Street closeness Average kernel density estimation value of NQPDES00 within the buffer zone, calculated using SDNA.
an
accessibility Street betweenness Average kernel density estimation value of TPBtE800 within the buffer zone, calculated using SDNA.
Distance to city center Straight-line distance from the station to People’s Square (km).
Distance to tertiary hospital ~ Straight-line distance from the station to the nearest tertiary hospital (km).
Green view index Average proportion of pixels occupied by grass, vegetation, and trees in street view points within the
buffer zone.
. Average proportion of pixels occupied by safety-related elements such as traffic signs, streetlights,
Street safety index A P . . L
Street surveillance cameras, and guardrails in street view points within the buffer zone.
environ;nental Sky openness Average proportion of pixels occupied by the sky in street view points within the buffer zone.
quality

Average proportion of pixels occupied by elements such as walls, buildings, and columns in street view

Interface enclosure points within the buffer zone.

Street visual entropy Visual complexity and diversity of the environment at street view points within the buffer zone.

Closeness centrality Closeness centrality of the station, reflecting the ease of reaching other stations.

Betweenness centrality Betweenness centrality of the station, indicating its role asa “bridge”  within the metro network.

Metro station

characteristics

Metro station age Number of years since the station was opened (years).

Number of entrances/exits Total number of station entrances and exits (units).
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C.2. Optimal Parameter-based Geographical Detector

The Geographical Detector is a statistical tool designed to
uncover spatial heterogeneity and identify its underlying
driving factors. However, traditional implementations of the
method often rely on subjective judgment when discretizing
continuous  variables, potentially compromising the
reliability of the results. To overcome this limitation, the
Optimal Parameter-based Geographical Detector (OPGD) is
adopted, which enables adaptive discretization of continuous
variables [30].

This approach, integrating the dual modules of Factor
Detection and Interaction Detection, is employed to examine
how built environment elements affect station-area vibrancy.
The Factor Detection module evaluates the explanatory
power of individual built environment factors on the spatial
variation in station-area vibrancy, using the g-statistic to
quantify each factor’s independent contribution. A higher q
value indicates a stronger explanatory influence. The
calculation formula is as follows:

L
2
Z N0y,
l h=1
2
Noy,

Where: V represents the intensity of metro station area
vibrancy; L denotes the optimal number of strata; o} is the

q= =1- ©)

total variance of vibrancy; o}, is the within-stratum variance;

N, refers to the number of samples within a stratum; SSW
and SST represent the sum of within-stratum variances and
the total sum of variances, respectively.

The Interaction Detection module is employed to evaluate
how the combined effect of two built environment factors
alters their explanatory power with respect to station-area
vibrancy. By comparing the joint g-statistic of the two
factors with their individual q-statistics, this analysis
identifies the nature of their interaction—whether it is
synergistic (enhancing each other's influence), independent
(non-interactive), or antagonistic (diminishing each other's
effect). Such distinctions are crucial for understanding the
complexity of spatial processes, as interactions often exhibit
non-linear and context-dependent characteristics. The
specific criteria used to classify interaction types are
presented in Table III.

C.3. Spatiotemporal Geographically Weighted Regression
Model

Geographically and Temporally Weighted Regression
(GTWR) extends the traditional Geographically Weighted
Regression (GWR) by simultaneously accounting for spatial
and temporal heterogeneity in regression relationships [31].

Unlike GWR, which applies local weighting solely based
on geographic location, GTWR integrates both spatial and
temporal information in the construction of local regression
parameters. This enables a more effective examination of
the non-stationary relationships between independent and
dependent variables across space and time. During model
estimation, bandwidth parameters are typically selected
using the corrected Akaike Information Criterion (AICc) or
cross-validation. The basic formulation of the GTWR model
is as follows:

P
y[:ﬁo(ui’vi7ti)+2ﬁk(ui’vi’ti)x[k+g[ (10)
k=1

Where: y; is the dependent variable at location (u;,v;) and
time #; Bo(ui,vi,t) is the intercept term varying over space and
time; Sr(ui,vit) is the local regression coefficient for the A-th
independent variable at (u;,v;t); xi is the value of the k-th
independent variable at observation i; ¢; is the random error
term.

i i

B, v,1) = (X Wauv,0)X) X Wa,vat)y (1)
Where: B(u,,v,.t,) is the vector of estimated local regression

coefficients at (u;v,t;); X is the matrix of independent
variables for all observations; y is the vector of dependent
variables for all observations; W(u;,v,t) is the diagonal
spatial-temporal weight matrix for observation 7, constructed
by kernel functions.

(12)

Where: wj; is the spatiotemporal weight between
observation i and j; dj is the spatiotemporal distance
between observations i and j; 4 is the bandwidth parameter
controlling the kernel smoothing.

dy =\ —x) + -y )+ A0 -1 (13)
Where: (xi,)i) and (x;);) are spatial coordinates of
observations i and j; # and ¢ are temporal coordinates of

observations i and j; A is a scaling parameter that balances
spatial and temporal distances.

TABLE II
SPATIOTEMPORAL TRANSITION TYPES OF LISA

Type Symbolic Expression Transition Form
TYPE I HH,~LH,;» LH~HH,.;» HL,~LL,,;» LL,—~HL,; Self-transition with unchanged neighborhood
TYPE II HH,—~HL,,;,» LH~LL,,;» HL,—~HH,,;» LL,—~LH,+; Neighborhood transition with unchanged self
TYPE III HH,—~LL,,» LL,—~HH,,» LH,~HL,;;» HL,—~LH,, Simultaneous transition of self and neighborhood
TYPE IV HH,—~HH,;;» HL—~HL,;;» LL,~LLy;» LH~LH,; No transition in either self or neighborhood

TABLE Il
GEODETECTOR INTERACTION TYPES

Criteria for Determination

Interaction Type

9(X, NX,) <min[g(X,),q(X,)]
min[g(X)),q(X,)]< (X, N X,) <max[g(X,),q(X,)]
q(X, NX,) > max[q(X,),q(X,)]

(X, NX,)=q(X))+q(X,)

