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Geographically and Temporally Weighted
Gamma Ridge and Lasso Regression to Improve
the Accuracy of Monthly Rainfall Estimation
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Abstract— The Global Climate Model (GCM), a computer-
based model comprising numerous integrated, deterministic,
and numerical equations that adhere to physics, is one of the
models used to predict rainfall. GCM can simulate large-scale
climatic conditions. Statistical Downscaling (SD) modelling to
estimate monthly rainfall in areas with monsoon rainfall
patterns in Indonesia has been carried out using L1/Lasso
Regulation and Principal Component Analysis (PCA), Bayes
Spatio-Temporal Regression with Integrated Nested Laplace
Approximations (INLA), and Spatio Temporal Generalized
Linear Mixed Model. The research aims to overcome the
problems faced in the utilization of GCM output data by
developing the Geographically and Temporally Weighted
Gamma Ridge Regression (GTWGRR) model and the
Geographically and Temporally Weighted Gamma Lasso
Regression (GTWGLR) model to estimate monthly rainfall in a
new location in West Java Province. The study used quantitative
data, namely monthly rainfall from 35 rain observation stations
in West Java Province, from September 2011 to January 2012,
obtained from the Indonesian Agency for Meteorological,
Climatological and Geophysics (Badan Meteorologi,
Klimatologi, dan Geofisika or simply BMKG) and monthly
precipitation of GCM outputs using a 3x3 domain with a
resolution of 2,5° x 2,5°. The GTWGRR method is the best
regularization method compared to the GTWGLR method in
SD modelling for estimating monthly rainfall from October 2011
to January 2012. The combination of the GTWGRR method
with Kriging interpolation can be used in SD modelling to
estimate monthly rainfall at a new location in West Java
Province. The GTWGRR and Kriging interpolation methods
are useful in improving the accuracy of monthly rainfall
estimates for BMKG.

Index Terms—GTWGR, GTWGRR, monthly
Statistical Downscaling

rainfall,

I. INTRODUCTION

he Statistical Downscaling (SD) technique is a pivotal
tool in climatology and employs statistical modelling to
analyze the intricate relationship between global-scale and
local-scale data [1]. The SD methodology is crucial for trans-
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forming data derived from a grid characterized by extensive
units into data represented on a grid with more refined units
[2], as well as for interpolating regional-scale atmospheric
predictor variables with smaller-scale variables [3].

The Global Climate Model (GCM), a computer-based
model comprising numerous integrated, deterministic, and
numerical equations that adhere to physics, is one of the
models used to predict rainfall. Large-scale climatic
conditions can be simulated by GCM [2]. The GCM
constitutes a computational framework that produces
extensive datasets derived from a variety of climatic
variables, such as precipitation, temperature, and humidity,
aimed at facilitating climate prediction, as articulated by
Soleh [4].

L1/Lasso Regulation and Principal Component Analysis
[5], Spatio-Temporal Bayes Regression with Integrated
Nested Laplace Approximations (INLA) [6], and Spatio
Temporal Generalized Linear Mixed Model [7] were used in
SD modelling to estimate monthly rainfall in Indonesian
regions with monsoon rainfall patterns. Apart from this
approach, Geographically and Temporally Weighted
Regression (GTWR) using the Weighted Least Squares
(WLS) method [8] and Geographically and Temporally
Weighted Gamma Regression (GTWGR) using the
Maximum Likelihood Equation (MLE) method have been
developed [9].

When analyzing spatially different data, local regression
models like Geographically Weighted Regression (GWR)
can be utilized to investigate the relationship between
response and predictor variables. By employing geographic
location as a weighting factor in the estimation of the model
parameters that differ across various sites, the limitations of
the data are effectively addressed. As noted by Foody [10], a
significant advantage of Geographically Weighted
Regression (GWR) lies in its capacity to investigate the non-
stationary characteristics of the relationship between
dependent and independent variables. Provided that the
association ~ between  precipitation and  spatially
heterogeneous environmental factors is established, Chen et
al. [11] and Xu et al. [12] introduced a GWR framework to
enhance the resolution of rainfall data.

The new GWR approach manages data with geographical
variety. To handle data that has temporal diversity, this
approach must be devised. In order to offer distinct model
parameter values for each site (u;v;) and time ¢t
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Fotheringham et al. [13] transformed GWR into GTWR.
Additionally, to estimate the amount of chlorophyll-a (Chl-a)
in the coastal region of Zhejiang, China. Du et al. [14]
converted GTWR into a geographically and temporally
weighted regression spatiotemporal kriging (GTWR-STK).
The GTWR-STK model produces better conjectures from the
GTWR, GTWR Kriging (GTWRK), and spatiotemporal
ordinary kriging (STOK) methods.

A generalized gamma linear model has been subjected to
Principal Component Analysis (PCA) with L1/Lasso
regularization by Soleh et al. [5]. After adding the month
dummy variable, Principal Component Regression (PCR),
Principal Component (PC)-Gamma, and Gamma-L1
modelling all yield the same result with comparatively slight
variation, based on the least value of the Root Mean Square
Error (RMSE). The best model is the generalized Gamma
Linear model since it estimates rainfall that is not negative.
Ali et al. [15] confirmed that rainfall data adheres to a Gamma
distribution because the data has a value of zero or greater
than zero. Considering the Root Mean Square Prediction
Error (RMSEP) value, the study's results affirm that the 75th
percentile Lasso model is superior to the 25th percentile
Ridge model.

