
 

 

Abstract— The Global Climate Model (GCM), a computer-

based model comprising numerous integrated, deterministic, 

and numerical equations that adhere to physics, is one of the 

models used to predict rainfall. GCM can simulate large-scale 

climatic conditions. Statistical Downscaling (SD) modelling to 

estimate monthly rainfall in areas with monsoon rainfall 

patterns in Indonesia has been carried out using L1/Lasso 

Regulation and Principal Component Analysis (PCA), Bayes 

Spatio-Temporal Regression with Integrated Nested Laplace 

Approximations (INLA), and Spatio Temporal Generalized 

Linear Mixed Model. The research aims to overcome the 

problems faced in the utilization of GCM output data by 

developing the Geographically and Temporally Weighted 

Gamma Ridge Regression (GTWGRR) model and the 

Geographically and Temporally Weighted Gamma Lasso 

Regression (GTWGLR) model to estimate monthly rainfall in a 

new location in West Java Province. The study used quantitative 

data, namely monthly rainfall from 35 rain observation stations 

in West Java Province, from September 2011 to January 2012, 

obtained from the Indonesian Agency for Meteorological, 

Climatological and Geophysics (Badan Meteorologi, 

Klimatologi, dan Geofisika or simply BMKG) and monthly 

precipitation of GCM outputs using a 3×3 domain with a 

resolution of  𝟐, 𝟓𝐨 × 𝟐, 𝟓𝐨. The GTWGRR method is the best 

regularization method compared to the GTWGLR method in 

SD modelling for estimating monthly rainfall from October 2011 

to January 2012. The combination of the GTWGRR method 

with Kriging interpolation can be used in SD modelling to 

estimate monthly rainfall at a new location in West Java 

Province. The GTWGRR and Kriging interpolation methods 

are useful in improving the accuracy of monthly rainfall 

estimates for BMKG. 

 
Index Terms—GTWGR, GTWGRR, monthly rainfall, 

Statistical Downscaling 

I. INTRODUCTION 

he Statistical Downscaling (SD) technique is a pivotal 

tool  in climatology and employs statistical modelling to 

analyze  the intricate  relationship  between  global-scale and 

local-scale data [1]. The SD methodology is crucial for trans- 
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forming data derived from a grid characterized by extensive 

units into data represented on a grid with more refined units 

[2], as well as for interpolating regional-scale atmospheric 

predictor variables with smaller-scale variables [3]. 

The Global Climate Model (GCM), a computer-based 

model comprising numerous integrated, deterministic, and 

numerical equations that adhere to physics, is one of the 

models used to predict rainfall. Large-scale climatic 

conditions can be simulated by GCM [2]. The GCM 

constitutes a computational framework that produces 

extensive datasets derived from a variety of climatic 

variables, such as precipitation, temperature, and humidity, 

aimed at facilitating climate prediction, as articulated by 

Soleh [4]. 

L1/Lasso Regulation and Principal Component Analysis 

[5], Spatio-Temporal Bayes Regression with Integrated 

Nested Laplace Approximations (INLA) [6], and Spatio 

Temporal Generalized Linear Mixed Model [7] were used in 

SD modelling to estimate monthly rainfall in Indonesian 

regions with monsoon rainfall patterns. Apart from this 

approach, Geographically and Temporally Weighted 

Regression (GTWR) using the Weighted Least Squares 

(WLS) method [8] and Geographically and Temporally 

Weighted Gamma Regression (GTWGR) using the 

Maximum Likelihood Equation (MLE) method have been 

developed [9]. 

When analyzing spatially different data, local regression 

models like Geographically Weighted Regression (GWR) 

can be utilized to investigate the relationship between 

response and predictor variables. By employing geographic 

location as a weighting factor in the estimation of the model 

parameters that differ across various sites, the limitations of 

the data are effectively addressed. As noted by Foody [10], a 

significant advantage of Geographically Weighted 

Regression (GWR) lies in its capacity to investigate the non-

stationary characteristics of the relationship between 

dependent and independent variables. Provided that the 

association between precipitation and spatially 

heterogeneous environmental factors is established, Chen et 

al. [11] and Xu et al. [12] introduced a GWR framework to 

enhance the resolution of rainfall data. 

The new GWR approach manages data with geographical 

variety. To handle data that has temporal diversity, this 

approach must be devised. In order to offer distinct model 

parameter values for each site (𝑢𝑖 , 𝑣𝑖) and time 𝑡𝑖, 
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Fotheringham et al. [13] transformed GWR into GTWR. 

Additionally, to estimate the amount of chlorophyll-a (Chl-a) 

in the coastal region of Zhejiang, China. Du et al. [14] 

converted GTWR into a geographically and temporally 

weighted regression spatiotemporal kriging (GTWR-STK). 

The GTWR-STK model produces better conjectures from the 

GTWR, GTWR Kriging (GTWRK), and spatiotemporal 

ordinary kriging (STOK) methods. 

A generalized gamma linear model has been subjected to 

Principal Component Analysis (PCA) with L1/Lasso 

regularization by Soleh et al. [5]. After adding the month 

dummy variable, Principal Component Regression (PCR), 

Principal Component (PC)-Gamma, and Gamma-L1 

modelling all yield the same result with comparatively slight 

variation, based on the least value of the Root Mean Square 

Error (RMSE). The best model is the generalized Gamma 

Linear model since it estimates rainfall that is not negative.  
Ali et al. [15] confirmed that rainfall data adheres to a Gamma 

distribution because the data has a value of zero or greater 

than zero. Considering the Root Mean Square Prediction 

Error (RMSEP) value, the study's results affirm that the 75th 

percentile Lasso model is superior to the 25th percentile 

Ridge model. 

Husak et al. [16] conducted an estimation of monthly 

precipitation parameters across Africa utilizing the Maximum 

Likelihood Estimation (MLE) approach for the Gamma 

distribution. The concurrent analysis of shape and scale 

parameters facilitates the modeling of monthly precipitation 

data values at each specific location, thus enabling qualitative 

evaluations concerning the magnitude and reliability of 

rainfall during the seasonal period. The modeling of monthly 

precipitation data values at each locality is performed through 

the concurrent analysis of shape and scale parameters, which 

permits qualitative assessments regarding the volume and 

stability of precipitation throughout the seasonal timeframe. 

The Gamma distribution is a better empirical rainfall 

probability distribution than the Weibull distribution, 

according to the findings of a test of its suitability for 

estimating the empirical distribution model parameters using 

the Kolmogorov Smirnov (KS) test. Amburn et al. [17] have 

been forecasting rainfall using the Gamma Regression (GR) 

model. The findings demonstrate that the response variable's 

value may be accurately estimated using GR. These results 

are obtained based on the percentage of coverage area and the 

average rainfall. 

Kardiana et al. [8] state that the monthly rainfall histogram 

for each station is generally asymmetrical and leans to the 

right. The frequency of the high-value monthly rainfall is low, 

however the frequency of the low-value monthly rainfall is 

very considerable. Using Gamma Regression is one method 

for dealing with this distribution. 

The appropriateness of frequency distribution in rainfall 

pattern forecasting—a crucial component in predicting 

possible disasters—was investigated by Esberto [18]. Chi-

Square and KS tests were utilized to thoroughly assess the 

study's monthly rainfall data from PAGASA. Using data from 

the previous 26–30 years, the distribution pattern was 

identified and assessed on over 60 probability density 

functions (pdf), including the Gamma distribution. For 

statistical inference, the best-performing pdf will be utilized. 

The results indicate that each location has a specific 

theoretical pdf to infer rainfall events, with the gamma 

distribution emerging as the best pdf for a specific location 

and month. 

According to research in the literature, there is 

multicollinearity and a spatial connection between grids when 

using GCM output data, which contains numerous predictor 

factors [2]; there has been no application of the GTWGRR 

model, which is a combination of Ridge regularization with 

the GTWGR model and GTWGLR model, which is a 

combination of Lasso regularization with the GTWGR model 

to overcome these problems. For this reason, this study will 

use the GTWGRR and GTWGLR models in SD to estimate 

monthly rainfall and monthly rainfall at new locations using 

a combination of the best models from GTWGRR and 

GTWGLR with Kriging interpolation. 

