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Abstract—In this article, we investigate the existence of a
positive solution to an integral boundary value problem for a
higher order fractional differential equation

−Dα−2
0+

((p(χ)z′(χ))′ − q(χ)z(χ)) + f(χ, z(χ), z′(χ)) = 0,
0 < χ < 1,

(p(0)z′(0))′ − q(0)z(0) = [(p(0)z′(0))′ − q(0)z(0)]′ = · · ·
= [(p(0)z′(0))′ − q(0)z(0)](n−4) = 0,
(p(1)z′(1))′ − q(1)z(1) = 0,

α1z(0)− β1z
′(0) =

∫ 1

0
z(ϱ)dX(ϱ),

α1z(1) + β1z
′(1) =

∫ 1

0
z(ϱ)dY (ϱ),

here, Dα−2
0+

denotes the standard Riemann-Liouville frac-
tional derivative of order α − 2, where n − 1 ≤ α ≤ n
and α ≥ 4. The constants α1, β1, α2 and β2 are positive,
and p, q ∈ C([0, 1], (0,∞)). The integrals

∫ 1

0
z(ϱ)dX(ϱ) and∫ 1

0
z(ϱ)dY (ϱ) are defined in the Riemann-Stieltjes sense regard-

ing the nondecreasing functions X(χ) and Y (χ), respectively.
f : [0, 1] × [0,∞) → [0,∞) is continuous. The first derivative
of z is involved into the nonlinear term, and the existence
of a positive solution is demonstrated by transforming the
differential equation into an integral equation through Green’s
function and applying Krasnosel’skii conclusion.

Index Terms—Fractional differential equation, Integral
boundary, Positive solution, Fixed point.

I. INTRODUCTION

FRACTIONAL calculus is the quantitative analysis of
non-integer-order integrals and derivatives, where the

order can be real numbers, complex numbers, or even func-
tions of variables. Compared to classical calculus, fractional
differential equations exhibit broader applicability and richer
physical interpretations. With advancements in science and
technology, fractional differential equations have become
essential in modeling diverse phenomena across multiple
disciplines, including physics, aerodynamics, viscoelasticity,
electromagnetism, control theory, chemistry, biology, and
economics. The study of positive solutions to such equations
is particularly significant, as it enhances understanding of
their physical meaning and practical utility.

For a thorough review of fractional integral equations with
boundary constraints, readers may consult [1], [2], [3], [10],
[17], [18], [19]. Specifically, Asaduzzaman [4] established
the existence of positive solutions for Caputo-type fractional
boundary value problems employing fixed-point theorems.
For Sturm-Liouville problems, refer to [5], [6]. There have
been some papers concerning fixed point theory applied to
existence proofs for fractional differential equations, see [7],
[8], [9].
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In [10], Xinan Hao examines the subsequent Riemann-
Liouville fractional DE with integral boundary restrictions
and a parameter:

−Dη−2
0+ (u′′(t)) + λf (t, u(t)) = 0, t ∈ (0, 1),

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0,
Dκ−2

0+ (u′′(t)) |t=1 = 0,

αu(0)− βu′(0) =
∫ 1

0
u(s)dA(s),

γu(1) + δu′(1) =
∫ 1

0
u(s)dB(s),

by employing the Guo-Krasnoselskii fixed point theorem of
cone, the positive solutions exist in different intervals of pa-
rameters under different nonlinear conditions is determined.

In [11], PAUL W. ELOE studied the following set of ana-
lytical solutions of two-point BVPs for linear fractional DE,
he found that the Green’s function of fractional derivative
of orders α can be expressed as the convolution of Green’s
functions of order 2 and α− 2.

In [12], Xiping Liu examines the fixed point approaches
to positive solutions in singular Sturm-Liouville boundary
value problems with integral-type boundary restrictions

−(p(u)z′(u))′ + q(u)z(u) = f(u, z(u)), 0 < u < 1,

ϕ1z(0)− ψ1z
′(0) =

∫ 1

0
z(τ)dA(τ),

ϕ2z(1) + ψ2z
′(1) =

∫ 1

0
z(τ)dB(τ).

