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Existence of Positive Solution for a Higher Order
Fractional Integral Boundary Value Problem™

Yuyan Liu, Dehong Ji*

Abstract—In this article, we investigate the existence of a
positive solution to an integral boundary value problem for a
higher order fractional differential equation

~Dg (P02 () = a()=(x)) + f(x: 2(x), 2" (X)) =

0<x<1,
(p(0)2(0))" — q(0)2(0) = [( (0)'(0))' — q(0)=(0))" =
= [(p(0)2(0))" — q(0)z(0)] "~ =0,
(P(l)z'(l))' —a(1)z(1) =0,
a12(0) — B12'(0) = fo (0)dX
a1z(1) + f1z' (1) = [ z(e)dY

here, Dg;2 denotes the standard Riemann-Liouville frac-
tional derivative of order « — 2, where n — 1 < a < n
and o > 4. The constants a1, 31,2 and 52 are positive,
and p,q € C([0,1],(0,00)). The integrals f 0)dX (9) and

J 01 z(0)dY (o) are defined in the Riemann- Stleltjes sense regard-
ing the nondecreasing functions X (x) and Y (), respectively.
f:10,1] x [0,00) — [0,00) is continuous. The first derivative
of z is involved into the nonlinear term, and the existence
of a positive solution is demonstrated by transforming the
differential equation into an integral equation through Green’s
function and applying Krasnosel’skii conclusion.

Index Terms—Fractional differential equation,
boundary, Positive solution, Fixed point.

Integral

I. INTRODUCTION

RACTIONAL calculus is the quantitative analysis of

non-integer-order integrals and derivatives, where the
order can be real numbers, complex numbers, or even func-
tions of variables. Compared to classical calculus, fractional
differential equations exhibit broader applicability and richer
physical interpretations. With advancements in science and
technology, fractional differential equations have become
essential in modeling diverse phenomena across multiple
disciplines, including physics, aerodynamics, viscoelasticity,
electromagnetism, control theory, chemistry, biology, and
economics. The study of positive solutions to such equations
is particularly significant, as it enhances understanding of
their physical meaning and practical utility.

For a thorough review of fractional integral equations with
boundary constraints, readers may consult [1], [2], [3], [10],
[17], [18], [19]. Specifically, Asaduzzaman [4] established
the existence of positive solutions for Caputo-type fractional
boundary value problems employing fixed-point theorems.
For Sturm-Liouville problems, refer to [5], [6]. There have
been some papers concerning fixed point theory applied to
existence proofs for fractional differential equations, see [7],

(81, [9].
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n [10], Xinan Hao examines the subsequent Riemann-
Liouville fractional DE with integral boundary restrictions
and a parameter:

—DJ? (u” t))+)\f(t u(t)) =0, te(0,1),
() u(0) = -+ = ul""2(0) =0,
D“( ())\tl—O

au(0) — () Iy ()dA(>

yu(1l) + 6u/(1) = [ u(

by employing the Guo—Krasnoselskn ﬁxed point theorem of
cone, the positive solutions exist in different intervals of pa-
rameters under different nonlinear conditions is determined.

In [11], PAUL W. ELOE studied the following set of ana-
Iytical solutions of two-point BVPs for linear fractional DE,
he found that the Green’s function of fractional derivative
of orders o can be expressed as the convolution of Green’s
functions of order 2 and o — 2.

In [12], Xiping Liu examines the fixed point approaches
to positive solutions in singular Sturm-Liouville boundary
value problems with integral-type boundary restrictions

—(p(u)?' (u))’ +Q( )2 (u ) f(u Z( )),0 <u <1,

$12(0) — ¢12"(0 fo

P22(1) +122'(1 fo
The parameters ¢1, ¢2, 1,19 are all non-negative real num-
bers such that ¢1¢9 + P11 + 110 is positive. A(t), B(t)
are nondecreasing on [0,1], let u be integrable with re-
spect to A and B in the Rlemann Stieltjes sense where
the integrals are given by: [0 7)dA(7) and fo 7)dB(7).
p € C*([0,1], (0, +00)),q € C([O 1], [0 +00)),
f € C((0,1) x (0,400)),[0,400)) may be singular at
u=0,u=1and z =0.

