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Abstract—In this paper, we focus on a class of equations
of the basic coupling and norm. By means of the coupling
method, we introduce an equation of the basic coupling and
total variation norm. Further, by improving the equation of the
basic coupling, an equation of the basic coupling and f-norm is
derived. This class of equations establishes a link between the
basic coupling and norm, which has wide applications in the
derivation and proof of inequalities and in judging the random
order relationship between two probabilities.

Index Terms—Markov process, coupling, the basic coupling,
f-norm.

I. INTRODUCTION

ECENTLY the coupling method is widely used in
stochastic process. Investigated by many scholars, this
method has become an important tool to study the stability of
the Markov proces [1-6].The coupling method is a powerful
tool for analyzing the properties of two or more related
Markov chains by constructing their synchronous evolution.
Transforming complex probability problems into path level
comparisons to simplify analysis. The core value of the
coupling method lies in constructing a path of ”synchronous
evolution” to transform abstract probability distribution rela-
tionships into concrete events (such as encounters, order rela-
tionships), thereby simplifying the analysis of key properties
such as convergence, traversal, and mixing time of Markov
processes. It is not only an important tool in theoretical
research (such as proving convergence), but also provides
quantifiable boundaries and estimation methods for practical
problems (such as algorithm design, system optimization).
Norm and f-norm, as a fundamental tools in mathematics
and engineering, have a wide range of applications covering
measurement, optimization, analysis, and other scenarios,
and has attracted many scholars to study them. The conver-
gence of Markov processes essentially solves the problem of
whether the long-term behavior of a system is predictable and
stable, and its applications run through multiple levels such
as predictive analysis, algorithm design, risk assessment,
and model simplification. Whether it is natural sciences,
engineering technology, or social sciences, convergence is a
key tool for judging system laws and optimizing decisions as
long as it involves long-term evolution analysis of dynamic
systems [7-10].
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In order to study the convergence rate of ergodicity, Num-
melin and Tweedie focused on geometric ergodicity (also
known as exponential ergodicity) and f-geometric ergodicity
(also known as f-exponential ergodicity) in the sense of total
variation norm of general state space. Geometric ergodicity
is a strong ergodicity of Markov processes, which refers
to the exponential decay of the convergence speed to a
steady distribution (i.e., the convergence speed is controlled
by a certain geometric series). The core value of geometric
ergodicity lies in its strong guarantee of convergence speed
(exponential decay), which makes it a key condition in
fields such as statistical inference, algorithm design, and
stochastic process analysis. It not only ensures the stability
and predictability of the long-term behavior of Markov
processes, but also provides a solid theoretical foundation
for quantitative analysis and practical applications, especially
in scenarios that require efficient convergence and accurate
estimation (such as MCMC, reinforcement learning) [11-20].
In [21], Meyn and Tweedie focused on the more general
form of f-geometric ergodicity. Using the coupling method,
they investigated the f-geometric ergodicity of discrete-time
Markov chains. The ergodicity of Markov processes has
important and wide applications involving Markov processes
derived from queuing theory and birth and death processes
in ¢ processes.

Zhu [4] studied the f-geometric ergodicity of Markov
chains in discrete-time general state space. Zhang [2, 3, 23]
proposed the concepts of the ¢-optimal coupling and the
optimal coupling operator, where ¢ is a nonnegative lower
semicontinuous function. Zhang also proved the existence of
the optimal measurable coupling of transition probability and
the existence of optimal coupling operator of jump process.
Both Chen [22] and Zhang [24] used the coupling method to
investigate the ergodicity of homogeneous Markov processes.
Zhu [5] applied the coupling method to study the ergodicity
of Markov processes.

In this article, we focus on the basic coupling and f-norm
and obtain an equation of the basic coupling and total
variation norm. Also we improve the equation of the basic
coupling, and thus an equation of the basic coupling and
f-norm is derived.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some notations and necessary background.
Section 3 obtains an equation of the basic coupling and total
variation norm. Section 4 derives an equation of the basic
coupling and f-norm. Section 5 presents the applications of
our results. Section 6 concludes this study.