The parameters ϕ1, ϕ2, ψ1, ψ2 are all non-negative real num-
bers such that ϕ1ϕ2 + ϕ1ψ2 + ψ1ϕ2 is positive. A(t), B(t)
are nondecreasing on [0, 1], let u be integrable with re-
spect to A and B in the Riemann-Stieltjes sense, where
the integrals are given by:

∫ 1

0
z(τ)dA(τ) and

∫ 1

0
z(τ)dB(τ).

p ∈ C1([0, 1], (0,+∞)), q ∈ C([0, 1], [0,+∞)),
f ∈ C((0, 1) × (0,+∞)), [0,+∞)) may be singular at
u = 0, u = 1 and z = 0.

Inspired by the above three papers, we aim to explore
the fixed point approaches to positive solutions in fractional
boundary value problems with integral-type boundary restric-
tions. This study combins the two equations to achieve this
goal.

Currently, significant progress has been developed in the
research of integral boundary value problems. Furthermore,
for research on the existence of positive solutions, fixed
point theorems serve as crucial tools. Depending on the
characteristics of the equations, appropriate theorems are se-
lected to construct function spaces and operators, and through
complex derivations, existence conditions are obtained.

In the future, research should focus on these directions
for breakthroughs and innovations, propelling the study of
integral boundary value problems of fractional differential
equations to new heights and providing stronger theoretical
and technical support for the development of numerous
disciplines.

In this study, we take into account the positive solution
of the subsequent boundary value problem for a differential
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equation related to the Riemann-Liouville fractional order
derivative:

−Dα−2
0+ ((p(χ)z′(χ))′ − q(χ)z(χ)) + f(χ, z(χ), z′(χ)) = 0,

0 < χ < 1,
(p(0)z′(0))′ − q(0)z(0) = [(p(0)z′(0))′ − q(0)z(0)]′ = · · ·
= [(p(0)z′(0))′ − q(0)z(0)](n−4) = 0,
(p(1)z′(1))′ − q(1)z(1) = 0,

α1z(0)− β1z
′(0) =

∫ 1

0
z(ϱ)dX(ϱ),

α1z(1) + β1z
′(1) =

∫ 1

0
z(ϱ)dY (ϱ).

(1)
whereDα−2

0+ is the standard Riemann-Liouville fractional
derivative of orders α − 2. n − 1 ≤ α ≤ n, α ≥ 4,
α1, β1, α2, β2 > 0, p, q ∈ C([0, 1], (0,∞)),

∫ 1

0
z(ϱ)dX(ϱ)

and
∫ 1

0
z(ϱ)dY (ϱ) denote the integrals of z in the Riemann-

Stieltjes sense regarding X and Y , respectively. X(χ) and
Y (χ) are nondecreasing on [0,1], f : [0, 1]×[0,∞) → [0,∞)
is continuous.

II. THE PRELIMINARY LEMMAS

In this part, we are going to provide some definitions and
lemmas.

Definition 2.1 ([13], [14]) The Riemann-Liouville frac-
tional integral of order α > 0 of a function h : (0,+∞) → R
is given by

Iα0+h(i) =
1

Γ(α)

i∫
0

(i− k)α−1h(k) dk, i > 0,

on condition that the right-hand side is pointwise defined on
(0,+∞).

Definition 2.2 ([13], [14]) The Riemann-Liouville frac-
tional derivative of order α > 0 of a continuous function
h : (0,+∞) → R is given by

Dα
0+h(i) =

1

Γ(n− α)

(
d

di

)n
i∫

0

h(k)

(i− k)α−n+1
dk,

where n is the smallest integer which is no less than α, on
condition that the right-hand side is pointwise defined on
(0,+∞).

