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Abstract—Accurately identifying the spatiotemporal driving 

mechanisms through which the built environment influences 
metro station area vitality is critical for advancing the 
coordinated development of urban human–land systems. 
Taking Shanghai—a representative megacity—as the case 
study, this research quantifies weekend station area vitality 
using Baidu heatmap data. A comprehensive built environment 
indicator system is constructed by integrating multi-source 
datasets, including points of interest (POIs), urban road 
networks, and streetscape imagery. To investigate the dynamic 
patterns and underlying drivers of vitality across spatial and 
temporal dimensions, this study employs a combination of 
Exploratory Spatiotemporal Data Analysis (ESTDA), 
Optimal-Parameter Geographic Detector (OPGD), and 
Spatiotemporal Geographically Weighted Regression (GTWR). 
The results indicate that station area vitality demonstrates 
strong migratory inertia and spatial lock-in effects over time, 
with a high likelihood of maintaining its previous state. Key 
influencing factors include the density of functional facilities, 
distance to the city center, closeness centrality, sky openness, 
and floor area ratio. Moreover, interactions among built 
environment variables manifest in three primary forms: 
single-factor enhancement, nonlinear enhancement, and 
nonlinear suppression. The effects of these variables exhibit 
pronounced spatiotemporal heterogeneity, with most factors 
exerting both positive and negative impacts depending on the 
specific spatial-temporal context. These findings provide 
important insights for urban spatial governance and offer 
strategic guidance for enhancing station area vitality within a 
transit-oriented development (TOD) framework. 
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I. INTRODUCTION 
n the context of rapid urbanization, the metro, as the core 
of modern urban transportation systems, is not only a vital 

component of the urban spatial structure but also a key link 
connecting various urban spaces. It accommodates a large 
share of residents’ daily travel needs and supports diverse 
urban activities [1]. With the continued expansion of 
China’s rail transit network, metro station areas are 
increasingly exhibiting multifunctional and mixed-use 
spatial characteristics [2]. The areas surrounding stations 
have evolved beyond mere transportation hubs into urban 
"micro-centers" that integrate commerce, services, social 
interaction, and cultural activities [3].  

The concept of "metro station area vitality" refers to the 
comprehensive and dynamic manifestation of vitality that 
emerges within a certain spatial range around a metro station, 
driven by the interaction and coupling between the station 
itself and nearby urban functional units [4]. Compared to the 
traditional notion of "urban vitality," metro station area 
vitality places greater emphasis on transport dependency, 
spatial accessibility, and high-frequency dynamism [5][6]. 
In terms of representation, early studies primarily relied on 
traditional methods such as field observations [7], 
questionnaire surveys [8], and face-to-face interviews [9]. 
While these approaches can partially reveal vitality 
characteristics at a local scale, their effectiveness is 
constrained by limited sample sizes, data accuracy, and the 
subjectivity of respondents, making it difficult to capture the 
overall patterns and intrinsic features of urban vitality. In 
recent years, with the rise of big data and the rapid 
advancement of 3S technologies, multi-source 
spatiotemporal data—such as mobile signaling data [10], 
social media data [11], and population heatmaps [12]—have 
been widely applied in urban vitality research. These 
emerging data sources offer advantages such as high 
timeliness, broad coverage, and strong objectivity, 
significantly enriching the dimensions and scope of vitality 
measurement and providing new perspectives and tools for 
the fine-grained assessment of metro station area vitality. 

Meanwhile, existing studies on urban vitality and metro 
ridership have provided strong theoretical and 
methodological support for the construction and analysis of 
metro station area vitality. Current research primarily 
focuses on two directions: one is the quantification and 
construction of built environment indicator systems, and the 
other is the exploration of how the built environment 
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influences travel behavior. Early studies established the 
“3D” built environment evaluation framework—centering 
on density, diversity, and design—which laid the theoretical 
foundation for understanding the relationship between urban 
spatial structure and transport vitality [13]. Building upon 
this, scholars later introduced two additional dimensions: 
destination accessibility and distance to transit, thereby 
developing a more comprehensive “5D” built environment 
indicator system, which has become the mainstream 
paradigm in current urban transport research [14]. 

In terms of methodology, traditional studies often adopt 
classical statistical approaches such as Ordinary Least 
Squares (OLS) regression [15] and spatial autoregression 
[16], which mainly aim to reveal the overall linear 
relationship between the built environment and travel 
behavior. However, as understanding of the complexity of 
urban systems deepens, researchers have increasingly 
recognized the nonlinear nature of this relationship. In 
response, some studies have begun incorporating machine 
learning models to uncover potential nonlinear relationships 
between the built environment and travel behavior from a 
more flexible modeling perspective [17][18]. Although these 
models offer significant advantages in terms of improving 
fitting accuracy and predictive power, they remain 
essentially global models and thus struggle to address the 
non-stationarity and local heterogeneity commonly present 
in urban spatial structures [19]. To overcome these 
limitations, some scholars have turned to local spatial 
models such as Geographically Weighted Regression (GWR) 
[20] and Multiscale Geographically Weighted Regression 
(MGWR) [21], which introduce spatial weighting functions 
to capture spatially varying relationships between variables 
across different geographic locations. These methods are 
more aligned with the complex realities of urban dynamics. 

In summary, although existing research on urban vibrancy 
has generated numerous valuable insights, notable gaps 
remain in the following three areas: (1) Systematic 
investigations specifically addressing vibrancy in metro 
station areas are still relatively scarce. Most studies either 
adopt a broad perspective on “urban vibrancy” or focus 
narrowly on “metro ridership,” offering limited in-depth 
analysis at the station-area scale. (2) Many studies examine 
built environment factors in isolation, overlooking the 
synergistic effects that emerge from the interaction among 
multiple variables. (3) The prevailing spatial and temporal 
analytical approaches are often static and conventional, 
resulting in a disconnection between spatial and temporal 
dimensions—a phenomenon that can be described as 
“spatiotemporal fragmentation.” 

To address these research gaps, this study selects 
Shanghai—a representative Transit-Oriented Development 
(TOD) city—as the case study. Adopting a spatiotemporal 
interaction perspective, Exploratory Spatiotemporal Data 
Analysis (ESTDA) is employed to investigate the dynamic 
patterns of vibrancy in metro station areas. Building upon 
this, the study integrates the Optimal Parameter-based 
Geographical Detector (OPGD) and the Geographically and 
Temporally Weighted Regression (GTWR) model to 
uncover the spatiotemporal driving mechanisms of built 
environment factors influencing metro station area vibrancy 
at both global and local scales. The findings aim to provide 
a scientific foundation for refined spatial governance and the 
sustainable enhancement of station-area vibrancy in 
metro-oriented cities. 

II. DATA AND METHOD 

A. Study Area and Research Scope 
Shanghai is located at the estuary of the Yangtze River 

and serves as a strategic intersection between the Yangtze 
River Economic Belt and the Coastal Economic Axis 
(Figure 1). As of December 2024, the Shanghai Metro 
system comprises 21 lines, with a total of 517 stations and 
an operating length of 896 kilometers. In this study, an 800 
meter buffer around each metro station is used as the spatial 
analysis unit. This delineation is based on the widely 
accepted threshold of walking accessibility (10-15 minutes) 
and the service radius of rail transit under the 
Transit-Oriented Development framework [22]. To address 
the issue of spatial overlap among multiple station service 
areas, Thiessen polygon partitioning is applied to eliminate 
spatial coupling effects between adjacent stations. 

 
Fig. 1.  The study area 

B. Data Sources and Indicator System Construction 
B.1. Quantification of Metro Station Area Vitality 

Population heatmap data from the Baidu Huiyan platform 
(https://huiyan.baidu.com/products/platform) is used as the 
quantitative benchmark for measuring metro station area 
vitality. This dataset is derived from the spatiotemporal 
aggregation of anonymized mobile phone location and 
location service requests, and dynamic heatmaps are 
generated through kernel density analysis to objectively 
reflect the intensity of human activity. Considering that 
weekday foot traffic is heavily influenced by institutional 
activities such as commuting—making it difficult to 
accurately capture the impact of the built environment on 
spontaneous and recreational activities [23]—four weekends 
between April and July 2024 (April 13–14, May 18–19, 
June 15–16, and July 27–28) are selected as the study period. 
Based on the first and last train schedules of the Shanghai 
Metro, data is sampled hourly from 6:00 to 23:00 each day. 
To ensure the ecological validity of the data, a dual control 
strategy is employed: (1) dates are selected to avoid periods 
of extreme weather, severe air pollution, and the 
commencement of new metro lines; (2) sampling is 
conducted across multiple months to minimize short-term 
event-driven disturbances and to emphasize the stable 
mechanisms through which spatial structure affects vitality. 