(X, NX,)>q(X))+q(X,)

Nonlinear weakening
Single-factor nonlinear weakening
Two-factor enhancement
Independence

Nonlinear enhancement
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III. RESULTS

A. Spatiotemporal Interaction Characteristics of Metro
Station Area Vitality

A.1. Spatiotemporal Static Characteristics

The vibrancy of metro station areas in Shanghai exhibits
clear temporal differentiation in terms of spatiotemporal
autocorrelation patterns (Figure 2). At all time periods, the
Global Moran’s I values are significantly positive at the 1%
level, indicating a notable spatial clustering of station-area
vibrancy. Specifically, during 6:00-9:00, as urban activities
begin to awaken, vibrancy levels surge from 107.2 to 297.5,
accompanied by an increase in spatial clustering (Moran’s I
rises from 0.437 to 0.502). Between 10:00-17:00, vibrancy
continues to grow slowly, reaching a peak of 378.3;
however, the degree of spatial clustering decreases (Moran’s
I drops to 0.415). At night, overall vibrancy declines, yet
after 21:00, Moran’s I shows a clear rebound—from 0.366
to 0.436—indicating a renewed intensification of spatial
clustering. Overall, the temporal variation in metro
station-area vibrancy in Shanghai follows a pattern of
"rise—stability—decline," while the spatial clustering
demonstrates a trend of "enhance—weaken-re-enhance."

400
10.50

)
£'350F
5 10.48
> 300} 10.46 =
g 044 £
z L 10.44 S
< 250 s
5] 1042
§200f <
n 10.40 5
]
=150+ . g
§ —e— Metro Station Area Vitality 10-38

100} ® —=— Global Moran's I 10.36

7 9 11 3 15 17 19 21 23
Time (h)

Fig. 2. Time series variation of subway station area vitality and global

moran's index

Referring to existing research, the study period is
preliminarily divided into four time segments for
visualization: morning (6:00-12:00), afternoon
(13:00-18:00), evening (19:00-23:00), and the entire day.
Based on the distribution characteristics of vitality values
across these time periods, metro station area vitality is
categorized into five levels: low wvitality (0-200.00),
lower-middle vitality (200.01-400.00), medium vitality
(400.01-600.00), upper-middle vitality (600.01-1000.00),
and high vitality (1000.01-2400.00).

As shown in Figure 3, the spatial distribution of metro
station area vitality in Shanghai exhibits a compound pattern
characterized by a “core radiation + axial extension”
structure. High-vitality station areas form a multi-level
spatial system centered around People's Square—East
Nanjing Road, with major nodes such as Xujiahui, Jing’an
Temple, and large transportation hubs. These areas extend
along metro lines 1, 2, 9, and 10 to form continuous vitality
corridors. Temporally, there are only 18 high and
medium-high vitality station areas in the morning,

accounting for 4.44%, mainly concentrated in the city center.

As urban activity intensifies, the number rises to 57 in the
afternoon (14.07%), indicating a significant spatial
expansion of vitality. In the evening, the number drops to 23
(5.67%), primarily located in major commercial centers.
Over the course of the entire day, 31 station areas (7.65%)
maintain high or medium-high vitality. Further local spatial

autocorrelation analysis reveals that hotspot areas (118
stations, 29.14%) are highly clustered within the central
urban districts, whereas coldspot areas (110 stations,
27.16%) are mainly located in peripheral zones and newly
developed areas. This reflects a pronounced spatial
polarization pattern between the two.

A.2. Spatiotemporal Dynamic Characteristics

To further characterize the dynamic patterns of metro
station area vitality, this study applies LISA time path
analysis, classifying both the relative length and curvature of
the time paths into five levels using the natural breaks
method in ArcGIS 10.8 (Figure 4).

The relative length of LISA time paths shows a
concentric “core-periphery” decreasing pattern. The average
relative length is 1, and 279 station areas (accounting for
68.89% of all stations) have a value below 1, indicating that
the local spatial structure of vitality across most metro
station areas in Shanghai is relatively stable. High values are
mainly concentrated in the following four types of areas: (1)
Core commercial zones, such as East Nanjing Road (6.13),
People’s Square (4.60), and Lujiazui (3.78). (2) Cultural and
leisure areas, such as China Art Museum (9.79), Yuyuan
Garden (4.35), and the National Exhibition and Convention
Center (1.91). (3) Major transportation hubs, such as
Honggiao Railway Station (4.64), Pudong International
Airport (3.38), and Shanghai Railway Station (3.47). (4)
Key transfer nodes, such as Century Avenue (2.52), Yaohua
Road (2.83), and Zhongshan Park (1.92). These areas
exhibit strong dynamism due to their multifunctional roles,
accessibility, and strong passenger flow aggregation effects.

The curvature presents a spatial pattern of “scattered large
dispersion, clustered small aggregation.” The average
bending degree is 15.68, with 106 station areas (26.17%)
exceeding this value. High values demonstrate the following
four characteristics: (1) Sporadic distribution in peripheral
or newly developed areas, such as Jiangyue Road (208.77),
Nanxiang (46.32), and Fengbin (40.93). (2) Concentration
around functional hubs or tourist attractions, such as China
Art Museum (182.41), Honggiao Airport (72.91), and
Disneyland (34.27). (3) Few high values in the city center,
though some dense transfer zones still show high degrees,
such as Minsheng Road (117.24), Siping Road (89.70), and
Yanggao Middle Road (69.34). (4) Mostly located in
transitional zones on the edge of central districts, serving as
important connectors between urban and suburban areas,
such as Guanglan Road (148.19), Pusan Road (98.84), and
Jinji Road (94.93). These areas experience substantial
fluctuations in spatial dependence of vitality, with spillover
effects from neighboring areas playing a particularly
significant role.

