
 

  

Abstract—In this paper, we introduce the concept of the soft 

intersection (S-int) bi-quasi-interior (₿ꝖĪ) ideal of semigroups 

and provide an equivalent definition. The relationships 

between S-int ideals and S-int ₿ꝖĪ ideals are established. We 

prove that every S-int bi-ideal, left ideal, right ideal, interior 

ideal, quasi-ideal, bi-interior ideal, left/right bi-quasi-ideal, and 

left/right quasi-interior ideal is also an S-int ₿ꝖĪ ideal. 

Counterexamples are given to show that the converses do not 

hold, and we demonstrate that additional conditions, such as 

regularity or right/left simplicity, are required for the 

converses. We also show that if a subsemigroup of a semigroup 

is a ₿ꝖĪ ideal, then its soft characteristic function is an S-int 

₿ꝖĪ ideal, and the converse holds as well. Thus, this work 

establishes an important connection between classical 

semigroup theory and soft set theory. Furthermore, we show 

that finite soft AND-products, Cartesian products, and 

intersections of S-int ₿ꝖĪ ideals remain S-int ₿ꝖĪ ideals, 

whereas finite soft OR-products and unions do not. This study 

provides a broad conceptual characterization and analysis of S-

int ₿ꝖĪ ideals. 

 

Index Terms—(soft intersection) bi-quasi-interior ideals, 

(regular) semigroup, soft set 

 

I. INTRODUCTION 

 

Semigroups play a crucial role in various areas of 

mathematics. In applied mathematics, semigroups, first 

studied in the early 20th century, serve as essential tools for 

analyzing linear time-invariant processes. Moreover, 

because finite semigroups are closely related to finite 

automata, their study is fundamental in theoretical computer 

science. In probability theory, semigroups are also 

connected to Markov processes. The concept of ideals plays 

a key role in understanding mathematical structures and 

their applications. Consequently, many mathematicians have 

focused their research on generalizing ideals within 

algebraic structures. Indeed, further exploration of algebraic 

structures necessitates the generalization of ideals. By 

employing the notions and properties of these generalized 
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ideals, many mathematicians have made significant 

contributions, providing new insights and characterizations  

 

of algebraic structures. Dedekind introduced the concept of 

ideals in the context of algebraic number theory, and 

Noether later extended this idea to associative rings. The 

notion of a one-sided ideal in any algebraic structure can be 

seen as a generalization of the original ideal concept, and 

both one-sided and two-sided ideals continue to be central to 

the study of ring theory. 

In 1952, Good and Hughes [1] introduced the concept of 

bi-ideals in semigroups. Steinfeld [2] was the first to define 

the concept of quasi-ideals in semigroups and later extended 

this notion to rings Quasi-ideals generalize Ꞧ and Ł ideals, 

while bi-ideals represent a further generalization of quasi-

ideals. The notion of interior ideals was first introduced by 

Lajos [3] and later studied in more detail by Szasz [4,5]. The 

concept of interior ideals arose from the generalization of 

the ideal concept.  Rao [6-11] introduced several novel types 

of semigroup ideals, which expand upon existing ones, such 

as bi-interior ideals, ₿ꝖĪ ideals, bi-quasi ideals, quasi-

interior ideals, weak-interior ideals, tri-ideals and tri-quasi 

ideals. Rao [6–11] introduced several novel types of 

semigroup ideals, extending existing ones, including bi-

interior ideals, ₿ꝖĪ ideals, bi-quasi-ideals, quasi-interior 

ideals, weak-interior ideals, tri-ideals, and tri-quasi ideals. 

Baupradist et al. [12] also introduced the concept of 

essential ideals in semigroups. As a broader extension of 

various types of ideals, the notion of “almost” ideals was 

proposed, and their characteristics, together with their 

relationships to other ideals, were thoroughly investigated. 

In this context, the concept of almost ideals in semigroups 

was first introduced in [13]. Subsequently, [14] expanded 

the notion of bi-ideals to almost bi-ideals in semigroups. 

The notion of almost interior ideals was introduced in [15], 

while almost quasi-ideals in semigroups were first studied in 

[16]. The authors in [17–19] proposed certain types of 

almost ideals. Moreover, in [15, 17–22], various fuzzy 

almost ideal types for semigroups were examined. Many of 

these new structures have been employed to further 

characterize semigroups and their generalizations. 

Molodtsov [23] introduced the "Soft Set Theory" (Ꞩꞩ 

Theory) to address problems involving uncertainty and to 

find appropriate solutions for them. Since then, numerous 

important studies have focused on various concepts related 

to Ꞩꞩ, particularly on the operations performed on them. 

Maji et al. [24] proposed several definitions related to Ꞩꞩ 

and established specific operations for them. Pei and Mia 

[25] as well as Ali et al. [26] introduced different operations 

on Ꞩꞩ. Sezgin and Atagün [27] also contributed to the study 

of Ꞩꞩ operations. For further insights into Ꞩꞩ operations, 

which have gained popularity since their inception, we refer 

to [28-39]. The concept and operations of Ꞩꞩ were further 

modified by Çağman and Enginoğlu [40]. Later, Çağman et 
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al. [41] developed the idea of S-int groups, which led to the 

exploration of various soft algebraic systems. Sezer et al. 

[42-44], by applying Ꞩꞩ to semigroup theory, introduced soft 

intersection (S-int) semigroups, ideals, interior ideals, quasi-

ideal ideals, (generalized) bi-ideals of semigroups, providing 

an in-depth analysis of their fundamental properties. In the 

context of S-int substructures of semigroups, Sezgin and 

Orbay [44] defined and classified several types of 

semigroups. Soft intersection (int) almost ideals, as a 

generalization of various types of S-int ideals, were 

introduced and examined in [45-56]. The soft versions of 

different algebraic structures were explored in [57-68].  

Rao [7] introduced the concept of the ₿ꝖĪ ideal as a 

generalization of the bi-ideal, quasi-ideal, interior ideal, bi-

quasi ideal, and bi-interior ideal of a semigroup, and 

examined the properties of these ideals and their 

relationships. In Rao [69], the concept of ₿ꝖĪ ideal is 

studied as a generalization of bi-ideal, quasi-ideal, interior 

ideal, bi-quasi ideal, and bi-interior ideal in Γ-semirings. 

The properties of these ideals and their relationships with 

other ideals are explored. The regular (ℛ) and simple Γ-

semirings are characterized, and the conditions necessary for 

a Γ-semiring to be ℛ or simple are examined. Additionally, 

Rao [70,71] investigates the properties of ₿ꝖĪ ideals in Γ-

semigroups and semirings and explores their relationships 

with other ideals. The regularity and simplicity properties of 

Γ-semigroups and semirings are characterized, and the 

conditions for Γ-semigroups and semirings to be ℛ or 

simple are identified. 

The motivation for this study stems from the fact that 

generalizing classical ideals within the framework of soft set 

theory opens new directions for algebraic research. In this 

study, the concept of “Soft intersection bi-quasi ideal” (S-int 

₿ꝖĪ Ideal) of a semigroup is defined for Ꞩꞩ theory, 

illustrated with examples, and its properties and 

relationships with other S-int ideals are examined in detail. 

It is concluded that if a subsemigroup of a semigroup is a 

₿ꝖĪ ideal, then its soft characteristic function is also an S-

int ₿ꝖĪ ideal, and the converse is also true. This is an 

crucial theorem establishing a significant connection 

between classical semigroup theory and Ꞩꞩ theory. 

Furthermore, by investigating the relationships of S-int ₿ꝖĪ 

ideal of a semigroup with other S-int ideals, it is observed 

that every S-int bi-ideal, S-int ideal, S-int interior ideal, S-

int quasi-ideal, S-int bi-interior ideal, S-int bi-quasi ideal, 

and S-int quasi-interior ideal of a semigroup is an S-int ₿ꝖĪ 

ideal, and counterexample sare provided to show that the 

converses do not hold. The conditions for the converses to 

hold are also obtained. Additionally, the relationships 

between S-int ₿ꝖĪ ideals and soft set operations as well as 

the concepts like soft image and soft inverse image are 

investigated. The paper is structured into four sections. 

Section 1 offers a general introduction to the topic, while 

Section 2 explores the fundamental concepts of semigroups 

and Ꞩꞩ ideals, along with their associated definitions and 

implications. We introduce the concept of S-int ₿ꝖĪ ideals 

in Section 3 and examine their properties, as well as how 

they relate to other types of S-int ideals, through concrete 

examples. Section 4 provides a summary of our findings and 

considers potential directions for future research. 

 

II. PRELIMINARIES 

 

In this section, we recall some basic definitions and results 

that will be used throughout this paper. 𝑆 denotes a 

semigroup throughout this paper. A subsemigroup ₭ of 𝑆 is 

called a bi-quasi-interior(₿ꝖĪ) ideal of 𝑆 if ₭𝑆₭𝑆₭ ⊆ ₭ [7]. 

If there exists an element 𝑦 ∈ 𝑆 such that 𝑥 = 𝑥𝑦𝑥 for all 

𝑥 ∈ 𝑆, then 𝑆 is called a regular (ℛ) semigroup,  

 

Theorem 1[72] Let 𝑆 be a semigroup. Then  

 

(1) 𝑆 is Ł (Ꞧ) simple if and only if (iff) 𝑆𝑎 = 𝑆 (𝑎𝑆 =
𝑆) for all 𝑎 ∈ 𝑆. That is, for every 𝑎, 𝑏 ∈ 𝑆, there exists 𝑐 ∈
𝑆 such that 𝑏 = 𝑐𝑎 (𝑏 = 𝑎𝑐) 

(2) 𝑆 is simple iff 𝑆 is a group. (both Ł and Ꞧ simple) 

 

Definition 1 [23,40] Let 𝐸 be the parameter set, 𝑈 be the 

universal set, 𝑃(𝑈) be the power set of 𝑈, and Ҟ ⊆ 𝐸. The 

soft set (Ꞩꞩ)ᵮҞ over 𝑈 is a function such that ᵮҞ: 𝐸 → 𝑃(𝑈), 

where for all ɏ ∉ Ҟ, ᵮҞ(ɏ) = ∅. That is, 

ᵮҞ = {(ɏ, ᵮҞ(ɏ)): ɏ ∈ 𝐸, ᵮҞ(ɏ) ∈ 𝑃(𝑈)} 

 

The set of all Ꞩꞩ over 𝑈 is designated by 𝑆𝐸(𝑈).  

 

Definition 2 [40] Let ᵮҞ ∈ 𝑆𝐸(𝑈). If ᵮҞ(ɏ) = ∅ for all ɏ ∈ 𝐸, 

then ᵮҞ is called a null Ꞩꞩ and indicated by ∅𝐸. 

 

Definition 3[40] Let ᵮ𝐴, ᵮ𝐵 ∈ 𝑆𝐸(𝑈). If ᵮ𝐴(ɏ) ⊆ ᵮ𝐵(ɏ), for all 

ɏ ∈ 𝐸, then ᵮ𝐴 is a soft subset of ᵮℵ and indicated by ᵮ𝐴 ⊆̃ ᵮ𝐵. 