Based on relevant literature [24], the original data were 
processed through the following steps: (1) hourly population 
heatmap CSV files were imported into ArcGIS and 
converted into point features; (2) kernel density analysis was 
conducted on these point features to produce a continuous 
surface representing spatial density; (3) the resulting kernel 
density surface was spatially joined with metro station areas 
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to perform zonal statistics, thereby obtaining the spatial 
distribution of vibrancy. Finally, the average vibrancy across 
four consecutive weekends was calculated to represent the 
vibrancy intensity of each metro station area. 

 
B.2. Quantification of Built Environment Metrics 

Building on previous studies [12][25][26], this study 
develops an indicator system grounded in the "5D" 
framework of the built environment. It encompasses five 
dimensions: land use intensity, population and facility 
distribution, transportation and accessibility, street 
environment quality, and metro station characteristics. A 
total of 22 indicators are selected, as presented in Table I. 

Building outline and road network data were obtained 
from OpenStreetMap; POI data were collected through 
Amap (https://lbs.amap.com/) and cleaned to retain about 
1.71 million valid entries. Population raster data were 
sourced from WorldPop and calibrated using zonal statistics 
in combination with district-level population census data 
from the Shanghai Municipal Statistics Bureau as of early 
2024. Street view images were acquired through the Baidu 
Panorama platform (https://quanjing.baidu.com/). Metro 
network data were retrieved from the official website of 
Shanghai Metro (http://www.shmetro.com/). All data used 
in this study were collected in 2024. To ensure the 
robustness and reliability of the subsequent modeling 
process, multicollinearity among the independent variables 
was assessed using the Variance Inflation Factor (VIF). Two 
variables—street closeness and interface enclosure—were 
excluded due to their high VIF values, indicating potential 
multicollinearity issues. For the remaining 20 indicators, 
VIF values ranged from 1.3 to 5.2, suggesting that 
multicollinearity was within an acceptable and manageable 
range. The detailed calculation methods for the selected 
indicators are described as follows: 

(1) Functional Mix Index 
The functional mix index is a key metric used to evaluate 

the balance and diversity of facility types within a given 
area, reflecting the degree of land-use heterogeneity and 
urban vitality. Drawing on the Gaode POI (Point of Interest) 
Classification and Coding system, facilities are categorized 
into 23 primary classes and 261 secondary subcategories, 
including catering services, commercial enterprises, and 
daily life services. The functional mix within each spatial 
analysis unit is quantified using location entropy, which 
captures the distributional evenness of different facility 
types. A higher entropy value indicates a more balanced and 
diverse functional composition. The calculation formula is 
as follows: 

 
1

1 ln
ln( )

N

i ij ij
j

E p p
N 

    (1) 

Where: Ei represents the functional mix degree of metro 
station area i; N denotes the total number of POI categories; 
pij indicates the proportion of POIs of category j within 
metro station area i to the total number of POIs in that area. 

(2) Street Network Morphology 
The Spatial Design Network Analysis (sDNA) method 

was utilized to quantify two key indicators of Shanghai’s 
street network—closeness and betweenness—in order to 
capture the morphological characteristics of the actual urban 
road system [27]. Street closeness reflects the topological 
integration of a street node by evaluating its minimum 
cumulative topological depth relative to all other nodes 

within the network. This indicator serves as a proxy for 
spatial accessibility, highlighting how easily a location can 
be reached from elsewhere in the network. The 
corresponding formula is as follows: 

   ( ) ( )
( , )

xy R m

N yW y p
d x y

QPDA x


   (2) 

Where: NQPDA(x) represents the closeness value of node 
x; Rx denotes the set of all nodes within the search radius R  
centered on node x; W(y) is the weight of the road segment 
associated with node y; p(y) is the weight of node y; dm(x,y) 
indicates the shortest topological distance from node x to 
node y. 

Street betweenness is quantified using the topological 
choice metric, which captures the likelihood of a street 
segment being traversed as part of the shortest paths 
between all pairs of nodes in the network. This measure 
reflects the street’s potential to function as an intermediary 
or transfer point within the broader circulation system, 
indicating its importance as a traffic distribution hub. A 
higher betweenness value suggests a greater capacity to 
facilitate movement and connect different parts of the urban 
fabric. The calculation formula is as follows: 

   ( ) ( )( , , )
( )

y

t
y N z R

W z P zTPB x OD y z x
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Where: TPBt(x) represents the through-movement value 
of node x; N denotes the set of all nodes in the network;Ry 
refers to the set of nodes connected to node y; OD(y,z,x) 
indicates the shortest path between y and z that passes 
through x within the search radius; TotalWeight(y) is the 
total node weight within the search radius of node y. 

(3) Street Environment Quality 
Based on the road centerline data of Shanghai, street view 

sampling points were generated at 100 meter intervals. A 
Python script was developed to capture street view images 
in four directions (0°, 90°, 180°, and 270°), resulting in a 
total of 98,676 images. These images were horizontally 
stitched into panoramic views with a resolution of 2048 × 
512 pixels. To enhance the understanding and segmentation 
accuracy of complex urban scenes, a PSPNet model was 
constructed, integrating a multi-scale dilated convolution 
module with an encoder–decoder architecture [28]. The 
model was pre-trained using transfer learning on the 
ADE20K dataset to facilitate multi-scale perception and 
hierarchical semantic interpretation of street view elements. 
Based on the extracted semantic information from the street 
view imagery, visual entropy was subsequently calculated to 
quantify the complexity and structural disorder of the street 
environment. The corresponding calculation formula is as 
follows: 
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Where: SVEi represents the normalized visual information 
entropy of streetscape point i; K denotes the total number of 
visual element categories; Pi is the total number of original 
pixels at streetscape point i; Pi,sky indicates the number of 
sky pixels at streetscape point i; Pi,k represents the number of 
pixels belonging to the k-th visual element at streetscape 
point i. 

(4) Metro Station Network Centrality 
In the analysis of metro network centrality, closeness 

centrality and betweenness centrality are two widely 
adopted indicators used to evaluate the structural importance 
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of individual stations within the network topology. These 
measures offer insights into the accessibility and mediating 
roles of stations in facilitating passenger flow across the 
system. Their respective formulations are presented as 
follows: 
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Where: Cc(i) is the closeness centrality of subway station 
i; n is the total number of subway stations in the network; 
d(i,j) is the shortest path distance between subway stations i 
and j. 
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Where: CB(i) is the betweenness centrality of subway 
station i; s, t are two distinct subway stations in the network; 
σst is the total number of shortest paths between subway 
stations s and t that pass through station i. 

C. Research Methods and Models 
C.1. Exploratory Spatiotemporal Data Analysis 

The ESTDA extends traditional static spatial analysis by 
incorporating the temporal dimension, enabling the 
integrated and dynamic examination of spatial and temporal 
elements [29]. The methodological framework encompasses 
techniques such as spatial autocorrelation (Moran's I), LISA 
time paths and spatiotemporal transitions, and spatial 
Markov chains. These approaches are capable of revealing 

the temporal evolution of spatial units and the dynamic 
transformation of spatial structures over time.  

The LISA time path traces the movement of local spatial 
units within the Moran's I scatter plot, thereby illustrating 
the joint temporal variation of station-area vitality and its 
spatial lag term. This approach provides a continuous 
dynamic representation of the LISA Markov transition 
matrix. The geometric properties of the LISA time path are 
primarily characterized by two indicators: relative length 
and curvature, which are calculated as follows: 
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Where: Ni and Di represent the relative length and 
curvature, respectively; n denotes the number of metro 
station areas; T is the time interval; Li,t represents the LISA 
coordinate (yi,t,yLi,t) of metro station area i at time t; 
d(Li,t,Li,t+1) indicates the movement distance of metro station 
area i from time t to t+1. 

LISA spatiotemporal transitions are used to capture the 
dynamic evolution of local spatial relationships among 
neighboring units. These transitions can be classified into 
four main types, as summarized in Table II. 

 

TABLE I 
SELECTION AND DESCRIPTION OF BUILT ENVIRONMENT INDICATORS 

Dimension Indicator Name Indicator Description 

Land use 
intensity 

Floor area ratio (Building footprint area×number of floors) within the buffer zone divided by the station area. 