Notably, 39 metro station areas (9.63%) simultaneously
exceed the average values for both relative length and
curvature, including the China Art Museum, Oriental Sports
Center, and Lujiazui. These locations frequently host
large-scale public events or experience surges in passenger
volume during holidays, rendering them susceptible to
abrupt fluctuations in vitality that may affect traffic stability
and spatial order. Consequently, it is imperative to
implement real-time dynamic monitoring and early warning
systems to accurately detect variations in passenger flow
and to strengthen emergency response and regulatory
capacity, thereby ensuring the efficient and orderly
operation of these station areas.
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(a) 6:00-12:00

(b) 13:00-18:00

Fig. 3.
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Fig. 4. Geometric characteristics of LISA space-time paths for metro station area vitality

Based on the spatial coordinates derived from the Moran's
I scatterplot of metro station area vitality, a spatiotemporal
transition probability matrix was constructed (Table IV).
The results reveal that among the four types of
spatiotemporal transition patterns, Type IV transitions
dominate, with transition probabilities exceeding 85%
across all cases. This indicates a strong path dependence in
metro station area vitality in Shanghai during weekends, and
reflects a spatial structure characterized by significant inertia
and lock-in effects. Meanwhile, although the probabilities of
other transition types are relatively low, they still reflect

localized changes in vitality status: Type I transitions
primarily include LH—HHw+ (6.78%) and HL—LLw
(10.71%). Type II transitions are mainly observed in
LH—LL# (2.99%) and HLi—HHw« (2.47%). Type 1II
transitions are extremely rare, with only HL—LHu
(0.82%), indicating that synchronous vitality changes
between a station and its neighbors are uncommon. Overall,
the vitality of metro station areas in Shanghai exhibits a
typical “Matthew Effect”: high-vitality areas are more likely
to maintain their dominant positions, while low-vitality
areas struggle to break out of the existing pattern.
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B. Driving Force Analysis of Metro Station Area Vitality

Based on the GD package in R, this study constructs an
optimal-parameter geographical detector model. Continuous
data are discretized using a combination of the natural
breaks method, geometrical interval, equal interval, quantile,
and standard deviation methods, with the number of
categories set between 3 and 10. The optimal parameter
combination is determined based on the maximization of the
g-statistic. A ranking analysis of the g-values for the four
time periods—6:00-12:00, 13:00-18:00, 19:00-23:00, and
the entire day—is conducted (Table V). The g-values of all
built environment variables passes the 1% significance level,
indicating that these variables significantly influence the
spatial differentiation of metro station area vitality.

Across all time periods, the following eight factors
consistently rank in the top positions in terms of explanatory
power: density of commercial service facilities, density of
leisure and entertainment facilities, distance to the city
center, density of educational and cultural facilities,
closeness centrality, density of business office facilities, sky
visibility, and floor area ratio. Their g-values range from
0.43 to 0.75, showing strong temporal stability. Among
them, the densities of commercial service and leisure and

entertainment facilities consistently occupy the top two
positions, both with g-values above 0.58, suggesting that
commercial activity and leisure consumption are the
dominant driving forces behind metro station area vitality.
Notably, these two variables peak in explanatory power
during the afternoon period, aligning well with citizens'
behavioral patterns of leisure, socializing, and shopping
during weekend afternoons. In addition, the densities of
educational, cultural, and office facilities also demonstrate
strong explanatory power, reflecting ongoing educational
and work-related demands even on weekends in Shanghai.
Furthermore, the importance of distance to the city center,
closeness centrality, sky openness, and floor area ratio
confirms the fundamental role of location advantages and
urban spatial form in shaping vitality. In contrast, the
explanatory power of street green view index and visual
entropy is relatively limited, with g-values below 0.2,
indicating that pedestrians’ perception of fine-grained
environmental details around metro station areas is
relatively limited. This may be because broader spatial
factors exert a stronger influence on vitality than localized
environmental perceptions at the pedestrian scale.

TABLE IV
SPATIOTEMPORAL TRANSITION PROBABILITY MATRIX OF METRO STATION AREA VITALITY
t/t+1 HH,+, HL,, LH; LL:
HH, TYPE IV(0.9569) TYPE 11(0.0050) TYPE 1(0.0381) TYPE 111(0)
HL, TYPE 11(0.0247) TYPE IV(0.8600) TYPE I11(0.0082) TYPE 1(0.1071)
LH, TYPE 1(0.0678) TYPE I11(0) TYPE 1V(0.9023) TYPE 11(0.0299)
LL, TYPE I11(0) TYPE 1(0.0147) TYPE 11(0.0108) TYPE IV(0.9745)
TABLEV
DETECTION RESULTS OF VITALITY DRIVING FACTORS IN SUBWAY STATION AREAS
. . o 6:00—12:00 13:00—-18:00 19:00—23:00 Entire Day
Dimension Driving Factor
g-value  Rank g-value  Rank g-value  Rank g-value  Rank
Land use Floor area ratio(X)) 0.464 8 0.461 7 0.434 9 0.465 8
intensity Functional mix(X>) 0.330 13 0.258 15 0.293 13 0.295 13
Resident population density(X3) 0.331 12 0.251 16 0.301 12 0.292 14
Commercial service facility density(Xs) 0.670 1 0.749 1 0.687 1 0.723 1
Population
and facility Business and office facility density(Xs) 0.473 7 0.531 4 0.470 7 0.506 6
distribution g4y cational and cultural facility density(Xs) ~ 0.524 4 0.530 5 0.491 4 0.528 4
Leisure and entt?namment facility 0586 5 0.691 5 0.607 5 0.644 5
density(X7)
Bus stop density(Xs) 0.410 10 0.444 9 0.439 8 0.441 9
. Road density(Xy) 0.422 9 0.397 11 0.388 10 0.407 11
Transportation
and Street betweenness(Xo) 0.382 11 0.438 10 0.371 11 0.412 10
ibilit
accessibiity Distance to city center(X:,) 0.537 3 0.556 3 0494 3 0544 3
Distance to tertiary hospital(X;») 0.285 15 0.238 17 0.221 18 0.254 17
Green view index(X3) 0.118 19 0.115 19 0.141 19 0.124 19
Street Street safety index(X4) 0.252 18 0.200 18 0.223 17 0.227 18
environmental
quality Sky openness(Xis) 0.487 6 0.460 8 0.483 5 0.476 7
Street visual entropy(Xie) 0.048 20 0.039 20 0.047 20 0.044 20
Closeness centrality(X)7) 0.524 5 0.521 6 0.471 6 0.519 5
Metro station Betweenness centrality(Xs) 0.282 16 0.293 14 0.250 15 0.279 16
characteristics Metro station age(X:o) 0311 14 0.325 12 0.271 14 0.309 12
Number of entrances/exits(Xa) 0.264 17 0.318 13 0.236 16 0.285 15
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The interaction detection results (Figure 5) indicate that
the effects of various built environment factors on metro
station area vitality are interdependent rather than isolated.
Most factor combinations exhibit bivariate or nonlinear
enhancement, while only a few display univariate nonlinear
weakening, suggesting that metro station area vitality arises
from the synergistic and combined influence of multiple
interacting factors.