Husak et al. [16] conducted an estimation of monthly
precipitation parameters across Africa utilizing the Maximum
Likelihood Estimation (MLE) approach for the Gamma
distribution. The concurrent analysis of shape and scale
parameters facilitates the modeling of monthly precipitation
data values at each specific location, thus enabling qualitative
evaluations concerning the magnitude and reliability of
rainfall during the seasonal period. The modeling of monthly
precipitation data values at each locality is performed through
the concurrent analysis of shape and scale parameters, which
permits qualitative assessments regarding the volume and
stability of precipitation throughout the seasonal timeframe.
The Gamma distribution is a better empirical rainfall
probability distribution than the Weibull distribution,
according to the findings of a test of its suitability for
estimating the empirical distribution model parameters using
the Kolmogorov Smirnov (KS) test. Amburn et al. [17] have
been forecasting rainfall using the Gamma Regression (GR)
model. The findings demonstrate that the response variable's
value may be accurately estimated using GR. These results
are obtained based on the percentage of coverage area and the
average rainfall.

Kardiana et al. [8] state that the monthly rainfall histogram
for each station is generally asymmetrical and leans to the
right. The frequency of the high-value monthly rainfall is low,
however the frequency of the low-value monthly rainfall is
very considerable. Using Gamma Regression is one method
for dealing with this distribution.

The appropriateness of frequency distribution in rainfall
pattern forecasting—a crucial component in predicting
possible disasters—was investigated by Esberto [18]. Chi-
Square and KS tests were utilized to thoroughly assess the
study's monthly rainfall data from PAGASA. Using data from
the previous 26-30 years, the distribution pattern was
identified and assessed on over 60 probability density
functions (pdf), including the Gamma distribution. For
statistical inference, the best-performing pdf will be utilized.
The results indicate that each location has a specific

theoretical pdf to infer rainfall events, with the gamma
distribution emerging as the best pdf for a specific location
and month.

According to research in the literature, there is
multicollinearity and a spatial connection between grids when
using GCM output data, which contains numerous predictor
factors [2]; there has been no application of the GTWGRR
model, which is a combination of Ridge regularization with
the GTWGR model and GTWGLR model, which is a
combination of Lasso regularization with the GTWGR model
to overcome these problems. For this reason, this study will
use the GTWGRR and GTWGLR models in SD to estimate
monthly rainfall and monthly rainfall at new locations using
a combination of the best models from GTWGRR and
GTWGLR with Kriging interpolation.

Il. GEOGRAPHICALLY WEIGHTED GAMMA REGRESSION
(GWGR)
The GWGR model [19] is defined as follows
E(y;) = i = exp(Bo(us, v) + ooy By v)xi) (1)

i=1,2,3,...mk=12 ..0p.
where y; is the value of the response variable at the location
(u;, v), Bo(uy, vy) is the intercept at the location (u;, v;),
Br (u;, v;), is the regression coefficient of the kth predictor
variable at the location (u;v;), x; is the kth predictor
variable. Similar to the Geographically Weighted Regression
(GWR) model, the Geographically Weighted Gamma
Regression (GWGR) model uses the Maximum Likelihood
Estimator (MLE) approach for parameter estimations. The
difference is in the type of Gamma spread response.

The probability density function of the GWGR model is:

f i au,vy), B(u;, vy))

y”‘(ui"’i)‘l
= L ex e 2
exp T B\ 0 T | (20T b)) @)
Fa(ugv)) aur) a(uivy)

The GWGR parameters are estimated using the MLE
method. Based on equation (2), the probability function is
obtained:

L(a(u,vy), B(u;, vy)) =
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The GWGR model considers the location factors in the
form of each observation point's longitude and latitude
coordinates. The In likelihood function with location
weighting is [19] as follows:

I = In L (a(ul, vy B(ul, ), i=1,2,...,n)

= (_ Yisiln (F(a(uzr Vz))) + X1 Ay, vl Qv —

Xt A(uy, vp) (xgwﬂ(ul, 171)) + Zgl:l(a(uz‘ v) 1) Iny; —

le(‘u.l, ) Zlnzl Vi exp(_(x’{ﬁ(ul, vl)))) (Wil)

=-In (F(a(ul, 171))) Z?:l Wi + a(ul, V) In a(ul, V) Z?:l Wi -
a(ul, 171) Z?:l(x?ﬁ(ul, ‘Ul)) Wi + (a(ul, Iil) - 1) Z?=1 ln Yiwy -
le(‘u.l, ) Zlnzl YiWil exp(_(x’lrﬁ(ul, 171)))' (5)

Through the utilization of the initial and subsequent partial
derivatives of the logarithmic likelihood function | to the
parameter to be estimated, then equalizing it to zero and
determining the solution, the estimated value of the GTWR
parameter is produced. This partial derivative is an implicit
function because the equation formed still contains

parameters, so the estimation process uses Newton Raphson
(NR) iteration [20].
al
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- a(ul, vy) Z?:l yixixLT Wy exp (_(x’irp(ul, vl))) (9)

Simultaneous hypothesis testing to find out the predictor
variables that simultaneously affect the model [21] are:

Ho @ B (uy, v) = By, v3) = ... = Bpn (U, v) =0

H, :there is at least one f3;;(u;, v;) # 0,
i=1,2,..,n;k=1,2,...,p.

The test statistic is calculated as:

G2=-2InA=-21In [%] =2(n L(Q) — In L(®))  (10)
where L(®) is the highest value that can be obtained if Hy (w
= (Bo, a, 0)) is true, and L(Q) is the highest value that can be
obtained if both H, and H; are true (2 = (Bo, By, -, Bp, @, 6)
=(B,a,0)). H, is rejected if G2 >X(2a,nxl)’ L is the period/time
or reject H, if p-value < a.