Functional mix The richness/diversity of POI facilities within the buffer zone. 

Population 
and facility 
distribution 

Resident population density Total population within the buffer zone divided by the station area (10,000 people/km²). 
Commercial service facility 

density Number of shopping, dining, and similar facilities within the buffer zone per unit area (facilities/km²). 

Business and office facility 
density Number of companies, financial institutions, etc., within the buffer zone per unit area (facilities/km²). 

Educational and cultural 
facility density Number of schools, research institutions, etc., within the buffer zone per unit area (facilities/km²). 

Leisure and entertainment 
facility density Number of sports, leisure, parks, and scenic spots within the buffer zone per unit area (facilities/km²). 

Transportation 
and 

accessibility 

Bus stop density Number of bus stops within the buffer zone divided by the station area (stops/km²). 

Road density Total length of roads within the buffer zone divided by the station area (km/km²). 

Street closeness Average kernel density estimation value of NQPDE800 within the buffer zone, calculated using sDNA. 

Street betweenness Average kernel density estimation value of TPBtE800 within the buffer zone, calculated using sDNA. 

Distance to city center Straight-line distance from the station to People’s Square (km). 

Distance to tertiary hospital Straight-line distance from the station to the nearest tertiary hospital (km). 

Street 
environmental 

quality 

Green view index Average proportion of pixels occupied by grass, vegetation, and trees in street view points within the 
buffer zone. 

Street safety index Average proportion of pixels occupied by safety-related elements such as traffic signs, streetlights, 
surveillance cameras, and guardrails in street view points within the buffer zone. 

Sky openness Average proportion of pixels occupied by the sky in street view points within the buffer zone. 

Interface enclosure Average proportion of pixels occupied by elements such as walls, buildings, and columns in street view 
points within the buffer zone. 

Street visual entropy Visual complexity and diversity of the environment at street view points within the buffer zone. 

Metro station 
characteristics 

Closeness centrality Closeness centrality of the station, reflecting the ease of reaching other stations. 

Betweenness centrality Betweenness centrality of the station, indicating its role as a “bridge” within the metro network. 

Metro station age Number of years since the station was opened (years). 

Number of entrances/exits Total number of station entrances and exits (units). 
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C.2. Optimal Parameter-based Geographical Detector 
The Geographical Detector is a statistical tool designed to 

uncover spatial heterogeneity and identify its underlying 
driving factors. However, traditional implementations of the 
method often rely on subjective judgment when discretizing 
continuous variables, potentially compromising the 
reliability of the results. To overcome this limitation, the 
Optimal Parameter-based Geographical Detector (OPGD) is 
adopted, which enables adaptive discretization of continuous 
variables [30]. 

This approach, integrating the dual modules of Factor 
Detection and Interaction Detection, is employed to examine 
how built environment elements affect station-area vibrancy. 
The Factor Detection module evaluates the explanatory 
power of individual built environment factors on the spatial 
variation in station-area vibrancy, using the q-statistic to 
quantify each factor’s independent contribution. A higher q 
value indicates a stronger explanatory influence. The 
calculation formula is as follows: 
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Where: V represents the intensity of metro station area 
vibrancy; L denotes the optimal number of strata; 2

V is the 
total variance of vibrancy; 2

,V h is the within-stratum variance; 
Nh refers to the number of samples within a stratum; SSW 
and SST represent the sum of within-stratum variances and 
the total sum of variances, respectively. 

The Interaction Detection module is employed to evaluate 
how the combined effect of two built environment factors 
alters their explanatory power with respect to station-area 
vibrancy. By comparing the joint q-statistic of the two 
factors with their individual q-statistics, this analysis 
identifies the nature of their interaction—whether it is 
synergistic (enhancing each other's influence), independent 
(non-interactive), or antagonistic (diminishing each other's 
effect). Such distinctions are crucial for understanding the 
complexity of spatial processes, as interactions often exhibit 
non-linear and context-dependent characteristics. The 
specific criteria used to classify interaction types are 
presented in Table III. 
C.3. Spatiotemporal Geographically Weighted Regression 
Model 

Geographically and Temporally Weighted Regression 
(GTWR) extends the traditional Geographically Weighted 
Regression (GWR) by simultaneously accounting for spatial 
and temporal heterogeneity in regression relationships [31].  

Unlike GWR, which applies local weighting solely based 
on geographic location, GTWR integrates both spatial and 
temporal information in the construction of local regression 
parameters. This enables a more effective examination of 
the non-stationary relationships between independent and 
dependent variables across space and time. During model 
estimation, bandwidth parameters are typically selected 
using the corrected Akaike Information Criterion (AICc) or 
cross-validation. The basic formulation of the GTWR model 
is as follows: 

 0
1

( , , ) ( , , )
p

i i i i k i i i ik i
k

y u v t u v t x  

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Where: yi is the dependent variable at location (ui,vi) and 
time ti; β0(ui,vi,t) is the intercept term varying over space and 
time; βk(ui,vi,t) is the local regression coefficient for the k-th 
independent variable at (ui,vi,ti); xik is the value of the k-th 
independent variable at observation i; εi is the random error 
term. 

    1
( , , ) ( , , ) ( , , )i i i i i i i i iu v t u v t u v t


β X W X X W y   (11) 

Where: ( , , )i i iu v tβ is the vector of estimated local regression 
coefficients at (ui,vi,ti); X is the matrix of independent 
variables for all observations; y is the vector of dependent 
variables for all observations; W(ui,vi,ti) is the diagonal 
spatial-temporal weight matrix for observation i, constructed 
by kernel functions. 
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Where: wij is the spatiotemporal weight between 
observation i and j; dij is the spatiotemporal distance 
between observations i and j; h is the bandwidth parameter 
controlling the kernel smoothing. 

 2 2 2( ) ( ) ( )ij i j i j i jd x x y y t t       (13) 
Where: (xi,yi) and (xj,yj) are spatial coordinates of 

observations i and j; ti and tj are temporal coordinates of 
observations i and j; λ is a scaling parameter that balances 
spatial and temporal distances. 

TABLE Ⅱ 
SPATIOTEMPORAL TRANSITION TYPES OF LISA 

Type Symbolic Expression Transition Form 

TYPE I HHt→LHt+1、LHt→HHt+1、HLt→LLt+1、LLt→HLt+1 Self-transition with unchanged neighborhood 

TYPE II HHt→HLt+1、LHt→LLt+1、HLt→HHt+1、LLt→LHt+1 Neighborhood transition with unchanged self 

TYPE III HHt→LLt+1、LLt→HHt+1、LHt→HLt+1、HLt→LHt+1 Simultaneous transition of self and neighborhood 

TYPE IV HHt→HHt+1、HLt→HLt+1、LLt→LLt+1、LHt→LHt+1 No transition in either self or neighborhood 

 

TABLE Ⅲ 
GEODETECTOR INTERACTION TYPES 

Criteria for Determination Interaction Type 

1 2 1 2( ) min[ ( ), ( )]q X X q X q X  Nonlinear weakening 

1 2 1 2 1 2min[ ( ), ( )] ( ) max[ ( ), ( )]q X q X q X X q X q X   Single-factor nonlinear weakening 

1 2 1 2( ) max[ ( ), ( )]q X X q X q X  Two-factor enhancement 

1 2 1 2( ) ( ) ( )q X X q X q X   Independence 

1 2 1 2( ) ( ) ( )q X X q X q X   Nonlinear enhancement 
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III. RESULTS 

A. Spatiotemporal Interaction Characteristics of Metro 
Station Area Vitality 

A.1. Spatiotemporal Static Characteristics 
The vibrancy of metro station areas in Shanghai exhibits 

clear temporal differentiation in terms of spatiotemporal 
autocorrelation patterns (Figure 2). At all time periods, the 
Global Moran’s I values are significantly positive at the 1% 
level, indicating a notable spatial clustering of station-area 
vibrancy. Specifically, during 6:00–9:00, as urban activities 
begin to awaken, vibrancy levels surge from 107.2 to 297.5, 
accompanied by an increase in spatial clustering (Moran’s I 
rises from 0.437 to 0.502). Between 10:00–17:00, vibrancy 
continues to grow slowly, reaching a peak of 378.3; 
however, the degree of spatial clustering decreases (Moran’s 
I drops to 0.415). At night, overall vibrancy declines, yet 
after 21:00, Moran’s I shows a clear rebound—from 0.366 
to 0.436—indicating a renewed intensification of spatial 
clustering. Overall, the temporal variation in metro 
station-area vibrancy in Shanghai follows a pattern of 
"rise–stability–decline," while the spatial clustering 
demonstrates a trend of "enhance–weaken–re-enhance." 