Let the state space E is a polishi space (i.e., a complete
and separable metric space), and £ is a o algebra generated
by a countable subset of F.
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II. PRELIMINARIES

Definition 2.1: Let x4 be a sign measure on &, and g and
f be measurable functions on £. The total variation norm of
w is defined as

[l == sup{lo(g)] : [g] < 1}.
Define the f- norm of y as

lelly := sup{|v(g)| : lg] < f}, f > 1.

Remark 1: ;1 can be a measure, a function, or a point.

Remark 2: When f = 1, the f-norm becomes the total
variation norm.

Definition 2.2: Given two probability measures j1 and po
on &, and a probability measure ;2 on £ x &, p is called the
coupling of p; and po if it satisfies the marginality

/NJ,(Al X E) = /1,1(141) for all Ay € £

and
/A,(j(E X AQ) = /,LQ(AQ) for all Ay € £.

The set of all coupling of p; and ps is denoted by K (p1, p2).
Definition 2.3[%]: For two probability measures ji; and iy
in the Polish space (X, p, ), we call

W (i1, p2) = inf{[/ pldx, dy)p(z,y)] : p € K(pa, p2)}

the minimum probability distance of p; and po. If there
exists 1t € K (1, pe2) satisfying

W, (1. pz) = / fi(dz, dy)p(x,y).

then 1 is called the p-optimal coupling of pq and po.
It is known that the @-optimal coupling always exists [1].
Lemma 2.11: Let 11 and po be probability measures on
&, and set p' = pq + peo. Define the derivatives

_ dﬂl _ d‘LLQ
91 d,u’ ) 92 d,u' )

let
g=min{g1,g2}, = /gdu',

and introduce the signed measures

v1(A) = /A(91 —g)dy', A€,

)= [ (02— o), ace.

Finally, define

am) - [ g@)d(x), BEEXE.
Bn{(z,y):x=y}

Then, we have the following:
L0<y <1
2. each of v; and vy is a probability measure on &;
3. @) is a probability measure on £ x .
Further, let

7= Qa vy=1,
G2 4+Q, v#L

Then [ is the coupling of p; and py. Here [ is called the
basic coupling of p; and po.

Remark: The basic coupling between the point measure
dx and the probability measure p is denoted as .

III. AN EQUATION OF THE BASIC COUPLING AND TOTAL
VARIATION NORM

Let (z,y) == d(z,y)[f(x) + f(y)]. where

17 l‘ )
doy={ g 7Y

Lemma 3.1(22): For two probability measures i1, jip, we
have

_inf
REK (p1,p2)

[ e itz ).

Now we can get our first main result as follows.
Theorem 3.1: Let p1, o be probability measures. Then

ln — ol =2 / d(z,y)7i(dz, dy), (1)

where 7 is the basic coupling of w1 and ps.
Proof. Let h be a measurable function on £. Then

o | =
5 H1 — p2|| =

1 — pzl]
hdiy —/hdu2|

= sup |
nl<1

= sup | [ hgidp' — / hgady |
hl<1

= sup { h(g1 — g2)dp —/ h(g1 — go)dp'}
[h|<1 J{g1>g2} {91<g2}

= / (91 — gz)d/l/ —/ (91 — gz)dﬂ/
{91>92} {91<g2}

= / lg1 — g2ldp

= /(91 —g)dp’ + /(92 — g)dy

:(/guiu f/gdu>+</gzdu */gd#)
=1=-7+0-7)

=2(1—7),

where the fifth equality holds due to

l91 — 92| = (91 — 9) + (92 — 9)-

To finish the proof, it suffices to prove

/d(l‘, y)ﬁ(dx, dy) =1-7,

which is proven in the following two cases.
(1) When v = 1, we get

[ dte s, ay
= /d(x, y)Q(dx, dy)

~ [d) /{ L sepd)
-/ /{ A
=0.

Thus
d(z,y)a(dz,dy) =0=1—~.