Across different time periods, the density of commercial
service facilities shows the strongest interactive explanatory
power when combined with distance to the city center, floor
area ratio, bus stop density, and the densities of educational
and cultural facilities, with g-values all exceeding 0.78.
Additionally, interactions involving business office,
educational, cultural, and leisure facility densities with bus
stop density and closeness centrality demonstrate strong
explanatory power, with g-values consistently above 0.6.
This highlights the critical importance of coordinated spatial
layout and the effective integration of public transport
systems with multifunctional facilities. Further analysis
reveals that the interactive explanatory power of most
factors increases during weekend afternoons, when travel
demand rises, suggesting that frequent activity scenarios
help to strengthen the interactions among built environment
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factors. Compared with single-factor interaction results, the
explanatory power of street green view index and visual
entropy improves significantly when interacting with other
factors, with some showing nonlinear enhancement effects,
indicating that the influence of street-level environmental
elements tends to emerge under compound conditions.

C. The Spatiotemporal Driving Mechanism of Built
Environment Factors on Metro Station Area Vibrancy

To further examine the spatiotemporal heterogeneity in
the effects of built environment factors on metro station arca
vibrancy, twelve indicators with the highest average
explanatory power identified through the Geodetector
analysis were selected: X1, X2, X4, X5, X6, X7, X3, Xo, Xi0, Xi1,
X 15, and X 17.

Considering the sensitivity of the GTWR model to
variable scales, both independent and dependent variables
were standardized prior to modeling. As presented in Table
VI, the GTWR model outperforms the OLS, GWR, and
TWR models, exhibiting a notably higher R*> value and
lower AICc and RSS values. These results underscore the
superior performance of GTWR in capturing the
spatiotemporal non-stationarity inherent in metro station
area vibrancy.
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Note: * indicates bivariate enhancement; + indicates nonlinear enhancement; > indicates univariate nonlinear weakening.

Fig. 5.

Interaction analysis results of driving factors for subway station area vitality
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TABLE VI
COMPARISON OF MODEL RESULTS
Model R AlCc RSS
oLS 0.65 12813.69 2472.03
GWR 0.74 1135191 1856.79
TWR 0.84 7489.92 1143.59
GTWR 0.89 5534.29 805.12

As illustrated in Figure 6, the regression coefficients of
built environment variables in the GTWR model exhibit
considerable variation, with most factors exerting both
positive and negative effects across space and time. Notably,
variables such as distance to the city center, street
connectivity, closeness centrality, educational and cultural
facility density, and land-use mix demonstrate substantial
fluctuations in their coefficients, reflecting a high degree of
spatiotemporal heterogeneity in their influence on metro
station-area vibrancy. In contrast, bus stop density and road
density display more narrowly distributed coefficients with
limited variation, indicating a relatively stable and
consistent effect of public transit accessibility and road
infrastructure. These findings underscore the differentiated
roles of built environment components in shaping
station-area vibrancy and emphasize the need for
context-sensitive planning strategies that account for local

spatial and temporal dynamics.
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Fig. 6. Violin plot of GTWR regression coefficients for built environment
variables
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C.1. Temporal Heterogeneity of Built Environment Effects

Plotting the curves of average GTWR regression
coefficients for each built environment variable across
different time periods helps to capture the dynamic changes
in their overall influence intensity and direction (Figure 7).

At the land use level, the positive impact of floor area
ratio shows a steady upward trend overall, indicating that
areas with higher development intensity can continuously
stimulate station-area vibrancy and play a crucial role in
promoting the nighttime economy and sustaining urban
vitality. The influence of functional mix on metro
station-area vibrancy exhibits a "double-peaked" pattern,
with two distinct peaks at 10:00 and 19:00. From 6:00 to
10:00, as residents begin commuting and morning activities
unfold, areas with higher functional mix are more likely to
stimulate diverse behavioral demands, thereby enhancing
vibrancy. Between 10:00 and 15:00, its influence weakens,
possibly due to dispersed population activity and stabilized
functional needs during midday. From 15:00 to 19:00, the
positive effect strengthens again, but declines after 20:00 as
indicated by a drop in regression coefficients.

At the level of functional facilities, the positive impact of
commercial service facility density shows a continuous

upward trend during the daytime. After 19:00, this positive
effect begins to weaken, likely due to the reduction of
nighttime commercial activities and declining consumer
demand. The density of office facilities exerts a consistently
negative impact throughout the day. Between 6:00 and 9:00,
this negative effect gradually weakens, indicating that some
enterprises in Shanghai remain operational during the
weekend morning peak, generating a certain level of foot
traffic. After 14:00, the negative impact significantly
intensifies, revealing the "vacancy" characteristic of office
functions on non-working days and its constraining effect on
urban vitality. The negative influence of science, education,
and cultural facility density weakens gradually from 6:00 to
15:00, reflecting daytime demand from citizens for
exhibitions, family education, and cultural leisure activities
on weekends. After 18:00, the negative effect increases
rapidly, mainly due to the limited opening hours and
functional attributes of such venues. The density of leisure
and entertainment facilities suppresses station-area vibrancy
between 6:00 and 9:00, as most of these venues are not yet
open and fail to attract foot traffic. After 10:00, the
regression coefficient shifts from negative to positive and
peaks in the afternoon, indicating strong attraction during
the midday to evening hours. After 20:00, the coefficient
declines again and gradually turns negative.