The impact of predictor factors on response variables was
investigated by partial significance testing of regression
parameters. This test is continued if the tests simultaneously
decide to reject H,. Partial hypothesis testing is:

Hy @ Br(u;,v) =0

Hy: Bp(up,v) #0,k=1,2,...,p.

The test statistic is calculated as:

Bre(uyp)

= P 11
SE(Bk(ui,vi)) ( )

hit

where ﬁk(ui,vi) is the parameter estimator of By, ., and

SE (Brquyw) = /”ar(ﬁk(ui,w)) is the standard error of

Br(uyv)- ”ar(ﬁk(ui.w)) is the j+1th diagonal element of
(H(¥)). Reject Hy if | Zyi| > Zg 5.

I1l.  GEOGRAPHICALLY AND TEMPORALLY WEIGHTED
GAMMA REGRESSION (GTWGR)

To tackle spatial and temporal non-stationary problems
simultaneously, the Geographically Weighted Gamma
Regression (GWGR) method was modified to create the
Geographically and Temporally Weighted Gamma
Regression (GTWGR) [22]. The model is:

E(YD)=p;= exp((Bo(us vi, t;) + Xy Bie(wi vi, t)xix) (12)
i=1,2,3,...,n k=1,2, ..., p.

By including the influence of time t;, the data is comparable
to the GTWR model. By including the influence of time ¢,
the MLE approach is used to estimate the parameters
Br(ui, vy, 7).

The probability density function of the GTWGR model is:
f(yil; a(u;, v, ti)xﬁ(uixvi:ti)) =
a(ui,ui’ ti)-1
il
exp(x] Buyvy, tm)

a(ui,vi‘ ti)

a(uv; ti) exp A (13)

[(o(uyv;, fi))(

—Yiu

exp(x] B(u;, v;, 1))
\ au, v, &) /

with i = 1,2, ..., n, y; >0. The GTWGR parameters are
estimated using the MLE method with a likelihood function:

L (a(ui,vi, ti)iﬂl(ui,vi' ti), i=1,2,..1n, l:1,2,...,L)
=i [T f )

1

BXP(X’irﬂz(ui,ui t))
M@y, ti))[iu(ui,vi 0

=TT1L n a—-1
=1 Hz:l r(uilvi’ t;) Vi

=Y a(ui'”i, t;) ] (14)

ex
P exl’(x’{ﬁl(ui,vi’ )
and In probability function:
I=1In L(a(ui,vi, ti)’ Bl(ui,vi‘ ti), i=1,2,...,‘n) =
=In ([T [T, f )

1
=In Ik, [T a1
i=111i=1 . exP(xiTB(ui,vi ti)) “(uir"i, t;) yl
(a(ui"’i, ) vy 1)
—Yi “(ul—,vi t;)
exp————— 15
p exp(x;rﬁ(ui,vil tL-)) ( )

The natural logarithm function of probability for estimating
parameters from location [22] is:

=Y XEoawis In f (i)
= T T8 wi (=10 T (@, 1))

- Ay, ¢) 1IN (exp (xiTB(ui’vi‘ ti))) + A4)
A=y, t)ln Xy, ti)+(a(ui'vi, t) 1) In@i+)

(16)
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_ a(ui,vi' ti)yi*l
exp(x’l'[;klﬁl(ui'yi’ tl))
By taking the first partial derivative of [* on each

parameter and then equalizing them to zero, the estimated

values of the GTWGR model parameters are found:
al

oa (u Vi, l)
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(”i i, fi)

(uu”i t) Vi Xp kit

eXp('xz*klﬁl(ui,vi' ti))
The first partial derivative equations (17) and (18) still
contain other parameters. The parameter estimation was
carried out using the NR method [20]. The collected data are
in three dimensions in a spatial-temporal coordinate system.
Due to the variability in units about spatial-temporal effects,
the measurement of the separation between the regression
point and adjacent observational data points is conducted
utilizing an ellipsoidal coordinate framework. A and p are
balance factors for the impact of unit changes between place
and time on spatial-temporal distance measurements,
assuming that d is a temporal distance function and d isa
spatial distance functlon. The temporal and spatial dlstance
functions are combined to create the spatial-temporal distance
function, specifically Huang et. al [23]:
(d ) = ){(ul - u])z + (Ul - 17]) ] + n(ti - tj)z (19)
The balance parameters for the impact of location and time
unit differences on spatial-temporal distance measurements
are A and . Suppose t = % , A= 0 then:
(disJ‘T)z — 2 2 2
T = (ui - u]) + (Ui - 'U]) + T(ti — tj) (20)
The parameter 1t serves to modulate the proportion of
temporal distance to spatial distance derived from the
minimum coefficient of variation by furnishing a preliminary
value of t:
V(D) = 31y (3 = 91 (®)’ (21)
We will obtain estimators of A and p using an iterative
method.
Examining the GTWGR model parameters' relevance
concurrently for the Ith era is:
Hy @ Br(uy vi ty) = Por(uy, vy 6) = ... = By (U, v, £) = 0
H, : there is at least one £;; (u;, v, t;) #0,
i=1,2,...,n;1=1,2, ... L.
The test statistic is calculated as:
G2=-2InA=-21In [%] =2(n L(Q) - In L(®)) (22)
where L(®) is the highest value that can be obtained if H, (w
= (Bor @, 0)) is true and L(£2) is the highest value that can

+ A, t;) Zl 121 =1 =0 (18)

be obtained if both H, and H;, are true(? =
(Bos Brts --» Bp1» @, 0) = (B, @, 0)) are true. Hy is rejected if G*
> X{anaxr) OF rejects Hy if p-value < a.