Inspired by the above three papers, we aim to explore
the fixed point approaches to positive solutions in fractional
boundary value problems with integral-type boundary restric-
tions. This study combins the two equations to achieve this
goal.

Currently, significant progress has been developed in the
research of integral boundary value problems. Furthermore,
for research on the existence of positive solutions, fixed
point theorems serve as crucial tools. Depending on the
characteristics of the equations, appropriate theorems are se-
lected to construct function spaces and operators, and through
complex derivations, existence conditions are obtained.

In the future, research should focus on these directions
for breakthroughs and innovations, propelling the study of
integral boundary value problems of fractional differential
equations to new heights and providing stronger theoretical
and technical support for the development of numerous
disciplines.

In this study, we take into account the positive solution
of the subsequent boundary value problem for a differential
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equation related to the Riemann-Liouville fractional order
derivative:

D2 (007 (0) — a()2(x) + Fx 2(x), 2/ (X)) =
<x <1,
(p(0)2'(0))" — q(0)z(0) = [(p(0)2"(0))" — ¢(0)2(0)]" =
= [(p(0)2(0))" — q(0)2(0)]("=4 =0,
p(1)2'(1)) — ¢ 1)2(11) =0,
a12(0) — £12'(0) = fol z(0)dX (o),
a1z(1) + B12'(1) = [ 2(0)dY (o)

6]
whereDf};zis the standard Riemann-Liouville fractional
derivative of orders o — 2. n — 1 < a < R a > 4
041,[31,042752 > 0, p,g € C([0,1], fo
and fo 0)dY (o) denote the mtegrals of z in the Rlemann-
Stieltjes sense regarding X and Y, respectively. X () and
Y (x) are nondecreasing on [0,1], f : [0, 1] %[0, c0) — [0, 00)
is continuous.

II. THE PRELIMINARY LEMMAS

In this part, we are going to provide some definitions and
lemmas.

Definition 2.1 ([13], [14]) The Riemann-Liouville frac-
tional integral of order « > 0 of a function & : (0, +00) — R
is given by

i
/(i — R (k) Ak, 0> 0,

0

b
I'a)

on condition that the right-hand side is pointwise defined on
(0, +00).

Definition 2.2 ([13], [14]) The Riemann-Liouville frac-
tional derivative of order > 0 of a continuous function
h:(0,+00) — R is given by

1 (d\" [ hk
_1 (4 /fgilgwh
I'(n—a)\di (i — k)o—ntl
0
where n is the smallest integer which is no less than «, on
condition that the right-hand side is pointwise defined on

o+ h(i) =

(0, 4+00).
Let —(p(x)2'(x))" + a(x)z(x) = ®(x). then the BVP
—D52((p(0)2' (X)) — a(x)z(x)) + f(x 2(0), 7' (x))
<x<l1,
(p(0)2'(0))" — q(0)2(0) = [(p(0)2'(0))" — ¢q(0)2(0)]" =
= [(p(0)2'(0))" — q(0)z(0)]*~* =0,
(p(1)z'(1))" — q(1)z(1) = 0,
becomes
DE2®(x) + f (x:2(x), 2/ (x)) =0, x € (0,1),
®(0)=d'(0)=--- =0 N(0)=0, @)=

The following result is in our possession.
Lemma 2.3 ([15]) The BVP (2) has a unique solution

1
=A.m%gwwwmxﬂwm@ ve .1,

where
(1= * x> —(x=0)*"*

R(x,0) = { P 0<e=x<l,
ogrx® ' gy <o<l,

— 2D +B20/(1)

By direction computations we obtain the properties of
R(x, 0).

=0, Lemma 2.4

) R
MNa-2)

Now we take into account the following integral BVP:

—(p()z" (X)) +Q(x) (x) @(X),
a12(0) = B12'(0 fo
azz(1) + B22/(1 fo

Lemma 2.5 ([12])Suppose u and v be the solutions of the
linear problems

—(PO)K (X)) +a0)u(x) =0,0 < x <1,

0<R(x,0) < R(0,0) = X, 0 € [0,1].