If ᵮ𝐴(ɏ) = ᵮ𝐵(ɏ), for all ɏ ∈ 𝐸, then ᵮ𝐴 is called soft equal to 

ᵮ𝐵 and denoted by ᵮ𝐴 = ᵮ𝐵 . 

 

Definition 4 [40] Let ᵮ𝐴, ᵮ𝐵 ∈ 𝑆𝐸(𝑈). The union 

(intersection) of ᵮ𝐴 and ᵮ𝐵 is the Ꞩꞩ ᵮ𝐴 ∪̃ ᵮ𝐵(ᵮ𝐴 ∩̃ ᵮ𝐵), where 

(ᵮ𝐴 ∪̃ ᵮ𝐵)(ȴ) = ᵮ𝐴(ȴ) ∪ ᵮ𝐵(ȴ)((ᵮ𝐴 ∩̃ ᵮ𝐵)(ȴ) = ᵮ𝐴(ȴ) ∩ ᵮ𝐵(ȴ)), 

for all ȴ ∈ 𝐸, respectively. 

 

Definition 5[40] Let ᵮ𝐴, ᵮ𝐵 ∈ 𝑆𝐸(𝑈). Then, ∧-product (∨-

product) of ᵮ𝐴 and ᵮ𝐵, denoted by ᵮ𝐴 ∧ ᵮ𝐵(ᵮ𝐴 ∨ ᵮ𝐵) is defined 

by(ᵮ𝐴 ∧ ᵮ𝐵)(𝑥, 𝑦) = ᵮ𝐴(𝑥) ∩ ᵮ𝐵(𝑦)((ᵮ𝐴 ∨ ᵮ𝐵)(𝑥, 𝑦) = ᵮ𝐴(𝑥) ∪

ᵮ𝐵(𝑦)) for all (𝑥, 𝑦) ∈ 𝐸 × 𝐸, respectively . 

 

Definition 6[41] Let ᵮ𝐴, ᵮ𝐵 ∈ 𝑆𝐸(𝑈) and 𝜑 be a function 

from 𝐴 to 𝐵. Then, the soft image of ᵮ𝐴 under 𝜑, and the soft 

pre-image (soft inverse image) of ᵮ𝐵 under 𝜑 are the Ꞩꞩ 

𝜑(ᵮ𝐴) and 𝜑−𝟏(ᵮ𝐵) such that  

(𝜑(ᵮ𝐴))(𝑥)

= {
⋃{ᵮ𝐴(𝑘)|𝑘 ∈ 𝐴 𝑎𝑛𝑑 𝜑(𝑘) = 𝑥},        𝑖𝑓 𝜑−1(𝑥) ≠ ∅

∅,                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for all 𝑏 ∈ 𝐵 and (𝜑−𝟏(ᵮ𝐵))(𝑘) = ᵮ𝐵(𝜑(𝑘)) for all 𝑘 ∈ 𝐴. 

 

Definition 7 [41] Let ᵮ𝐴 ∈ 𝑆𝐸(𝑈) and 𝛼 ⊆ 𝑈. Then, the 

upper 𝛼-inclusion of ᵮ𝐴, denoted by 𝒰(ᵮ𝐴; 𝛼), is defined 

as𝒰(ᵮ𝐴; 𝛼) = {𝑥 ∈ 𝐴 |ᵮ𝐴(𝑥) ⊇ 𝛼}. 

 

Definition 8 [42] Let ᵮҞ, ᵵҞ ∈ 𝑆𝑆(𝑈), where ₭ is a 

semigroup. S-int product ᵮҞ ∘ ᵵҞ is defined by  

(ᵮҞ ∘ ᵵҞ)(ɏ)

= {
⋃ {ᵮҞ(𝑥) ∩ ᵵҞ(𝑦)},   𝑖𝑓 ∃𝑥, 𝑦 ∈ Ҟ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ɏ = 𝑥𝑦 

ɏ=𝑦𝑧

∅,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
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Theorem 2 [42] Let ᵮҞ, ᵵҞ, ᵱҞ ∈ 𝑆Ҟ(𝑈), where ₭ is a 

semigroup. Then,  

i) (ᵮҞ ∘ ᵵҞ) ∘ ᵱҞ = ᵮҞ ∘ (ᵵҞ ∘ ᵱҞ) 

ii) ᵮҞ ∘ ᵵҞ ≠ ᵮҞ ∘ ᵵҞ 

iii) ᵮҞ ∘ (ᵵҞ ∪̃ ᵱҞ) = (ᵮҞ ∘ ᵵҞ) ∪̃ (ᵮҞ ∘ ᵱҞ) and (ᵮҞ ∪̃ ᵵҞ) ∘
ᵱҞ = (ᵮҞ ∘ ᵱҞ) ∪̃ (ᵵҞ ∘ ᵱҞ) 

iv) ᵮҞ ∘ (ᵵҞ ∩̃ ᵱҞ) = (ᵮҞ ∘ ᵵҞ) ∩̃ (ᵮҞ ∘ ᵱҞ) and (ᵮҞ ∩̃ ᵵҞ) ∘
ᵱҞ = (ᵮҞ ∘ ᵱҞ) ∩̃ (ᵵҞ ∘ ᵱҞ) 

v) If ᵮҞ ⊆̃ ᵵҞ, then ᵮҞ ∘ ᵱҞ ⊆̃ ᵵҞ ∘ ᵱҞ and ᵱҞ ∘ ᵮҞ ⊆̃ ᵱҞ ∘ ᵵҞ 

vi) If ᵶҞ, ᵴҞ ∈ 𝑆Ҟ(𝑈) such that ᵶҞ ⊆̃ ᵮҞ and ᵴҞ ⊆̃ ᵵҞ, then 

ᵶҞ ∘ ᵴҞ ⊆̃ ᵮҞ ∘ ᵵҞ. 

 

Definition 9 [42] Let ∅ ≠ 𝐾 ⊆ 𝑆. The soft characteristic 

function (Ꞩȼʩ) of 𝐾, denoted by 𝑆𝐾 , is defined as  

𝑆𝐾(𝑥) = {
𝑈,   𝑖𝑓 𝑥 ∈ 𝐾       

∅,   𝑖𝑓 𝑥 ∈ 𝑆\𝐾     
 

 

Theorem 3[42,51] Let Ǥ, Ƀ ⊆ 𝑆. Then  

i) Ǥ ⊆ Ƀ iff 𝑆Ǥ ⊆̃ 𝑆Ƀ 

ii) 𝑆Ǥ ∩̃ 𝑆Ƀ = 𝑆Ǥ∩Ƀ and 𝑆Ǥ ∪̃ 𝑆Ƀ = 𝑆Ǥ∪Ƀ 

iii) 𝑆Ǥ ∘ 𝑆Ƀ = 𝑆ǤɃ 

 

From now on, ₭ denotes a semigroup like 𝑆. 

 

Definition 10 [42] An Ꞩꞩ ᵮҞ over 𝑈 is called an S-int 

subsemigroup of 𝑆 if ᵮҞ(ȴȵ) ⊇ ᵮҞ(ȴ) ∩ ᵮҞ(ȵ) for all ȴ, ȵ ∈
𝑆. 

 

Note that in [42], the definition of “S-int subsemigroup of  

S” is given as “S-int semigroup of S”; however in this paper, 

without loss of generality, we prefer to use “S-int 

subsemigroup of S”. 

 

From now on, “ideal” is abbreviated by “id”. 

 

Definition 11[42,43] An Ꞩꞩ ᵮҞ over 𝑈 is called an S-int Ł 

(Ꞧ) id of 𝑆 if ᵮҞ(ȴȵ) ⊇ ᵮҞ(ȵ)(ᵮҞ(ȴȵ) ⊇ ᵮҞ(ȴ))for all ȴ, ȵ ∈

𝑆, and is called an S-int two-sidedid (S-intid) of 𝑆 if it is 

both S-int Ł id of 𝑆 over 𝑈 and S-int Ꞧ id of 𝑆 over 𝑈. An S-

int subsemigroup ᵮҞ is called an S-int bi-id of 𝑆 if ᵮҞ(ȴȵȶ) ⊇
ᵮҞ(ȴ) ∩ ᵮҞ(ȶ) for all ȴ, ȵ, ȶ ∈ 𝑆. An Ꞩꞩ ᵮҞ over 𝑈 is called an 

S-int interior id of 𝑆 if ᵮҞ(ȴȵȶ) ⊇ ᵮҞ(ȵ) for all ȴ, ȵ, ȶ ∈ 𝑆.  

 

An Ꞩꞩ ᵮҞ over 𝑈 is called an S-int Ł weak-interior (Ꞧ) id of 𝑆 

if  ᵮҞ(ȴȵȶ) ⊇ ᵮҞ(ȵ) ∩ ᵮҞ(ȶ)(ᵮҞ(ȴȵȶ) ⊇ ᵮҞ(ȴ) ∩ ᵮҞ(ȵ)) for 

all ȴ, ȵ, ȶ ∈ 𝑆, and is called an S-int weak-interior id of 𝑆 if 

it is both S-int Ł weak-interior id of 𝑆 over 𝑈and S-int Ꞧ 

weak-interior id of 𝑆 over 𝑈. An Ꞩꞩ ᵮҞ over 𝑈 is called an S-

int Ł quasi-interior (Ꞧ) id of 𝑆 if ᵮҞ(ȴȵȶɚ) ⊇ ᵮҞ(ȵ) ∩
ᵮҞ(ɚ)(ᵮҞ(ȴȵȶɚ) ⊇ ᵮҞ(ȴ) ∩ ᵮҞ(ȶ)) for all ȴ, ȵ, ȶ, ɚ ∈ 𝑆, and is 

called an S-int quasi-interior id of 𝑆 if it is both S-int Ł 

quasi-interior id of 𝑆 over 𝑈 and S-int Ꞧ quasi-interior id of 

𝑆 over 𝑈[73,74]. 

 

If ᵮҞ(x) = 𝑈 for all x ∈ S, then ᵮҞ is an S-int subsemigroup 

(id, bi-id, interior id, weak-interior id, quasi-interior id). We 

denote such a kind of S-int subsemigroup (id, bi-id, interior 

id, weak-interior id, quasi-interior id) by ꗟ̃ [42,43,73-75]. 

Moreover, ꗟ̃ = SS, that is, ꗟ̃(x) = U for all x ∈ S[42]. 

 

Definition 12[73-75] An Ꞩꞩ ᵮҞ over 𝑈 is called an S-int 

quasi-id of 𝑆 over 𝑈 if (ꗟ̃ ∘ ᵮҞ) ∩̃ (ᵮҞ ∘ ꗟ̃) ⊆̃ ᵮҞ. An Ꞩꞩ ᵮҞ 

over 𝑈 is called an S-int bi-interior id of 𝑆 over 𝑈 if (ꗟ̃ ∘

ᵮҞ ∘ ꗟ̃) ∩̃ (ᵮҞ ∘ ꗟ̃ ∘ ᵮҞ) ⊆̃ ᵮҞ. An Ꞩꞩ ᵮҞ over 𝑈 is called an S-

int Ł bi-quasi (Ꞧ) id of 𝑆 if (ꗟ̃ ∘ ᵮҞ) ∩̃ (ᵮҞ ∘ ꗟ̃ ∘ ᵮҞ) ⊆̃ ᵮҞ 

((ᵮҞ ∘ ꗟ̃) ∩̃ (ᵮҞ ∘ ꗟ̃ ∘ ᵮҞ) ⊆̃ ᵮҞ), and is called an S-intbi-

quasi id of 𝑆 if it is both S-int Ł bi-quasi id of 𝑆 over 𝑈 and 

S-int Ꞧ bi-quasi id of 𝑆 over 𝑈. 