 

II. GEOGRAPHICALLY WEIGHTED GAMMA REGRESSION 

(GWGR) 

The GWGR model [19] is defined as follows  

𝐸(𝑦𝑖) = 𝜇𝑖 = 𝑒𝑥𝑝(𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘
𝑝
𝑘=1 )   (1) 

𝑖 = 1, 2, 3, …, 𝑛; 𝑘 = 1, 2, …, 𝑝. 

where 𝑦𝑖 is the value of the response variable at the location 

(𝑢𝑖, 𝑣𝑖), 𝛽0(𝑢𝑖 , 𝑣𝑖) is the intercept at the location (𝑢𝑖 , 𝑣𝑖), 

𝛽𝑘(𝑢𝑖 , 𝑣𝑖), is the regression coefficient of the 𝑘th predictor 

variable at the location (𝑢𝑖, 𝑣𝑖), 𝑥𝑖 is the 𝑘th predictor 

variable. Similar to the Geographically Weighted Regression 

(GWR) model, the Geographically Weighted Gamma 

Regression (GWGR) model uses the Maximum Likelihood 

Estimator (MLE) approach for parameter estimations. The 

difference is in the type of Gamma spread response. 

The probability density function of the GWGR model is: 

𝑓(𝑦𝑖 ;  𝛼(𝑢𝑖 , 𝑣𝑖), 𝜷(𝑢𝑖 , 𝑣𝑖)) 

= 
 𝑦

𝑖

𝛼(𝑢𝑖,𝑣𝑖)−1
 

Γ(α(𝑢𝑖,𝑣𝑖))(
exp(𝑿𝒊

𝑻𝛃(𝑢𝑖,𝑣𝑖))

α(𝑢𝑖,𝑣𝑖)
)

α(𝑢𝑖,𝑣𝑖)
exp (

−𝑦𝑖

(
exp(𝑿𝒊

𝑻𝛃(𝑢𝑖,𝑣𝑖))

α(𝑢𝑖,𝑣𝑖)
)

)      (2) 

The GWGR parameters are estimated using the MLE 

method. Based on equation (2), the probability function is 

obtained: 

𝐿(𝛼(𝑢𝑖, 𝑣𝑖), 𝜷(𝑢𝑖 , 𝑣𝑖)) = 

∏ [
 𝑦

𝑖

𝛼(𝑢𝑖,𝑣𝑖)−1
 

Γ(α(𝑢𝑖,𝑣𝑖))(
exp(𝑿𝒊

𝑇𝜷(𝑢𝑖,𝑣𝑖))

α(𝑢𝑖,𝑣𝑖)
)

α(𝑢𝑖,𝑣𝑖)
exp (

−𝑦𝑖

(
exp(𝑿𝒊

𝑇𝜷(𝑢𝑖,𝑣𝑖))

α(𝑢𝑖,𝑣𝑖)
)

)]𝑛
𝑖=1  

= [(
1

Γ(α(𝑢𝑖,𝑣𝑖))
)

𝑛

(
exp∑ 𝑿𝒊

𝑇𝜷𝑛
𝑖=1

α(𝑢𝑖,𝑣𝑖)
𝑛 )

−α(𝑢𝑖,𝑣𝑖)

] 

∏ 𝑦𝑖
𝛼(𝑢𝑖,𝑣𝑖)−1𝑛

𝑖=1 exp (∑
−𝑦𝑖 α(𝑢𝑖,𝑣𝑖)

exp(𝑿𝒊
𝑇𝜷(𝑢𝑖,𝑣𝑖))

𝑛
𝑖=1 )  (3) 

and the probability ln function l = 𝑙𝑛 𝐿(𝛼(𝑢𝑖 , 𝑣𝑖), 𝜷(𝑢𝑖 , 𝑣𝑖)) 

is: 

l = 𝑙𝑛 𝐿(𝛼(𝑢𝑖 , 𝑣𝑖), 𝜷(𝑢𝑖 , 𝑣𝑖)). 

= ln [(Γ(α(𝑢𝑖 , 𝑣𝑖)))
−𝑛

(
exp∑ 𝑿𝒊

𝑻𝛃𝑛
𝑖=1

α(𝑢𝑖,𝑣𝑖)
𝑛 )

−α(𝑢𝑖,𝑣𝑖)

 

∏ 𝑦𝑖
𝛼(𝑢𝑖,𝑣𝑖)−1

𝑛

𝑖=1

exp (∑
−𝑦𝑖  α(𝑢𝑖, 𝑣𝑖)

exp(𝑿𝒊
𝑻𝛃(𝑢𝑖 , 𝑣𝑖))

𝑛

𝑖=1

)] 

= -n𝑙𝑛 Γ(α(𝑢𝑖 , 𝑣𝑖))- 

α(𝑢𝑖 , 𝑣𝑖)∑ (𝑿𝒊
𝑇𝜷(𝑢𝑖 , 𝑣𝑖))

𝑛
𝑖=1 +α(𝑢𝑖 , 𝑣𝑖)(n𝑙𝑛 α(𝑢𝑖 , 𝑣𝑖))+ 

(α(𝑢𝑖 , 𝑣𝑖)-1)∑ 𝑙𝑛𝑛
𝑖=1 𝑦𝑖-∑

𝑦𝑖 α(𝑢𝑖,𝑣𝑖)

exp(𝑿𝒊
𝑇𝜷(𝑢𝑖,𝑣𝑖))

𝑛
𝑖=1 . (4) 
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The GWGR model considers the location factors in the 

form of each observation point's longitude and latitude 

coordinates. The ln likelihood function with location 

weighting is [19] as follows: 

l = ln 𝐿∗(𝛼(𝑢𝑙, 𝑣𝑙)
, 𝜷(𝑢𝑙, 𝑣𝑙),   𝑖=1,2,…,𝑛)  

= (−∑ 𝑙𝑛 (Γ(𝛼(𝑢𝑙, 𝑣𝑙)
)) + ∑ 𝛼(𝑢𝑙, 𝑣𝑙)

𝑙𝑛 𝛼(𝑢𝑙, 𝑣𝑙)
𝑛
𝑖=1 −𝑛

𝑖=1

∑ 𝛼(𝑢𝑙, 𝑣𝑙)
(𝒙𝑖

𝑇𝜷(𝑢𝑙, 𝑣𝑙)
)𝑛

𝑖=1 + ∑ (𝛼(𝑢𝑙, 𝑣𝑙)
− 1) 𝑙𝑛 𝑦𝑖

𝑛
𝑖=1 −

𝛼(𝑢𝑙, 𝑣𝑙)
∑ 𝑦𝑖  𝑒𝑥𝑝(−(𝒙𝑖

𝑇𝜷(𝑢𝑙, 𝑣𝑙)
))𝑛

𝑖=1 ) (𝑤𝑖𝑙) 

= −𝑙𝑛 (Γ(𝛼(𝑢𝑙, 𝑣𝑙)
))∑ 𝑤𝑖𝑙

𝑛
𝑖=1  + 𝛼(𝑢𝑙, 𝑣𝑙)

𝑙𝑛 𝛼(𝑢𝑙, 𝑣𝑙)
∑ 𝑤𝑖𝑙

𝑛
𝑖=1  - 

𝛼(𝑢𝑙, 𝑣𝑙)
∑ (𝒙𝑖

𝑇𝜷(𝑢𝑙, 𝑣𝑙)
)𝑛

𝑖=1 𝑤𝑖𝑙  + (𝛼(𝑢𝑙, 𝑣𝑙)
− 1)∑ 𝑙𝑛 𝑦𝑖

𝒏
𝒊=𝟏 𝑤𝑖𝑙  - 

𝛼(𝑢𝑙, 𝑣𝑙)
∑ 𝑦𝑖𝑤𝑖𝑙  𝑒𝑥𝑝(−(𝒙𝑖

𝑇𝜷(𝑢𝑙, 𝑣𝑙)
))𝑛

𝑖=1 . (5) 