3)

11(0) = B, 1 (0) = o,
and
()Y () +a(x)v(x) = 0,0 < x <1,
v(1) = B2,V (1) = —ay,

respectively. Then

(i) p is strictly increasing on the interval from 0 to 1,and
u(x) is positive on (0, 1],

(i) v is strictly decreasing on the interval from 0 to 1, and
v(x) is positive on [0, 1),

(iil) o = p() (W (x)v(x) —p(x)v'(x)) is a positive constant,
w1 and v are linearly independent. Let

:1{ n(x)v(e), 0<x<po<1,
o plo)v(x), 0<po<x<1

Lemma 2.6 ([12])For any ® € L[0,1], z is the solution
of the BVP

—(P()Z' () +alx)z(x) = ®(x),0 < x < 1,
612’(0) = 0, agz(l) + 522’/(1) = O,

if and only if z can be expressed by

G(t,u)

a12(0) —

1
Z(X):/ G(x, 0)®(0)do. “4)
0
Let M(X) a1l/(01)/(—xﬁ)11/(0) - p(O):(X)’ N(X) =
H#(x)

= p(l);‘("). Then the M(x) and N(x) are
the solution of

—(pO)M'(x))" +a(x)M(x) = 0,0 < x <1,

a1 M(0) — BLM'(0) = 1,asM(1) + B2 M'(1) = 0,
and
—(POIN' (X)) +a(X)N(x) = 0,0 < x < 1,
a1 N(0) — BiN"(0) = 1, as N (1) + BoN'(1) = 0.
Denote

k=1 —/O M@w)d\(v), ky=1 —/0 N(v)de(v)

1 1
kgz/o M (v)de(v), k4:/0 N(v)dA(v)

ko fol G(v, 0)dN(v) + ky fol G(v, )de(v)
exky — Fiaka )

Ao) =
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(v, 0)de(v) + ks fol G(
kiko — kgky
The following hypothesis will be utilized by us:
(H].) k1 >0, k1ko — k3ky > 0.
Obviously, ks, k4 > 0. And ko > 0 if (H1) holds.
Lemma 2.7 ([12])Suppose (H1) holds. For any ® €
L[0,1], z is the solution of the nonlinear BVP(3) precisely
when z can be expressed by

k1 fo v, Q)d/\(’(}).

B(o) =

AM=A(QMQ+MMMQ+MMMw®@@.®

Therefore, the solution of BVP(1) can be expressed by

(0 = 5 (G 0) + M()A(e) + N(X) B(0))
fo R(Qv )f(U72(U)7 (v))dvdo.

Let W = maxy¢jo,1{[|ull, [[v||}. We denote

(6)

Yo = % min{f1, B2}
Lemma 2.8 ([12])(1) G(x, 0) = G(e,x) < G(e,0) < 2L
for all (x, ) € [0,1] x [0,1],
(2) 0 <7G(0,0) < G(x;0), for x,0 € [0,1].

Lemma 2.9 ([12])(1) B(p) and A(p) are bounded and
nonnegative on the interval from 0 to 1,

(2) M(x) is strictly decreasing on the interval from 0 to 1,
and M (x) is positive on the interval from O to 1,

(3) N(x) is strictly increasing on the interval from 0 to 1,
and N () > 0 on the interval from 0 to 1.

Write c(x) = min {70, 2033, 33} and ©(0) = G(0, 0)+
M(0)A(g) + N(1)B(p).the following Lemma can be easily
obtained by us.

Lemma 2.10 ([12])Let us suppose that condition (H1) is
fulfilled. Then for , o € [0, 1],

c(x)©(0) < G(x, 0) + M(x)A(e) + N(x)B(e) < O(0).

Theorem 2.11 ([16]) Let C' be a Banach space and I C C'
be a cone in C'. Assume A; and A5 are open subsets of C'
with0 € Ay C Ay CAy,andlet J: 1IN (Ay\Ay) — I be
completely continuous , if it is satisfied:

o||Js|| < |Is|]| , for all s € I NIAy,||Js|| > ||s] ., for all
s € INOAy, or

o||Js|| < ||s|]| , for all s € T NOAg,||Js|| > |s]| . for all
S € IﬂaAl.

Then, J has a fixed point at least in 7 N (Ag \ Ay).