(i) When v < 1, if = y, then
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Moreover,
d(x,y)p(dz, dy) = 0. _
/ /sﬁ(x,y)u(dx, dy)
Hence,
_ = [etw.vQs.a)
/d(fcvy)ﬂ(da?,dy)
o) [ i
:/ d(%y)—vl(dxl) X va(dy) / (z,y):w=y}
{(@y):azty} -7
/ / ol p)g)pld()
+/ d(z, y)Q(dz, dy) (@yamy)
{(@y):e=y}
= / d(z, y)M +0 where the last equality holds due to the fact
{(@y):z#y} l—n .
/ d )(1_7)><(1_7) p(r,y) =0,if z=y.
= z,y
((z,9):27y} I—v Therefore,
:/ _d@y)(1 =) / e(z,y)a(de, dy) = /f 91— g)dy’ +/f(92 —g)dy'.
{(@y):x7y}
=1-7. (it) When v < 1, if x = y, then
Therefore (1) is concluded, and the proof is completed. ) = dlz 2) + _
The following result is a straightforward consequence of Pl@,) @ ylfe)+FW)]
Lemma 3.1 and Theorem 3.1. Note that

Theorem 3.2: Given two probability measures pi1, p2, and
the basic coupling 1z of u; and o, we get

/ o(z, y)E(dr, dy)

T — [ ot x o)
. - -7
- 2/161(18;1’#2)/d(ai,y),u(dsc,dy) (2) +/gp(x,y)Q(d:ﬂ,d"y)

v1(dzx) x va(dy)

= d(z,y)u(dz, dy).
2 [ dw,y)n(d. dy) S NNUCRS (O

IV. AN EQUATION OF THE BASIC COUPLING AND +0
f-NORM :/ . v1(dz) X va(dy)
Theorem 4.1: Let p1, po be probability measures. Then BO{(z,y):z#y} -y
+/ y vy (dx) x vao(dy)
1 — N2Hf = /w(m,y)ﬁ(dw,dy), (3) Bn{(z,y):x#y} I—v
where 71 is the basic coupling of p; and ps. = / f x)w
Proof. We have Br{(z,y):x#y} 1—x
1—7) xwv(d
lin = sl + / f(y)w
| p / oo Bn{(z,y):x#y} -
= sup | [ vdps — [ vdps
s — [ #@uidn) + [ rw)eaty)
_ d ’ _ d ’
|i\u§)f‘ et /vgzul /fgl—gdqu/fgz g)dy’,
= / flg1 — gz)du/ - / flg1 — 92)dﬂl where the second equality holds due to that
{91292} {91<g2}
B /f|g1 — goldp /w(x’y)Q(dx’dy)
= x, z)p'd(x
= /f(91 g)dp’ + /f g2 — g)dy /@( v) /Bm{(m,y);m_y} g9(@)p'd(x)
where the fourth equality holds since = / / o(x,y)g(x) ' d(z)
BO{(z,y):z=y}
l91 — 92| = (91 — 9) + (92 — 9)-
We discuss it in terms of the following two cases. Then we obtain
(i) When v =1, one gets g = g1 = go and p/-a.s.. Then B
it can be readily verified that / o(z, y)u(dzs, dy)
/f(91 —g)dy/’ +/f(92 —g)dy’ = 0. = /f(gl —g)dy’ +/f(92 —g)dp’.
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Thus, (3) holds. This finishes the proof.
Theorem 4.2: Let 1; and po be probability measures and
f > 1 be a measurable function on £. Then

i / (@, )i, dy) > I — ol (4)
AEK (p1,p12)

Proof. For any measurable function g, if it satisfies
0<g<f,
then

o(z,y)
= d(z,y)[f(z) +
> d(z,y)lg(z) +
> [g(z) — g(y)],

from which we can derive that

/ oz, y)i(dz, dy)

/ lg(x

/ 9(2) — 9(y)llda, dy)|

/ fi(dz, dy) — /g(y)ﬂ(d%dy)l
—| [ stwwn(dz) - [ gtwma(an)