Through the utilization of the initial and subsequent partial 

derivatives of the logarithmic likelihood function l to the 

parameter to be estimated, then equalizing it to zero and 

determining the solution, the estimated value of the GTWR 

parameter is produced. This partial derivative is an implicit 

function because the equation formed still contains 

parameters, so the estimation process uses Newton Raphson 

(NR) iteration [20]. 
𝜕 𝑙

𝜕𝛼(𝑢𝑙, 𝑣𝑙)
 = 

− 
Γ′(𝛼(𝑢𝑙, 𝑣𝑙)

)

Γ(𝛼(𝑢𝑙, 𝑣𝑙)
)
∑ 𝑤𝑖𝑙

𝑛
𝑖=1 + 𝑙𝑛 𝛼(𝑢𝑙, 𝑣𝑙)

∑ 𝑤𝑖𝑙
𝑛
𝑖=1 + ∑ 𝑤𝑖𝑙

𝑛
𝑖=1 -

∑ (𝒙𝑖
𝑇𝜷(𝑢𝑙, 𝑣𝑙)

)𝑛
𝑖=1 𝑤𝑖𝑙+∑ 𝑙𝑛 𝑦𝑖

𝒏
𝒊=𝟏 𝑤𝑖𝑙-

∑ 𝑦𝑖𝑤𝑖𝑙𝑒𝑥𝑝(−(𝒙𝑖
𝑇𝜷(𝑢𝑙, 𝑣𝑙)

))𝑛
𝑖=1  (6) 
𝜕 𝑙

𝜕𝜷(𝑢𝑙, 𝑣𝑙)
 = -𝛼(𝑢𝑙, 𝑣𝑙)

∑ 𝒙𝑖
𝑛
𝑖=1 𝑤𝑖𝑙  + 

𝛼(𝑢𝑙, 𝑣𝑙)
∑ 𝑦𝑖𝒙𝑖𝑤𝑖𝑙  𝑒𝑥𝑝(−(𝒙𝑖

𝑇𝜷(𝑢𝑙, 𝑣𝑙)
))𝑛

𝑖=1  (7) 
𝜕2𝑙

𝜕2𝛼(𝑢𝑙, 𝑣𝑙)
 =  -

[
Γ′′(𝛼(𝑢𝑙, 𝑣𝑙)

)Γ′(𝛼(𝑢𝑙, 𝑣𝑙)
)−Γ′(𝛼(𝑢𝑙, 𝑣𝑙)

)Γ(𝛼(𝑢𝑙, 𝑣𝑙)
)

Γ2(𝛼(𝑢𝑙, 𝑣𝑙)
)

] ∑ 𝑤𝑖𝑙
𝑛
𝑖=1 +

1

𝛼(𝑢𝑙, 𝑣𝑙)
∑ 𝑤𝑖𝑙

𝑛
𝑖=1  (8) 

𝜕2𝑙

𝜕2𝛼(𝑢𝑙, 𝑣𝑙)
𝜷𝑻

(𝑢𝑙, 𝑣𝑙)

 = 

− 𝛼(𝑢𝑙, 𝑣𝑙)
∑ 𝑦𝑖𝒙𝑖𝒙𝑖

𝑇 𝑤𝑖𝑙  𝑒𝑥𝑝 (−(𝒙𝑖
𝑇𝜷(𝑢𝑙, 𝑣𝑙)

))𝑛
𝑖=1  (9) 

Simultaneous hypothesis testing to find out the predictor 

variables that simultaneously affect the model [21] are: 

𝐻0 : 𝛽11(𝑢𝑖 , 𝑣𝑖) = 𝛽12(𝑢𝑖 , 𝑣𝑖) = … = 𝛽𝑝𝑛(𝑢𝑖 , 𝑣𝑖) = 0 

𝐻1 : there is at least one 𝛽𝑖𝑗(𝑢𝑖, 𝑣𝑖)  ≠ 0, 

i = 1, 2, …, n; k = 1, 2, …, 𝑝. 

The test statistic is calculated as: 

𝐺2 = - 2 ln 𝛬 = - 2 ln [
𝐿(𝜔̂)

𝐿(Ω̂)
] = 2(𝑙𝑛 𝐿(Ω̂) − 𝑙𝑛 𝐿(𝜔̂)) (10) 

where 𝐿(𝜔̂) is the highest value that can be obtained if 𝐻0 (ω 

= (𝛽0, 𝛼, 𝜃)) is true, and 𝐿(Ω̂) is the highest value that can be 

obtained if both 𝐻0 and 𝐻1 are true (𝛺 = (𝛽0, 𝛽1, … , 𝛽𝑝, 𝛼, 𝜃) 

= (𝜷, 𝛼, 𝜃)). 𝐻0 is rejected if 𝐺2 > 𝜒(𝛼,𝑛𝑥𝑙)
2 , 𝑙 is the period/time 

or reject 𝐻0 if p-value < 𝛼. 

The impact of predictor factors on response variables was 

investigated by partial significance testing of regression 

parameters. This test is continued if the tests simultaneously 

decide to reject 𝐻0. Partial hypothesis testing is: 

𝐻0 : 𝛽𝑘(𝑢𝑖 , 𝑣𝑖) = 0 

𝐻1 : 𝛽𝑘(𝑢𝑖 , 𝑣𝑖) ≠ 0, k = 1, 2, …, 𝑝. 

The test statistic is calculated as: 

𝑍ℎ𝑖𝑡 = 
𝛽̂𝑘(𝑢𝑖,𝑣𝑖)

𝑆𝐸(𝛽̂𝑘(𝑢𝑖,𝑣𝑖)
)
 (11) 

where 𝛽̂𝑘(𝑢𝑖,𝑣𝑖)
 is the parameter estimator of 𝛽𝑘(𝑢𝑖,𝑣𝑖)

 and 

𝑆𝐸(𝛽̂𝑘(𝑢𝑖,𝑣𝑖)
) = √𝑣𝑎𝑟(𝛽̂𝑘(𝑢𝑖,𝑣𝑖)

) is the standard error of 

𝛽𝑘(𝑢𝑖,𝑣𝑖)
. 𝑣𝑎𝑟(𝛽̂𝑘(𝑢𝑖,𝑣𝑖)

) is the j+1th diagonal element of 

(𝑯(𝜸̂)). Reject 𝐻0 if |𝑍ℎ𝑖𝑡| > 𝑍𝛼/2. 

 

III. GEOGRAPHICALLY AND TEMPORALLY WEIGHTED 

GAMMA REGRESSION (GTWGR) 

To tackle spatial and temporal non-stationary problems 

simultaneously, the Geographically Weighted Gamma 

Regression (GWGR) method was modified to create the 

Geographically and Temporally Weighted Gamma 

Regression (GTWGR) [22]. The model is: 

𝐸(𝑌𝑖)=𝜇𝑖= exp((𝛽0(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖)𝑥𝑖𝑘
𝑝
𝑘=1 ) (12) 

𝑖=1, 2, 3, …, 𝑛; 𝑘=1, 2, …, 𝑝. 

By including the influence of time 𝑡𝑖, the data is comparable 

to the GTWR model. By including the influence of time 𝑡𝑖, 
the MLE approach is used to estimate the parameters 

𝛽𝑘(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖). 