Let −(p(χ)z′(χ))′ + q(χ)z(χ) = Φ(χ), then the BVP

−Dα−2
0+ ((p(χ)z′(χ))′ − q(χ)z(χ)) + f(χ, z(χ), z′(χ)) = 0,

0 < χ < 1,
(p(0)z′(0))′ − q(0)z(0) = [(p(0)z′(0))′ − q(0)z(0)]′ =
= [(p(0)z′(0))′ − q(0)z(0)](α−4) = 0,
(p(1)z′(1))′ − q(1)z(1) = 0,

becomes

Dα−2
0+ Φ(χ) + f (χ, z(χ), z′(χ)) = 0, χ ∈ (0, 1),

Φ(0) = Φ′(0) = · · · = Φ(n−4)(0) = 0, Φ(1) = 0.
(2)

The following result is in our possession.
Lemma 2.3 ([15]) The BVP (2) has a unique solution

Φ(χ) =

∫ 1

0

R(χ, ϱ)f(ϱ, z(ϱ), z′(ϱ))dϱ, χ ∈ [0, 1],

where

R(χ, ϱ) =

{
(1−ϱ)α−3χα−3−(χ−ϱ)α−3

Γ(α−2) , 0 ≤ ϱ ≤ χ < 1,
(1−ϱ)α−3χα−3

Γ(α−2) , 0 < χ ≤ ϱ ≤ 1.

By direction computations we obtain the properties of
R(χ, ϱ).

Lemma 2.4

0 ≤ R(χ, ϱ) ≤ R(ϱ, ϱ) =
(1− ϱ)α−3ϱα−3

Γ(α− 2)
, χ, ϱ ∈ [0, 1].

Now we take into account the following integral BVP:

−(p(χ)z′(χ))′ + q(χ)z(χ) = Φ(χ),

α1z(0)− β1z
′(0) =

∫ 1

0
z(υ)dλ(υ),

α2z(1) + β2z
′(1) =

∫ 1

0
z(υ)dϵ(υ).

(3)

Lemma 2.5 ([12])Suppose µ and ν be the solutions of the
linear problems

−(p(χ)µ′(χ))′ + q(χ)µ(χ) = 0, 0 < χ < 1,

µ(0) = β1, µ
′(0) = α1,

and

−(p(χ)ν′(χ))′ + q(χ)ν(χ) = 0, 0 < χ < 1,

ν(1) = β2, ν
′(1) = −α2,

respectively. Then
(i) µ is strictly increasing on the interval from 0 to 1,and
µ(χ) is positive on (0, 1],
(ii) ν is strictly decreasing on the interval from 0 to 1, and
ν(χ) is positive on [0, 1),
(iii) σ = p(χ)(µ′(χ)ν(χ)−µ(χ)ν′(χ)) is a positive constant,
µ and ν are linearly independent. Let

G(t, u) =
1

σ

{
µ(χ)ν(ϱ), 0 ≤ χ ≤ ϱ ≤ 1,
µ(ϱ)ν(χ), 0 ≤ ϱ ≤ χ ≤ 1.

Lemma 2.6 ([12])For any Φ ∈ L[0, 1], z is the solution
of the BVP

−(p(χ)z′(χ))′ + q(χ)z(χ) = Φ(χ), 0 < χ < 1,

α1z(0)− β1z
′(0) = 0, α2z(1) + β2z

′(1) = 0,

if and only if z can be expressed by

z(χ) =

∫ 1

0

G(χ, ϱ)Φ(ϱ)dϱ. (4)

Let M(χ) = ν(χ)
α1ν(0)−β1ν′(0) = p(0)ν(χ)

σ , N(χ) =
µ(χ)

α2µ(1)+β2µ′(1) = p(1)µ(χ)
σ . Then the M(χ) and N(χ) are

the solution of

−(p(χ)M ′(χ))′ + q(χ)M(χ) = 0, 0 < χ < 1,

α1M(0)− β1M
′(0) = 1, α2M(1) + β2M

′(1) = 0,

and

−(p(χ)N ′(χ))′ + q(χ)N(χ) = 0, 0 < χ < 1,

α1N(0)− β1N
′(0) = 1, α2N(1) + β2N

′(1) = 0.