 

Theorem 4 [42]Let ḟ𝑆 ∈ 𝑆𝑆(𝑈). Then, 

 

i) ꗟ̃ ∘ ꗟ̃ ⊆̃ ꗟ̃ 

ii) ꗟ̃ ∘ ḟ𝑆 ⊆̃ ꗟ̃ and ḟ𝑆 ∘ ꗟ̃ ⊆̃ ꗟ̃ 

iii) ḟ𝑆 ∪̃ ꗟ̃ = ꗟ̃ and ḟ𝑆 ∩̃ ꗟ̃ = ḟ𝑆. 

 

Theorem 5 [42,43] Let Ҟ be a nonempty subset of a 

semigroup 𝑆. Then, Ҟ is a subsemigroup of 𝑆 iff 𝑆Ҟ is an S-

int subsemigroup. 

 

Theorem 6 [42,43,73-75] Let ᵮ𝑆 ∈ 𝑆𝑆(𝑈). Then, 

 

(1) ᵮ𝑆 is an S-int subsemigroup iff (ᵮ𝑆 ∘ ᵮ𝑆) ⊆̃ ᵮ𝑆, 

(2) ᵮ𝑆 is an S-int Ł (Ꞧ) id iff (ꗟ̃ ∘ ᵮ𝑆) ⊆̃ ᵮ𝑆 and (ᵮ𝑆 ∘

ꗟ̃) ⊆̃ ᵮ𝑆, 

(3) ᵮ𝑆 is an S-int bi-id iff (ᵮ𝑆 ∘ ᵮ𝑆) ⊆̃ ᵮ𝑆 and (ᵮ𝑆 ∘ ꗟ̃ ∘

ᵮ𝑆) ⊆̃ ᵮ𝑆, 

(4) ᵮ𝑆 is an S-int interior id  iff (ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃) ⊆̃ ᵮ𝑆, 

(5) ᵮ𝑆 is an S-int Ł (Ꞧ) weak-interior id iff (ꗟ̃ ∘ ᵮ𝑆 ∘

ᵮ𝑆) ⊆̃ ᵮ𝑆 ((ᵮ𝑆 ∘ ᵮ𝑆 ∘ ꗟ̃) ⊆̃ ᵮ𝑆), 

(6) ᵮ𝑆 is an S-int Ł (Ꞧ) quasi-interior id iff (ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘

ᵮ𝑆) ⊆̃ ᵮ𝑆 ((ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃) ⊆̃ ᵮ𝑆), 

 

Theorem 7[42,43] The following assertions hold: 

 

(1) Every S-int Ł (Ꞧ/two-sided) id is an S-int subsemigroup 

(S-int bi-id/S-int quasi-id). 

(2) Every S-int id is an S-int interior id (S-int quasi-id). 

(3) Every S-int quasi  id is an S-int subsemigroup (S-int bi-

id). 

 

Theorem 8[42] Let ᵮ𝑆 ∈ 𝑆𝑆(𝑈), 𝛼 be a subset of 𝑈, 𝐼𝑚(ᵮ𝑆) 

be the image of ᵮ𝑆 such that 𝛼 ∈ 𝐼𝑚(ᵮ𝑆). If ᵮ𝑆 is an S-int 

subsemigroup of 𝑆, then 𝒰(ᵮ𝑆; 𝛼) is a subsemigroup of  𝑆. 

 

III. SOFT INTERSECTION BI-QUASI-INTERIOR 

IDEALS OF SEMIGROUPS 

 

In this section, we present the concept of soft intersection 

(S-int) bi-quasi-interior ids in semigroups, provide its 

examples, thoroughly examine its relationships with other 

soft intersection ids, and analyze the concept in terms of 

certain 𝚂𝚂 concepts and operations. 

 

Definition 13 A soft set𝑓𝑆 over 𝑈 is called a soft 

intersection(S-int) ₿ꝖĪ ideal of 𝑆 over 𝑈 if𝑓𝑆(ᵬᵭᵮᵯᵰ) ⊇
𝑓𝑆(ᵬ) ∩ 𝑓𝑆(ᵮ) ∩ 𝑓𝑆(ᵰ)for all ᵬ, ᵭ, ᵮ, ᵯ, ᵰ ∈ 𝑆.  
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S-int bi-quasi-interior of 𝑆 over 𝑈 is abbreviated by S-int 

₿ꝖĪ-id in what follows. 

 

Example 1 Let the semigroup Տ = {ʑ, և, պ} be defined as 

follows: 

 

∷ ʑ և պ 

ʑ պ պ պ 

և ʑ և Պ 

պ պ պ Պ 

Let ᵵՏ and ճՏ be Ꞩꞩs over 𝑈 = 𝑍8
∗ as follows: 

 

ᵵՏ = {(ʑ, {1̅, 3̅, 5̅}), (և, {1̅, 3̅, 7̅}), (պ, {1̅, 3̅, 5̅, 7̅})},ճՏ =

{(ʑ, {1̅, 3̅, 5̅}), (և, {1̅, 3̅, 7̅}), (պ, {1̅, 3̅, 5̅})} 

 

ᵵՏ is an S-int ₿ꝖĪ-id of Տ. Here, we find it appropriate to 

give a few concrete examples of elements for ease of 

illustration in order to be more understandable. In fact, 

 

ᵵՏ(ʑʑևևպ) = ᵵՏ(պ) ⊇ ᵵՏ(ʑ) ∩ ᵵՏ(և) ∩
ᵵՏ(պ),ᵵՏ(ևևևևպ) = ᵵՏ(պ) ⊇ ᵵՏ(և) ∩ ᵵՏ(և) ∩
ᵵՏ(պ), ᵵՏ(ʑʑʑևʑ) = ᵵՏ(պ) ⊇ ᵵՏ(ʑ) ∩ ᵵՏ(ʑ) ∩ ᵵՏ(ʑ) 

 

It can be easily shown that the Ꞩꞩ set ᵵՏ satisfies the S-int 

₿ꝖĪ-id condition for all other element combinations of the 

set Տ. However, since ճՏ(ևևևպև) = ճՏ(պ) ⊉ ճՏ(և) ∩
ճՏ(և) ∩ ճՏ(և)ճՏ is not an S-int ₿ꝖĪ-id. 

 

Theorem 9 Let ᵮ𝑆 ∈ 𝑆𝑆(𝑈). Then, ᵮ𝑆 is an S-int ₿ꝖĪ-id iff  

ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ⊆̃ ᵮ𝑆. 

 

Proof: Suppose that ᵮ𝑆 is an S-int ₿ꝖĪ-id and ꞩ ∈ 𝑆. If (ᵮ𝑆 ∘

ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆)(ꞩ) = ∅,  then ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ⊆̃ ᵮ𝑆. 

Otherwise, there exist elements ȴ, ȵ, ȶ, ɚ, ʑ, և, պ, ϧ ∈ 𝑆 such 

that ꞩ = ȴȵ, ȴ = ȶɚ, ȶ = ʑև and ʑ = պϧ, forꞩ ∈ 𝑆. Since ᵮ𝑆 

is an S-int ₿ꝖĪ-id,ᵮ𝑆(ꞩ) = ᵮ𝑆(ȴȵ) = ᵮ𝑆(պϧևɚȵ) ⊇ ᵮ𝑆(պ) ∩
ᵮ𝑆(և) ∩ ᵮ𝑆(ȵ)Therefore, 

(ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆) (ꞩ) = [(ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃) ∘ ᵮ𝑆)] (ꞩ) 

= ⋃ {(ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃)(ȴ)

ꞩ=ȴȵ

∩ (ᵮ𝑆)(ȵ)} 

= ⋃ {⋃ {(ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆)(ȶ)

ȴ=ȶɚꞩ=ȴȵ

∩ ꗟ̃(ɚ)} ∩ ᵮ𝑆(ȵ)} 

= ⋃ {⋃ {⋃ {(ᵮ𝑆 ∘ ꗟ̃)(ʑ)

ȶ=ʑևȴ=ȶɚꞩ=ȴȵ

∩ (ᵮ𝑆)(և)} ∩ ꗟ̃(ɚ) ∩ ᵮ𝑆(ȵ)}} 

= ⋃ {⋃ {⋃ { ⋃ {(ᵮ𝑆)(պ)

ʑ=պϧȶ=ʑևȴ=ȶɚꞩ=ȴȵ

∩ ꗟ̃(ϧ)} ∩ (ᵮ𝑆)(և) ∩ ꗟ̃(ɚ) ∩ ᵮ𝑆(ȵ)}}} 

= ⋃ {ᵮ𝑆(պ) ∩ ᵮ𝑆(և) ∩ ᵮ𝑆(ȵ)}

ꞩ=պϧևɚȵ

 

⊆ ⋃ {ᵮ𝑆(պϧևɚȵ)}

ꞩ=պϧևɚȵ

 

= ᵮ𝑆(ȴȵ) 
= ᵮ𝑆(ꞩ) 

Thus, we have ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ⊆̃ ᵮ𝑆. Moreover, in the 

case where ꞩ = ȴȵ and ȴ ≠ պϧևɚȵfor ꞩ ∈ 𝑆, since (ᵮ𝑆 ∘ ꗟ̃ ∘

ᵮ𝑆 ∘ ꗟ̃) (ȴ) = ∅, ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ⊆̃ ᵮ𝑆 is satisfied. 