 
Fig. 2.  Time series variation of subway station area vitality and global 

moran's index 
Referring to existing research, the study period is 

preliminarily divided into four time segments for 
visualization: morning (6:00–12:00), afternoon 
(13:00–18:00), evening (19:00–23:00), and the entire day. 
Based on the distribution characteristics of vitality values 
across these time periods, metro station area vitality is 
categorized into five levels: low vitality (0–200.00), 
lower-middle vitality (200.01–400.00), medium vitality 
(400.01–600.00), upper-middle vitality (600.01–1000.00), 
and high vitality (1000.01–2400.00). 

As shown in Figure 3, the spatial distribution of metro 
station area vitality in Shanghai exhibits a compound pattern 
characterized by a “core radiation + axial extension” 
structure. High-vitality station areas form a multi-level 
spatial system centered around People's Square–East 
Nanjing Road, with major nodes such as Xujiahui, Jing’an 
Temple, and large transportation hubs. These areas extend 
along metro lines 1, 2, 9, and 10 to form continuous vitality 
corridors. Temporally, there are only 18 high and 
medium-high vitality station areas in the morning, 
accounting for 4.44%, mainly concentrated in the city center. 
As urban activity intensifies, the number rises to 57 in the 
afternoon (14.07%), indicating a significant spatial 
expansion of vitality. In the evening, the number drops to 23 
(5.67%), primarily located in major commercial centers. 
Over the course of the entire day, 31 station areas (7.65%) 
maintain high or medium-high vitality. Further local spatial 

autocorrelation analysis reveals that hotspot areas (118 
stations, 29.14%) are highly clustered within the central 
urban districts, whereas coldspot areas (110 stations, 
27.16%) are mainly located in peripheral zones and newly 
developed areas. This reflects a pronounced spatial 
polarization pattern between the two. 
A.2. Spatiotemporal Dynamic Characteristics 

To further characterize the dynamic patterns of metro 
station area vitality, this study applies LISA time path 
analysis, classifying both the relative length and curvature of 
the time paths into five levels using the natural breaks 
method in ArcGIS 10.8 (Figure 4). 

The relative length of LISA time paths shows a 
concentric “core-periphery” decreasing pattern. The average 
relative length is 1, and 279 station areas (accounting for 
68.89% of all stations) have a value below 1, indicating that 
the local spatial structure of vitality across most metro 
station areas in Shanghai is relatively stable. High values are 
mainly concentrated in the following four types of areas: (1) 
Core commercial zones, such as East Nanjing Road (6.13), 
People’s Square (4.60), and Lujiazui (3.78). (2) Cultural and 
leisure areas, such as China Art Museum (9.79), Yuyuan 
Garden (4.35), and the National Exhibition and Convention 
Center (1.91). (3) Major transportation hubs, such as 
Hongqiao Railway Station (4.64), Pudong International 
Airport (3.38), and Shanghai Railway Station (3.47). (4) 
Key transfer nodes, such as Century Avenue (2.52), Yaohua 
Road (2.83), and Zhongshan Park (1.92). These areas 
exhibit strong dynamism due to their multifunctional roles, 
accessibility, and strong passenger flow aggregation effects. 

The curvature presents a spatial pattern of “scattered large 
dispersion, clustered small aggregation.” The average 
bending degree is 15.68, with 106 station areas (26.17%) 
exceeding this value. High values demonstrate the following 
four characteristics: (1) Sporadic distribution in peripheral 
or newly developed areas, such as Jiangyue Road (208.77), 
Nanxiang (46.32), and Fengbin (40.93). (2) Concentration 
around functional hubs or tourist attractions, such as China 
Art Museum (182.41), Hongqiao Airport (72.91), and 
Disneyland (34.27). (3) Few high values in the city center, 
though some dense transfer zones still show high degrees, 
such as Minsheng Road (117.24), Siping Road (89.70), and 
Yanggao Middle Road (69.34). (4) Mostly located in 
transitional zones on the edge of central districts, serving as 
important connectors between urban and suburban areas, 
such as Guanglan Road (148.19), Pusan Road (98.84), and 
Jinji Road (94.93). These areas experience substantial 
fluctuations in spatial dependence of vitality, with spillover 
effects from neighboring areas playing a particularly 
significant role. 

Notably, 39 metro station areas (9.63%) simultaneously 
exceed the average values for both relative length and 
curvature, including the China Art Museum, Oriental Sports 
Center, and Lujiazui. These locations frequently host 
large-scale public events or experience surges in passenger 
volume during holidays, rendering them susceptible to 
abrupt fluctuations in vitality that may affect traffic stability 
and spatial order. Consequently, it is imperative to 
implement real-time dynamic monitoring and early warning 
systems to accurately detect variations in passenger flow 
and to strengthen emergency response and regulatory 
capacity, thereby ensuring the efficient and orderly 
operation of these station areas.
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Fig. 3.  Spatial distribution pattern and quantitative statistics of metro station area vitality 

     
Fig. 4.  Geometric characteristics of LISA space-time paths for metro station area vitality

Based on the spatial coordinates derived from the Moran's 
I scatterplot of metro station area vitality, a spatiotemporal 
transition probability matrix was constructed (Table IV). 
The results reveal that among the four types of 
spatiotemporal transition patterns, Type IV transitions 
dominate, with transition probabilities exceeding 85% 
across all cases. This indicates a strong path dependence in 
metro station area vitality in Shanghai during weekends, and 
reflects a spatial structure characterized by significant inertia 
and lock-in effects. Meanwhile, although the probabilities of 
other transition types are relatively low, they still reflect 

localized changes in vitality status: Type I transitions 
primarily include LHₜ→HHₜ₊₁ (6.78%) and HLₜ→LLₜ₊₁ 
(10.71%). Type II transitions are mainly observed in 
LHₜ→LLₜ₊₁ (2.99%) and HLₜ→HHₜ₊₁ (2.47%). Type III 
transitions are extremely rare, with only HLₜ→LHₜ₊₁ 
(0.82%), indicating that synchronous vitality changes 
between a station and its neighbors are uncommon. Overall, 
the vitality of metro station areas in Shanghai exhibits a 
typical “Matthew Effect”: high-vitality areas are more likely 
to maintain their dominant positions, while low-vitality 
areas struggle to break out of the existing pattern. 
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B. Driving Force Analysis of Metro Station Area Vitality 
Based on the GD package in R, this study constructs an 

optimal-parameter geographical detector model. Continuous 
data are discretized using a combination of the natural 
breaks method, geometrical interval, equal interval, quantile, 
and standard deviation methods, with the number of 
categories set between 3 and 10. The optimal parameter 
combination is determined based on the maximization of the 
q-statistic. A ranking analysis of the q-values for the four 
time periods—6:00–12:00, 13:00–18:00, 19:00–23:00, and 
the entire day—is conducted (Table Ⅴ). The q-values of all 
built environment variables passes the 1% significance level, 
indicating that these variables significantly influence the 
spatial differentiation of metro station area vitality. 

Across all time periods, the following eight factors 
consistently rank in the top positions in terms of explanatory 
power: density of commercial service facilities, density of 
leisure and entertainment facilities, distance to the city 
center, density of educational and cultural facilities, 
closeness centrality, density of business office facilities, sky 
visibility, and floor area ratio. Their q-values range from 
0.43 to 0.75, showing strong temporal stability. Among 
them, the densities of commercial service and leisure and 

entertainment facilities consistently occupy the top two 
positions, both with q-values above 0.58, suggesting that 
commercial activity and leisure consumption are the 
dominant driving forces behind metro station area vitality. 
Notably, these two variables peak in explanatory power 
during the afternoon period, aligning well with citizens' 
behavioral patterns of leisure, socializing, and shopping 
during weekend afternoons. In addition, the densities of 
educational, cultural, and office facilities also demonstrate 
strong explanatory power, reflecting ongoing educational 
and work-related demands even on weekends in Shanghai. 
Furthermore, the importance of distance to the city center, 
closeness centrality, sky openness, and floor area ratio 
confirms the fundamental role of location advantages and 
urban spatial form in shaping vitality. In contrast, the 
explanatory power of street green view index and visual 
entropy is relatively limited, with q-values below 0.2, 
indicating that pedestrians’ perception of fine-grained 
environmental details around metro station areas is 
relatively limited. This may be because broader spatial 
factors exert a stronger influence on vitality than localized 
environmental perceptions at the pedestrian scale.