Denote

k1 = 1−
∫ 1

0

M(υ)dλ(υ), k2 = 1−
∫ 1

0

N(υ)dϵ(υ),

k3 =

∫ 1

0

M(υ)dϵ(υ), k4 =

∫ 1

0

N(υ)dλ(υ),

A(ϱ) =
k2

∫ 1

0
G(υ, ϱ)dλ(υ) + k4

∫ 1

0
G(υ, ϱ)dϵ(υ)

k1k2 − k3k4
,
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B(ϱ) =
k1

∫ 1

0
G(υ, ϱ)dϵ(υ) + k3

∫ 1

0
G(υ, ϱ)dλ(υ)

k1k2 − k3k4
.

The following hypothesis will be utilized by us:
(H1) k1 > 0, k1k2 − k3k4 > 0.
Obviously, k3, k4 ≥ 0. And k2 > 0 if (H1) holds.
Lemma 2.7 ([12])Suppose (H1) holds. For any Φ ∈

L[0, 1], z is the solution of the nonlinear BVP(3) precisely
when z can be expressed by

z(χ) =

∫ 1

0

(G(χ, ϱ) +M(χ)A(ϱ) +N(χ)B(ϱ))Φ(ϱ)dϱ. (5)

Therefore, the solution of BVP(1) can be expressed by

z(χ) =
∫ 1

0
(G(χ, ϱ) +M(χ)A(ϱ) +N(χ)B(ϱ))∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ.

(6)

Let W = maxt∈[0,1]{∥µ∥, ∥ν∥}. We denote

γ0 =
1

W
min{β1, β2}.

Lemma 2.8 ([12])(1) G(χ, ϱ) = G(ϱ, χ) ≤ G(ϱ, ϱ) ≤ M2

σ
for all (χ, ϱ) ∈ [0, 1]× [0, 1],
(2) 0 < γ0G(ϱ, ϱ) ≤ G(χ, ϱ), for χ, ϱ ∈ [0, 1].

Lemma 2.9 ([12])(1) B(ϱ) and A(ϱ) are bounded and
nonnegative on the interval from 0 to 1,
(2) M(χ) is strictly decreasing on the interval from 0 to 1,
and M(χ) is positive on the interval from 0 to 1,
(3) N(χ) is strictly increasing on the interval from 0 to 1,
and N(χ) > 0 on the interval from 0 to 1.

Write c(χ) = min
{
γ0,

µ(χ)
µ(1) ,

ν(χ)
ν(0)

}
and Θ(ϱ) = G(ϱ, ϱ)+

M(0)A(ϱ) +N(1)B(ϱ),the following Lemma can be easily
obtained by us.

Lemma 2.10 ([12])Let us suppose that condition (H1) is
fulfilled. Then for χ, ϱ ∈ [0, 1],

c(χ)Θ(ϱ) ≤ G(χ, ϱ) +M(χ)A(ϱ) +N(χ)B(ϱ) ≤ Θ(ϱ).

Theorem 2.11 ([16]) Let C be a Banach space and I ⊂ C
be a cone in C. Assume Λ1 and Λ2 are open subsets of C
with 0 ∈ Λ1 ⊂ Λ1 ⊂ Λ2 , and let J : I ∩ (Λ2 \ Λ1) → I be
completely continuous , if it is satisfied:
•∥Js∥ ≤ ∥s∥ , for all s ∈ I ∩ ∂Λ1, ∥Js∥ ≥ ∥s∥ , for all
s ∈ I ∩ ∂Λ2, or
•∥Js∥ ≤ ∥s∥ , for all s ∈ I ∩ ∂Λ2, ∥Js∥ ≥ ∥s∥ , for all
s ∈ I ∩ ∂Λ1.
Then, J has a fixed point at least in I ∩ (Λ2 \ Λ1).