 

Conversely, assume that ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ⊆̃ ᵮ𝑆. Let ꞩ =
ȴᵿȶɚʑ for ȴ, ᵿ, ȶ, ɚ, ʑ ∈ 𝑆. Then, we have 

ᵮ𝑆(ȴᵿȶɚʑ) = ᵮ𝑆(ꞩ) 

⊇ (ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆) (ꞩ) 

= [(ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃) ∘ ᵮ𝑆] (ꞩ) 

= ⋃ {(ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃) (ϧ) ∩ ᵮ𝑆(ʑ)}

ꞩ=ϧʑ

 

= ⋃ { ⋃ {(ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆)(պ) ∩ ꗟ̃(ɚ)}

ϧ=պɚ

∩ ᵮ𝑆(ʑ)}

ꞩ=ϧʑ

 

= ⋃ { ⋃ { ⋃ {(ᵮ𝑆 ∘ ꗟ̃)(ȵ) ∩ ᵮ𝑆(ȶ)} ∩ ꗟ̃(ɚ)

պ=ȵȶϧ=պɚꞩ=ϧʑ

∩ ᵮ𝑆(ʑ)}} 

= ⋃ { ⋃ { ⋃ { ⋃ ᵮ𝑆(ȴ) ∩ ꗟ̃(ᵿ) ∩ ᵮ𝑆(ȶ)

ȵ=ȴᵿպ=ȵȶϧ=պɚꞩ=ϧʑ

∩ ꗟ̃(ɚ) ∩ ᵮ𝑆(ʑ)}}} 

⊇ (ᵮ𝑆 ∘ ꗟ̃ ∘ ᵮ𝑆 ∘ ꗟ̃) (ȴᵿȶɚ) ∩ ᵮ𝑆(ʑ) 

= ⋃ {ᵮ𝑆(ȴ) ∩ ꗟ̃(ᵿ) ∩ ᵮ𝑆(ȶ) ∩ ꗟ̃(ɚ) ∩ ᵮ𝑆(ʑ)}

ꞩ=ȴᵿȶɚʑ

 

⊇ ᵮ𝑆(ȴ) ∩ ꗟ̃(ᵿ) ∩ ᵮ𝑆(ȶ) ∩ ꗟ̃(ɚ) ∩ ᵮ𝑆(ʑ) 
= ᵮ𝑆(ȴ) ∩ 𝑈 ∩ ᵮ𝑆(ȶ) ∩ 𝑈 ∩ ᵮ𝑆(ʑ) 
= ᵮ𝑆(ȴ) ∩ ᵮ𝑆(ȶ) ∩ ᵮ𝑆(ʑ) 

Hence, ᵮ𝑆(ȴᵿȶɚʑ) ⊇ ᵮ𝑆(ȴ) ∩ ᵮ𝑆(ȶ) ∩ ᵮ𝑆(ʑ) implying that ᵮ𝑆 is 

an S-int ₿ꝖĪ-id. 

 

Corollary 1 ꗟ̃ and ∅𝑆 are S-int ₿ꝖĪ-ids. 

 

Theorem 10 Let ₭ be a subsemigroup of 𝑆. Then, ₭ is a ₿ꝖĪ 

id of  𝑆 iff  𝑆₭, the Ꞩȼʩ of ₭, is an S-int ₿ꝖĪ-id. 

 

Proof: Let ₭ be a ₿ꝖĪ id of 𝑆. Then, ₭𝑆₭𝑆₭ ⊆ ₭. By 

Theorem 3, 𝑆₭ ∘ ꗟ̃ ∘ 𝑆₭ ∘ ꗟ̃ ∘ 𝑆₭ = 𝑆₭ ∘ 𝑆𝑆 ∘ 𝑆₭ ∘ 𝑆𝑆 ∘ 𝑆₭ =
𝑆₭𝑆₭𝑆₭ ⊆̃ 𝑆₭ Hence, 𝑆₭ is an S-int ₿ꝖĪ-id. Conversely, let 𝑆₭ 

be an S-int ₿ꝖĪ-id and ₭ be a subsemigroup of 𝑆. Then, 𝑆₭ ∘
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ꗟ̃ ∘ 𝑆₭ ∘ ꗟ̃ ∘ 𝑆₭ ⊆̃ 𝑆₭. Let 𝑥 ∈ ₭𝑆₭𝑆₭. Then,𝑆₭(𝑥) ⊇

(𝑆₭ ∘ ꗟ̃ ∘ 𝑆₭ ∘ ꗟ̃ ∘ 𝑆₭) (𝑥) = (𝑆₭ ∘ 𝑆𝑆 ∘ 𝑆₭ ∘ 𝑆𝑆 ∘ 𝑆₭)(𝑥) =

𝑆₭𝑆₭𝑆₭(𝑥) = 𝑈Thus, 𝑆₭(𝑥) = 𝑈 and so 𝑥 ∈ ₭, implying that 

₭𝑆₭𝑆₭ ⊆ ₭. Hence, ₭ is a ₿ꝖĪ id of 𝑆.  

 

Example 2 Consider the semigroup in Example 1. 𝐴 =
{ʑ, պ} is a ₿ꝖĪ id of  𝑆. By the definition of Ꞩȼʩ, 𝑆𝐴 =
{(ʑ, 𝑈), (և, ∅)(պ, 𝑈)}. 𝑆𝐴 is an S-int ₿ꝖĪ-id. Conversely, by 

choosing the S-int ₿ꝖĪ-id as ᵵ𝑆 = {(ʑ, 𝑈), (և, ∅)(պ, 𝑈)}, 

which is the Ꞩȼʩ of 𝑋 = {ʑ, պ}, 𝑋 is a ₿ꝖĪ idof 𝑆. 

 

Now, we continue with the relationships between S-int ₿ꝖĪ-

ids and other types of S-int ids of 𝑆. 

 

Theorem 11 Every S-int bi-id is an S-int ₿ꝖĪ-id. 

Proof: Let ᵵ𝑆 be an S-int bi-id of 𝑆. Then, ᵵ𝑆 ∘ ꗟ̃ ∘

ᵵ𝑆 ⊆̃ ᵵ𝑆.Thus,(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ∘ ꗟ̃ ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆Hence, 

ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

We show with a counterexample that the converse of 

Theorem 11 is not true: 

 

Example 3 Let the semigroup 𝑆 = {ҹ, ℘, ъ, ѿ} be defined 

as follows: 

 

 

 

 

 

 

 

 

 

 

Let ᵵ𝑆 be Ꞩꞩ over 𝑈 = ℤ as follows: ᵵ𝑆 =
{(ҹ, {1,2,3,4,5}), (℘, {2,3}), (ъ, {4,5})(ѿ, {1})}. Here, ᵵ𝑆 is 

an S-int ₿ꝖĪ-id. In fact, 

(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (ҹ) = ᵵ𝑆(ҹ) ∪ ᵵ𝑆(℘) ∪ ᵵ𝑆(ъ) ∪

ᵵ𝑆(ѿ) ⊆ ᵵ𝑆(ҹ),(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (℘) = ∅ ⊆

ᵵ𝑆(℘),(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (ъ) = ∅ ⊆ ᵵ𝑆(ъ),(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘

ꗟ̃ ∘ ᵵ𝑆) (ѿ) = ∅ ⊆ ᵵ𝑆(ѿ) 

Thus, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. However, since(ᵵ𝑆 ∘ ꗟ̃ ∘
ᵵ𝑆)(℘) = ᵵ𝑆(ѿ) ⊈ ᵵ𝑆(℘) ᵵ𝑆 is not an S-int bi-id. 

 

Theorem 12 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an ℛ semigroup. 

Then, the following conditions are equivalent: 

1. ᵵ𝑆 is an S-int bi-id. 

2. ᵵ𝑆  is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Theorem 11. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id and ȴ, ȵ, ȶ ∈ 𝑆. By assumption, there exists ᵯ, ᵰ ∈ 𝑆 

such that ȴ = ȴᵯȴ and ȵ = ȵᵰȵ Thus, 

ᵵ𝑆(ȴȵȶ) = ᵵ𝑆((ȴᵯȴ)ȵȶ) = ᵵ𝑆(ȴᵯȴȵȶ)

⊇ ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȶ) = ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȶ) 

ᵵ𝑆(ȴȵ) = ᵵ𝑆(ȴᵯȴ(ȵ𝑦)ȵ) ⊇ ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȵ)
= ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȵ) 

Thus, ᵵ𝑆 is an S-int bi-id. 

 

Proposition 1 Every S-int Ł id is an S-int ₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 be an S-int Ł id of 𝑆. Then, by Theorem 7, ᵵ𝑆 

is an S-int bi-id. The rest of the proof is obvious by Theorem 

11. Hence, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 1 is not true: 

 

Example 4 Let the semigroup 𝔎 = {ᶑ, ϗ} be defined as 

follows: 

 

 

 

 

 

 

 

 

Let ᵵ𝔎 be Ꞩꞩ over 𝑈 = {[
𝑥
0

]| 𝑥 ∈ ℤ} as follows:ᵵ𝔎 =

{(ᶑ, {[
1
0

] , [
3
0

] , [
4
0

]}) , (ϗ, {[
1
0

] , [
2
0

]})} 

Here, ᵵ𝔎 is an S-int ₿ꝖĪ-id. In fact, 

 

(ᵵ𝔎 ∘ ꗟ̃ ∘ ᵵ𝔎 ∘ ꗟ̃ ∘ ᵵ𝔎) (ᶑ) = ᵵ𝔎(ᶑ) ⊆ ᵵ𝔎(ᶑ),(ᵵ𝔎 ∘ ꗟ̃ ∘ ᵵ𝔎 ∘

ꗟ̃ ∘ ᵵ𝔎) (ϗ) = ᵵ𝔎(ϗ) ⊆ ᵵ𝔎(ϗ) 

 

Thus, ᵵ𝔎 is an S-int ₿ꝖĪ-id of 𝔎. However, sinceᵵ𝔎(ϗᶑ) =
ᵵ𝔎(ϗ) ⊉ ᵵ𝔎(ᶑ)ᵵ𝔎 is not an S-int Ł id. 

 

Proposition 2 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an ℛ semigroup and 

Ꞧ simple semigroup. Then, the following conditions are 

equivalent: 

1. ᵵ𝑆 is an S-int Ł id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Proposition 1. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id and ȴ, ȵ, ȶ ∈ 𝑆. By assumption, there exists ᵯ, ᵰ ∈ 𝑆 

such that ȴ = ȵᵯ and ȵ = ȵᵰȵ. Thus, ᵵ𝑆(ȴȵ) =

ᵵ𝑆((ȵᵯ)(ȵᵰȵ)) = ᵵ𝑆(ȵᵯȵᵰȵ) ⊇ ᵵ𝑆(ȵ) ∩ ᵵ𝑆(ȵ) ∩

ᵵ𝑆(ȵ) = ᵵ𝑆(ȵ). Thus, ᵵ𝑆 is an S-int Ł id. 

 

Proposition 3 Every S-int Ꞧ id is an S-int ₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 be an S-int Ꞧ id of 𝑆. Then, by Theorem 7, ᵵ𝑆 

is an S-int bi-id. The rest of the proof is obvious by Theorem 

11. Hence, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 3 is not true: 

 

Example 5 Consider the Ꞩꞩ ᵵ𝑆 in Example 1. It was shown 

in Example 1 that ᵵՏ is an S-int ₿ꝖĪ-id. Since,ᵵՏ(ևʑ) =
ᵵՏ(ʑ) ⊉ ᵵՏ(և) ᵵՏ is not an S-int Ꞧ id. 

 

Proposition 4 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an ℛ semigroup and 

Ł simple semigroup. Then, the following conditions are 

equivalent: 

1. ᵵ𝑆 is an S-int Ꞧ id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Proposition 3. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id and ȴ, ȵ ∈ 𝑆. By assumption, there exists ᵯ, ᵰ ∈ 𝑆 

such that ȵ = ᵯȴ and ȴ = ȴᵰȴ. Thus,ᵵ𝑆(ȴȵ) =

⊗ ҹ ℘ Ъ Ѿ 

ҹ ҹ ҹ Ҹ ҹ 

℘ ҹ ҹ Ҹ ҹ 

ъ ҹ ҹ Ҹ ℘ 

ѿ ҹ ҹ ℘ ъ 

⋆ ᶑ ϗ 

ᶑ ᶑ ᶑ 

ϗ ϗ ϗ 
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ᵵ𝑆((ȴᵰȴ)(ᵯȴ)) = ᵵ𝑆(ȴᵰȴᵯȴ) ⊇ ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȴ) =

ᵵ𝑆(ȴ)Thus, ᵵ𝑆 is an S-int Ꞧ id. 