TABLE IV 
SPATIOTEMPORAL TRANSITION PROBABILITY MATRIX OF METRO STATION AREA VITALITY 

t/t+1 HHt+1 HLt+1 LHt+1 LLt+1 

HHt TYPE IV(0.9569) TYPE II(0.0050) TYPE I(0.0381) TYPE III(0) 

HLt TYPE II(0.0247) TYPE IV(0.8600) TYPE III(0.0082) TYPE I(0.1071) 

LHt TYPE I(0.0678) TYPE III(0) TYPE IV(0.9023) TYPE II(0.0299) 

LLt TYPE III(0) TYPE I(0.0147) TYPE II(0.0108) TYPE IV(0.9745) 

 

TABLE Ⅴ 
DETECTION RESULTS OF VITALITY DRIVING FACTORS IN SUBWAY STATION AREAS 

Dimension Driving Factor 
6:00–12:00 

 
13:00–18:00 

 
19:00–23:00 

 
Entire Day 

q-value Rank q-value Rank q-value Rank q-value Rank 

Land use 
intensity 

Floor area ratio(X1) 0.464 8  0.461 7  0.434 9  0.465 8 

Functional mix(X2) 0.330 13  0.258 15  0.293 13  0.295 13 

Population 
and facility 
distribution 

Resident population density(X3) 0.331 12  0.251 16  0.301 12  0.292 14 

Commercial service facility density(X4) 0.670 1  0.749 1  0.687 1  0.723 1 

Business and office facility density(X5) 0.473 7  0.531 4  0.470 7  0.506 6 

Educational and cultural facility density(X6) 0.524 4  0.530 5  0.491 4  0.528 4 
Leisure and entertainment facility 

density(X7) 
0.586 2  0.691 2  0.607 2  0.644 2 

Transportation 
and 

accessibility 

Bus stop density(X8) 0.410 10  0.444 9  0.439 8  0.441 9 

Road density(X9) 0.422 9  0.397 11  0.388 10  0.407 11 

Street betweenness(X10) 0.382 11  0.438 10  0.371 11  0.412 10 

Distance to city center(X11) 0.537 3  0.556 3  0.494 3  0.544 3 

Distance to tertiary hospital(X12) 0.285 15  0.238 17  0.221 18  0.254 17 

Street 
environmental 

quality 

Green view index(X13) 0.118 19  0.115 19  0.141 19  0.124 19 

Street safety index(X14) 0.252 18  0.200 18  0.223 17  0.227 18 

Sky openness(X15) 0.487 6  0.460 8  0.483 5  0.476 7 

Street visual entropy(X16) 0.048 20  0.039 20  0.047 20  0.044 20 

Metro station 
characteristics 

Closeness centrality(X17) 0.524 5  0.521 6  0.471 6  0.519 5 

Betweenness centrality(X18) 0.282 16  0.293 14  0.250 15  0.279 16 

Metro station age(X19) 0.311 14  0.325 12  0.271 14  0.309 12 

Number of entrances/exits(X20) 0.264 17  0.318 13  0.236 16  0.285 15 
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The interaction detection results (Figure 5) indicate that 
the effects of various built environment factors on metro 
station area vitality are interdependent rather than isolated. 
Most factor combinations exhibit bivariate or nonlinear 
enhancement, while only a few display univariate nonlinear 
weakening, suggesting that metro station area vitality arises 
from the synergistic and combined influence of multiple 
interacting factors. 

Across different time periods, the density of commercial 
service facilities shows the strongest interactive explanatory 
power when combined with distance to the city center, floor 
area ratio, bus stop density, and the densities of educational 
and cultural facilities, with q-values all exceeding 0.78. 
Additionally, interactions involving business office, 
educational, cultural, and leisure facility densities with bus 
stop density and closeness centrality demonstrate strong 
explanatory power, with q-values consistently above 0.6. 
This highlights the critical importance of coordinated spatial 
layout and the effective integration of public transport 
systems with multifunctional facilities. Further analysis 
reveals that the interactive explanatory power of most 
factors increases during weekend afternoons, when travel 
demand rises, suggesting that frequent activity scenarios 
help to strengthen the interactions among built environment 

factors. Compared with single-factor interaction results, the 
explanatory power of street green view index and visual 
entropy improves significantly when interacting with other 
factors, with some showing nonlinear enhancement effects, 
indicating that the influence of street-level environmental 
elements tends to emerge under compound conditions. 

C. The Spatiotemporal Driving Mechanism of Built 
Environment Factors on Metro Station Area Vibrancy 
To further examine the spatiotemporal heterogeneity in 

the effects of built environment factors on metro station area 
vibrancy, twelve indicators with the highest average 
explanatory power identified through the Geodetector 
analysis were selected: X1, X2, X4, X5, X6, X7, X8, X9, X10, X11, 
X15, and X17.  

Considering the sensitivity of the GTWR model to 
variable scales, both independent and dependent variables 
were standardized prior to modeling. As presented in Table 
VI, the GTWR model outperforms the OLS, GWR, and 
TWR models, exhibiting a notably higher R² value and 
lower AICc and RSS values. These results underscore the 
superior performance of GTWR in capturing the 
spatiotemporal non-stationarity inherent in metro station 
area vibrancy. 

   

   
Note: * indicates bivariate enhancement; + indicates nonlinear enhancement; ※ indicates univariate nonlinear weakening. 

Fig. 5.  Interaction analysis results of driving factors for subway station area vitality 
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TABLE Ⅵ 
COMPARISON OF MODEL RESULTS 

Model R2 AICc RSS 

OLS 0.65 12813.69 2472.03 

GWR 0.74 11351.91 1856.79 

TWR 0.84 7489.92 1143.59 

GTWR 0.89 5534.29 805.12 

As illustrated in Figure 6, the regression coefficients of 
built environment variables in the GTWR model exhibit 
considerable variation, with most factors exerting both 
positive and negative effects across space and time. Notably, 
variables such as distance to the city center, street 
connectivity, closeness centrality, educational and cultural 
facility density, and land-use mix demonstrate substantial 
fluctuations in their coefficients, reflecting a high degree of 
spatiotemporal heterogeneity in their influence on metro 
station-area vibrancy. In contrast, bus stop density and road 
density display more narrowly distributed coefficients with 
limited variation, indicating a relatively stable and 
consistent effect of public transit accessibility and road 
infrastructure. These findings underscore the differentiated 
roles of built environment components in shaping 
station-area vibrancy and emphasize the need for 
context-sensitive planning strategies that account for local 
spatial and temporal dynamics. 

 
Fig. 6.  Violin plot of GTWR regression coefficients for built environment 

variables 
 
C.1. Temporal Heterogeneity of Built Environment Effects 

Plotting the curves of average GTWR regression 
coefficients for each built environment variable across 
different time periods helps to capture the dynamic changes 
in their overall influence intensity and direction (Figure 7).  

At the land use level, the positive impact of floor area 
ratio shows a steady upward trend overall, indicating that 
areas with higher development intensity can continuously 
stimulate station-area vibrancy and play a crucial role in 
promoting the nighttime economy and sustaining urban 
vitality. The influence of functional mix on metro 
station-area vibrancy exhibits a "double-peaked" pattern, 
with two distinct peaks at 10:00 and 19:00. From 6:00 to 
10:00, as residents begin commuting and morning activities 
unfold, areas with higher functional mix are more likely to 
stimulate diverse behavioral demands, thereby enhancing 
vibrancy. Between 10:00 and 15:00, its influence weakens, 
possibly due to dispersed population activity and stabilized 
functional needs during midday. From 15:00 to 19:00, the 
positive effect strengthens again, but declines after 20:00 as 
indicated by a drop in regression coefficients. 