Partial testing of the GTWGR model
significance [19]:

Hy @ i (uy,v;,t) =0

Hl . Bk,(ui, vi,ti) * 0, k= 1, 2, e D
The test statistic is:

Brituywpty
SEBriqu; vy t;)
where ﬁk(ui,vi) is the parameter estimator of Sy, v,¢;) and

SE Braquywpty) = /var(ﬁkl(ui,vi,ti)) is the standard error of

Briuywitn- T Braqugwyeyy) 15 J+1st diagonal element of
H(®). Reject Hy if | Zp;e| > Zy .

The adequacy of the model is ascertained through the
application of the corrected Akaike Information Criterion
(AlCc) and the Mean Squared Error (MSE), particularly:

parameters'

(23)

Zpit =

MSE = (Z L =909 (24)
AIC = —n log (3220 4 9 (25)
AlCc = AIC + 22@*1) (26)

n-p-1

IV. RIDGE REGULATION (L2)

One method to overcome multicollinearity problems is to
use Ridge regression, which was introduced by Hoerl and
Kennard in 1970 by adding a penalty to the regression
coefficients in the L2 norm, specifically minimizing the sum
of squares of the linear regression residuals using the
following criteria to estimate the f parameter:

i Bisc @7

The Lagrange equation can be used to express the
estimated coefficients, specifically:

- , )

B”dge = arg;nm{ ?=1(yi—ﬁo—2i=1xmﬁk) +AZZ=13£} (28)
As in linear regression, penalties can also be added to the

compressed linear model to overcome multicollinearity

problems. Parameter estimation in distributed linear

modelling with Ridge regularization [4] is:

Eridge = argmin {__IOg[L(YiB)] 2 Z£=1 ﬁl%} (29)
ﬁ n

L(y;p) is the probability function of the exponential
distribution family, and 1,>0 is the L2 regularization penalty
parameter. The coefficient estimates obtained in Ridge
regression are not equivariant due to differences in the scale
of the input data, so standardization of the original variables
is needed [24]. Parameter estimates are obtained using the NR
method. The Ridge regression coefficient estimator will
decrease as the value of A; increases. The regression
coefficient shrinks more until it gets close to zero as the value
of A, increases.

V. LASSO REGULATION (L1)

In 1996, Robert Tibshirani developed the least absolute
shrinkage and selection operator (Lasso) as a method to
address multicollinearity and to reduce the regression
coefficients of less significant predictor variables to
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approximately zero or precisely zero [25]. The parameter
estimators in distributed linear modelling with Lasso
regularization [4] are:

ﬁlasso = arg;nin {M + 1, z=1|ﬁk|} (30)

The lasso regularization can reduce overfitting and select
the most helpful predictor variables from the data. The lasso
regularization can also reduce data dimensionality by
removing less important predictor variables, speeding up the
building process, and increasing model accuracy.

By varying the Lasso model's parameter 4,, the degree of
decline can be used to calculate the coefficient value of the
predictor variables that Lasso regularization provides. The
coefficient of the derived predictor variable decreases more
significantly with increasing values of A,.

However, if the value of A, is too high, then the coefficient
of the predictor variable will reach zero too quickly (or close
to zero) so that the model cannot correctly capture the patterns
in the data. Therefore, choosing the right A, value is
important so that the model can capture patterns in the data
well and eliminate less essential features.

V1. MODELING APPLICATION FOR RAINFALL IN WEST JAVA
PROVINCE

A. Data

Monthly rainfall data from 35 locations in West Java
Province, compiled by the Meteorology, Climatology, and
Geophysics Agency (BMKG) from January 2010 to January
2012, function as a response variable. The predictor variables
are xi, the previous month's rainfall, and X>—xi0 are GCM
output monthly precipitation data derived from the Climate
Forecast System Reanalysis (CFSR) model provided by the
National Centers for Environmental Prediction (NCEP) [26],
at coordinates (105; -5), (107.5; -5), (110; -5), (105; -7.5),
(107.5; -7.5), (110; —7.5), (105; —10), (107.5; —10), and (110;
—10), respectively [27].

B. Method

The analysis stages carried out [28] are:

1) Checking multicollinearity between predictor variables
using correlation values [29].

2) Estimating ordinary GTWGR model parameters using ten
predictor variables.

3) Checking spatiotemporal diversity by:

a) Test BP for every period [30].

b) The boxplot method was used to see temporal variation
between periods [31], [32], [33].

4) Carry out GTWGRR and GTWGLR modelling for each
response variable produced in the Ith period with stages:

a) Estimating parameters using Ixn data in each | period.

b) Calculating the Euclidean distance for each I period.

c) Using the minimal CV value to estimate the ideal
bandwidth value.

d) Use the Kernel Fixed Gaussian function to get the
weighting matrix that yields the lowest CV value.

e) Estimating the optimum t parameter from: 1, 0.95, 0.9,
0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35,
0.3, 0.25, 0.2, 0.15, 0.1, 0.095, 0.09, 0.085, 0.08, 0.07,
0.075, 0.065, 0.06, 0.055, 0.05, 0.045, 0.04, 0.035, 0.03,

0.025, 0.02, 0.015, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005,
0.004, 0.003, 0.002, and 0.001.

f) Estimating the optimum A parameter from a choice of the
same values as parameter t.