The probability density function of the GTWGR model is: 

𝑓(𝑦𝑖𝑙;  𝛼(𝑢𝑖, 𝑣𝑖, 𝑡𝑖), 𝜷(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖))  =  

 
 𝑦

𝑖𝑙

𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)−1
 

Γ(α(𝑢𝑖,𝑣𝑖, 𝑡𝑖))(
exp(𝒙𝒊

𝑇𝜷(𝑢𝑖,𝑣𝑖, 𝑡𝑖))

α(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)

α(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
exp 𝐴 (13) 

𝐴 =

(

 
 −𝑦𝑖𝑙

(
exp(𝒙𝒊

𝑇𝜷(𝑢𝑖 , 𝑣𝑖, 𝑡𝑖))
α(𝑢𝑖 , 𝑣𝑖, 𝑡𝑖)

)
)

 
 
 

with i = 1,2, …, n, 𝑦𝑖𝑙  ≥0. The GTWGR parameters are 

estimated using the MLE method with a likelihood function:  

𝐿 (𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
, 𝜷𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖),   𝑖=1,2,…,𝑛,   𝑙=1,2,… ,𝐿) 

= ∏ ∏ 𝑓(𝑦𝑖𝑙)
𝑛
𝑖=1

𝐿
𝑙=1  

=∏ ∏

[
 
 
 
 

1

Γ(𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)[

𝑒𝑥𝑝(𝒙𝑖
𝑇𝜷𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

)

𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
]

𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
𝑦𝑖

𝛼−1𝑛
𝑖=1

𝐿
𝑖=1  

𝑒𝑥𝑝
−𝑦𝑖 𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

𝑒𝑥𝑝(𝒙𝑖
𝑇𝜷𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

)
]  (14) 

and ln probability function: 

l = ln 𝐿(𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
, 𝜷𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖),   𝑖=1,2,…,𝑛) =  

= ln (∏ ∏ 𝑓(𝑦𝑖𝑙)
𝑛
𝑖=1

𝐿
𝑙=1 ) 

= ln ∏ ∏

[
 
 
 
 

1

Γ(𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)[

𝑒𝑥𝑝(𝒙𝑖
𝑇𝜷(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

)

𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
]

𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
𝑦𝑖

𝛼−1𝑛
𝑖=1

𝐿
𝑖=1   

𝑒𝑥𝑝
−𝑦𝑖 𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

𝑒𝑥𝑝(𝒙𝑖
𝑇𝜷(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

)
]  (15) 

The natural logarithm function of probability for estimating 

parameters from location [22] is: 

𝑙∗ = ∑ ∑ 𝑤𝑖𝑖∗𝑙
𝑛
𝑖∗=1

𝐿
𝑙=1  ln 𝑓(𝑦𝑖∗𝑙) 

= ∑ ∑ 𝑤𝑖𝑖∗𝑙 (−ln (Γ(𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
))𝑛

𝑖∗=1
𝐿
𝑙=1  

- 𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
ln (𝑒𝑥𝑝 (𝒙𝑖

𝑇𝜷(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)) + 𝐴) (16) 

A = 𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
𝑙𝑛 𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

+(𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
− 1) 𝑙𝑛(𝑦𝑖∗𝑙) 
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 −
𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

𝑦𝑖∗𝑙

𝑒𝑥𝑝(𝒙𝑖∗𝑘𝑙
𝑇 𝜷𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

)
 

By taking the first partial derivative of  𝑙∗ on each 

parameter and then equalizing them to zero, the estimated 

values of the GTWGR model parameters are found: 
𝜕 𝑙∗

𝜕𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
 = 

(− 
Γ′ (𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

)

Γ (𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)

∑ ∑ 𝑤𝑖𝑖∗𝑙

𝑛

𝑖∗=1

𝐿

𝑙=1

+ (1 + 𝑙𝑛𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)∑ ∑ 𝑤𝑖𝑖∗𝑙

𝑛

𝑖∗=1

𝐿

𝑙=1

 

∑ ∑ 𝒙𝑖∗𝑘𝑙
𝑇 𝜷𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

𝑤𝑖𝑖∗𝑙
𝑛
𝑖∗=1

𝐿
𝑙=1  + 

∑ ∑ 𝑙𝑛(𝑦
𝑖∗𝑙

)𝑤𝑖𝑖∗𝑙
𝑛
𝑖∗=1

𝐿
𝑙=1  

∑ ∑
𝑦𝑖∗𝑙𝑤𝑖𝑖∗𝑙

exp(𝒙𝑖∗𝑘𝑙
𝑇 𝜷

𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)

𝑛
𝑖∗=1

𝐿
𝑙=1 ) = 0 (17) 

𝜕 𝑙∗

𝜕𝜷
(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

 = - 𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
∑ ∑ 𝒙𝑖∗𝑘𝑙

𝑇 𝑤
𝑖𝑖∗𝑙

𝑛
𝑖∗=1

𝐿
𝑙=1  

 + 𝛼(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
∑ ∑

𝛼
(𝑢𝑖,𝑣𝑖, 𝑡𝑖)

 𝑦𝑖∗𝑙 𝒙𝑖∗𝑘𝑙
𝑇  𝑤

𝑖𝑖∗𝑙

exp(𝒙
𝑖∗𝑘𝑙
𝑇 𝜷

𝑙(𝑢𝑖,𝑣𝑖, 𝑡𝑖)
)

𝑛
𝑖∗=1

𝐿
𝑙=1  = 0 (18) 

The first partial derivative equations (17) and (18) still 

contain other parameters. The parameter estimation was 

carried out using the NR method [20]. The collected data are 

in three dimensions in a spatial-temporal coordinate system. 

Due to the variability in units about spatial-temporal effects, 

the measurement of the separation between the regression 

point and adjacent observational data points is conducted 

utilizing an ellipsoidal coordinate framework. λ and μ are 

balance factors for the impact of unit changes between place 

and time on spatial-temporal distance measurements, 

assuming that 𝑑𝑖𝑗
𝑇  is a temporal distance function and 𝑑𝑖𝑗

𝑆  is a 

spatial distance function. The temporal and spatial distance 

functions are combined to create the spatial-temporal distance 

function, specifically Huang et. al [23]: 

(𝑑𝑖𝑗
𝑆𝑇)

2
 = 𝜆(𝑢𝑖 − 𝑢𝑗)

2 + (𝑣𝑖 − 𝑣𝑗)
2] + 𝜂(𝑡𝑖 − 𝑡𝑗)

2 (19) 

The balance parameters for the impact of location and time 

unit differences on spatial-temporal distance measurements 

are 𝜆 and 𝜂. Suppose 𝜏 = 
𝜂

λ
 , λ 0 then: 

(𝑑𝑖𝑗
𝑆𝑇)

2

λ
 = (𝑢𝑖 − 𝑢𝑗)

2  +  (𝑣𝑖 − 𝑣𝑗)
2+ 𝜏(𝑡𝑖 − 𝑡𝑗)

2 (20) 

The parameter τ serves to modulate the proportion of 

temporal distance to spatial distance derived from the 

minimum coefficient of variation by furnishing a preliminary 

value of τ: 

CV(𝜏) = ∑ (𝑦𝑖 − 𝑦̂≠𝑖(𝜏))
2𝑛

𝑖=1  (21) 

We will obtain estimators of λ and μ using an iterative 

method. 

Examining the GTWGR model parameters' relevance 

concurrently for the lth era is: 

𝐻0 : 𝛽1𝑙(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) = 𝛽2𝑙(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) = … = 𝛽𝑘𝑙(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) = 0 

𝐻1 : there is at least one 𝛽𝑗𝑙(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖)  ≠ 0, 

i = 1, 2, …, n; l = 1, 2, …, L. 

The test statistic is calculated as: 

𝐺𝑙
2 = - 2 ln 𝛬 = - 2 ln [

𝐿(𝜔̂)

𝐿(𝛺̂)
] = 2(𝑙𝑛 𝐿(Ω̂) − 𝑙𝑛 𝐿(ω̂)) (22) 

where 𝐿(𝜔̂) is the highest value that can be obtained if 𝐻0 (𝜔 

= (𝛽0𝑙 , 𝛼, 𝜃)) is true  and 𝐿(𝛺̂) is the highest value that can 

be obtained if both 𝐻0 and 𝐻1 are true (𝛺 = 

(𝛽0, 𝛽1𝑙 , … , 𝛽𝑝𝑙 , 𝛼, 𝜃) = (𝜷, 𝛼, 𝜃)) are true. 𝐻0 is rejected if 𝐺2 

> 𝜒(𝛼,𝑛𝑥𝑙)
2  or rejects 𝐻0 if p-value < α. 