III. MAIN RESULTS

We consider the Banach space C' = C[0,1]. Let C be
endowed with the norm

z|| = max < max |z max |z ,
o1 = ma { e <01 e /001 }

and define a cone I C C' by
I={2€C:z(x) >0, min z(x)>¢&|z|},
0<x<1

where
N ing, B
§ =min{dp, 01}, do = min{yo, u(1) v(0) b
5 B1 62
1 = min{—, —
mz U

Because of Lemma 2.5, we know u”(x) and v (x) exsit,
then p/(x) and »'(x) are continuous and have maximum
and minimum value. We suppose mi,mg,n1,ne > 0 are
constants, such that p/(x) and v/(x) are always satisfied
my < p'(x) < ma o, < ()] < mgy 0K x <1
and mo > 61, ng > BQ .

Now, we define an operator J maps I to C' as follows:

Jz2(x) J(G( ) M(x)A(e) + N(x)B(e))

} ]% (v, z(v), #'(v))dvdp, @

therefore, the BVP(1) has a solution z = z()x) precisely when
z is a fixed point of J.

For convenient we denote

KWQ=A(WMM+MMMW+MMMWWWMM,

K@:A@@mv

then the operator J defined by (7) becomes

2/0 K(x;0)f(0,2(0), % (0))do-

As 0y = mm{fyo, o ), u(o)} then we have 0 < §y <
¢(x). We can effortlessly get the following Lemma 3.1 based
on Lemma 2.10.

Lemma 3.1 Suppose (H1) holds. Then
doK (o) < K(x,0) < K(o).

Lemma 3.2 The operator J maps I to I is continuous and
compact.

Proof:

J2(x) = [, K ,2(0),7'(0)) do
>6of0 ) ( 2(0),%'(0))do (¥
>60max0<x<1|Jz( )|

|(J2)" (x|
<k(www )|+ A P2 ()] + B(o) "L (x))
Joy R(o,v)f(v, ), 7' (v))dvde

+I(W>’ AQP2 1 ()| + B(0)"2p (x))
Jo R ,2(v), 2 (v))dvdo

_fo ( -‘rp;O A(Q)‘ /(X)|+ P(l)B(Q )

fo R(o,v)f (v, z(v), 2 (v))dvdo
_,'_f; (V(Q)-Fpa(l)B(@)M/(X) + P(O)A(Q) IV (x ‘)

Jo Rlo,v)f(v, z(v), z’(v))dvdg.
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So we have

Jz(x)

= fo (G(x, M(x)A(o) +

Jo Rlo.v)f(w z(v%z’(v))dvdg

= X (u(9)+p(0)A(g)V(X) n p(l)f(g)u(x))

Jo Rlo.0)f (v, 2(v), 2/ (v))dvdg

Jrf (V(@)er 1)B(e )M(X) + p(O);‘l(@)V(X))

fo 0,v)f (v, 2(v), 2" (v))dvdo

> fOX (M(Q)-i-pffo)A(g) 51‘V/(X)| + p(l)f(g) 61M/(X))
€ xoR(0,v) f(v, 2(v), 2/ (v))dvde
+ﬁ(ﬂﬁﬁﬁ—mu>+ﬂ¥@&wum
fol R(o,v)f (v, 2(v), 2 (v))dvdg
> 51|JZ/(X)|-

N(x)B(e)

Then we have

J2(x) 2 0y max, |2 (x)]- ©)
Given (8)(9) and ¢ = min{dp, d1} we have
Jz(x) > &[Tz

then oin, Jz(x) > || J 2]

So that J maps I to I.

Clearly, J is continuous. Now, consider A C [ as a
bounded set. It’s evident that JA is both bounded and
equicontinuous. By applying the Arzela-Ascoli theorem, we
conclude that JA is relatively compact. Consequently, J is
compact. In summary, we can assert that J : [ — [ is a
completely continuous operator. ]

Now, for the purpose of convenience, let’s introduce the
notations below:

!
fi= lim inf min 7f (2,2 )7
2| +]2/ =0 xef0.1] |z] + 2]
!
lim  inf min 7f (X’Z7z),
Cal+HE e xel01] |2] 4 |2
i f(x 2 2)
= im sup max ————=,
2|+l =0 x€[0,1] |z| + ||
!
fa= lim sup max 1 0622)

2l +l2 =00 x€l0,1] |2| 4 ||

The following theorems constitute the principal results of
this paper.
Theorem 3.1 If hypothesis (H1) holds true and

. . . f(xz,2
f2 = My, 4500 infmingepo 1) |(|+7|Z,‘) € [B,+),
f3 = lim, 4|70 SUP Max, ¢ 1] % € (0, A]. Then

BVP(1)has a nonnegaitve solution, where

(ol

(0)+n(e)u(1))de’

A= mm{f 2R99(9()

I, 2R(e.0)(0(c ST
B 1
- 00 Jy K(o)de’
0(0) = u(e) +p(0)A(e),  nle) =v(e) +p(1)Be).
Proof:

On the one side, f3 € (0, 4], then there is a 71 > 0, such
that when |z| + |2/| < 2r;,we have

fO62,2) < Alz] + ).