This means that

/@(x,y)ﬂ(dx,dy) > I/g(x)m(df”) —/g(y)uz(dy)\~

Based on the above inequality, we can obtain the following
result

f(y)]
9(y)]

y)|a(dz, dy)

/90(56, y)ii(dz, dy)

> sup | [ gl@)u(de) / o(y)a(dy)|
lg|<f
= ||M1 - M2||f

by calculating the supremum of |g|] < f on both sides.
Similarly, from the above inequality, we can derive the
following result

inf z,y)ji(dz, dy) > _
ﬂem;n,uz)/“p( y)alde, dy) 2 |lpn = pals

by computing the infimum of i € K (1, u2) on both sides.
Therefore, (4) holds.
Based on Theorems 4.1 and 4.2, the following result can
be immediately obtained, which is our second main result.
Theorem 4.3: Let p; and uo be probability measures,
f > 1, and Tz be the basic coupling of 1 and po. Then

|1 — pally
= inf

ﬁEK.(lh,Mz) / (p(x, y)ﬁ(dx’ dy) (5)
/ oz, y)p(dz, dy).

Remark 4.1: Take f = 1, then the equation (5) is
equivalent to equation (2), from which we can deduce that
Theorem 4.3 is a generalization of Theorem 3.3.

V. APPLICATIONS OF OUR CONCLUSION

Define (X)) as the set of all probability measures on F,
and let x¢ be any given point on E. Set

= {# € P(X): /g&(a:o,x),u(dx) < oo} .

Proposition 5.1: Let 17 and ps be probability measures,
and pi1, pp € A Then ||y — polly € A
Proof. Since pq, po € #, we have

||M1 - M2||f
- / (e, y)E(de, dy)
< / (@, zo)(dz, dy) + / (o, y)T(de, dy)
- / o(, zo) () + / (20, y)p2(dy)

<00.

—pally €.
Proposition 5.2: Let P be a probability kernel on Polish
space (X, p, E), and 1, o be probability measures such that
[ P — p2 Py < cflpr — pall -

If any P € .#, and any probability measure u € .#, then
uP e .

Proof. Assume that 1z is the basic coupling between the
point measure §, and the probability measure p. According
to Theorem 4.1, we can get

16~ ully = [ mldu doyotu,) = [ uldoypta.o).

Since € A and P € ./, it follows that

1800 — pilly = / u(dy)p (o, y) < o

and
162 = 82y Pl = [ Plao. dy)p(ao,y) < .

From the condition

|p1P — paPlly < c|lpn — pollf

we obtain that
100y P — Py < cl|6zy — pll 5

Then

/uP(ﬂcoydy)SO(any)

=020 — uP|ls

<0z — 0z Pll§ + |102o P — 1P| ¢
N0y = G Plls + clldzg — pill ¢
<00.

Hence, uP € .# . The proof is completed.
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VI. CONCLUSIONS

In this paper, we investigate the basic coupling of Markov
chains. Firstly, we obtain an equation of the basic coupling
and total variation norm. Then we improve the equation of
the basic coupling and thus an equation of the basic coupling
and f-norm is obtained. These two equations have extensive
applications in studying the Convergence of Markov Chains
and f-empirical ergodicity of Markov Chains. Since Chen
[22] proved Lemma 3.1, many scholars have used it to study
the ergodicity and geometric ergodicity of Markov processes
[5,6,7]. This article proves a relation between the basic cou-
pling and the total variation norm (see Theorem 3.1) based
on Lemma 3.1. Theorem 3.1 is more general than Lemma
3.1. Furthermore, we have demonstrated another equation
involving the basic coupling, and consequently derived a
relation between the basic coupling and the f-norm (see
Theorem 4.1). Researchers can use Theorem 4.1 to further
investigate the f-ergodicity and f-geometric ergodicity of
Markov processes. For example, Zhu [5] utilized the ideas
of the equation of basic coupling and total variational norm to
study the convergence of nonhomogeneous Markov chains.
Zhu [4] utilized the ideas of the equation of the basic
coupling and f-norm to study f-exponential ergodicity of
Markov chains by coupling method.
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