At the level of functional facilities, the positive impact of 
commercial service facility density shows a continuous 

upward trend during the daytime. After 19:00, this positive 
effect begins to weaken, likely due to the reduction of 
nighttime commercial activities and declining consumer 
demand. The density of office facilities exerts a consistently 
negative impact throughout the day. Between 6:00 and 9:00, 
this negative effect gradually weakens, indicating that some 
enterprises in Shanghai remain operational during the 
weekend morning peak, generating a certain level of foot 
traffic. After 14:00, the negative impact significantly 
intensifies, revealing the "vacancy" characteristic of office 
functions on non-working days and its constraining effect on 
urban vitality. The negative influence of science, education, 
and cultural facility density weakens gradually from 6:00 to 
15:00, reflecting daytime demand from citizens for 
exhibitions, family education, and cultural leisure activities 
on weekends. After 18:00, the negative effect increases 
rapidly, mainly due to the limited opening hours and 
functional attributes of such venues. The density of leisure 
and entertainment facilities suppresses station-area vibrancy 
between 6:00 and 9:00, as most of these venues are not yet 
open and fail to attract foot traffic. After 10:00, the 
regression coefficient shifts from negative to positive and 
peaks in the afternoon, indicating strong attraction during 
the midday to evening hours. After 20:00, the coefficient 
declines again and gradually turns negative. 

At the transportation and locational level, both bus stop 
density and road density exhibit a "rise-then-fall" pattern in 
their positive influence. The impact of bus stop density on 
station-area vibrancy peaks around midday; although the 
regression coefficient fluctuates slightly afterward, it 
remains at a relatively high level overall, indicating that bus 
accessibility continuously supports vibrancy. Road density 
is more effective in enhancing pedestrian aggregation during 
morning travel periods, but its influence significantly 
weakens in the evening. The regression coefficient of street 
connectivity follows a "W-shaped" trend. On the one hand, 
during the two peak travel periods (6:00–10:00 and 
15:00–19:00), the negative effect becomes more pronounced. 
This is because streets with high connectivity, serving as 
arterial corridors in the traffic network, tend to facilitate 
rapid movement and dispersal of people, thereby diluting the 
concentration of vibrancy in metro station areas. On the 
other hand, during non-peak periods (11:00–14:00 and 
20:00–23:00), the negative influence is relatively weaker, 
suggesting a lower degree of street network intervention in 
organizing pedestrian flows in metro areas. The effect of 
distance to the city center can be divided into three phases. 
From 6:00 to 10:00, the regression coefficient is negative, 
reflecting a "centripetal" pattern of morning activities. 
Between 10:00 and 19:00, the coefficient turns positive and 
increases steadily, showing a clear trend of 
"decentralization." After 19:00, the coefficient drops sharply 
and turns negative again after 21:00, indicating that 
nighttime activities become re-concentrated in central urban 
areas. 

At the level of street spatial form, sky openness exhibits a 
negative regression coefficient between 6:00 and 10:00, 
suggesting that people in the morning prefer street 
environments with enclosure and a sense of shelter. As time 
progresses, the coefficient shifts from negative to positive, 
reflecting an increasing preference for open and sunlit 
outdoor environments in the afternoon. After 19:00, the 
coefficient turns negative again, indicating that open spaces 
lose their attractiveness at night—likely due to reduced 
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perceived safety and increased potential crime risk. This 
makes people more inclined to choose streets with 
continuous interfaces, clear spatial boundaries, and vibrant 
or community-oriented atmospheres to meet their needs for 
socializing, relaxation, and emotional belonging. 

At the metro network level, the regression coefficient of 
closeness centrality exhibits an inverted “U-shaped” 
temporal trend. From 6:00 to 12:00, its positive effect rises 
sharply, underscoring the critical role of highly central 
stations in stimulating vibrancy during the morning hours. 
Between 13:00 and 18:00, the coefficient remains elevated, 
reflecting the continued ability of these stations to attract 
cross-regional flows and strengthen the spatial coupling 
between metro network topology and human mobility. After 
18:00, the influence diminishes, likely due to a shift in travel 
behavior—from daytime, function-driven inter-district trips 
to more localized, point-to-point return-home movements. 

Collectively, these temporal patterns underscore the 
complex, dynamic, and context-dependent ways in which 
built environment elements influence metro station-area 
vibrancy. They highlight the critical need for planning 
strategies that are temporally responsive, functionally 
targeted, and spatially adaptive to effectively support 
sustainable and resilient urban vitality. 
C.2. Spatial Heterogeneity of Built Environment Effects 

Based on the analysis results in Figure 6, one to two built 
environment variables exhibiting notable spatial 
heterogeneity are selected from each dimension as 
representative indicators. These variables are then used to 
visualize the spatial distribution of average GTWR 
regression coefficients across different station areas (Figure 
8). This visualization highlights the varying influence of key 
built environment factors on station-area vibrancy, offering 
insights into their localized and context-dependent effects. 

 

       
 

       
 

       
 

       
Fig. 7.  Temporal heterogeneity of the impact of built environment factors on metro station area vitality 
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At the land use level, the impact of floor area ratio 
exhibits a spatial pattern of being higher in the southwest 
and lower in the northeast. Station areas with strong positive 
effects are mainly located in the southern part of Pudong 
New Area, the Expo Zone, the riverside area of Pudong, and 
major transportation hubs. These areas are often situated in 
emerging zones of the city’s development strategy, 
characterized by high demand for mixed functions, planning 
flexibility, and strong policy support—aligning well with 
the principles of TOD. In contrast, station areas with strong 
negative effects are primarily concentrated in the 
northeastern industrial belt of Pudong, the aging built-up 
areas of Puxi, and the mixed industrial-residential zones in 
Baoshan-Jiading in the north. Constrained by land-use 
regulations, high spatial renewal costs, and the need to 
preserve ecological and historical features, increasing 
development intensity in these areas is difficult to translate 
into substantial urban vitality. The influence of functional 
mix exhibits a "center–periphery" spatial pattern. Station 
areas with stronger positive effects are concentrated in the 
core area within the Inner Ring, which benefits from a rich 
historical legacy and a mature urban functional system, 
resulting in highly integrated and diverse functional 
characteristics. Conversely, station areas with stronger 
negative effects are mostly located in suburban new towns, 
terminal metro stations, and specialized industrial parks. 
These areas generally face structural issues such as 
mono-functional land use and lagging public service 
facilities, and their spatial vitality has yet to be fully 
activated. 

At the level of functional facilities, the influence of the 
density of science, education, and cultural facilities exhibits 
a spatial pattern of being higher in the northeast and lower in 
the southwest. Station areas with stronger positive effects 
are mainly concentrated in the Zhangjiang–Waigaoqiao 
corridor, the Hongkou–Yangpu area, and the riverside 
comprehensive service belt. These areas host a large number 
of universities and research institutions and benefit from the 
advantages of free trade zones, high-tech parks, and modern 
service industries, forming spatial carriers with a high 
degree of integration between knowledge concentration and 
innovation-driven development. In contrast, station areas 
with stronger negative effects are mostly located in the 
distant suburban new towns and around major transportation 
hubs, where issues such as a shortage of educational 
resources and low population density of knowledge workers 
are common. The impact of the density of leisure and 
entertainment facilities shows a spatial pattern 
symmetrically distributed along a diagonal axis. Station 
areas with stronger positive effects are mainly located in the 
outer city areas of Jiading, Qingpu, and Pudong New Area. 
These areas host landmark leisure destinations such as 
Disneyland, the Wildlife Park, and ecological parks, which 
not only fill the entertainment service gap in the suburbs but 
also attract large numbers of external visitors due to their 
destination appeal, making them popular choices for 
weekend leisure and short-distance travel. Station areas with 
stronger negative effects are mainly distributed in the central 
urban area. Due to limited land resources, the addition of 
new leisure facilities may lead to a "functional 
crowding-out" effect, occupying space originally intended 
for community services or residential use, thereby 
weakening overall vitality. 

At the level of transportation and location, the influence 
of street permeability exhibits an overall spatial pattern of 
being higher in the east and lower in the west. Station areas 
with stronger positive effects are mainly located in Xujiahui, 
the Expo–Qiantan area, Huangpu District, and Pudong New 
Area. These areas feature dense road networks and 
well-developed branch road systems, providing convenient 
access for pedestrians and non-motorized vehicles. 
Conversely, station areas with stronger negative effects are 
mainly situated around the Hongqiao transportation hub, 
Songjiang, Qingpu, and Baoshan. These areas are often 
traversed by expressways and major arterial roads, leading 
to fragmented station area spaces and obstructed pedestrian 
and non-motorized travel. The impact of distance to the city 
center shows both strong positive and negative effects. 
Station areas with stronger positive effects are primarily 
concentrated in municipal-level commercial centers, the 
Hongqiao transportation hub, and the northern part of 
Jing’an District. This indicates that these areas have 
developed self-sustaining and mutually reinforcing 
functional ecosystems, demonstrating strong locational 
resilience and the capacity to attract foot traffic—further 
validating the necessity of promoting a polycentric urban 
structure. On the other hand, station areas with stronger 
negative effects are mainly distributed in suburban new 
towns, the Jinqiao–Waigaoqiao area, northern Yangpu 
District, and the central-western part of Pudong, which may 
be due to developmental gaps in their comprehensive 
service systems compared to the city center. 