Partial testing of the GTWGR model parameters' 

significance [19]: 

𝐻0 : 𝛽𝑘𝑙(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) = 0 

𝐻1 : 𝛽𝑘𝑙(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) ≠ 0, k = 1, 2, …, 𝑝. 

The test statistic is: 

𝑍ℎ𝑖𝑡 = 
𝛽̂𝑘𝑙(𝑢𝑖,𝑣𝑖,𝑡𝑖)

𝑆𝐸(𝛽̂𝑘𝑙(𝑢𝑖,𝑣𝑖,𝑡𝑖)
)
 (23) 

where 𝛽̂𝑘(𝑢𝑖,𝑣𝑖)
 is the parameter estimator of 𝛽𝑘𝑙(𝑢𝑖,𝑣𝑖,𝑡𝑖)

 and 

𝑆𝐸(𝛽̂𝑘𝑙(𝑢𝑖,𝑣𝑖,𝑡𝑖)
) = √𝑣𝑎𝑟(𝛽̂𝑘𝑙(𝑢𝑖,𝑣𝑖,𝑡𝑖)

) is the standard error of  

𝛽𝑘𝑙(𝑢𝑖,𝑣𝑖,𝑡𝑖)
. 𝑣𝑎𝑟(𝛽̂𝑘𝑙(𝑢𝑖,𝑣𝑖,𝑡𝑖)

) is j+1st diagonal element of 

𝑯(𝜸̂). Reject 𝐻0 if |𝑍ℎ𝑖𝑡| > 𝑍𝛼/2. 

 The adequacy of the model is ascertained through the 

application of the corrected Akaike Information Criterion 

(AICc) and the Mean Squared Error (MSE), particularly: 

MSE = 
1

𝑛
(∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1 ) (24) 

AIC = −𝑛 𝑙𝑜𝑔 (
∑ (𝑦𝑖− 𝑦̂𝑖)

2𝑛
𝑖=1

𝑛
) + 2𝑝 (25) 

AICc = AIC + 
2𝑝(𝑝+1)

𝑛−𝑝−1
 (26) 

 

IV. RIDGE REGULATION (L2) 

One method to overcome multicollinearity problems is to 

use Ridge regression, which was introduced by Hoerl and 

Kennard in 1970 by adding a penalty to the regression 

coefficients in the L2 norm, specifically minimizing the sum 

of squares of the linear regression residuals using the 

following criteria to estimate the β parameter: 

∑ 𝜷𝒌
𝟐𝒑

𝒌=𝟏 ≤ 𝑐  (27) 
The Lagrange equation can be used to express the 

estimated coefficients, specifically: 

𝜷̂𝑟𝑖𝑑𝑔𝑒 = arg𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑘𝛽𝑘
𝑝
𝑘=1 )

2
+ 𝜆 ∑ 𝛽𝑘

2𝑝
𝑘=1

𝑛
𝑖=1 }    (28) 

As in linear regression, penalties can also be added to the 

compressed linear model to overcome multicollinearity 

problems. Parameter estimation in distributed linear 

modelling with Ridge regularization [4] is: 

𝜷̂𝑟𝑖𝑑𝑔𝑒 = arg𝑚𝑖𝑛
𝛽

{
−log [L(𝐲;𝛃)]

𝑛
+ 𝜆1 ∑ 𝛽𝑘

2𝑝
𝑘=1 } (29) 

L(y;β) is the probability function of the exponential 

distribution family, and 𝜆1≥0 is the L2 regularization penalty 

parameter. The coefficient estimates obtained in Ridge 

regression are not equivariant due to differences in the scale 

of the input data, so standardization of the original variables 

is needed [24]. Parameter estimates are obtained using the NR 

method. The Ridge regression coefficient estimator will 

decrease as the value of 𝜆1 increases. The regression 

coefficient shrinks more until it gets close to zero as the value 

of 𝜆1 increases. 

 

V. LASSO REGULATION (L1) 

In 1996, Robert Tibshirani developed the least absolute 

shrinkage and selection operator (Lasso) as a method to 

address multicollinearity and to reduce the regression 

coefficients of less significant predictor variables to 
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approximately zero or precisely zero [25]. The parameter 

estimators in distributed linear modelling with Lasso 

regularization [4] are: 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = arg𝑚𝑖𝑛
𝛽

{
−log [L(𝐲;𝛃)]

𝑛
+ 𝜆2 ∑ |𝛽𝑘|

𝑝
𝑘=1 } (30) 

The lasso regularization can reduce overfitting and select 

the most helpful predictor variables from the data. The lasso 

regularization can also reduce data dimensionality by 

removing less important predictor variables, speeding up the 

building process, and increasing model accuracy. 

By varying the Lasso model's parameter 𝜆2, the degree of 

decline can be used to calculate the coefficient value of the 

predictor variables that Lasso regularization provides. The 

coefficient of the derived predictor variable decreases more 

significantly with increasing values of 𝜆2. 

However, if the value of 𝜆2 is too high, then the coefficient 

of the predictor variable will reach zero too quickly (or close 

to zero) so that the model cannot correctly capture the patterns 

in the data. Therefore, choosing the right 𝜆2 value is 

important so that the model can capture patterns in the data 

well and eliminate less essential features. 

 

VI. MODELING APPLICATION FOR RAINFALL IN WEST JAVA 

PROVINCE 

A. Data 

Monthly rainfall data from 35 locations in West Java 

Province, compiled by the Meteorology, Climatology, and 

Geophysics Agency (BMKG) from January 2010 to January 

2012, function as a response variable. The predictor variables 

are x₁, the previous month's rainfall, and x₂–x₁₀ are GCM 

output monthly precipitation data derived from the Climate 

Forecast System Reanalysis (CFSR) model provided by the 

National Centers for Environmental Prediction (NCEP) [26], 

at coordinates (105; –5), (107.5; –5), (110; –5), (105; –7.5), 

(107.5; –7.5), (110; –7.5), (105; –10), (107.5; –10), and (110; 

–10), respectively [27]. 

B. Method 

The analysis stages carried out [28] are: 

1) Checking multicollinearity between predictor variables 

using correlation values [29]. 

2) Estimating ordinary GTWGR model parameters using ten 

predictor variables. 

3) Checking spatiotemporal diversity by: 

a) Test BP for every period [30]. 

b) The boxplot method was used to see temporal variation                      

between periods [31], [32], [33]. 

4) Carry out GTWGRR and GTWGLR modelling for each 

response variable produced in the lth period with stages: 

a) Estimating parameters using l×n data in each l period. 

b) Calculating the Euclidean distance for each l period. 

c) Using the minimal CV value to estimate the ideal 

bandwidth value. 

d) Use the Kernel Fixed Gaussian function to get the 

weighting matrix that yields the lowest CV value. 

e) Estimating the optimum τ parameter from: 1, 0.95, 0.9, 

0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 

0.3, 0.25, 0.2, 0.15, 0.1, 0.095, 0.09, 0.085, 0.08, 0.07, 

0.075, 0.065, 0.06, 0.055, 0.05, 0.045, 0.04, 0.035, 0.03, 

0.025, 0.02, 0.015, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 

0.004, 0.003, 0.002, and 0.001. 

f) Estimating the optimum λ parameter from a choice of the 

same values as parameter τ. 

g) Estimating the GTWGRR model parameters 𝜷𝑟(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) 

at τ and 𝜆, 𝜆1.1 (the L2 regularization penalty coefficient 

utilized for ascertaining the optimal τ parameter) and 𝜆1.2 

(the L2 regularization penalty parameter for determining 

the ideal 𝜆 parameter) is optimal for each period. The 

choice of parameter values for the optimum 𝜆1.1 and 𝜆1.2 

from: 0.000001, 0.0000025, 0.000005, 0.0000075, 

0.00001, 0.000025, 0.00005, 0.000075, 0.0001, 0.01, 

0.05, 0.25, 0.5, 1, 2.5, 5, 10, 15, 20, 30, 50, 75, 100, 125, 

150, 200, 300, 500, 1000, and 10000. 

h) Test the GTWGRR model parameters simultaneously 

using the MLRT method: 

1. 𝐻0: 𝛽1 = 𝛽2 = … = 𝛽𝑝 = 0. 