 

Theorem 13 Every S-int id is an S-int ₿ꝖĪ-id. 

 

Proof: It is followed by Proposition 1 and Proposition 3. 

Here note that the converse of Theorem 13 is not true 

follows from Example 4 and Example 5.  

 

Theorem 14 shows that the converse of Theorem 13 holds 

for ℛ groups. 

 

Theorem 14 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and𝑆 be an ℛ group. Then, the 

following conditions are equivalent: 

1. ᵵ𝑆 is an S-intid. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Proposition 1 and Proposition 3. 

Letᵵ𝑆 is an S-int ₿ꝖĪ-id of a group 𝑆. Then, by Theorem 1, 

𝑆 is both an Ł simple and an Ꞧ simple semigroup. The rest 

of the proof follows from Proposition 2 and Proposition 4. 

 

Theorem 15 Every S-int interior id is an S-int ₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 be an S-int interior id of 𝑆. Then, ꗟ̃ ∘ ᵵ𝑆 ∘

ꗟ̃ ⊆̃ ᵵ𝑆.Thus,ᵵ𝑆 ∘ (ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆 ∘ ᵵ𝑆 ∘ ᵵ𝑆 ⊆̃ ꗟ̃ ∘ ᵵ𝑆 ∘

ꗟ̃ ⊆̃ ᵵ𝑆. Hence, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

We show with a counterexample that the converse of 

Theorem 15 is not true: 

 

Example 6 Consider the Ꞩꞩ ᵵՏ in Example 1. It was shown 

in Example 1 that ᵵՏ is an S-int ₿ꝖĪ id. SinceᵵՏ(ևևʑ) =
ᵵՏ(ʑ) ⊉ ᵵՏ(և), ᵵՏ is not an S-int interior id. 

 

Theorem 16 shows that the converse of Theorem 15 holds 

for the groups. 

 

Theorem 16 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a group. Then, the 

following conditions are equivalent: 

1. ᵵ𝑆 is an S-int interior id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Theorem 15. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id and ȴ, ȵ, ȶ ∈ 𝑆. By assumption, there exists ᵯ ∈ 𝑆 

such that ȴ = ȵᵯ and ȶ = ᵰȵ. Thus, ᵵ𝑆(ȴȵȶ) =

ᵵ𝑆((ȵᵯ)ȵ(ᵰȵ)) = ᵵ𝑆(ȵᵯȵᵰȵ) ⊇ ᵵ𝑆(ȵ) ∩ ᵵ𝑆(ȵ) ∩

ᵵ𝑆(ȵ) = ᵵ𝑆(ȵ). Thus, ᵵ𝑆 is an S-int interior id. 

 

Theorem 17 Every S-int quasi-id is an S-int ₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 be an S-int quasi-id of 𝑆. Then, by Theorem 7, 

ᵵ𝑆 is an S-int bi-id. The rest of the proof is obvious by 

Theorem 11. Hence, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

We show with a counterexample that the converse of 

Theorem 17 is not true: 

 

Example 7 Consider the Ꞩꞩ ᵵ𝑆 in Example 3. It was shown 

in Example 3 that ᵵ𝑆 is an S-int ₿ꝖĪ-id. Since,(ᵵ𝑆 ∘

ꗟ̃) (℘) ∩ (ꗟ̃ ∘ ᵵ𝑆) (℘) = ᵵ𝑆(ѿ) ∪ ᵵ𝑆(ъ) ⊈ ᵵ𝑆(℘).ᵵ𝑆 is not 

an S-int quasi-id. 

 

Theorem 18 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an ℛ group. Then, the 

following conditions are equivalent: 

1. ᵵ𝑆 is an S-int quasi-id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

Proof: (1) implies (2) is by Theorem 17. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id. Since 𝑆 is an ℛ group, then, by Theorem 14, ᵵ𝑆 is 

an S-int id. The rest of the proof is obvious by Theorem 7 ᵵ𝑆 

is an S-int quasi-id of 𝑆. 

 

Theorem 19 Every S-int bi-interior id is an S-int ₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 be an S-int bi-interior id of 𝑆. Then, (ꗟ̃ ∘ ᵵ𝑆 ∘

ꗟ̃) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆.Since, (ᵵ𝑆 ∘ ꗟ̃) ∘ ᵵ𝑆 ∘ (ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ꗟ̃ ∘

ᵵ𝑆 ∘ ꗟ̃and ᵵ𝑆 ∘ (ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 it is obtained 

ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ⊆̃ (ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆. 

Hence, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

Conversely, an S-int ₿ꝖĪ ideal is not necessarily an S-int bi-

interior id. 

 

Example 8 Consider the Ꞩꞩ ᵵ𝑆 in Example 3. It was shown 

in Example 3 that ᵵ𝑆 is an S-int ₿ꝖĪ-id. Since,(ꗟ̃ ∘ ᵵ𝑆 ∘

ꗟ̃) (℘) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (℘) = ᵵ𝑆(ѿ) ⊈ ᵵ𝑆(℘)ᵵ𝑆 is not an S-

int bi-interior id. 

 

The following theorem offers another characterization of S-

int ₿ꝖĪ ideals. 

 

Theorem 20 Le tᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an ℛ group. Then, the 

following conditions are equivalent: 

1. ᵵ𝑆 is an S-int bi-interior id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Theorem 19. Let ᵵ𝑆 is an S-int 

₿ꝖĪ-id. Since 𝑆 is an ℛ group, then, by Theorem 12, ᵵ𝑆 is 

an S-int bi-id. The rest of the proof is obvious by Theorem 7 

ᵵ𝑆 is an S-int bi-interior id of 𝑆. 

 

This characterization will be useful for proving subsequent 

results. 

 

Proposition 5 Every S-int Ł bi-quasi id is an S-int ₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 be an S-int ₿ꝖĪ-id of 𝑆. Then, (ꗟ̃ ∘ ᵵ𝑆) ∩̃ (ᵵ𝑆 ∘

ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆. Since, (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) ∘ ᵵ𝑆 ⊆̃ ꗟ̃ ∘ ᵵ𝑆and ᵵ𝑆 ∘

(ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 it is obtained ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘

ᵵ𝑆 ⊆̃ (ꗟ̃ ∘ ᵵ𝑆) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆. Hence, ᵵ𝑆 is an S-int Ł 

bi-quasi id of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 5 is not true: 

 

Example 9 Consider the Ꞩꞩ ᵵ𝑆 in Example 3. It was shown 

in Example 3 that ᵵ𝑆 is an S-int ₿ꝖĪ-id. Since,(ꗟ̃ ∘
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ᵵ𝑆) (℘) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (℘) = ᵵ𝑆(ѿ) ⊈ ᵵ𝑆(℘).  ᵵ𝑆 is not an S-

int Ł bi-quasi id. 

 

Proposition 6 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 bean Ꞧ simple ℛ 

semigroup. Then, the following conditions are equivalent: 

1. ᵵ𝑆 is an S-int Ł bi-quasi id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

Proof: (1) implies (2) is by Proposition 5. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id. Since 𝑆 isꞦ simple ℛ semigroup, then, by Theorem 

12, ᵵ𝑆 is an S-int bi-id and by Proposition 2, ᵵ𝑆 is an S-int Ł 

id. Since, (ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆and (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆 it is obtained 

(ꗟ̃ ∘ ᵵ𝑆) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆. 

 

Proposition 7 Every S-int Ꞧ bi-quasi id is also an S-int ₿ꝖĪ-

id. 

 

Proof: Let ᵵ𝑆 be an S-int ₿ꝖĪ-id of 𝑆. Then, (ᵵ𝑆 ∘ ꗟ̃) ∩̃ (ᵵ𝑆 ∘

ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆. Since, ᵵ𝑆 ∘ (ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆 ∘ ꗟ̃and ᵵ𝑆 ∘

(ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 it is obtained ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘

ᵵ𝑆 ⊆̃ (ᵵ𝑆 ∘ ꗟ̃) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆. Hence, ᵵ𝑆 is an S-int Ꞧ 

bi-quasi id of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 7 is not true: 

 

Example 10 Consider the Ꞩꞩ ᵵ𝑆 in Example 3. It was shown 

in Example 3 that ᵵ𝑆 is an S-int ₿ꝖĪ-id. Since,(ᵵ𝑆 ∘

ꗟ̃) (℘) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (℘) = ᵵ𝑆(ѿ) ⊈ ᵵ𝑆(℘)ᵵ𝑆 is not an S-

int Ꞧ bi-quasi id. 

 

Proposition 8 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 bean Ł simple ℛ  

semigroup. Then, the following conditions are equivalent: 

1. ᵵ𝑆 is an S-int Ꞧ bi-quasi id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Proposition 7. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id. Since 𝑆 isan Ł simple ℛ semigroup, then, by 

Theorem 12, ᵵ𝑆 is an S-int bi-id and by Proposition 4, ᵵ𝑆 is 

an S-int Ꞧ id. Since, (ᵵ𝑆 ∘ ꗟ̃) ⊆̃ ᵵ𝑆and (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆 it is 

obtained (ᵵ𝑆 ∘ ꗟ̃) ∩̃ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆. 

 

Theorem 21 Every S-int bi-quasi id is also an S-int ₿ꝖĪ-id. 

 

Proof: It follows by Proposition 5 and Proposition 7. 

 

Theorem 22 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an ℛ group. Then, the 

following conditions are equivalent: 

1. ᵵ𝑆 is an S-int bi-quasi id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Note that the converse of Theorem 21 is not true, following 

from Example 9 and Example 10. Theorem 22 shows that 

the converse of Theorem 21 holds for ℛ groups. 

 

Proposition 9 Every S-int Ł quasi-interior id is also an S-int 

₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 be an S-int Ł quasi-interior id of 𝑆. Then, ꗟ̃ ∘

ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆. Thus,(ᵵ𝑆 ∘ ꗟ̃) ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ⊆̃ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘

ᵵ𝑆 ⊆̃ ᵵ𝑆.Hence, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

Proposition 10 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an Ꞧ simple 

semigroup. Then, the following conditions are equivalent: 

1. ᵵ𝑆 is an S-int Ł quasi-interior id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Proposition 9. Let ᵵ𝑆 is an S-int 

₿ꝖĪ-id and ȴ, ȵ, ȶ, ᵭ ∈ 𝑆. By assumption, there exists ᵯ ∈ 𝑆 

such that ȴ = ȵᵯ. Thus,ᵵ𝑆(ȴȵȶᵭ) = ᵵ𝑆((ȵᵯ)ȵȶᵭ) =

ᵵ𝑆(ȵᵯȵȶᵭ) ⊇ ᵵ𝑆(ȵ) ∩ ᵵ𝑆(ȵ) ∩ ᵵ𝑆(ᵭ) = ᵵ𝑆(ȵ) ∩ ᵵ𝑆(ᵭ). 

Thus, ᵵ𝑆 is an S-int Ł quasi-interior id. 

 

Proposition 11 Every S-int Ꞧ quasi-interior id is also an S-

int ₿ꝖĪ-id. 