At the level of street spatial morphology, the influence of 
sky openness exhibits a spatial pattern of being higher in the 
central areas and lower in the periphery. Station areas with 
stronger positive effects are mostly concentrated in the core 
districts of Puxi, the Expo–Qiantan area, and Sanlin–Beicai. 
These areas feature well-developed pedestrian facilities and 
continuous, compact street interfaces. A moderate degree of 
sky openness helps enhance spatial permeability and visual 
comfort. Station areas with stronger negative effects are 
mainly located in the Hongkou–Yangpu area, 
Qingpu–Jiading, and the far southern outskirts of Pudong. 
Although these areas have certain urban functions and 
population bases, they are often surrounded by large 
residential communities, gated campuses, or industrial parks. 
Some streets suffer from oversized spatial scales, weak 
interface organization, or monotonous frontage functions. 
The lack of commercial permeability and public activity 
support means that higher sky openness may instead 
intensify the sense of emptiness and detachment, thereby 
reducing the attractiveness of the station areas. 

At the level of metro characteristics, the spatial 
distribution of the positive and negative effects of centrality 
proximity varies significantly. Station areas with stronger 
positive effects are mainly distributed in Songjiang, 
Xinzhuang, Hongqiao, Beicai, Chuansha, and along the 
northern section of Line 1. These areas are generally 
secondary urban centers or emerging development clusters, 
where improved metro accessibility has strengthened 
connections between the periphery and the urban core. In 
contrast, station areas with stronger negative effects are 
primarily found in Jinqiao–Waigaoqiao, Fengxian, northern 
Yangpu, and southern Minhang. These areas are often 
oriented toward industrial parks, logistics and warehousing, 
or residential functions, and they tend to lack 
service-oriented and consumption-oriented facilities. Some 
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station areas also face problems related to inadequate 
“last-mile” transport connections, resulting in metro 
accessibility not translating into substantial foot traffic.  

Overall, the spatial heterogeneity in the effects of built 
environment variables reflects the intricate interplay 

between urban function, spatial structure, and development 
stage, highlighting the need for differentiated and 
context-sensitive planning strategies to optimize metro 
station-area vibrancy across diverse urban settings.

     

     

     

     
Fig.8  Spatial heterogeneity of the impact of built environment factors on metro station area vitality 
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D. Analysis of Typical Metro Station Areas 
To further investigate the relationship between the built 

environment and metro station area vibrancy, six 
representative stations—People's Square, Xujiahui, China 
Art Museum, Jinqiao Road, Jiangyue Road, and Pujiang 
Town—were selected, covering a spectrum from the urban 
core to the outer fringe and representing varying levels of 
vibrancy. Case analyses based on urban functional layout 
and spatial morphology were conducted to uncover the 
differentiated mechanisms and underlying logic driving 
vibrancy across station types. 

(1) People's Square 
As one of Shanghai’s most iconic central areas, the 

People's Square station area exhibits exceptionally high 
densities of commercial, cultural, and educational facilities. 
It ranks among the highest in the sample in terms of 
functional mix (0.74), cultural and educational facility 
density (121.12), recreational facility density (199.44), and 
street connectivity (43.14). These reflect a highly 
multifunctional and population-attracting environment. 
Serving as both an administrative hub and a major 
transportation node, this area demonstrates the amplification 
effect of a “monocentric core” on urban vibrancy and stands 
as a model for the vibrancy-driving potential of the built 
environment. 

(2) Xujiahui 
Located within the inner ring, Xujiahui serves as a vital 

secondary urban center. It features strong street connectivity 
(18.56), high development intensity (FAR: 4.22), a high 
degree of functional mix (0.75), and substantial recreational 
facility provision (96.95). With a mature commercial 
ecosystem and preserved historical neighborhoods, the area 
benefits from compact urban form and high connectivity, 
representing the combined effect of spatial structure and 
street quality in sustaining vibrancy. 

(3) China Art Museum 
Situated within the Expo Park zone, the China Art 

Museum station plays a key role in the Pudong riverside 
development belt. It boasts a high floor area ratio (4.21), 
with notable centrality and functional mix, highlighting the 
vibrancy potential of emerging functional zones under 
policy support and flexible development. Although its 
density of cultural and recreational facilities is lower than 
that of core areas, the presence of cultural landmarks, 
exhibition venues, and a composite spatial layout signal a 
transition from mono-functionality to comprehensive 
vibrancy, making it a representative of "planning-led" 
positive evolution. 

(4) Jinqiao Road 
Located in Pudong’s traditional industrial belt, the Jinqiao 

Road station area shows relatively high functional mix 
(0.76), but suffers from low FAR (1.76) and limited 
recreational facility density (29.86). Its centrality and 
proximity to the city center are both moderate to low, 
indicating that metro accessibility has not effectively 
activated vibrancy in the area. It typifies areas in urban 
renewal where single-industry orientation and low 
development intensity hinder the release of spatial vitality, 
exposing a mismatch between the built environment and 
urban functions. 

(5) Jiangyue Road 
Jiangyue Road station is located on the outer edge of 

Minhang District. It ranks low in both cultural and 

educational facility density (13.27) and recreational facility 
density (13.78). While the sky openness is relatively high 
(0.25), street connectivity remains poor (9.20), forming a 
typical “high openness–low accessibility” pattern. The 
overly wide street interfaces limit pedestrian aggregation 
and lack adequate service penetration, resulting in 
persistently low vibrancy. This highlights the structural 
design challenges in low-density residential areas at the 
urban fringe. 

(6) Pujiang Town 
As a suburban station in southern Pudong, Pujiang Town 

ranks among the lowest across several built environment 
indicators, particularly in cultural and educational facility 
density (9.45) and centrality (0.065). This reflects 
deficiencies in knowledge-intensive resources and poor 
travel connectivity. The area exemplifies the structural low 
vibrancy caused by jobs-housing imbalance and lagging 
infrastructure provision—a “static zone” shaped by the 
spatial mismatch between metro benefits and land use. 

E. Built Environment Driving Mechanisms Analysis 
Spatial regression of built environment elements and the 

case analysis of typical station areas reveal that the 
generation of metro station area vibrancy is not only 
influenced by physical spatial attributes but also reflects a 
deeper coupling of various mechanisms, including urban 
functional organization, travel behavior preferences, and the 
regional job-housing structure. This coupling is particularly 
evident during weekends, when commuting demand 
subsides and residents’ mobility shifts toward consumption, 
leisure, and social activities. Consequently, station area 
vibrancy becomes more dependent on environmental 
perception and functional provision, amplifying the spatial 
and temporal heterogeneity of built environment effects. 

From the perspective of metro service functionality, a 
station's hierarchical position within the urban transit 
network significantly affects its vibrancy level. Central hubs 
such as People's Square and Xujiahui, with superior network 
connectivity and transfer capacities, serve as major 
population convergence nodes, exhibiting substantially 
higher vibrancy than peripheral stations. In contrast, stations 
located at terminal points or suburban edges often suffer 
from limited coverage and weak “last-mile” connectivity. 
Despite some degree of built-up intensity, these areas fail to 
effectively attract pedestrian flow and activity. 

From a travel behavior perspective, weekend mobility is 
characterized by a high degree of self-organization and 
purpose-driven activity. Residents tend to gravitate toward 
areas with a high concentration of cultural, recreational, and 
commercial functions, reflecting a strong preference for 
“experiential spaces.” This accounts for the heightened 
vibrancy observed in station areas with abundant 
cultural-tourism amenities and well-integrated functions, 
while those marked by pronounced job-housing separation 
and functional singularity often exhibit a disconnect 
between physical form and perceived vitality—manifesting 
as “visible structure, invisible vibrancy.” 

From the perspective of job-housing spatial structure, 
differences in the degree of functional integration and 
spatial positioning among station areas represent a key 
mechanism behind vibrancy disparities. Central urban zones 
generally maintain better job-housing balance and higher 
functional density, sustaining strong flows of people and 
activity even on weekends. In contrast, areas such as 
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industrial parks or mono-functional residential zones, where 
functional fragmentation is severe, often struggle to meet 
diverse weekend needs, despite favorable accessibility or 
development intensity. 