2. 𝐻1: there is at least one 𝛽𝑗  ≠ 0, j =1, 2, …, p, i = 1, 2, 

…, n. 

3. Determine the set of parameters if 𝐻0 and 𝐻1 are true: 

𝛺 = (𝛽0, 𝛽1, … , 𝛽𝑝) 

4. Determine the set of parameters if 𝐻0 is true: 𝜔 = (𝛽0) 

5. Form a maximum likelihood function if 𝐻0 and 𝐻1 are 

true: L(𝛺̂) = maks
𝛺

∏ f(𝑦𝑖|𝛺
𝑛
𝑖=1 ) 

6. Form a maximum likelihood function if 𝐻0 is true: 

L(𝜔̂) = 𝑚𝑎𝑘𝑠 ∏ f(𝑦𝑖|𝜔
𝑛
𝑖=1 ) 

7. Estimating parameters Ω and ω with MLE and NR 

method. 

8. Defining the Likelihood Function Ratio: 𝛬 = 
𝐿(𝜔̂)

𝐿(𝛺̂)
 

9. Determining test statistics using the MLRT method. 

 The test statistic is calculated as: 

𝐺2 = - 2 ln 𝛬 = - 2 ln 
𝐿(𝜔̂)

𝐿(𝛺̂)
 = 2(𝑙𝑛 𝐿(𝛺̂) – 𝐿(𝜔̂)) ~ 𝜒𝛼,2𝑝

2  

If 𝐺2>𝜒𝛼,2𝑝
2  (or p-value < α), reject 𝐻0. The quantity of 

predictor variables within the model is denoted by p. 

Partial testing is done to ascertain the importance of each 

parameter to the model if 𝐻0 is rejected. 

i) Calculate the AICc of each resulting response variable. 

j) Estimating the GTWGLR model parameters 𝜷𝑙(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) 

at τ and 𝜆,𝜆2.1 (the L2 regularization penalty parameter 

for determining the ideal τ parameter) and 𝜆2.2 (the 

penalty parameter in L1 regularization in estimating the 

optimum 𝜆 parameter)) is optimal for each period. 

k) Test the GTWGLR model parameters simultaneously 

using the MLRT method analogue with h)1 - until h)9. 

l) Choose the model that provides the smallest AICc 

between the GTWGRR and GTWGLR models.  

m) Use Kriging interpolation in conjunction with the chosen 

GTWGRR or GTWGLR method to estimate the response 

variable's value at a new location. 

n) Create a monthly rainfall prediction map for October 2011 

to January 2012. 

C. Results and Discussion 

C1. Multicollinearity Test 

To perform the multicollinearity check, the Pearson 

correlation coefficient between each predictor variable was 

calculated [29]. 
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TABLE  I 

CORRELATION BETWEEN PREDICTOR VARIABLES 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

x1 - 0.04 0.09 -0.03 0.04 0.09 -0.03 0.04 0.09 -0.03 

x2 0.04 - 0.92 -0.39 1.00 0.92 -0.39 1.00 0.92 -0.39 

x3 0.09 0.92 - -0.24 0.92 1.00 -0.24 0.92 1.00 -0.24 
x4 -0.03 -0.39 -0.24 - -0.39 -0.24 1.00 -0.39 -0.24 1.00 

x5 0.04 1.00 0.92 -0.39 - 0.92 -0.39 1.00 0.92 -0.39 

x6 0.09 0.92 1.00 -0.24 0.92 - -0.24 0.92 1.00 -0.24 
x7 -0.03 -0.39 -0.24 1.00 -0.39 -0.24 - -0.39 -0.24 1.00 

x8 0.04 1.00 0.92 -0.39 1.00 0.92 -0.39 - 0.92 -0.39 

x9 0.09 0.92 1.00 -0.24 0.92 1.00 -0.24 0.92 - -0.24 
x10 -0.03 -0.39 -0.24 1.00 -0.39 -0.24 1.00 -0.39 -0.24 - 

 
TABLE  II 

PARTIAL TEST OF GLOBAL GAMMA REGRESSION MODEL PARAMETERS IN OCTOBER 2011 TO JANUARY 2012 

Variable 

October 2011 November 2011 December 2011 January 2012 

 Coefficient   p-value  Coefficient p-value Coefficient p-value Coefficient p-value 

Intercept 2.66 0 3.63 0 4.50 0 5.62    0    0 

x1 0.84 0.01 0.57 0 -0.10 0.59 -0.06 0.48 

x2 -3.98 0 -0.29 0.36 1.65 0 -2.89 0 

x3 -1.63 0 4.69 0 -4.64 0 14.69 0 

x4 0.967 0 1.34 0.88 -0.79 0 -2.42 0 

x5 -0.94 0 -7.78 0 -2.35 0 -2.13 0 

x6 -0.01 0.81 3.45 0 1.27 0 -9.25 0 

x7 0.69 0 -5.50 0.20 0.99 0 0.07 0 

x8 1.19 0 -0.20 0.523 2.28 0 -0.89 0 

x9 1.95 0 -3.02 0 0.46 0.01 -3.43 0 

x10 -3.06 0 2.26 0.59 0.05 0.80 1.02 0 

 

In line with [2] that in utilizing GCM output data that has 

many predictor variables, there is a spatial correlation 

between grids and there is multicollinearity between predictor 

variables. Table I shows a perfect correlation between several 

predictor pairs, namely between the predictors x2 and x5, x2 

and x8, x3 and x6, x3 and x9, x4 and x7, x4 and x10, x5 and 

x8, x6 and x9, and x7 and x10. There is also a high correlation 

of 0.92 between several pairs of predictors, including x2 and 

x3; x2 and x6; x2 and x9; x3 and x5; x3 and x8; x5 and x6; 

x5 and x9; x6 and x8; and x8 and x9. This result influenced 

the occurrence of multicollinearity, which will be handled by 

applying Ridge and Lasso regularization. Meanwhile, the 

partial test of Gamma Regression model parameters for 

October 2011, November 2011, December 2011, and January 

2012 are described in Table II. 

Table II shows that the predictor x6 is the variable that has 

no real effect on the Global Gamma regression model in 

October 2011 because it has a p-value > α = 0.05.  The 

predictor variables x2, x4, x7, x8, and x10 have no real effect 

on the model in November 2011. The variables x1 and x10 

have no real effect on the model in December 2011 because 

they have a p-value < α = 0.05. Likewise, the x1 variable has 

no real effect on the model in January 2012. 

 

C2. Spatial Heterogeneity Analysis 

Geographically and temporally weighted gamma 

regression modeling can be used if the data meet the 

assumptions of spatial and temporal heterogeneity. First, the 

assumption of spatial heterogeneity will be examined and 

followed by the examination of temporal heterogeneity. 

The spatial heterogeneity assessments conducted each 

month yield p-values consistently below the 0.05 threshold 

for significance. These results substantiate the assertion that 

spatial heterogeneity is present in each month. An analysis of 

temporal variability was conducted utilizing box plots of 

residuals for each month spanning from January 2010 to 

December 2012 [9]. The box plots of the residuals indicate 

that the residuals from the global regression model exhibit a 

lack of homogeneity, as evidenced by the distances between 

the quartiles [31], [32], [33]. The outcomes of the 

investigation indicate that a predominant portion of 

geographical heterogeneity transpired within the interval 

from January 2010 to December 2012. 

The results of examining spatial diversity using ten 

predictor variables for October 2011, November 2011, 

December 2011, and January 2012 are listed in Table III. 