Proof: Let ᵵ𝑆 be an S-int Ꞧ quasi-interior id of 𝑆. Then, ᵵ𝑆 ∘

ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ⊆̃ ᵵ𝑆. Thus, ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ (ꗟ̃ ∘ ᵵ𝑆) ⊆̃ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘

ꗟ̃ ⊆̃ ᵵ𝑆. Hence, ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆. 

 

Example 11 Let 𝑆 = {ℵ, ɘ, ͱ, З, ư} be defined as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let 𝑓𝑆 be Ꞩꞩ over 𝑈as follows: 𝑓𝑆 =
{(ℵ, 𝑈), (ɘ, ∅), (ͱ, 𝑈), (З, ∅), (ư, ∅)}. Here, 𝑓𝑆 is an S-int 

₿ꝖĪ-id. However, since𝑓𝑆(ͱɘͱɘ) = 𝑓𝑆(З) ⊉ 𝑓𝑆(ͱ), 𝑓𝑆 is not 

an S-int Ꞧ quasi-interior id. 

 

Proposition 12 Let 𝑓𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be an Ł simple 

semigroup. Then, the following conditions are equivalent: 

1. ᵵ𝑆 is an S-int Ꞧ quasi-interior id. 

2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Proposition 11. Letᵵ𝑆 is an S-int 

₿ꝖĪ-id and ȴ, ȵ, ȶ, ᵭ ∈ 𝑆. By assumption, there exists ᵯ ∈ 𝑆 

such that ᵭ = ᵯȶ. Thus,ᵵ𝑆(ȴȵȶᵭ) = ᵵ𝑆(ȴȵȶ(ᵯȶ)) =

ᵵ𝑆(ȴȵȶᵯȶ) ⊇ ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȶ) ∩ ᵵ𝑆(ȶ) = ᵵ𝑆(ȴ) ∩ ᵵ𝑆(ȶ).Thus, ᵵ𝑆 

is an S-int Ꞧ quasi-interior id. 

 

Theorem 23 Every S-int quasi-interior id is also an S-int 

₿ꝖĪ-id. 

 

Proof: It follows from Proposition 9 and Proposition 11. 

 

Theorem 24 Let ᵵ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a group. Then, the 

following conditions are equivalent: 

1. ᵵ𝑆 is an S-int quasi-interior id. 

⁂ ℵ ɘ ͱ З ư 

ℵ ℵ З ℵ З З 

ɘ ℵ ɘ ℵ З З 

ͱ ℵ З ͱ З ư 

З ℵ З ℵ З З 

ư ℵ З ͱ З ư 
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2. ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: (1) implies (2) is by Proposition 9 and Proposition 

11. Let 𝑆 be a group. The rest of the proof is obvious by 

Proposition 10 and Proposition 12. Note here that the 

converse of Theorem 23 is not true, following from 

Example 11. Theorem 24 shows that the converse of 

Theorem 23 holds for groups. 

 

The following theorem analyzes the behavior of S-int ₿ꝖĪ 

ideals under soft set operations. The following theorem 

analyzes the behavior of S-int ₿ꝖĪ ideals under soft set 

operations. We prove that finite soft AND-products, 

Cartesian products, and intersections of S-int ₿ꝖĪ ideals 

remain S-int ₿ꝖĪ ideals. In contrast, finite soft OR-products 

and unions of S-int ₿ꝖĪ ideals are not S-int ₿ꝖĪ ideals. 

 

Theorem 25 Let ᵹ𝑆 and ᵹ𝑇 be S-int ₿ꝖĪ-ids of 𝑆 and 𝑇, 

respectively. Then, ᵹ𝑆 ∧ ᵹ𝑇 is an S-int ₿ꝖĪ-ids of 𝑆 × 𝑇. 

 

Proof: Let (ᵿ1, Ե1), (ᵿ2, Ե2), (ᵿ3, Ե3), (ᵿ4, Ե4), (ᵿ5, Ե5) ∈
𝑆 × 𝑇Then, 

ᵹ𝑆∧𝑇((ᵿ1, Ե1)(ᵿ2, Ե2)(ᵿ3, Ե3)(ᵿ4, Ե4)(ᵿ5, Ե5))

= ᵹ𝑆∧𝑇(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5, Ե1Ե2Ե3Ե4Ե5) 
= ᵹ𝑆(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5) ∩ ᵹ𝑇(Ե1Ե2Ե3Ե4Ե5) 

⊇ (ᵹ𝑆(ᵿ1)

∩ ᵹ𝑆(ᵿ3) ∩ ᵹ𝑆(ᵿ5))

∩ (ᵹ𝑇(Ե1) ∩ ᵹ𝑇(Ե3) ∩ ᵹ𝑇(Ե5)) 

= ( ᵹ𝑆(ᵿ1)

∩ ᵹ𝑇(Ե1)) ∩ (ᵹ𝑆(ᵿ3) ∩ ᵹ𝑇(Ե3))

∩ (ᵹ𝑆(ᵿ5) ∩ ᵹ𝑇(Ե5)) 

= ᵹ𝑆∧𝑇(ᵿ1, Ե1) ∩ ᵹ𝑆∧𝑇(ᵿ3, Ե3) ∩ ᵹ𝑆∧𝑇(ᵿ5, Ե5) 

 

Thus, ᵹ𝑆 ∧ ᵹ𝑇 is an S-int ₿ꝖĪ-id of 𝑆 × 𝑇. 

 

Note her that ᵹ𝑆 ∨ ᵹ𝑇 is not always an S-int ₿ꝖĪ-id with 

Example 12. 

 

Example 12 Let’s consider the subsemigroups in Example 1 

and Example 4. Let ᵵՏ and ᵵ𝔎 be Ꞩꞩ over 𝑈 = 𝑍6 =
{0,1,2,3,4,5} as follows: 

 

ᵵՏ = {(ʑ, {1,3}), (և, {2,4,5}), (պ, {1,2,3,4,5})},ᵵ𝔎 =
{(ᶑ, {1,3,4,5}), (ϗ, {2})} 

 

ᵵՏ and ᵵ𝔎are S-int ₿ꝖĪ-ids. Here, since  

 

ᵵՏ∨𝔎((և, ᶑ)(և, ᶑ)(և, ᶑ)(և, ᶑ)(ʑ, ϗ))

⊉ ᵵՏ∨𝔎(և, ᶑ) ∩ ᵵՏ∨𝔎(և, ᶑ) ∩ ᵵՏ∨𝔎(ʑ, ϗ) 

ᵵՏ ∨ ᵵ𝔎 is not an S-int ₿ꝖĪ-id. 

 

Theorem 26 Let ᵵ𝑆 and ᵵ𝑇 be S-int ₿ꝖĪ-ids of 𝑆 and 𝑇 over 

𝑈, respectively. Then, ᵵ𝑆 × ᵵ𝑇 is an S-int ₿ꝖĪ-id of 𝑆 × 𝑇 

over 𝑈 × 𝑈. 

 

Proof: Let ᵵ𝑆 × ᵵ𝑇 = ᵵ𝑆×𝑇, where ᵵ𝑆×𝑇(ᵿ, Ե) =
ᵵ𝑆(ᵿ) × ᵵ𝑇(Ե) for all (ᵿ, Ե) ∈ 𝑆 × 𝑇. Then, for all (ᵿ1, Ե1), 

(ᵿ2, Ե2), (ᵿ3, Ե3), (ᵿ4, Ե4), (ᵿ5, Ե5) ∈  𝑆 × 𝑇, 

 

ᵵ𝑆×𝑇((ᵿ1, Ե1)(ᵿ2, Ե2)(ᵿ3, Ե3)(ᵿ4, Ե4)(ᵿ5, Ե5))

=  ᵵ𝑆×𝑇(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5, Ե1Ե2Ե3Ե4Ե5) 
=  ᵵ𝑆(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5) × ᵵ𝑇(Ե1Ե2Ե3Ե4Ե5) 

⊇ (ᵵ𝑆(ᵿ1)

∩ ᵵ𝑆(ᵿ3) ∩ ᵵ𝑆(ᵿ5))

× (ᵵ𝑇(Ե1) ∩ ᵵ𝑇(Ե3) ∩ ᵵ𝑇(Ե5)) 

= ( ᵵ𝑆(ᵿ1)

× ᵵ𝑇(Ե1)) ∩ (ᵵ𝑆(ᵿ3) × ᵵ𝑇(Ե3))

∩ (ᵵ𝑆(ᵿ5) × ᵵ𝑇(Ե5)) 

= ᵵ𝑆×𝑇(ᵿ1, Ե1) ∩ ᵵ𝑆×𝑇(ᵿ3, Ե3) ∩ ᵵ𝑆×𝑇(ᵿ5, Ե5) 

 

Hence, ᵵ𝑆 × ᵵ𝑇 = ᵵ𝑆×𝑇 is an S-int ₿ꝖĪ-id of 𝑆 × 𝑇 over 

𝑈 × 𝑈. 

 

Theorem 27 Let ⱷ𝑆 and ϧ𝑆 be S-int ₿ꝖĪ-ids. Then, ⱷ𝑆 ∩̃ ϧ𝑆 

is an S-int ₿ꝖĪ-id. 

Proof: Let ⱷ𝑆 and ϧ𝑆 be S-int ₿ꝖĪ-ids of 𝑆. Then, ⱷ𝑆 ∘ ꗟ̃ ∘

ⱷ𝑆 ∘ ꗟ̃ ∘ ⱷ𝑆 ⊆̃ ⱷ𝑆 and ϧ𝑆 ∘ ꗟ̃ ∘ ϧ𝑆 ∘ ꗟ̃ ∘ ϧ𝑆 ⊆̃ ϧ𝑆. 

Thus,(ⱷ𝑆 ∩̃ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∩̃ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∩̃ ϧ𝑆) ⊆̃ ⱷ𝑆 ∘ ꗟ̃ ∘

ⱷ𝑆 ∘ ꗟ̃ ∘ ⱷ𝑆 ⊆̃ ⱷ𝑆and(ⱷ𝑆 ∩̃ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∩̃ ϧ𝑆) ∘ ꗟ̃ ∘

(ⱷ𝑆 ∩̃ ϧ𝑆) ⊆̃ ϧ𝑆 ∘ ꗟ̃ ∘ ϧ𝑆 ∘ ꗟ̃ ∘ ϧ𝑆 ⊆̃ ϧ𝑆.Hence,(ⱷ𝑆 ∩̃ ϧ𝑆) ∘

ꗟ̃ ∘ (ⱷ𝑆 ∩̃ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∩̃ ϧ𝑆) ⊆̃ ⱷ𝑆 ∩̃ ϧ𝑆. Thus, ⱷ𝑆 ∩̃ ϧ𝑆 is 

an S-int ₿ꝖĪ-id. 

 

Corollary 2 Let ⱷ𝑆 be an S-int Ꞧ id (Ł id/id/bi-id/interior-

id/quasi-id/bi-interior/left bi-quasi/right bi-quasi/bi-

quasi/left quasi-interior/right quasi-interior/quasi-

interior)and ϧ𝑆 be an S-int Ꞧ id (Ł id/id/bi-id/interior-

id/quasi-id/bi-interior/left bi-quasi/right bi-quasi/bi-

quasi/left quasi-interior/right quasi-interior/quasi-interior). 