III. MAIN RESULTS

We consider the Banach space C = C1[0, 1]. Let C be
endowed with the norm

∥z∥ = max

{
max
χ∈[0,1]

|z(χ)|, max
χ∈[0,1]

|z′(χ)|
}
,

and define a cone I ⊂ C by

I = {z ∈ C : z(χ) ≥ 0, min
0≤χ≤1

z(χ) ≥ ξ∥z∥},

where

ξ = min{δ0, δ1}, δ0 = min{γ0,
β1
µ(1)

,
β2
ν(0)

},

δ1 = min{ β1
m2

,
β2
n2

}.

Because of Lemma 2.5, we know µ′′(χ) and ν′′(χ) exsit,
then µ′(χ) and ν′(χ) are continuous and have maximum
and minimum value. We suppose m1,m2, n1, n2 > 0 are
constants, such that µ′(χ) and ν′(χ) are always satisfied
m1 ≤ µ′(χ) ≤ m2 , n1 ≤ |ν′(χ)| ≤ n2, 0 ≤ χ ≤ 1
and m2 > β1, n2 > β2 .

Now, we define an operator J maps I to C as follows:

Jz(χ) =
∫ 1

0
(G(χ, ϱ) +M(χ)A(ϱ) +N(χ)B(ϱ))∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ,

(7)

therefore, the BVP(1) has a solution z = z(χ) precisely when
z is a fixed point of J .

For convenient we denote

K(χ, ϱ) =

∫ 1

0

(G(χ, υ) +M(χ)A(υ) +N(χ)B(υ))R(υ, ϱ)dυ,

K(ϱ) =

∫ 1

0

Θ(υ)R(υ, ϱ)dυ,

then the operator J defined by (7) becomes

Jz(χ) =

∫ 1

0

K(χ, ϱ)f(ϱ, z(ϱ), z′(ϱ))dϱ.

As δ0 = min{γ0, β1

µ(1) ,
β2

ν(0)}, then we have 0 < δ0 ≤
c(χ). We can effortlessly get the following Lemma 3.1 based
on Lemma 2.10.

Lemma 3.1 Suppose (H1) holds. Then

δ0K(ϱ) ≤ K(χ, ϱ) ≤ K(ϱ).

Lemma 3.2 The operator J maps I to I is continuous and
compact.

Proof:

Jz (χ) =
∫ 1

0
K (χ, ϱ) f (ϱ, z(ϱ), z′(ϱ)) dϱ

≥ δ0
∫ 1

0
K(χ, ϱ)f(ϱ, z(ϱ), z′(ϱ))dϱ

≥ δ0 max0≤χ≤1 |Jz(χ)| .
(8)

|(Jz)′(χ)|
≤

∫ χ

0

(
µ(ϱ)
σ |ν′(χ)|+A(ϱ)p(0)σ |ν′(χ)|+B(ϱ)p(1)σ µ′(χ)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

+
∫ 1

χ

(
ν(ϱ)
σ µ′(χ) +A(ϱ)p(0)σ |ν′(χ)|+B(ϱ)p(1)σ µ′(χ)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

=
∫ χ

0

(
µ(ϱ)+p(0)A(ϱ)

σ |ν′(χ)|+ p(1)B(ϱ)
σ µ′(χ)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

+
∫ 1

χ

(
ν(ϱ)+p(1)B(ϱ)

σ µ′(χ) + p(0)A(ϱ)
σ |ν′(χ)|

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ.
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So we have

Jz(χ)

=
∫ 1

0
(G(χ, ϱ) +M(χ)A(ϱ) +N(χ)B(ϱ))∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

=
∫ χ

0

(
µ(ϱ)+p(0)A(ϱ)