 
TABLE III 

SPATIAL DIVERSITY TEST RESULTS 

Month BP-value  p-value 

October 2011 12.84 0.00163 

November 2011 25.12 0.00002 
December 2011 27.47 0.00002 

January 2012 24.98 0.00005 

 

The monthly rainfall data reveal both regional and 

temporal discrepancies. To address this variability, spatial-

temporal regression analysis will be employed. The 

modelling process proceeded with GTWGRR and GTWGLR 

methodologies to ascertain the most effective approach for 

estimating monthly rainfall while mitigating multicollinearity 

issues. 

 

C3. Geographically and Temporally Weighted Gamma 

Regression 

By identifying the ideal bandwidth that yields the lowest 

CV value, Ordinary Geographically and Temporally 

Weighted Gamma Regression (OGTWGR) modelling is then 

performed. 
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TABLE IV 

OPTIMUM 𝜏, OPTIMUM 𝜆, DEVIANS, AND RMSE VALUES OF THE OGTWGR MODEL FROM OCTOBER 2011 TO JANUARY 2012 

Month τ λ Devians RMSE AICc p-value 

October 2011 1 1 296.28 132.55 20089.56 0.0000 

November 2011 1 1 733.41 264.26 42097.33 0.0000 

December 2011 0.3 1 725.57 255.03 71131.76 0.0000 
January 2012 0.55 1 688.09 264.97 108025.66 0.0000 

 

TABLE V 

THE OPTIMAL VALUES (𝜆1.1, 𝜏, 𝜆1.2, 𝜆), AICC, DEVIANS, AND P-VALUE OF THE GTWGRR MODEL FROM OCTOBER 2011 TO JANUARY 2012 

Month λ1.1 τ λ1.2 λ AICc Devians p-value 

October 2011 0.00001 0.95 0.01 0.55 19899.33 104.03 0.0051 
November 2011 0.0000025 1 0.0000025 1 41748.66 217.53 0.0000 

December 2011 0.000075 0.3 0.05 0.8 70540.78 169.43 0.0457 

January 2012 0.000005 0.55 0.05 0.035 107470.02 373.36 0.0000 

 

TABLE VI 

THE OPTIMAL VALUES (𝜆2.1, 𝜏, 𝜆2.2, 𝜆), AICC, DEVIANS, AND P-VALUE OF THE GTWGLR MODEL FROM OCTOBER 2011 TO JANUARY 2012 

Month λ2.1 τ λ2.2 λ AICc Devians p-value 

October 2011 0.0000025 1 0.05 0.65 19904.12 111.55 0.0011 

November 2011 0.00001 1 0.00001 0.02 41747.70 217.80 0.0000 

December 2011 0.0001 0.3 0.25 0.35 70633.20 279.64 0.0000 
January 2012 0.05 0.75 0.25 0.075 107739.15 642.91 0.0000 

 

The optimum τ, optimum λ, Devians, and RMSE values of 

the OGTWGR model for October 2011, November 2011, 

December 2011, and January 2012 are listed in Table IV. 

Based on Table IV, the devians for October 2011, 

November 2011, December 2011, and January 2012 have a 

p-value = 0.0000 which is smaller than α = 0.05. This result 

that all the predictor variables (x1, x2, …, x10) have a 

significant effect on the OGTWGR model. 

 

C4. Geographically and Temporally Weighted Gamma 

Ridge Regression (GTWGRR) 

The optimal values of 𝜆1.1, τ, 𝜆1.2, and λ, along with AICc, 

Devians, and p-values of GTWGRR and GTWGLR were 

conducted. The optimal values (𝜆1.1, τ, 𝜆1.2, and λ), AICc, 

Devians, and p-values for October 2011, November 2011, 

December 2011, and January 2012, the results of the 

GTWGRR model are listed in Table V, and the optimal 

values (𝜆2.1, τ, 𝜆2.2 and λ), AICc, Devians, and p-values f for 

October 2011, November 2011, December 2011, and January 

2012, the results of the GTWGLR model are listed in Table 

VI. 

Both models (Table V and Table VI) showed the p-value 

of Devians for each Month smaller than α = 0.05 for each 

month, indicating that all the predictor variables have a 

significant effect on the response variable. 

Analysis of the average AICc values and standard 

deviations for the GTWGRR model (Table V) and the 

GTWGLR model (Table VI) reveals significant findings. 

Over four months, the GTWGRR method achieved an 

average AICc of 59914.69 with a standard deviation of 

37884.28. In contrast, the GTWGLR method had a higher 

average AICc of 60006.04 and a standard deviation of 

38004.02. This indicates that the GTWGRR method is the 

better option, showing both the lowest average AICc and the 

smallest standard deviation. Table VII provides an overview 

of the minimum, average, and maximum parameter 

estimation values for the GTWGRR model in October 2011, 

November 2011, December 2011, and January 2012.

TABLE VII 

SUMMARY OF THE RESULTS OF PARAMETER ESTIMATION ON GTWGRR MODELS IN OCTOBER 2011, NOVEMBER 2011, DECEMBER 2011, AND JANUARY 2012 

Month Statistics b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

October 2011 

Minimum 0.228 -0.435 -0.359 -0.028 -0.471 -0.337 -0.025 -0.234 -0.323 -0.041 

Average 0.315 -0.237 -0.234 0.093 -0.299 -0.177 0.079 -0.142 -0.198 0.085 

Maximum 0.422 -0.118 -0.116 0.223 -0.190 -0.045 0.199 0.000 -0.073 0.187 

November 2011 

Minimum 0.346 -0.622 -0.176 -0.207 -0.533 -0.334 -0.083 -0.610 -0.458 0.161 

Average 0.465 -0.478 -0.038 -0.087 -0.341 -0.152 0.053 -0.437 -0.208 0.300 

Maximum 0.597 -0.352 0.258 0.066 -0.080 -0.012 0.229 -0.285 -0.073 0.457 

December 2011 

Minimum -0.129 -0.374 -0.821 -0.010 -0.739 -0.622 -0.219 -0.341 -0.444 -0.457 

Average 0.061 -0.130 -0.465 0.196 -0.505 -0.362 0.201 0.034 -0.132 -0.284 

Maximum 0.242 0.178 0.115 0.604 0.172 0.120 0.421 0.286 0.103 0.113 

January 2012 

Minimum -0.546 -2.540 -2.083 0.911 0.179 -1.448 -1.840 -1.478 -3.579 -0.615 

Average -0.240 1.037 -0.638 1.536 0.879 -0.192 -1.205 -0.353 -2.320 -0.060 

Maximum 0.261 3.232 1.446 2.506 2.238 0.559 -0.792 1.480 -1.688 0.313 
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TABLE VIII 

GTWGRR MODEL AT MALABAR AND WANGUN WATI STATIONS IN OCTOBER 2011, NOVEMBER 2011, AND JANUARY 2012 

Period Station GTWGRR Model 

October 2011 

Malabar 𝜇̂ = 𝑒𝑥𝑝(0.6887 +  0.2949𝑥1 − 0.3202𝑥2 − 0.2681𝑥3 + 0,0639𝑥4 − 0,4405𝑥5 + ⋯− 0,0726𝑥9 + 0,1361𝑥10) 
Wangun  

Wati 
𝜇̂ = 𝑒𝑥𝑝(0.3742 −  0.2510𝑥1 − 0.2457𝑥2 + 0.1974𝑥3 − 0.3607𝑥4 − 0.2207𝑥5 + ⋯− 0.2344𝑥9 + 0.0572𝑥10) 

November 2011 

Malabar 𝜇̂ = 𝑒𝑥𝑝(0.7246 +  0.4863𝑥1 − 0.4558𝑥2 + 0.0236𝑥3 − 0.0637𝑥4 − 0.3159𝑥5 + ⋯− 0.3215𝑥9 + 0.2940𝑥10) 
Wangun 

 Wati 
𝜇̂ = 𝑒𝑥𝑝(0.6546 +  0.4707𝑥1 − 0.4768𝑥2 − 0.1763𝑥3 − 0.1591𝑥4 − 0.329𝑥5 + ⋯− 0.0848𝑥9 + 0.2617𝑥10) 