Then, ⱷ𝑆 ∩̃ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proposition 13 Let ⱷ𝑆 be an S-int Ł id and ϧ𝑆 be an Ꞩꞩ. 

Then, ⱷ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: Let ⱷ𝑆 be S-int Ł id of 𝑆. Then, ꗟ̃ ∘ ⱷ𝑆 ⊆̃ ⱷ𝑆 and 

ᵵ𝑆 ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆. Thus,(ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘

(ⱷ𝑆 ∘ ϧ𝑆) = ⱷ𝑆 ∘ ϧ𝑆 ∘ (ꗟ̃ ∘ ⱷ𝑆) ∘ ϧ𝑆 ∘ (ꗟ̃ ∘ ⱷ𝑆) ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘

ϧ𝑆 ∘ ⱷ𝑆 ∘ ϧ𝑆 ∘ ⱷ𝑆 ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ (ꗟ̃ ∘ ⱷ𝑆) ∘ (ꗟ̃ ∘ ⱷ𝑆) ∘

ϧ𝑆 ⊆̃ (ⱷ𝑆 ∘ ⱷ𝑆) ∘ ⱷ𝑆 ∘ ϧ𝑆 ⊆̃ (ⱷ𝑆 ∘ ⱷ𝑆) ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ ϧ𝑆. Thus, 

ᵵ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proposition 14 Let ⱷ𝑆 be an S-int Ꞧ id and ϧ𝑆 be an Ꞩꞩ. 

Then, ⱷ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: Let ⱷ𝑆 be S-int Ꞧ id of 𝑆. Then, ⱷ𝑆 ∘ ꗟ̃ ⊆̃ ⱷ𝑆 and 

ⱷ𝑆 ∘ ⱷ𝑆 ⊆̃ ᵵ𝑆. Thus,(ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘

(ⱷ𝑆 ∘ ϧ𝑆) ⊆̃ ⱷ𝑆 ∘ (ꗟ̃ ∘ ꗟ̃) ∘ ⱷ𝑆 ∘ (ꗟ̃ ∘ ꗟ̃) ∘ ⱷ𝑆 ∘

ϧ𝑆 ⊆̃ (ⱷ𝑆 ∘ ꗟ̃) ∘ (ⱷ𝑆 ∘ ꗟ̃) ∘ ⱷ𝑆 ∘ ϧ𝑆 ⊆̃ (ⱷ𝑆 ∘ ⱷ𝑆) ∘ ⱷ𝑆 ∘

ϧ𝑆 ⊆̃ (ⱷ𝑆 ∘ ⱷ𝑆) ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ ϧ𝑆 .Thus, ⱷ𝑆 ∘ ϧ𝑆 is an S-int 

₿ꝖĪ-id. 

 

Theorem 28 Let ⱷ𝑆 be an S-int id and ϧ𝑆 be an Ꞩꞩ. Then, 

ⱷ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proposition 15 Let ϧ𝑆 be an S-int Ł id and ⱷ𝑆 be an Ꞩꞩ. 

Then, ⱷ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: Let ϧ𝑆be S-int Ł id of 𝑆. Then, ꗟ̃ ∘ ϧ𝑆 ⊆̃ ϧ𝑆 and ϧ𝑆 ∘
ϧ𝑆 ⊆̃ ϧ𝑆.  
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Then,(ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∘ ϧ𝑆) ⊆̃ ⱷ𝑆 ∘ ϧ𝑆 ∘

(ꗟ̃ ∘ ꗟ̃) ∘ ϧ𝑆 ∘ (ꗟ̃ ∘ ꗟ̃) ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ ϧ𝑆 ∘ (ꗟ̃ ∘ ϧ𝑆) ∘

(ꗟ̃ ∘ ϧ𝑆) ⊆̃ ⱷ𝑆 ∘ (ϧ𝑆 ∘ ϧ𝑆) ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ (ϧ𝑆 ∘ ϧ𝑆) ⊆̃ ⱷ𝑆 ∘ ϧ𝑆. 

Thus, ⱷ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proposition 16 Let ϧ𝑆 be an S-int Ꞧ id and ⱷ𝑆 be an Ꞩꞩ. 

Then, ⱷ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: Let ϧ𝑆 be S-int Ꞧ id of 𝑆. Then, ϧ𝑆 ∘ ꗟ̃ ⊆̃ ϧ𝑆 and ϧ𝑆 ∘

ϧ𝑆 ⊆̃ ϧ𝑆. Thus, (ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∘ ϧ𝑆) ∘ ꗟ̃ ∘ (ⱷ𝑆 ∘

ϧ𝑆) ⊆̃ ⱷ𝑆 ∘ (ϧ𝑆 ∘ ꗟ̃) ∘ ⱷ𝑆 ∘ (ϧ𝑆 ∘ ꗟ̃) ∘ ⱷ𝑆 ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ ϧ𝑆 ∘

ⱷ𝑆 ∘ ϧ𝑆 ∘ ⱷ𝑆 ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ (ϧ𝑆 ∘ ꗟ̃) ∘ (ϧ𝑆 ∘ ꗟ̃) ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘

(ϧ𝑆 ∘ ϧ𝑆) ∘ ϧ𝑆 ⊆̃ ⱷ𝑆 ∘ (ϧ𝑆 ∘ ϧ𝑆) ⊆̃ ⱷ𝑆 ∘ ϧ𝑆. Thus, ᵵ𝑆 ∘ ϧ𝑆 is 

an S-int ₿ꝖĪ-id. 

 

Theorem 29 Let ϧ𝑆 be an S-int id and ⱷ𝑆 be an Ꞩꞩ. Then, 

ⱷ𝑆 ∘ ϧ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proposition 17 Let ⱷ𝑆 and ҍ𝑆 be Ꞩꞩs over 𝑈. If ⱷ𝑆 ∘ ҍ𝑆 is an 

S-int Ł id, then it is an S-int ₿ꝖĪ-id. 

 

Proof: Let ᵵ𝑆 ∘ ҍ𝑆 is an S-int Ł id. Then,(ⱷ𝑆 ∘ ҍ𝑆) ∘

[ꗟ̃ ∘ (ⱷ𝑆 ∘ ҍ𝑆)] ∘ [ꗟ̃ ∘ (ⱷ𝑆 ∘ ҍ𝑆)] ⊆̃ [(ⱷ𝑆 ∘ ҍ𝑆) ∘ (ⱷ𝑆 ∘ ҍ𝑆)] ∘

(ⱷ𝑆 ∘ ҍ𝑆) ⊆̃ (ⱷ𝑆 ∘ ҍ𝑆) ∘ (ⱷ𝑆 ∘ ҍ𝑆) ⊆̃ (ⱷ𝑆 ∘ ҍ𝑆), implying 

that ᵵ𝑆 ∘ ҍ𝑆 is an S-int ₿ꝖĪ-id. 

 

Theorem 30 Let ᵵ𝑆 be an S-int subsemigroup over 𝑈, 𝛼 be a 

subset of 𝑈, 𝐼ϧ(ᵵ𝑆) be the image of ᵵ𝑆 such that 𝛼 ∈ 𝐼𝑚(ᵵ𝑆). 

If ᵵ𝑆 is an S-int ₿ꝖĪ-id of 𝑆, then 𝒰(ᵵ𝑆; 𝛼) is a ₿ꝖĪ id of 𝑆. 

 

Proof: Since, ᵵ𝑆(𝑥) = 𝛼 for some𝑥 ∈ 𝑆, ∅ ≠ 𝒰(ᵵ𝑆; 𝛼) ⊆ 𝑆. 

Let𝑘 ∈ 𝒰(ᵵ𝑆; 𝛼) ∙ 𝑆 ∙ 𝒰(ᵵ𝑆; 𝛼) ∙ 𝑆 ∙ 𝒰(ᵵ𝑆; 𝛼). Then, there 

exist 𝑥, 𝑦, 𝑧 ∈ 𝒰(ᵵ𝑆; 𝛼) and 𝑏 ∈ 𝑆 such that 𝑘 = 𝑥𝑏𝑦𝑏𝑧. 

Thus, ᵵ𝑆(𝑥) ⊇ 𝛼, ᵵ𝑆(𝑦) ⊇ 𝛼 and ᵵ𝑆(𝑧) ⊇ 𝛼. Since ᵵ𝑆 is an 

S-int ₿ꝖĪ-id,ᵵ𝑆(𝑘) = ᵵ𝑆(𝑥𝑏𝑦𝑏𝑧) ⊇ ᵵ𝑆(𝑥) ∩ ᵵ𝑆(𝑦) ∩ ᵵ𝑆(𝑧) ⊇
𝛼 ∩ 𝛼 ∩ 𝛼 ⊇ 𝛼. Hence, ᵵ𝑆(𝑘) ⊇ 𝛼, implying that 𝑘 ∈
𝒰(ᵵ𝑆; 𝛼). Therefore,  𝒰(ᵵ𝑆; 𝛼) ∙ 𝑆 ∙ 𝒰(ᵵ𝑆; 𝛼) ∙ 𝑆 ∙ 𝒰(ᵵ𝑆; 𝛼) ⊆
𝒰(ᵵ𝑆; 𝛼). Moreover, since ᵵ𝑆 is an S-int subsemigroup over 

𝑈, by Theorem 8, 𝒰(ᵵ𝑆; 𝛼) is a subsemigroup of 𝑆. 

Thus,𝒰(ᵵ𝑆; 𝛼) is a ₿ꝖĪ id. 

 

We illustrate Theorem 30 with Example 13. 

 

Example 13 Consider Example 1. It was shown in Example 

1 that ᵵՏ is an S-int ₿ꝖĪ-id.  

 

By considering the image set of ᵵՏ, that is, 𝐼𝑚(ᵵՏ) =

{{1̅, 3̅, 5̅}, {1̅, 3̅, 7̅}, {1̅, 3̅, 5̅, 7̅}}, we obtain the following: 

𝒰(ᵵՏ; 𝛼)={

{ʑ, պ},             𝛼 = {1̅, 3̅, 5̅}

{և, պ},           𝛼 = {1̅, 3̅, 7̅}

{պ},                𝛼 = {1̅, 3̅, 5̅, 7̅}

 

 

Here,{ʑ, պ}, {և, պ}and {պ}are all ₿ꝖĪ ids of Տ. In fact, 

since{ʑ, պ} ∙ {ʑ, պ} ⊆ {ʑ, պ}, {և, պ} ∙ {և, պ} ⊆ {և, պ},{պ} ∙
{պ} ⊆ {պ}each 𝒰(ᵵՏ; 𝛼) is a subsemigroup of Տ. Similarly, 

since{ʑ, պ} ∙ Տ ∙ {ʑ, պ} ∙ Տ ∙ {ʑ, պ} = {պ} ⊆ {ʑ, պ}, {և, պ} ∙
𝑆 ∙ {և, պ} ∙ 𝑆 ∙ {և, պ} = {և, պ} ⊆ {և, պ}, {պ} ∙ 𝑆 ∙ {պ} ∙ 𝑆 ∙
{պ} = {պ} ⊆ {պ}each 𝒰(ᵵՏ; 𝛼) is a ₿ꝖĪ id of 𝑆. Now, 

consider the Ꞩꞩ ճՏ in Example 1. By taking into account 

𝐼𝑚(ճՏ) = {{1̅, 3̅, 5̅}, {1̅, 3̅, 7̅}} we obtain the following: 

𝒰(ճՏ; 𝛼)= {
{ʑ, պ}   𝛼 = {1̅, 3̅, 5̅}

{և}     𝛼 = {1̅, 3̅, 7̅}
 

 

Here, {և}is not a ₿ꝖĪ id of Տ. In fact, since{և} ∙ Տ ∙ {և} ∙ Տ ∙
{և} = {ʑ, և, պ} ⊈ {և}one of the 𝒰(ճՏ; 𝛼) is not a ₿ꝖĪ id of 

Տ, hence it is not a ₿ꝖĪ id of Տ, It is seen that each of 

𝒰(ճՏ; 𝛼) is not a ₿ꝖĪ id of Տ. On the other hand, in 

Example 1 it was shown that ճՏ is not an S-int ₿ꝖĪ-id of Տ. 