g) Estimating the GTWGRR model parameters B, (u;, v;, t;)
at T and A, 4, ; (the L2 regularization penalty coefficient
utilized for ascertaining the optimal t parameter) and 4, ,
(the L2 regularization penalty parameter for determining
the ideal A parameter) is optimal for each period. The
choice of parameter values for the optimum A, , and 4, ,
from: 0.000001, 0.0000025, 0.000005, 0.0000075,
0.00001, 0.000025, 0.00005, 0.000075, 0.0001, 0.01,
0.05, 0.25, 0.5, 1, 2.5, 5, 10, 15, 20, 30, 50, 75, 100, 125,
150, 200, 300, 500, 1000, and 10000.

h) Test the GTWGRR model parameters simultaneously
using the MLRT method:

1. HO: ﬂ1=ﬁ2=...=ﬁp=0.

2. Hy: thereisatleastone g # 0,j=1,2,...,p,i=1,2,
..., n.

3. Determine the set of parameters if H, and H, are true:
2 = (Bo P11 Bp)

4. Determine the set of parameters if H, istrue: w = (B,)
5. Form a maximum likelihood function if H, and H, are
true: L () = m%ks]_[lnzlf(yim)
6. Form a maximum likelihood function if H, is true:
L(@) = maks[[iZ {(yilw)
7. Estimating parameters Q and ® with MLE and NR
method.
L(®)

8. Defining the Likelihood Function Ratio: A = ®

9. Determining test statistics using the MLRT method.
The test statistic is calculated as:
G*=-2InA=-2 In%: 2(in L(@) ~ L(@)) ~ xZ.2p
If G%>x5,, (or p-value < a), reject Hy. The quantity of
predictor variables within the model is denoted by p.
Partial testing is done to ascertain the importance of each
parameter to the model if H, is rejected.

i) Calculate the AlCc of each resulting response variable.

j) Estimating the GTWGLR model parameters 8, (u;, v;, t;)
at t and 1, A, (the L2 regularization penalty parameter
for determining the ideal t parameter) and A,, (the
penalty parameter in L1 regularization in estimating the
optimum A parameter)) is optimal for each period.

k) Test the GTWGLR model parameters simultaneously
using the MLRT method analogue with h)1 - until h)9.

I) Choose the model that provides the smallest AICc
between the GTWGRR and GTWGLR models.

m) Use Kriging interpolation in conjunction with the chosen
GTWGRR or GTWGLR method to estimate the response
variable's value at a new location.

n) Create a monthly rainfall prediction map for October 2011
to January 2012.

C.Results and Discussion

C1. Multicollinearity Test

To perform the multicollinearity check, the Pearson
correlation coefficient between each predictor variable was
calculated [29].
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TABLE |
CORRELATION BETWEEN PREDICTOR VVARIABLES

x1 X2 X3 x4 X5 X6 X7 X8 X9 x10

x1 - 0.04 0.09 -0.03 0.04 0.09 -0.03 0.04 0.09 -0.03

X2 0.04 - 0.92 -0.39 1.00 0.92 -0.39 1.00 0.92 -0.39

x3 0.09 0.92 - -0.24 0.92 1.00 -0.24 0.92 1.00 -0.24

x4 -0.03  -0.39 -0.24 - -0.39 -0.24 1.00 -0.39 -0.24 1.00

x5 0.04 1.00 0.92 -0.39 - 0.92 -0.39 1.00 0.92 -0.39

x6 0.09 0.92 1.00 -0.24 0.92 - -0.24 0.92 1.00 -0.24

X7 -0.03  -0.39 -0.24 1.00 -0.39 -0.24 - -0.39 -0.24 1.00

X8 0.04 1.00 0.92 -0.39 1.00 0.92 -0.39 - 0.92 -0.39

x9 0.09 0.92 1.00 -0.24 0.92 1.00 -0.24 0.92 - -0.24

x10 -0.03 -0.39 -0.24 1.00 -0.39 -0.24 1.00 -0.39 -0.24 -
TABLE I
PARTIAL TEST OF GLOBAL GAMMA REGRESSION MODEL PARAMETERS IN OCTOBER 2011 TO JANUARY 2012
October 2011 November 2011 December 2011 January 2012

Variable Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value
Intercept 2.66 0 3.63 0 4.50 0 5.62 0
x1 0.84 0.01 0.57 0 0.10  0.59 0.06 048
X2 -3.98 0 -0.29 0.36 1.65 0 2.89 0
x3 -1.63 0 4.69 0 -4.64 0 14.69 0
x4 0.967 0 1.34 0.88 -0.79 0 -2.42 0
x5 -0.94 0 -7.78 0 -2.35 0 -2.13 0
x6 -0.01 0.81 3.45 0 1.27 0 -9.25 0
x7 0.69 0 -5.50 0.20 0.99 0 0.07 0
x8 1.19 0 -0.20 0.523 2.28 0 -0.89 0
x9 1.95 0 -3.02 0 0.46 0.01 -3.43 0
x10 -3.06 0 2.26 0.59 0.05 0.80 1.02 0

In line with [2] that in utilizing GCM output data that has
many predictor variables, there is a spatial correlation
between grids and there is multicollinearity between predictor
variables. Table | shows a perfect correlation between several
predictor pairs, namely between the predictors x2 and x5, x2
and x8, x3 and x6, x3 and x9, x4 and x7, x4 and x10, x5 and
x8, x6 and x9, and x7 and x10. There is also a high correlation
of 0.92 between several pairs of predictors, including x2 and
x3; X2 and x6; x2 and x9; x3 and x5; x3 and x8; x5 and x6;
x5 and x9; x6 and x8; and x8 and x9. This result influenced
the occurrence of multicollinearity, which will be handled by
applying Ridge and Lasso regularization. Meanwhile, the
partial test of Gamma Regression model parameters for
October 2011, November 2011, December 2011, and January
2012 are described in Table I1.