>

Because||2|| = max {maxyeqo 1 |2(0] maxyeqo 1 |/ (x)
so [z(x)] + |2 (x)] < 2||z||.Define an open subset of C,
A ={z € I:Jz(x)|| < r1}, then when z € I N Ay,
we have z(x) < |z|| = 1, 2/ (x) < ||z]| = 1, that is
lz(x)| + 12" (x)| < 2r1.Sequentially,

maxyeo,1] |JZ(X)|

= foX 1(e)+p(0)A(e) v(x) + p(1) B(o) B(@) )

€ xoR(0,v) f(v, 2(v), 2/ (v ))dvde

+f1 <V(@)+p(1)B(a) (x) + p(O)A(g) )
X o

FR@,vwzw><>ww@

< fX ( +p (0) (9)1/(0) + p)B() B(@) )

Jiy R(o,v vyz(v),Z'( ))dvdg

+f1 (V(g)+p;1)B(g)u(l) + P(O);‘l(g)y(o))

fR@,wwzw><wwwg
< fl (1(2)+p(0)A(Q)]v(0)+[v(e)+p(1) B(o)]u(1)
fR@,ﬁwzw><mwwg

< fl [u(@)+p(0)A(9)] © )+[V( )+p(1) B(o)]+(1)

A2+ 1)) J, )dde
<[ [u<g>+p<o‘3A<g )4 (o) tp B

24||2||R(0, 0)do < |2,

maxyefo,1] | 72" (x)]
0)A 1)B
< foX (M(Q)-‘r:vg( )A(e) ‘VI(X)| + p( )(7 (o) /J'/(X>)

JﬂRw,>ﬂvzw>'<»mwg
_;’_f (M /(X)+ZD(0) ‘ /( )|>
Jo R(o,v)f(v, 2(v), 2/ (v))dvdo

< fX( +p<o Ay 4+ p<1>f<g>m2>
flfug,>fm)z«» 2 (v))dvdo

+f (v(x +p(1 B(@)m 4 20O )A(@) 2)

JER@,>ﬂuzw» <»mug
< fl [1(@)+p(0)A(@)In2+[v(0)+p(1) B(e)]m2

SV R(0,0) f(v, 2(v), 2/ (0))dvdg

< fl [u(0)+p(0)A(9)]n2+[V(@)+p(1)B( m

(|z| + |z'\ (o, g)dvdg
1 [u(a>+p(o(3A<g>]nz+[u(a>+p(1>B(g)]mz

2AHZIIR(Q, o)do < | |-

Thus,

[Jz|| < |lzll, Vze€InNoA;. (10)

On the other side, by condition fo € [B, +00), then there
is a r3 > 0, such that when |z| 4 |2/| > r3,we have

fx2,2') 2 B(l2| + 12]).

Let 7o = max{ £ ,7‘1} Ay = {z € C,||z|]| < r2}, when
z € I'NOAy, we get

El=ll < fzl < lzll, 2l 412" = €2l = &ra-
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Hence [18]

J200 =y K (0 f (0:2(0). 2/ (e)) do
> b0 fo K(0)f(0,2(0), 7 (0))de

> 00 B(|2] + |1Z’|7)f01 K(o)de [19]
> doBE||z]| [ K(o)de
> |2].
[72]] = max {max, (0,1 [T2(x)|, maxyepo,1 [72" (X)]}
> max,eo,1] |J2(x)| = [2]]-
Thus,
|Jz|| > ||zl|, Vze€INoAs. (11)

Applying Theorem 2.11 along with the inequalities (10)
and (11), we can conclude that the operator J possesses a
fixed point, denoted as z*, belonging to TN Ay \ Ay, satisfying
r1 < ||z*|| < ro. Notably, it is evident that z* constitutes a
nonnegative solution to the BVP(1). [ |
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