At the transportation and locational level, both bus stop
density and road density exhibit a "rise-then-fall" pattern in
their positive influence. The impact of bus stop density on
station-area vibrancy peaks around midday; although the
regression coefficient fluctuates slightly afterward, it
remains at a relatively high level overall, indicating that bus
accessibility continuously supports vibrancy. Road density
is more effective in enhancing pedestrian aggregation during
morning travel periods, but its influence significantly
weakens in the evening. The regression coefficient of street
connectivity follows a "W-shaped" trend. On the one hand,
during the two peak travel periods (6:00-10:00 and
15:00-19:00), the negative effect becomes more pronounced.
This is because streets with high connectivity, serving as
arterial corridors in the traffic network, tend to facilitate
rapid movement and dispersal of people, thereby diluting the
concentration of vibrancy in metro station areas. On the
other hand, during non-peak periods (11:00-14:00 and
20:00-23:00), the negative influence is relatively weaker,
suggesting a lower degree of street network intervention in
organizing pedestrian flows in metro areas. The effect of
distance to the city center can be divided into three phases.
From 6:00 to 10:00, the regression coefficient is negative,
reflecting a "centripetal" pattern of morning activities.
Between 10:00 and 19:00, the coefficient turns positive and
increases  steadily, showing a clear trend of
"decentralization." After 19:00, the coefficient drops sharply
and turns negative again after 21:00, indicating that
nighttime activities become re-concentrated in central urban
areas.

At the level of street spatial form, sky openness exhibits a
negative regression coefficient between 6:00 and 10:00,
suggesting that people in the morning prefer street
environments with enclosure and a sense of shelter. As time
progresses, the coefficient shifts from negative to positive,
reflecting an increasing preference for open and sunlit
outdoor environments in the afternoon. After 19:00, the
coefficient turns negative again, indicating that open spaces
lose their attractiveness at night—Ilikely due to reduced
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perceived safety and increased potential crime risk. This
makes people more inclined to choose streets with
continuous interfaces, clear spatial boundaries, and vibrant
or community-oriented atmospheres to meet their needs for
socializing, relaxation, and emotional belonging.

At the metro network level, the regression coefficient of
closeness centrality exhibits an inverted “U-shaped”
temporal trend. From 6:00 to 12:00, its positive effect rises
sharply, underscoring the critical role of highly central
stations in stimulating vibrancy during the morning hours.
Between 13:00 and 18:00, the coefficient remains elevated,
reflecting the continued ability of these stations to attract
cross-regional flows and strengthen the spatial coupling
between metro network topology and human mobility. After
18:00, the influence diminishes, likely due to a shift in travel
behavior—from daytime, function-driven inter-district trips
to more localized, point-to-point return-home movements.

(a) Floor area ratio

(b) Functional mix

Collectively, these temporal patterns underscore the
complex, dynamic, and context-dependent ways in which
built environment elements influence metro station-area
vibrancy. They highlight the critical need for planning
strategies that are temporally responsive, functionally
targeted, and spatially adaptive to effectively support
sustainable and resilient urban vitality.

C.2. Spatial Heterogeneity of Built Environment Effects

Based on the analysis results in Figure 6, one to two built
environment  variables  exhibiting notable  spatial
heterogeneity are selected from each dimension as
representative indicators. These variables are then used to
visualize the spatial distribution of average GTWR
regression coefficients across different station areas (Figure
8). This visualization highlights the varying influence of key
built environment factors on station-area vibrancy, offering
insights into their localized and context-dependent effects.
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Fig. 7. Temporal heterogeneity of the impact of built environment factors on metro station area vitality
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At the land use level, the impact of floor area ratio
exhibits a spatial pattern of being higher in the southwest
and lower in the northeast. Station areas with strong positive
effects are mainly located in the southern part of Pudong
New Area, the Expo Zone, the riverside area of Pudong, and
major transportation hubs. These areas are often situated in
emerging zones of the city’s development strategy,
characterized by high demand for mixed functions, planning
flexibility, and strong policy support—aligning well with
the principles of TOD. In contrast, station areas with strong
negative effects are primarily concentrated in the
northeastern industrial belt of Pudong, the aging built-up
areas of Puxi, and the mixed industrial-residential zones in
Baoshan-Jiading in the north. Constrained by land-use
regulations, high spatial renewal costs, and the need to
preserve ecological and historical features, increasing
development intensity in these areas is difficult to translate
into substantial urban vitality. The influence of functional
mix exhibits a "center - periphery" spatial pattern. Station
areas with stronger positive effects are concentrated in the
core area within the Inner Ring, which benefits from a rich
historical legacy and a mature urban functional system,
resulting in highly integrated and diverse functional
characteristics. Conversely, station areas with stronger
negative effects are mostly located in suburban new towns,
terminal metro stations, and specialized industrial parks.
These areas generally face structural issues such as
mono-functional land use and lagging public service
facilities, and their spatial vitality has yet to be fully
activated.

At the level of functional facilities, the influence of the
density of science, education, and cultural facilities exhibits
a spatial pattern of being higher in the northeast and lower in
the southwest. Station areas with stronger positive effects
are mainly concentrated in the Zhangjiang—Waigaoqgiao
corridor, the Hongkou-Yangpu area, and the riverside
comprehensive service belt. These areas host a large number
of universities and research institutions and benefit from the
advantages of free trade zones, high-tech parks, and modern
service industries, forming spatial carriers with a high
degree of integration between knowledge concentration and
innovation-driven development. In contrast, station areas
with stronger negative effects are mostly located in the
distant suburban new towns and around major transportation
hubs, where issues such as a shortage of educational
resources and low population density of knowledge workers
are common. The impact of the density of leisure and
entertainment  facilities shows a spatial pattern
symmetrically distributed along a diagonal axis. Station
areas with stronger positive effects are mainly located in the
outer city areas of Jiading, Qingpu, and Pudong New Area.
These areas host landmark leisure destinations such as
Disneyland, the Wildlife Park, and ecological parks, which
not only fill the entertainment service gap in the suburbs but
also attract large numbers of external visitors due to their
destination appeal, making them popular choices for
weekend leisure and short-distance travel. Station areas with
stronger negative effects are mainly distributed in the central
urban area. Due to limited land resources, the addition of
new leisure facilities may lead to a "functional
crowding-out" effect, occupying space originally intended
for community services or residential use, thereby
weakening overall vitality.