Table Il shows that the predictor x6 is the variable that has
no real effect on the Global Gamma regression model in
October 2011 because it has a p-value > a = 0.05. The
predictor variables x2, x4, X7, x8, and x10 have no real effect
on the model in November 2011. The variables x1 and x10
have no real effect on the model in December 2011 because
they have a p-value < o = 0.05. Likewise, the x1 variable has
no real effect on the model in January 2012.

C2. Spatial Heterogeneity Analysis

Geographically and temporally weighted gamma
regression modeling can be used if the data meet the
assumptions of spatial and temporal heterogeneity. First, the
assumption of spatial heterogeneity will be examined and
followed by the examination of temporal heterogeneity.

The spatial heterogeneity assessments conducted each
month yield p-values consistently below the 0.05 threshold
for significance. These results substantiate the assertion that
spatial heterogeneity is present in each month. An analysis of

temporal variability was conducted utilizing box plots of
residuals for each month spanning from January 2010 to
December 2012 [9]. The box plots of the residuals indicate
that the residuals from the global regression model exhibit a
lack of homogeneity, as evidenced by the distances between
the quartiles [31], [32], [33]. The outcomes of the
investigation indicate that a predominant portion of
geographical heterogeneity transpired within the interval
from January 2010 to December 2012.

The results of examining spatial diversity using ten
predictor variables for October 2011, November 2011,
December 2011, and January 2012 are listed in Table IlI.

TABLE Il
SPATIAL DIVERSITY TEST RESULTS
Month BP-value  p-value
October 2011 12.84 0.00163
November 2011 25.12 0.00002
December 2011 27.47 0.00002
January 2012 24.98 0.00005

The monthly rainfall data reveal both regional and
temporal discrepancies. To address this variability, spatial-
temporal regression analysis will be employed. The
modelling process proceeded with GTWGRR and GTWGLR
methodologies to ascertain the most effective approach for
estimating monthly rainfall while mitigating multicollinearity
issues.

C3. Geographically and Temporally Weighted Gamma
Regression
By identifying the ideal bandwidth that yields the lowest
CV value, Ordinary Geographically and Temporally
Weighted Gamma Regression (OGTWGR) modelling is then
performed.
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TABLE IV
OPTIMUM T, OPTIMUM A, DEVIANS, AND RMSE VALUES OF THE OGTWGR MODEL FROM OCTOBER 2011 TO JANUARY 2012
Month T A Devians RMSE AlCc p-value
October 2011 1 1 296.28 13255 20089.56 0.0000
November 2011 1 1 73341 26426 42097.33 0.0000
December 2011 03 1 72557 255.03 71131.76 0.0000
January 2012 055 1 688.09 264.97 108025.66  0.0000
TABLE V

THE OPTIMAL VALUES (4 4, T, 41 2, 4), AICC, DEVIANS, AND P-VALUE OF THE GTWGRR MODEL FROM OCTOBER 2011 TO JANUARY 2012

Month A T Ao A AICc  Devians p-value
October 2011 0.00001 095 0.01 0.55 19899.33 104.03 0.0051
November 2011  0.0000025 1 0.0000025 1 41748.66 217.53 0.0000
December 2011 0.000075 0.3  0.05 0.8 70540.78 169.43 0.0457
January 2012 0.000005 055 0.05 0.035 107470.02 373.36 0.0000

TABLE VI

THE OPTIMAL VALUES (4,4, T, 452, 1), AICC, DEVIANS, AND P-VALUE OF THE GTWGLR MODEL FROM OCTOBER 2011 TO JANUARY 2012

Month Ay T A A AICc  Devians p-value
October 2011  0.0000025 1 0.05 0.65 19904.12 111.55 0.0011
November 2011 0.00001 1 0.00001 0.02 41747.70 217.80 0.0000
December 2011  0.0001 0.3 0.25 0.35 70633.20 279.64 0.0000
January 2012 0.05 0.75 0.25 0.075107739.15 642.91 0.0000

The optimum 1, optimum A, Devians, and RMSE values of
the OGTWGR model for October 2011, November 2011,
December 2011, and January 2012 are listed in Table V.

Based on Table IV, the devians for October 2011,
November 2011, December 2011, and January 2012 have a
p-value = 0.0000 which is smaller than a = 0.05. This result
that all the predictor variables (x1, x2, ..., x10) have a
significant effect on the OGTWGR model.

C4. Geographically and Temporally Weighted Gamma
Ridge Regression (GTWGRR)

The optimal values of 1, ;, 1, 4, ,, and A, along with AlCc,
Devians, and p-values of GTWGRR and GTWGLR were
conducted. The optimal values (4,4, T, 4; 5, and 1), AlCc,
Devians, and p-values for October 2011, November 2011,
December 2011, and January 2012, the results of the
GTWGRR model are listed in Table V, and the optimal
values (4, 4, 1, A, and X), AICc, Devians, and p-values f for
October 2011, November 2011, December 2011, and January

2012, the results of the GTWGLR model are listed in Table
VI.

Both models (Table V and Table V1) showed the p-value
of Devians for each Month smaller than o = 0.05 for each
month, indicating that all the predictor variables have a
significant effect on the response variable.