 

IV. CONCLUSION AND DISCUSSION 

A. Conclusion 
This study focuses on the vibrancy of metro station areas 

in Shanghai during weekends. By applying an Exploratory 
Spatiotemporal Data Analysis framework, it characterizes 
the dynamic variations of station-area vibrancy. Building on 
this, the study further employs the Optimal Parameter-based 
Geographical Detector and the Spatiotemporal 
Geographically Weighted Regression model to explore the 
driving mechanisms of built environment factors. The main 
conclusions are as follows:  

(1) Metro station area vibrancy in Shanghai exhibits 
significant positive spatial autocorrelation and clear 
spatiotemporal differentiation. Temporally, vibrancy 
intensity follows a trend of “increase–stabilization–decline,” 
while the degree of spatial agglomeration undergoes a 
process of “enhance–weaken–re-enhance.” Spatially, the 
overall structure of vibrancy is characterized by a compound 
pattern of “core radiation + axial extension.” Hotspots are 
concentrated in central urban areas, while coldspots are 
mainly located in the urban periphery and newly developed 
zones, indicating a pronounced spatial polarization. 

(2) The local spatial structure of metro station-area 
vibrancy demonstrates high stability. Stations with high 
relative lengths of LISA time paths are primarily located in 
core business districts, cultural and recreational zones, major 
transportation hubs, and key transfer nodes. Stations with 
high curvature of LISA time paths are mostly found in 
transitional belts at the edge of the central city, functional 
hubs, and scenic spots, scattered across the urban periphery 
and transfer-intensive zones. The spatiotemporal evolution 
of vibrancy is marked by strong path dependence and spatial 
lock-in, reflecting a typical “Matthew effect”, where 
spontaneous breakthroughs or transformations are difficult 
to achieve. 

(3) Factor detection results indicate that the key 
determinants of metro station-area vibrancy include: 
commercial service facility density, recreational facility 
density, distance to the city center, educational and cultural 
facility density, closeness centrality, office facility density, 
sky openness, and floor area ratio. In contrast, green view 
index and visual entropy exhibit relatively weak explanatory 
power. Interaction detection further reveals that under 
conditions of frequent activity, the interactions among built 
environment factors become more pronounced. Specifically, 
commercial service facility density shows the strongest 
interactional explanatory power with distance to the city 
center, floor area ratio, bus stop density, and 
educational/cultural facility density across different time 
periods. In comparison, the impact of street-level 
environmental features tends to rely on multi-factorial 
conditions to be effective. 

(4) The influence of built environment elements on 
station-area vibrancy exhibits notable spatiotemporal 
heterogeneity, with most variables showing both positive 
and negative effects. Variables such as distance to the city 
center, street permeability, closeness centrality, 

educational/cultural facility density, and land-use mix 
demonstrate strong spatiotemporal dependence in their 
influence across different station areas. In contrast, bus stop 
density and road density have relatively stable impacts on 
vibrancy. 

B. Policy Implications 
Based on the research findings, several planning 

recommendations are proposed to enhance metro 
station-area vibrancy and support sustainable urban 
development. These recommendations aim to address the 
observed spatiotemporal and spatial heterogeneity of built 
environment influences, and to guide context-specific, 
evidence-based interventions in urban planning practice: 

(1) For the 39 station areas exhibiting significant vitality 
fluctuations, priority should be given to establishing 
dynamic sensing and emergency coordination mechanisms. 
By leveraging big data and intelligent sensing technologies, 
a real-time passenger flow monitoring and early warning 
system should be developed to enable accurate identification 
and rapid response to sudden crowd surges. Furthermore, 
hierarchical management strategies and contingency plans 
should be formulated based on spatial carrying capacity and 
the characteristics of specific events, thereby enhancing the 
emergency responsiveness and operational resilience of 
highly sensitive station areas during holidays and major 
public gatherings. 

(2) The spatial layout of commercial and recreational 
facilities should be optimized as a key driver to stimulate 
deeper vitality within station areas. It is essential to promote 
the integrated planning of public transportation systems and 
multifunctional facilities, strengthening the efficient linkage 
between transport networks and service functions. Street 
spaces should be organically integrated with surrounding 
built environment elements, and designed to be functionally 
mixed, pedestrian-friendly, and connected to slow-traffic 
systems, thus fostering high-quality public spaces with 
strong interactivity and experiential appeal. On the policy 
level, travel patterns and activity rhythms of residents across 
different time periods should be dynamically monitored, 
shifting spatial governance strategies from “static planning” 
to “temporal optimization.” 

(3) For peripheral station areas with persistently low 
vitality, efforts should focus on the introduction of 
mixed-use functions and the provision of high-quality public 
services to revitalize local life. The introduction of 
high-frequency livelihood services—such as education, 
cultural and creative industries, healthcare, and community 
commerce—should be encouraged to create vibrant spaces 
aligned with local population structures and time-specific 
needs. By redeveloping idle land and underutilized spaces, 
the transformation of station areas from mere “rail access 
points” to vibrant “living hubs” can be realized, thus 
preventing the dual challenge of “railway isolation” and 
“vitality hollowing.” 

(4) In core areas characterized by high population density 
and functional intensity, scientific management of functional 
coordination and capacity thresholds should be prioritized. 
While maintaining the advantages of agglomeration, 
adaptive strategies for regulating crowd capacity and 
functional allocation must be implemented to mitigate 
systemic risks stemming from resource overconcentration. 
Differentiated policy interventions and quality-oriented 
resource optimization should be employed to promote 
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functional complementarity and vitality spillovers between 
central urban areas and peripheral sub-centers. This will 
support the development of a polycentric, multi-level, and 
networked urban spatial structure, ensuring balanced vitality 
distribution and orderly spatial expansion. 

 

C. Discussion 
The strengths and contributions of this study are reflected 

in the following four aspects: 
(1) Compared with existing research, this study 

incorporates street-level environmental perception and 
metro station attributes into the analysis, thereby expanding 
and refining the conventional “5D” built environment 
framework. This allows for a more systematic and 
comprehensive assessment of metro station area vibrancy. 

(2) Building upon previous urban vibrancy studies, this 
research innovatively introduces an exploratory 
spatiotemporal data analysis framework that integrates 
temporal dynamics with local spatial dependence. By 
moving beyond the traditional static perspective, it enables a 
continuous representation of vibrancy from “momentary 
scenes” to “interactive dynamic scenarios,” thereby 
advancing both the theoretical lens and technical approach 
in urban vibrancy research. 

(3) The study applies an optimal-parameter geographical 
detector to identify key driving factors and their interaction 
effects on metro station area vibrancy, effectively 
addressing the limitations of traditional detectors in 
parameter discretization and improving the reliability and 
robustness of the results. In factor detection, the temporal 
variations in the explanatory power of built environment 
elements help clarify the phased priorities and intervention 
opportunities for regulating station area vibrancy. In 
interaction detection, the study fills a gap in previous 
research by addressing the insufficient attention to complex 
interaction mechanisms, offering a theoretical foundation for 
coordinated interventions and systematic enhancements of 
station area vibrancy. 

(4) By integrating the Geographically and Temporally 
Weighted Regression (GTWR) model, the study further 
reveals the spatiotemporal heterogeneity in the influence of 
built environment factors. Compared to OLS, GWR, 
MGWR, and conventional machine learning models, GTWR 
captures the spatiotemporal non-stationarity of variables 
more effectively, providing a more targeted methodological 
and practical basis for place-specific and time-sensitive 
urban spatial governance strategies. 

Nevertheless, this study has several limitations that 
warrant further investigation. First, although Baidu's 
population heatmap data effectively captures the overall 
spatial patterns of population activity, it may be influenced 
by platform-specific behavioral biases and, therefore, may 
not fully reflect the vibrancy characteristics of diverse 
demographic groups. Second, as the analysis is confined to 
Shanghai as a case study, the temporal and spatial 
generalizability of the findings remains to be validated 
across cities with varying characteristics, in order to 
ascertain the broader applicability and limitations of the 
proposed analytical framework. Despite these limitations, 
the study establishes a systematic theoretical framework and 
provides empirical evidence for understanding the 
spatiotemporal driving mechanisms of built environment 

factors on metro station-area vibrancy, offering meaningful 
insights for future research in this domain. 
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