σ ν(χ) + p(1)B(ϱ)
σ µ(χ)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

+
∫ 1

χ

(
ν(ϱ)+p(1)B(ϱ)

σ µ(χ) + p(0)A(ϱ)
σ ν(χ)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≥
∫ χ

0

(
µ(ϱ)+p(0)A(ϱ)

σ δ1|ν′(χ)|+ p(1)B(ϱ)
σ δ1µ

′(χ)
)

∈ χ1
0R(ϱ, υ)f(υ, z(υ), z

′(υ))dυdϱ

+
∫ 1

χ

(
ν(ϱ)+p(1)B(ϱ)

σ δ1µ
′(χ) + p(0)A(ϱ)

σ δ1|ν′(χ)|
)

∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≥ δ1|Jz′(χ)|.

Then we have

Jz(χ) ≥ δ1 max
0≤χ≤1

|Jz′(χ)|. (9)

Given (8)(9) and ξ = min{δ0, δ1} we have

Jz(χ) ≥ ξ∥Jz(χ)∥, then min
0≤χ≤1

Jz(χ) ≥ ξ∥Jz∥.

So that J maps I to I.
Clearly, J is continuous. Now, consider Λ ⊂ I as a

bounded set. It’s evident that JΛ is both bounded and
equicontinuous. By applying the Arzela-Ascoli theorem, we
conclude that JΛ is relatively compact. Consequently, J is
compact. In summary, we can assert that J : I → I is a
completely continuous operator.

Now, for the purpose of convenience, let’s introduce the
notations below:

f1 = lim
|z|+|z′|→0

inf min
χ∈[0,1]

f (χ, z, z′)

|z|+ |z′|
,

f2 = lim
|z|+|z′|→∞

inf min
χ∈[0,1]

f (χ, z, z′)

|z|+ |z′|
,

f3 = lim
|z|+|z′|→0

sup max
χ∈[0,1]

f (χ, z, z′)

|z|+ |z′|
,

f4 = lim
|z|+|z′|→∞

sup max
χ∈[0,1]

f (χ, z, z′)

|z|+ |z′|
.

The following theorems constitute the principal results of
this paper.

Theorem 3.1 If hypothesis (H1) holds true and

f2 = lim|z|+|z′|→∞ inf minχ∈[0,1]
f(χ,z,z′)
|z|+|z′| ∈ [B,+∞),

f3 = lim|z|+|z′|→0 supmaxχ∈[0,1]
f(χ,z,z′)
|z|+|z′| ∈ (0, A]. Then

BVP(1)has a nonnegaitve solution, where

A = min
{

σ∫ 1

0
2R(ϱ,ϱ)(θ(ϱ)ν(0)+η(ϱ)µ(1))dϱ

,

σ∫ 1

0
2R(ϱ,ϱ)(θ(ϱ)n2+η(ϱ)m2)dϱ

}
,

B =
1

δ0ξ
∫ 1

0
K(ϱ)dϱ

,

θ(ϱ) = µ(ϱ) + p(0)A(ϱ), η(ϱ) = ν(ϱ) + p(1)B(ϱ).

Proof:

On the one side, f3 ∈ (0, A], then there is a r1 > 0, such
that when |z|+ |z′| ≤ 2r1,we have

f(χ, z, z′) ≤ A(|z|+ |z′|).

Because∥z∥ = max
{
maxχ∈[0,1] |z(χ)|,maxχ∈[0,1] |z′(χ)|

}
,

so |z(χ)| + |z′(χ)| ≤ 2∥z∥.Define an open subset of C,
Λ1 = {z ∈ I : ∥z(χ)∥ < r1}, then when z ∈ I ∩ ∂Λ1,
we have z(χ) ≤ ∥z∥ = r1, z′(χ) ≤ ∥z∥ = r1, that is
|z(χ)|+ |z′(χ)| ≤ 2r1.Sequentially,

maxχ∈[0,1] |Jz(χ)|
=

∫ χ

0

(
µ(ϱ)+p(0)A(ϱ)