Analysis of the average AICc values and standard
deviations for the GTWGRR model (Table V) and the
GTWGLR model (Table VI) reveals significant findings.
Over four months, the GTWGRR method achieved an
average AICc of 59914.69 with a standard deviation of
37884.28. In contrast, the GTWGLR method had a higher
average AICc of 60006.04 and a standard deviation of
38004.02. This indicates that the GTWGRR method is the
better option, showing both the lowest average AlICc and the
smallest standard deviation. Table VII provides an overview
of the minimum, average, and maximum parameter
estimation values for the GTWGRR model in October 2011,
November 2011, December 2011, and January 2012.

SUMMARY OF THE RESULTS OF PARAMETER ESTIMATION ON GTWGRR I\-I/—IQE?EIT_E I\l<l“OCTOBER 2011, NOVEMBER 2011, DECEMBER 2011, AND JANUARY 2012
Month Statistics b1l b2 b3 b4 b5 b6 b7 b8 b9 b10
Minimum 0.228 -0.435 -0.359 -0.028 -0.471 -0.337 -0.025 -0.234 -0.323 -0.041
October 2011 Average 0.315  -0.237  -0.234 0.093  -0.299  -0.177 0.079  -0.142  -0.198 0.085
Maximum 0422  -0.118  -0.116 0.223  -0.190  -0.045 0.199 0.000  -0.073 0.187
Minimum 0.346  -0.622  -0.176  -0.207 -0.533  -0.334  -0.083 -0.610  -0.458 0.161
November 2011  Average 0.465 -0.478 -0.038 -0.087 -0.341 -0.152 0.053 -0.437 -0.208 0.300
Maximum 0.597  -0.352 0.258 0.066  -0.080  -0.012 0.229  -0.285  -0.073 0.457
Minimum -0.129  -0374 -0.821  -0.010 -0.739  -0.622  -0.219  -0.341  -0.444  -0.457
December 2011 Average 0.061  -0.130  -0.465 0.196  -0.505  -0.362 0.201 0.034  -0.132  -0.284
Maximum 0.242 0.178 0.115 0.604 0.172 0.120 0.421 0.286 0.103 0.113
Minimum -0.546 -2.540 -2.083 0.911 0.179 -1.448 -1.840 -1.478 -3.579 -0.615
January 2012 Average -0.240 1037  -0.638 1.536 0.879  -0.192 -1205 -0.353  -2.320  -0.060
Maximum 0.261 3.232 1.446 2.506 2.238 0.559 -0.792 1.480 -1.688 0.313
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TABLE VIII
GTWGRR MODEL AT MALABAR AND WANGUN WATI STATIONS IN OCTOBER 2011, NOVEMBER 2011, AND JANUARY 2012

Period Station GTWGRR Model
Malabar /i = exp(0.6887 + 0.2949x, — 0.3202x, — 0.2681x5 + 0,0639x, — 0,4405x5 + - — 0,0726x0 + 0,1361x,)
October 2011  Wangun .,
Wl = exp(0.3742 = 0.2510x; = 0.2457x, + 0.1974x; — 0.3607x, — 0.2207x5 + -+ — 0.2344x, + 0.0572;0)
Malabar /i = exp(0.7246 + 0.4863x, — 0.4558x, + 0.0236x5 — 0.0637x, — 0.3159x5 + - — 0.3215x0 + 0.2940x,,)
November 2011 Wangun . _
= exp(0.6546 + 0.4707x; — 0.4768x, — 0.1763x; — 0.1591x, — 0.329x5 + - — 0.0848%, + 0.2617x,)
Malabar /i = exp(1.8088 + 0.2453x, — 0.918x, + 0.9093x; + 1.7809x, + 1.7312x5 + - — 3.00056x0 — 0.5105x;,)
January 2012 Ws\r/‘gt‘im f1 = exp(2.0551 — 0.4907x, + 0.4948x, — 0.6662x5 + 2.2252x, + 0.9662x5 + - — 1.8463x, — 0.2422x,)

Table VII illustrates that in October 2011, the variables x2,
x3, x5, x6, and x9 demonstrated negative values across their
minimum, average, and maximum thresholds. Variables x4,
X7, and x10 revealed negative values solely at the minimum
threshold. The x1 variable presented positive values at the
minimum, average, and maximum levels, whereas the x8
variable showed positive values exclusively at the maximum
level. In November 2011, the x1 and x10 variables displayed
negative values across their minimum, average, and
maximum thresholds. In contrast, the variables x2, x5, x6, X8,
and x9 exhibited positive values at the minimum, average,
and maximum thresholds. Variables x3 and x4 reflected
negative values at both the minimum and average, while
Variable x7 showed negative values only at the minimum
threshold. As of December 2011, variables x1, x4, x7, and x8
displayed negative values at the minimum, with the
remaining variables reflecting positive values. Variables x2,
x3, x5, x6, x9, and x10 registered positive values at the
maximum level, whereas the other variables remained
negative. In January 2012, the variables x1, x3, x6, x8, and

x10 showed negative values for both the minimum and
average levels. The variables x4 and x5 maintained positive
values at the minimum, average, and maximum thresholds.
The x2 variable recorded a negative value at its minimum
threshold.

Several examples of GTWGRR models formed in October
2011, November 2011, and January 2012 at Malabar and
Wangun Wati stations are in Table VIII.