At the level of transportation and location, the influence
of street permeability exhibits an overall spatial pattern of
being higher in the east and lower in the west. Station areas
with stronger positive effects are mainly located in Xujiahui,
the Expo—Qiantan area, Huangpu District, and Pudong New
Area. These areas feature dense road networks and
well-developed branch road systems, providing convenient
access for pedestrians and non-motorized vehicles.
Conversely, station areas with stronger negative effects are
mainly situated around the Honggiao transportation hub,
Songjiang, Qingpu, and Baoshan. These areas are often
traversed by expressways and major arterial roads, leading
to fragmented station area spaces and obstructed pedestrian
and non-motorized travel. The impact of distance to the city
center shows both strong positive and negative effects.
Station areas with stronger positive effects are primarily
concentrated in municipal-level commercial centers, the
Honggiao transportation hub, and the northern part of
Jing’an District. This indicates that these areas have
developed self-sustaining and mutually reinforcing
functional ecosystems, demonstrating strong locational
resilience and the capacity to attract foot traffic—further
validating the necessity of promoting a polycentric urban
structure. On the other hand, station areas with stronger
negative effects are mainly distributed in suburban new
towns, the Jinqiao—Waigaoqgiao area, northern Yangpu
District, and the central-western part of Pudong, which may
be due to developmental gaps in their comprehensive
service systems compared to the city center.

At the level of street spatial morphology, the influence of
sky openness exhibits a spatial pattern of being higher in the
central areas and lower in the periphery. Station areas with
stronger positive effects are mostly concentrated in the core
districts of Puxi, the Expo—Qiantan area, and Sanlin—Beicai.
These areas feature well-developed pedestrian facilities and
continuous, compact street interfaces. A moderate degree of
sky openness helps enhance spatial permeability and visual
comfort. Station areas with stronger negative effects are
mainly located in the Hongkou-Yangpu area,
Qingpu-Jiading, and the far southern outskirts of Pudong.
Although these areas have certain urban functions and
population bases, they are often surrounded by large
residential communities, gated campuses, or industrial parks.
Some streets suffer from oversized spatial scales, weak
interface organization, or monotonous frontage functions.
The lack of commercial permeability and public activity
support means that higher sky openness may instead
intensify the sense of emptiness and detachment, thereby
reducing the attractiveness of the station areas.

At the level of metro characteristics, the spatial
distribution of the positive and negative effects of centrality
proximity varies significantly. Station areas with stronger
positive effects are mainly distributed in Songjiang,
Xinzhuang, Honggiao, Beicai, Chuansha, and along the
northern section of Line 1. These areas are generally
secondary urban centers or emerging development clusters,
where improved metro accessibility has strengthened
connections between the periphery and the urban core. In
contrast, station areas with stronger negative effects are
primarily found in Jinqiao—Waigaoqiao, Fengxian, northern
Yangpu, and southern Minhang. These areas are often
oriented toward industrial parks, logistics and warehousing,
or residential functions, and they tend to lack
service-oriented and consumption-oriented facilities. Some
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station areas also face problems related to inadequate
“last-mile” transport connections, resulting in metro
accessibility not translating into substantial foot traffic.
Overall, the spatial heterogeneity in the effects of built
environment variables reflects the intricate interplay

(a) Floor area ratio

Regression coefficient

-0.13  -0.04 0.05 0.14

(e) Street betweenness

Regression coefficient

-0.73  -054 -035 -021 -0.08 0.18

(c) Educational and cultural facility density

Regression coefficient

-0.81 -0.40  -0.09  0.03

(g) Sky openness

Regression coefficient

-028 -0.14 -0.03  0.04 0.13 0.28

between urban function, spatial structure, and development
stage, highlighting the need for differentiated and
context-sensitive planning strategies to optimize metro
station-area vibrancy across diverse urban settings.

(b) Functional mix

Regression coefficient

-0.11 -0.03  0.11 0.21

(f) Distance to city center

Regression coefficient

-0.84 -039 -0.07 0.14 0.42 0.93

(d) Leisure and entertainment facility density

Regression coefficient

-0.13  -0.04 0.04 0.16 0.31

(h) Closeness centrality

Regression coefficient

-026  0.04 0.21 0.34 0.47 0.70

Fig.8 Spatial heterogeneity of the impact of built environment factors on metro station area vitality
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D. Analysis of Typical Metro Station Areas

To further investigate the relationship between the built
environment and metro station area vibrancy, six
representative stations—People's Square, Xujiahui, China
Art Museum, Jingiao Road, Jiangyue Road, and Pujiang
Town—were selected, covering a spectrum from the urban
core to the outer fringe and representing varying levels of
vibrancy. Case analyses based on urban functional layout
and spatial morphology were conducted to uncover the
differentiated mechanisms and underlying logic driving
vibrancy across station types.

(1) People's Square

As one of Shanghai’s most iconic central areas, the
People's Square station area exhibits exceptionally high
densities of commercial, cultural, and educational facilities.
It ranks among the highest in the sample in terms of
functional mix (0.74), cultural and educational facility
density (121.12), recreational facility density (199.44), and
street connectivity (43.14). These reflect a highly
multifunctional and population-attracting environment.
Serving as both an administrative hub and a major
transportation node, this area demonstrates the amplification
effect of a “monocentric core” on urban vibrancy and stands
as a model for the vibrancy-driving potential of the built
environment.

(2) Xujiahui

Located within the inner ring, Xujiahui serves as a vital
secondary urban center. It features strong street connectivity
(18.56), high development intensity (FAR: 4.22), a high
degree of functional mix (0.75), and substantial recreational
facility provision (96.95). With a mature commercial
ecosystem and preserved historical neighborhoods, the area
benefits from compact urban form and high connectivity,
representing the combined effect of spatial structure and
street quality in sustaining vibrancy.