January 2012 

Malabar 𝜇̂ = 𝑒𝑥𝑝(1.8088 +  0.2453𝑥1 − 0.918𝑥2 + 0.9093𝑥3 + 1.7809𝑥4 + 1.7312𝑥5 + ⋯− 3.00056𝑥9 − 0.5105𝑥10) 
Wangun 

 Wati 
𝜇̂ = 𝑒𝑥𝑝(2.0551 −  0.4907𝑥1 + 0.4948𝑥2 − 0.6662𝑥3 + 2.2252𝑥4 + 0.9662𝑥5 + ⋯− 1.8463𝑥9 − 0.2422𝑥10) 

 

Table VII illustrates that in October 2011, the variables x2, 

x3, x5, x6, and x9 demonstrated negative values across their 

minimum, average, and maximum thresholds. Variables x4, 

x7, and x10 revealed negative values solely at the minimum 

threshold. The x1 variable presented positive values at the 

minimum, average, and maximum levels, whereas the x8 

variable showed positive values exclusively at the maximum 

level. In November 2011, the x1 and x10 variables displayed 

negative values across their minimum, average, and 

maximum thresholds. In contrast, the variables x2, x5, x6, x8, 

and x9 exhibited positive values at the minimum, average, 

and maximum thresholds. Variables x3 and x4 reflected 

negative values at both the minimum and average, while 

Variable x7 showed negative values only at the minimum 

threshold. As of December 2011, variables x1, x4, x7, and x8 

displayed negative values at the minimum, with the 

remaining variables reflecting positive values. Variables x2, 

x3, x5, x6, x9, and x10 registered positive values at the 

maximum level, whereas the other variables remained 

negative. In January 2012, the variables x1, x3, x6, x8, and 

x10 showed negative values for both the minimum and 

average levels. The variables x4 and x5 maintained positive 

values at the minimum, average, and maximum thresholds. 

The x2 variable recorded a negative value at its minimum 

threshold. 

Several examples of GTWGRR models formed in October 

2011, November 2011, and January 2012 at Malabar and 

Wangun Wati stations are in Table VIII.  

Based on the GTWGRR model in November 2011 in Table 

VIII, at Malabar station: if the other predictors are fixed then 

every one unit increase in predictor x1 will increase monthly 

rainfall by 𝑒0.4863 = 1.63 times.  If the other predictors are 

fixed, then every one-unit increase in predictor x2 will reduce 

monthly rainfall by 𝑒−0.4558 = 0.63 times. At Wangun Wati 

station: if the other predictors are fixed then every one unit 

increase in predictor x1 will increase monthly rainfall by 

𝑒0.4707 = 1.61 times.  If the other predictors are fixed, then 

every one-unit increase in predictor x2 will reduce monthly 

rainfall by 𝑒−0.4768 = 0.62 times. 

 

 
Fig. 1. Map of monthly rainfall predictions for October 2011.
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Fig. 2. Map of monthly rainfall predictions for November 2011. 

 

Fig. 3. Map of monthly rainfall predictions for December 2011. 
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Fig. 4. Map of monthly rainfall predictions for January 2012. 

C5. Estimating Data Values at New Locations 

Monthly rainfall prediction maps for October 2011 to 

January 2012 using a combination of the GTWGRR method 

and Kriging interpolation are in Fig. 1 to Fig. 4.  

The integration of the GTWGRR approach with kriging 

interpolation facilitated the calculation of monthly rainfall 

values across 18,038 grid cells. 

The calculation results showed that the average monthly 

rainfall in October 2011 was 8.44 mm/month. As shown in 

Fig. 1, 53% of areas in West Java had below-average monthly 

rainfall in October 2011. The minimum monthly rainfall, 8.12 

mm/month, was located at the coordinate (107.5182, -

6.7019), whereas the maximum, 10.22 mm/mom, was 

occurred at the coordinate (108.7623; -7.6953).  

The average monthly rainfall in November 2011 (Fig. 2) 

was 11.75 mm, covering 63% area of West Java, as presented 

in Fig. 2. The minimum monthly rainfall of 8 mm was located 

at coordinate (107,8011;-6.7838), while the maximum, 15.27 

mm/month, was detected at coordinate (107.7338;-76.3761). 

In December 2011 (Fig. 3), a minimum monthly rainfall of 

17.63 mm/month was achieved in the cell (106.6154;-

6.8658). A total of 53.13% of cells reduced the average 

monthly rainfall.  Reaching 43.46 mm/month rainfall per 

month is achieved in the cell (108.2099; -7.5904).   

In January 2012 (Fig. 4), monthly rainfall below the 

average of 46.52 mm/month occurred in approximately 28.83 

% of West Java area in January 2012, as shown in Fig. 4. The 

lowest and highest rainfall, 18.54 mm/month and 175.235 

mm/month, were observed at the coordinates (108.6186;-

7.4399) and (108.3805;-7.4126), respectively. A significant 

75.83% of the cells reported monthly rainfall of less than 50 

mm/month, while 24.07% recorded between 50 mm/month 

and 100 mm/month, and 0.1% exceeded 200 mm/month. 

The data derived from the integration of the Kriging 

interpolation technique and the GTWGRR model for the 

interval from October 2011 to January 2012 indicates that 

November experienced the least monthly rainfall at 8 

mm/month, whereas January 2012 recorded the peak at 

175.24 mm/month. This finding aligns with the mean 

monthly rainfall statistic as well. Analysis of the rainfall 

estimates from October 2011 to January 2012, as depicted in 

Fig. 1 to Fig. 4, reveals a predominance of monthly rainfall 

values falling below 50 mm/month. This contrasts with the 

actual rainfall data, which indicates that various locations 

recorded monthly rainfall exceeding 50 mm/month. The 

actual average monthly rainfall was at its minimum in 

October 2011 at 85.03 mm/month and reached its maximum 

in January 2012 at 239.32 mm/month. 

Fig. 1 to Fig. 4 illustrate that the monthly rainfall forecasts 

for October 2011, November 2011, December 2011, and 

January 2012 predominantly yield values less than 50 

mm/month, showing minimal variability across most 

locations. This suggests that the amalgamation of the Kriging 

interpolation method with the GTWGRR model is not 

optimal to produce the differences in monthly rainfall 

predictions across various sites. 

The rainfall predictions for January 2012 indicate values 

ranging between 50-100 mm/month in the southwest region, 

particularly at the Lengkong station in Sukabumi Regency, 

and in the southeast at the Jati Mulya station in Sumedang 

Regency, Leles station in Garut Regency, Kahuripan station 

in Tasikmalaya Regency, Panjalu station in Ciamis Regency, 
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as well as the Cigugur and Mandi Rancang stations in 

Kuningan Regency, whereas the preceding months were 

predominantly characterized by rainfall below 50 mm/month. 

Commencing in January 2012, the projected monthly 

rainfall values began to exhibit variability. For researchers 

seeking to conduct a more comprehensive analysis, it is 

advisable to utilize a dataset spanning a longer timeframe 

(e.g. 24 months) to discern underlying patterns more 

effectively. This study was limited to a four-month analysis 

due to constraints on time and resources.  
TABLE IX 

RMSEP VALUE OF RAINFALL ESTIMATES FOR OCTOBER 2011 TO JANUARY 

2012 AT NEW LOCATIONS 

Month RMSEP 

October 2011 2.498 

November 2011 6.166 
December 2011 5.037 

January 2012 17.066 

 

Table IX shows the RMSEP value of rainfall estimates for 

October 2011, November 2011, December 2011, and January 

2012 at new locations. The smallest RMSEP value was 2.498 

in October 2011, while the most considerable RMSEP value 

was 17.066 achieved in January 2012. In general, the RMSEP 

value is below average at 7.692. 

VII. CONCLUSION 

The GTWGRR method outperforms the GTWGLR 

method in SD modelling for estimating monthly rainfall for 

October 2011, November 2011, December 2011, and January 

2012. This is because it provides the smallest average value 

and standard deviation of AICc across all four months. 

Combining the GTWGRR with Kriging interpolation 

demonstrates the potential for estimating monthly rainfall in 

other locations across West Java Province. 
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