Based on the GTWGRR model in November 2011 in Table
V11, at Malabar station: if the other predictors are fixed then
every one unit increase in predictor x1 will increase monthly
rainfall by e%4863 = 1.63 times. If the other predictors are
fixed, then every one-unit increase in predictor x2 will reduce
monthly rainfall by e %4558 = 0.63 times. At Wangun Wati
station: if the other predictors are fixed then every one unit
increase in predictor x1 will increase monthly rainfall by
e%4707 = 1,61 times. If the other predictors are fixed, then
every one-unit increase in predictor x2 will reduce monthly
rainfall by e 94768 = 0,62 times.
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Fig. 1. Map of monthly rainfall predictions for October 2011.
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Fig. 3. Map of monthly rainfall predictions for December 2011.
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Fig. 4. Map of monthly rainfall predictions for January 2012.

C5. Estimating Data Values at New Locations

Monthly rainfall prediction maps for October 2011 to
January 2012 using a combination of the GTWGRR method
and Kriging interpolation are in Fig. 1 to Fig. 4.

The integration of the GTWGRR approach with kriging
interpolation facilitated the calculation of monthly rainfall
values across 18,038 grid cells.

The calculation results showed that the average monthly
rainfall in October 2011 was 8.44 mm/month. As shown in
Fig. 1, 53% of areas in West Java had below-average monthly
rainfall in October 2011. The minimum monthly rainfall, 8.12
mm/month, was located at the coordinate (107.5182, -
6.7019), whereas the maximum, 10.22 mm/mom, was
occurred at the coordinate (108.7623; -7.6953).

The average monthly rainfall in November 2011 (Fig. 2)
was 11.75 mm, covering 63% area of West Java, as presented
in Fig. 2. The minimum monthly rainfall of 8 mm was located
at coordinate (107,8011;-6.7838), while the maximum, 15.27
mm/month, was detected at coordinate (107.7338;-76.3761).

In December 2011 (Fig. 3), a minimum monthly rainfall of
17.63 mm/month was achieved in the cell (106.6154;-
6.8658). A total of 53.13% of cells reduced the average
monthly rainfall. Reaching 43.46 mm/month rainfall per
month is achieved in the cell (108.2099; -7.5904).

In January 2012 (Fig. 4), monthly rainfall below the
average of 46.52 mm/month occurred in approximately 28.83
% of West Java area in January 2012, as shown in Fig. 4. The
lowest and highest rainfall, 18.54 mm/month and 175.235
mm/month, were observed at the coordinates (108.6186;-
7.4399) and (108.3805;-7.4126), respectively. A significant
75.83% of the cells reported monthly rainfall of less than 50

mm/month, while 24.07% recorded between 50 mm/month
and 100 mm/month, and 0.1% exceeded 200 mm/month.

The data derived from the integration of the Kriging
interpolation technique and the GTWGRR model for the
interval from October 2011 to January 2012 indicates that
November experienced the least monthly rainfall at 8
mm/month, whereas January 2012 recorded the peak at
175.24 mm/month. This finding aligns with the mean
monthly rainfall statistic as well. Analysis of the rainfall
estimates from October 2011 to January 2012, as depicted in
Fig. 1 to Fig. 4, reveals a predominance of monthly rainfall
values falling below 50 mm/month. This contrasts with the
actual rainfall data, which indicates that various locations
recorded monthly rainfall exceeding 50 mm/month. The
actual average monthly rainfall was at its minimum in
October 2011 at 85.03 mm/month and reached its maximum
in January 2012 at 239.32 mm/month.

Fig. 1 to Fig. 4 illustrate that the monthly rainfall forecasts
for October 2011, November 2011, December 2011, and
January 2012 predominantly yield values less than 50
mm/month, showing minimal variability across most
locations. This suggests that the amalgamation of the Kriging
interpolation method with the GTWGRR model is not
optimal to produce the differences in monthly rainfall
predictions across various sites.

The rainfall predictions for January 2012 indicate values
ranging between 50-100 mm/month in the southwest region,
particularly at the Lengkong station in Sukabumi Regency,
and in the southeast at the Jati Mulya station in Sumedang
Regency, Leles station in Garut Regency, Kahuripan station
in Tasikmalaya Regency, Panjalu station in Ciamis Regency,
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as well as the Cigugur and Mandi Rancang stations in
Kuningan Regency, whereas the preceding months were
predominantly characterized by rainfall below 50 mm/month.

Commencing in January 2012, the projected monthly
rainfall values began to exhibit variability. For researchers
seeking to conduct a more comprehensive analysis, it is
advisable to utilize a dataset spanning a longer timeframe
(e.g. 24 months) to discern underlying patterns more
effectively. This study was limited to a four-month analysis

due to constraints on time and resources.
TABLE IX
RMSEP VALUE OF RAINFALL ESTIMATES FOR OCTOBER 2011 TO JANUARY
2012 AT NEW LOCATIONS

Month RMSEP
October 2011 2.498
November 2011 6.166
December 2011 5.037
January 2012 17.066

Table 1X shows the RMSEP value of rainfall estimates for
October 2011, November 2011, December 2011, and January
2012 at new locations. The smallest RMSEP value was 2.498
in October 2011, while the most considerable RMSEP value
was 17.066 achieved in January 2012. In general, the RMSEP
value is below average at 7.692.

VII. CONCLUSION

The GTWGRR method outperforms the GTWGLR
method in SD modelling for estimating monthly rainfall for
October 2011, November 2011, December 2011, and January
2012. This is because it provides the smallest average value
and standard deviation of AICc across all four months.
Combining the GTWGRR with Kiriging interpolation
demonstrates the potential for estimating monthly rainfall in
other locations across West Java Province.
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