(3) China Art Museum

Situated within the Expo Park zone, the China Art
Museum station plays a key role in the Pudong riverside
development belt. It boasts a high floor area ratio (4.21),
with notable centrality and functional mix, highlighting the
vibrancy potential of emerging functional zones under
policy support and flexible development. Although its
density of cultural and recreational facilities is lower than
that of core areas, the presence of cultural landmarks,
exhibition venues, and a composite spatial layout signal a
transition from mono-functionality to comprehensive
vibrancy, making it a representative of "planning-led"
positive evolution.

(4) Jingiao Road

Located in Pudong’s traditional industrial belt, the Jingiao
Road station area shows relatively high functional mix
(0.76), but suffers from low FAR (1.76) and limited
recreational facility density (29.86). Its centrality and
proximity to the city center are both moderate to low,
indicating that metro accessibility has not effectively
activated vibrancy in the area. It typifies areas in urban
renewal where single-industry orientation and low
development intensity hinder the release of spatial vitality,
exposing a mismatch between the built environment and
urban functions.

(5) Jiangyue Road

Jiangyue Road station is located on the outer edge of
Minhang District. It ranks low in both cultural and

educational facility density (13.27) and recreational facility
density (13.78). While the sky openness is relatively high
(0.25), street connectivity remains poor (9.20), forming a
typical “high openness—low accessibility” pattern. The
overly wide street interfaces limit pedestrian aggregation
and lack adequate service penetration, resulting in
persistently low vibrancy. This highlights the structural
design challenges in low-density residential areas at the
urban fringe.

(6) Pujiang Town

As a suburban station in southern Pudong, Pujiang Town
ranks among the lowest across several built environment
indicators, particularly in cultural and educational facility
density (9.45) and centrality (0.065). This reflects
deficiencies in knowledge-intensive resources and poor
travel connectivity. The area exemplifies the structural low
vibrancy caused by jobs-housing imbalance and lagging
infrastructure provision—a “static zone” shaped by the
spatial mismatch between metro benefits and land use.

E. Built Environment Driving Mechanisms Analysis

Spatial regression of built environment elements and the
case analysis of typical station areas reveal that the
generation of metro station area vibrancy is not only
influenced by physical spatial attributes but also reflects a
deeper coupling of various mechanisms, including urban
functional organization, travel behavior preferences, and the
regional job-housing structure. This coupling is particularly
evident during weekends, when commuting demand
subsides and residents’ mobility shifts toward consumption,
leisure, and social activities. Consequently, station area
vibrancy becomes more dependent on environmental
perception and functional provision, amplifying the spatial
and temporal heterogeneity of built environment effects.

From the perspective of metro service functionality, a
station's hierarchical position within the urban transit
network significantly affects its vibrancy level. Central hubs
such as People's Square and Xujiahui, with superior network
connectivity and transfer capacities, serve as major
population convergence nodes, exhibiting substantially
higher vibrancy than peripheral stations. In contrast, stations
located at terminal points or suburban edges often suffer
from limited coverage and weak “last-mile” connectivity.
Despite some degree of built-up intensity, these areas fail to
effectively attract pedestrian flow and activity.

From a travel behavior perspective, weekend mobility is
characterized by a high degree of self-organization and
purpose-driven activity. Residents tend to gravitate toward
areas with a high concentration of cultural, recreational, and
commercial functions, reflecting a strong preference for
“experiential spaces.” This accounts for the heightened
vibrancy observed in station areas with abundant
cultural-tourism amenities and well-integrated functions,
while those marked by pronounced job-housing separation
and functional singularity often exhibit a disconnect
between physical form and perceived vitality—manifesting
as “visible structure, invisible vibrancy.”

From the perspective of job-housing spatial structure,
differences in the degree of functional integration and
spatial positioning among station areas represent a key
mechanism behind vibrancy disparities. Central urban zones
generally maintain better job-housing balance and higher
functional density, sustaining strong flows of people and
activity even on weekends. In contrast, areas such as
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industrial parks or mono-functional residential zones, where
functional fragmentation is severe, often struggle to meet
diverse weekend needs, despite favorable accessibility or
development intensity.

IV. CONCLUSION AND DISCUSSION

A. Conclusion

This study focuses on the vibrancy of metro station areas
in Shanghai during weekends. By applying an Exploratory
Spatiotemporal Data Analysis framework, it characterizes
the dynamic variations of station-area vibrancy. Building on
this, the study further employs the Optimal Parameter-based
Geographical ~ Detector and the  Spatiotemporal
Geographically Weighted Regression model to explore the
driving mechanisms of built environment factors. The main
conclusions are as follows:

(1) Metro station area vibrancy in Shanghai exhibits
significant positive spatial autocorrelation and clear
spatiotemporal  differentiation. =~ Temporally, vibrancy
intensity follows a trend of “increase—stabilization—decline,”
while the degree of spatial agglomeration undergoes a
process of “enhance—weaken—re-enhance.” Spatially, the
overall structure of vibrancy is characterized by a compound
pattern of “core radiation + axial extension.” Hotspots are
concentrated in central urban areas, while coldspots are
mainly located in the urban periphery and newly developed
zones, indicating a pronounced spatial polarization.

(2) The local spatial structure of metro station-area
vibrancy demonstrates high stability. Stations with high
relative lengths of LISA time paths are primarily located in
core business districts, cultural and recreational zones, major
transportation hubs, and key transfer nodes. Stations with
high curvature of LISA time paths are mostly found in
transitional belts at the edge of the central city, functional
hubs, and scenic spots, scattered across the urban periphery
and transfer-intensive zones. The spatiotemporal evolution
of vibrancy is marked by strong path dependence and spatial
lock-in, reflecting a typical “Matthew effect”, where
spontaneous breakthroughs or transformations are difficult
to achieve.