σ ν(χ) + p(1)B(ϱ)
σ µ(χ)

)
∈ χ1

0R(ϱ, υ)f(υ, z(υ), z
′(υ))dυdϱ

+
∫ 1

χ

(
ν(ϱ)+p(1)B(ϱ)

σ µ(χ) + p(0)A(ϱ)
σ ν(χ)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≤
∫ χ

0

(
µ(ϱ)+p(0)A(ϱ)

σ ν(0) + p(1)B(ϱ)
σ µ(1)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

+
∫ 1

χ

(
ν(ϱ)+p(1)B(ϱ)

σ µ(1) + p(0)A(ϱ)
σ ν(0)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≤
∫ 1

0
[µ(ϱ)+p(0)A(ϱ)]ν(0)+[ν(ϱ)+p(1)B(ϱ)]µ(1)

σ∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≤
∫ 1

0
[µ(ϱ)+p(0)A(ϱ)]ν(0)+[ν(ϱ)+p(1)B(ϱ)]µ(1)

σ

A(|z|+ |z′|)
∫ 1

0
R(ϱ, υ)dυdϱ

≤
∫ 1

0
[µ(ϱ)+p(0)A(ϱ)]ν(0)+[ν(ϱ)+p(1)B(ϱ)]µ(1)

σ
2A∥z∥R(ϱ, ϱ)dϱ ≤ ∥z∥,

maxχ∈[0,1] |Jz′(χ)|
≤

∫ χ

0

(
µ(ϱ)+p(0)A(ϱ)

σ |ν′(χ)|+ p(1)B(ϱ)
σ µ′(χ)

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

+
∫ 1

χ

(
ν(χ)+p(1)B(ϱ)

σ µ′(χ) + p(0)A(ϱ)
σ |ν′(χ)|

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≤
∫ χ

0

(
µ(ϱ)+p(0)A(ϱ)

σ n2 +
p(1)B(ϱ)

σ m2

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

+
∫ 1

χ

(
ν(χ)+p(1)B(ϱ)

σ m2 +
p(0)A(ϱ)

σ n2

)
∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≤
∫ 1

0
[µ(ϱ)+p(0)A(ϱ)]n2+[ν(ϱ)+p(1)B(ϱ)]m2

σ∫ 1

0
R(ϱ, υ)f(υ, z(υ), z′(υ))dυdϱ

≤
∫ 1

0
[µ(ϱ)+p(0)A(ϱ)]n2+[ν(ϱ)+p(1)B(ϱ)]m2

σ

A(|z|+ |z′|)
∫ 1

0
R(ϱ, ϱ)dυdϱ

≤
∫ 1

0
[µ(ϱ)+p(0)A(ϱ)]n2+[ν(ϱ)+p(1)B(ϱ)]m2

σ
2A∥z∥R(ϱ, ϱ)dϱ ≤ ∥z∥.

Thus,

∥Jz∥ ≤ ∥z∥, ∀z ∈ I ∩ ∂Λ1. (10)

On the other side, by condition f2 ∈ [B,+∞), then there
is a r3 > 0, such that when |z|+ |z′| ≥ r3,we have

f(χ, z, z′) ≥ B(|z|+ |z′|).

Let r2 = max
{

r3
ξ , r1

}
, Λ2 = {z ∈ C, ∥z∥ < r2}, when

z ∈ I ∩ ∂Λ2, we get

ξ∥z∥ ≤ |z| ≤ ∥z∥, |z|+ |z′| ≥ ξ∥z∥ = ξr2.
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Hence

Jz (χ) =
∫ 1

0
K (χ, ϱ) f (ϱ, z(ϱ), z′(ϱ)) dϱ

≥ δ0
∫ 1

0
K(ϱ)f(ϱ, z(ϱ), z′(ϱ))dϱ

≥ δ0B(|z|+ |z′|)
∫ 1

0
K(ϱ)dϱ

≥ δ0Bξ∥z∥
∫ 1

0
K(ϱ)dϱ

≥ ∥z∥.