(3) Factor detection results indicate that the key
determinants of metro station-area vibrancy include:
commercial service facility density, recreational facility
density, distance to the city center, educational and cultural
facility density, closeness centrality, office facility density,
sky openness, and floor area ratio. In contrast, green view
index and visual entropy exhibit relatively weak explanatory
power. Interaction detection further reveals that under
conditions of frequent activity, the interactions among built
environment factors become more pronounced. Specifically,
commercial service facility density shows the strongest
interactional explanatory power with distance to the city
center, floor area ratio, bus stop density, and
educational/cultural facility density across different time
periods. In comparison, the impact of street-level
environmental features tends to rely on multi-factorial
conditions to be effective.

(4) The influence of built environment elements on
station-area vibrancy exhibits notable spatiotemporal
heterogeneity, with most variables showing both positive
and negative effects. Variables such as distance to the city
center, street permeability, closeness  centrality,

educational/cultural facility density, and land-use mix
demonstrate strong spatiotemporal dependence in their
influence across different station areas. In contrast, bus stop
density and road density have relatively stable impacts on
vibrancy.

B. Policy Implications

Based on the research findings,
recommendations are proposed to enhance metro
station-area vibrancy and support sustainable urban
development. These recommendations aim to address the
observed spatiotemporal and spatial heterogeneity of built
environment influences, and to guide context-specific,
evidence-based interventions in urban planning practice:

(1) For the 39 station areas exhibiting significant vitality
fluctuations, priority should be given to establishing
dynamic sensing and emergency coordination mechanisms.
By leveraging big data and intelligent sensing technologies,
a real-time passenger flow monitoring and early warning
system should be developed to enable accurate identification
and rapid response to sudden crowd surges. Furthermore,
hierarchical management strategies and contingency plans
should be formulated based on spatial carrying capacity and
the characteristics of specific events, thereby enhancing the
emergency responsiveness and operational resilience of
highly sensitive station areas during holidays and major
public gatherings.

(2) The spatial layout of commercial and recreational
facilities should be optimized as a key driver to stimulate
deeper vitality within station areas. It is essential to promote
the integrated planning of public transportation systems and
multifunctional facilities, strengthening the efficient linkage
between transport networks and service functions. Street
spaces should be organically integrated with surrounding
built environment elements, and designed to be functionally
mixed, pedestrian-friendly, and connected to slow-traffic
systems, thus fostering high-quality public spaces with
strong interactivity and experiential appeal. On the policy
level, travel patterns and activity rhythms of residents across
different time periods should be dynamically monitored,
shifting spatial governance strategies from “static planning”
to “temporal optimization.”

(3) For peripheral station arecas with persistently low
vitality, efforts should focus on the introduction of
mixed-use functions and the provision of high-quality public
services to revitalize local life. The introduction of
high-frequency livelihood services—such as education,
cultural and creative industries, healthcare, and community
commerce—should be encouraged to create vibrant spaces
aligned with local population structures and time-specific
needs. By redeveloping idle land and underutilized spaces,
the transformation of station areas from mere “rail access
points” to vibrant “living hubs” can be realized, thus
preventing the dual challenge of “railway isolation” and
“vitality hollowing.”

(4) In core areas characterized by high population density
and functional intensity, scientific management of functional
coordination and capacity thresholds should be prioritized.
While maintaining the advantages of agglomeration,
adaptive strategies for regulating crowd capacity and
functional allocation must be implemented to mitigate
systemic risks stemming from resource overconcentration.
Differentiated policy interventions and quality-oriented
resource optimization should be employed to promote

several planning
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functional complementarity and vitality spillovers between
central urban areas and peripheral sub-centers. This will
support the development of a polycentric, multi-level, and
networked urban spatial structure, ensuring balanced vitality
distribution and orderly spatial expansion.

C. Discussion

The strengths and contributions of this study are reflected
in the following four aspects:

(1) Compared with existing research, this study
incorporates street-level environmental perception and
metro station attributes into the analysis, thereby expanding
and refining the conventional “5D” built environment
framework. This allows for a more systematic and
comprehensive assessment of metro station area vibrancy.

(2) Building upon previous urban vibrancy studies, this
research  innovatively  introduces an  exploratory
spatiotemporal data analysis framework that integrates
temporal dynamics with local spatial dependence. By
moving beyond the traditional static perspective, it enables a
continuous representation of vibrancy from “momentary
scenes” to “interactive dynamic scenarios,” thereby
advancing both the theoretical lens and technical approach
in urban vibrancy research.

(3) The study applies an optimal-parameter geographical
detector to identify key driving factors and their interaction
effects on metro station area vibrancy, effectively
addressing the limitations of traditional detectors in
parameter discretization and improving the reliability and
robustness of the results. In factor detection, the temporal
variations in the explanatory power of built environment
elements help clarify the phased priorities and intervention
opportunities for regulating station area vibrancy. In
interaction detection, the study fills a gap in previous
research by addressing the insufficient attention to complex
interaction mechanisms, offering a theoretical foundation for
coordinated interventions and systematic enhancements of
station area vibrancy.

(4) By integrating the Geographically and Temporally
Weighted Regression (GTWR) model, the study further
reveals the spatiotemporal heterogeneity in the influence of
built environment factors. Compared to OLS, GWR,
MGWR, and conventional machine learning models, GTWR
captures the spatiotemporal non-stationarity of variables
more effectively, providing a more targeted methodological
and practical basis for place-specific and time-sensitive
urban spatial governance strategies.

Nevertheless, this study has several limitations that
warrant further investigation. First, although Baidu's
population heatmap data effectively captures the overall
spatial patterns of population activity, it may be influenced
by platform-specific behavioral biases and, therefore, may
not fully reflect the vibrancy characteristics of diverse
demographic groups. Second, as the analysis is confined to
Shanghai as a case study, the temporal and spatial
generalizability of the findings remains to be validated
across cities with varying characteristics, in order to
ascertain the broader applicability and limitations of the
proposed analytical framework. Despite these limitations,
the study establishes a systematic theoretical framework and
provides empirical evidence for understanding the
spatiotemporal driving mechanisms of built environment

factors on metro station-area vibrancy, offering meaningful
insights for future research in this domain.
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