∥Jz∥ = max
{
maxχ∈[0,1] |Jz(χ)|,maxχ∈[0,1] |Jz′(χ)|

}
≥ maxχ∈[0,1] |Jz(χ)| ≥ ∥z∥.

Thus,

∥Jz∥ ≥ ∥z∥, ∀z ∈ I ∩ ∂Λ2. (11)

Applying Theorem 2.11 along with the inequalities (10)
and (11), we can conclude that the operator J possesses a
fixed point, denoted as z∗, belonging to I∩Λ2\Λ1, satisfying
r1 < ∥z∗∥ < r2. Notably, it is evident that z∗ constitutes a
nonnegative solution to the BVP(1).

REFERENCES

[1] Y. Wang, ”Positive solutions for a system of fractional integral
boundary value problem,” Boundary Value Problems, vol. 2013, no.
1, pp1-14, 2013.

[2] S. Wang, J. Chai, G. Zhang, ”Positive solutions of beam equations
under nonlocal boundary value conditions,” Adv. Differ. Equ. vol.
2019, 2019.

[3] Q. Yao, ”Positive solutions of a nonlinear elastic beam equation rigidly
fastened on the left andsimply supported on the right,” Nonlinear
Anal.-Theory Methods Appl., vol. 69, pp1570-1580, 2008.

[4] Asaduzzaman M, Ali M Z, ”Existence of multiple positive solution to
the Caputo-type nonlinear fractional differential equation with integral
boundary value conditions,” Fixed point theory: An international
journal o fixed point theory computation and applications, vol. 23,
no. 1, pp127-129, 2022.

[5] Tingting X, Fanliang K, Long Z, ”Research on Sturm-Liouville bound-
ary value problems of fractional p-Laplacian equation,” Advances in
Difference Equations,vol. 2021, no. 1, 2021.

[6] D.D. Hai, ”Existence of positive solutions for singular p-Laplacian
Sturm-Liouville boundary value problems,” Electronic Journal of Dif-
ferential Equations, vol. 2016, no. 260, pp1-9, 2016.

[7] K. Zhao, P. Gong, ”Existence of Positive Solutions for a Class of
Higher-Order Caputo Fractional Differential Equation,” Qualitative
Theory of Dynamical Systems,vol. 14, no. 1, pp157-171, 2015.

[8] X. Liu, L. Liu, Y. Wu, ”Existence of positive solutions for a singular
nonlinear fractional differential equation with integral boundary condi-
tions involving fractional derivatives,” Boundary Value Problems, vol.
2018, no. 1, pp1-21, 2018.

[9] A. Zahra, L. Rahmatollah, B. Hamid, ”Existence and uniqueness of
solutions of nonlinear fractional order problems via a fixed point
theorem,” International Journal of Nonlinear Sciences and Numerical
Simulation, vol. 22, no. 6, pp797-807, 2020.

[10] X. Hao, ”Positive solutions of higher order fractional integral boundary
value problem with a parameter,” Nonlinear Analysis: Modelling and
Control, vol. 24, no. 2, pp210-223, 2019.

[11] Paul W. Eloe, Jeffrey T. Neugebauer, ”Convolutions and Green’s
Functions for Two Families of Boundary Value Problems for Fractional
Differential Equations,” Electronic Journal of Differential Equations,
vol. 297, pp1-13, 2016.

[12] X. Liu, Y. Xiao, J. Chen, ”Positive solutions for singular Sturm-
Liouville boundary value problems with integral boundary conditions,”
Electronic Journal of Qualitative Theory of Differential Equations, vol.
2010, no. 77, pp1-15, 2010.

[13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications
of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[14] Y. Zhou, Basic Theory of Fractional Differential Equations, World
Scientific, Singapore, 2014.
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