 

Definition 14 Let ᵵ𝑆 be an S-int subsemigroup and S-int 

₿ꝖĪ-id of 𝑆. Then, the ₿ꝖĪ ids 𝒰(ᵵ𝑆; 𝛼) are called upper 𝛼-

₿ꝖĪ ids of  ᵵ𝑆. 

 

Proposition 18 Let ᵵ𝑆 be an Ꞩꞩ over 𝑈, 𝒰(ᵵ𝑆; 𝛼) be upper 𝛼-

₿ꝖĪ of ᵵ𝑆 for each 𝛼 ⊆ 𝑈 and 𝐼𝑚(ᵵ𝑆) be an ordered set by 

inclusion. Then, ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proof: Let 𝑥, 𝑦, 𝑧, 𝑏, 𝑐 ∈ 𝑆 and ᵵ𝑆(𝑥) = 𝛼1, ᵵ𝑆(𝑦) = 𝛼2 and 

ᵵ𝑆(𝑧) = 𝛼3. Suppose that 𝛼1 ⊆ 𝛼2. It is obvious that 𝑥 ∈
𝒰(ᵵ𝑆; 𝛼1) and 𝑦 ∈ 𝒰(ᵵ𝑆; 𝛼2). Since 𝛼1 ⊆ 𝛼2 ⊆ 𝛼3, 𝑥, 𝑦, 𝑧 ∈
𝒰(ᵵ𝑆; 𝛼1) and since 𝒰(ᵵ𝑆; 𝛼) is a ₿ꝖĪ of 𝑆 for all 𝛼 ⊆ 𝑈, it 

follows that 𝑥𝑏𝑦𝑐𝑧 ∈ 𝒰(ᵵ𝑆; 𝛼1). Hence, ᵵ𝑆(𝑥𝑏𝑦𝑐𝑧) ⊇ 𝛼1 =
𝛼1 ∩ 𝛼2 ∩ 𝛼3. Thus, ᵵ𝑆 is an S-int ₿ꝖĪ-id. 

 

Proposition 19 Let ᵵ𝑆 and ᵵ𝑇 be Ꞩꞩ over 𝑈, and 𝛹 be a 

semigroup isomorphism from 𝑆 to 𝑇. If ᵵ𝑆 is an S-int ₿ꝖĪ-id 

of 𝑆, then 𝛹(ᵵ𝑆) is an S-int ₿ꝖĪ-id of 𝑇. 

 

Proof: Let Ե1, Ե2, Ե3, Ե4, Ե5 ∈ 𝑇. Since Ψ is surjective, 

there exist ᵿ1, ᵿ2, ᵿ3, ᵿ4, ᵿ5 ∈ 𝑆 such that Ψ(ᵿ1) = Ե1, 

Ψ(ᵿ2) = Ե2, Ψ(ᵿ3) = Ե3, Ψ(ᵿ4) = Ե4 and Ψ(ᵿ5) = Ե5. 

Then,  

(Ψ(ᵵ𝑆))(Ե1Ե2Ե3Ե4Ե5)

= ⋃{ᵵ𝑆(ᵿ): ᵿ ∈ 𝑆, Ψ(ᵵ𝑆)

= Ե1Ե2Ե3Ե4Ե5} 

= ⋃{ᵵ𝑆(ᵿ): ᵿ ∈ 𝑆, ᵿ

= Ψ−1(Ե1Ե2Ե3Ե4Ե5)} 

= ⋃{ᵵ𝑆(ᵿ): ᵿ ∈ 𝑆, ᵿ

= Ψ−1(Ψ(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5))

= ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5} 

                         = ⋃{ᵵ𝑆(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5): ᵿ𝑖 ∈ 𝑆, Ψ(ᵿ𝑖) = Ե𝑖 , 𝑖

= 1,2,3,4,5} 

⊇ ⋃{ᵵ𝑆(ᵿ1) ∩ ᵵ𝑆(ᵿ3) ∩ ᵵ𝑆(ᵿ5): ᵿ1, ᵿ3, ᵿ5 ∈ 𝑆, Ψ(ᵿ1)

= Ե1, Ψ(ᵿ3) = Ե3 𝑎𝑛𝑑  Ψ(ᵿ5) = Ե5} 

= (Ψ(ᵵ𝑆))(ᵿ1) ∩ (Ψ(ᵵ𝑆))(ᵿ3)

∩ (Ψ(ᵵ𝑆))(ᵿ5) 

 
Hence, Ψ(ᵵ𝑆) is an S-int ₿ꝖĪ-id of 𝑇. 

 

Proposition 20 Let ᵵ𝑆 and ᵵ𝑇 be Ꞩꞩ over 𝑈, and 𝛹 be a 

semigroup isomorphism from 𝑆 to 𝑇. If  ᵵ𝑇 is an S-int ₿ꝖĪ-id 

of 𝑆, then 𝛹−1(ᵵ𝑇) is an S-int ₿ꝖĪ-id of 𝑇. 

 

Proof: Let ᵿ1, ᵿ2, ᵿ3, ᵿ4, ᵿ5 ∈ 𝑆. Then, 

(Ψ−1(ᵵ𝑇))(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5) = ᵵ𝑇(Ψ(ᵿ1ᵿ2ᵿ3ᵿ4ᵿ5)) 
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= ᵵ𝑇(Ψ(ᵿ1)Ψ(ᵿ2)Ψ(ᵿ3)Ψ(ᵿ4)Ψ(ᵿ5)) 
⊇ ᵵ𝑇 (Ψ(ᵿ1)) ∩ ᵵ𝑇(Ψ(ᵿ3))

∩ ᵵ𝑇(Ψ(ᵿ5))) 

= (Ψ−1(ᵵ𝑇))(ᵿ1)

∩ (Ψ−1(ᵵ𝑇))(ᵿ3) ∩ (Ψ−1(ᵵ𝑇))(ᵿ5) 

Thus, Ψ−1(ᵵ𝑇) is an S-int ₿ꝖĪ-id of 𝑇. 

 

Theorem 31 For a semigroup 𝑆, the following conditions 

are equivalent: 

1. 𝑆 is a ℛ semigroup. 

2. ᵵ𝑆 = ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 for every S-int ₿ꝖĪ-id of 𝑆. 

 

Proof: First assume that (1) holds. Let 𝑆 be an ℛ 

semigroup, ᵵ𝑆 be an S-int ₿ꝖĪ-id of 𝑆 and ᵯ ∈ 𝑆. Then, ᵵ𝑆 ∘

ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ⊆̃ ᵵ𝑆and there exists an element ᵰ ∈ 𝑆 such 

that ᵯ = ᵯᵰᵯ. Thus,  

(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (ᵯ)

= ⋃ {(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) (ȴ) ∩ ᵵ𝑆(ȵ)}

ᵯ=ȴȵ

 

⊇ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃) (ᵯᵰ) ∩ ᵵ𝑆(ᵯ) 

= ⋃ {(ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (𝑝)

ᵯᵰ=𝑝𝑞

∩ ꗟ̃(𝑞)} ∩ ᵵ𝑆(ᵯ) 

⊇ (ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆) (ᵯ) ∩ ꗟ̃(ᵰᵯᵰ)

∩ ᵵ𝑆(ᵯ) 

= ⋃ {(ᵵ𝑆 ∘ ꗟ̃) (ȴ) ∩ ᵵ𝑆(ȵ)}

ᵯ=ȴȵ

∩ ᵵ𝑆(ᵯ) 

⊇ (ᵵ𝑆 ∘ ꗟ̃) (ᵯᵰ) ∩ ᵵ𝑆(ᵯ) ∩ ᵵ𝑆(ᵯ) 

= ⋃ {ᵵ𝑆(𝑝) ∩ ꗟ̃(𝑞)}

ᵯᵰ=𝑝𝑞

∩ ᵵ𝑆(ᵯ) 

⊇ ᵵ𝑆(ᵯ) ∩ ꗟ̃(ᵰᵯᵰ) ∩ ᵵ𝑆(ᵯ) 
= ᵵ𝑆(ᵯ) 

Therefore, ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ⊇̃ ᵵ𝑆 implying that ᵵ𝑆 = ᵵ𝑆 ∘

ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆. 

 

Conversely, let ᵵ𝑆 = ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 ∘ ꗟ̃ ∘ ᵵ𝑆 where ᵵ𝑆 is an S-int 

₿ꝖĪ-id of 𝑆. To show that 𝑆 is an ℛ semigroup, we need to 

show that 𝐴 = 𝐴𝑆𝐴𝑆𝐴 for every ₿ꝖĪ id 𝐴 of 𝑆. It is obvious 

that 𝐴𝑆𝐴𝑆𝐴 ⊆ 𝐴. Thus, it is enough to show that 𝐴 ⊆
𝐴𝑆𝐴𝑆𝐴. Let ȴ ∈ 𝐴, and 𝐴 be any ₿ꝖĪ id of 𝑆. Then, 𝑆𝐴 is an 

S-int ₿ꝖĪ of 𝑆. Hence,𝑆𝐴(ȴ) = (𝑆𝐴 ∘ ꗟ̃ ∘ 𝑆𝐴 ∘ ꗟ̃ ∘ 𝑆𝐴)(ȴ) =
(𝑆𝐴 ∘ 𝑆𝑆 ∘ 𝑆𝐴 ∘ 𝑆𝑆 ∘ 𝑆𝐴)(ȴ) = 𝑆𝐴𝑆𝐴𝑆𝐴(ȴ) = 𝑈 implying that 

ȴ ∈ 𝐴𝑆𝐴𝑆𝐴. Hence, 𝐴 = 𝐴𝑆𝐴𝑆𝐴, so 𝑆 is an ℛ semigroup. 

 

IV. CONCLUSION 

 

In this study, the concept of the soft intersection (S-int) bi-

quasi-interior (₿ꝖĪ) ideal in semigroups is proposed and the 

relations of several types of S-int ideals with S-int ₿ꝖĪ 

ideals are provided. We established equivalent definitions 

and investigated the fundamental properties of this ideal. It 

is obtained that every S-int bi-ideal, S-int ideal, S-int interior 

ideal, S-int quasi-ideal, S-int bi-interior ideal, S-int bi-quasi 

ideal, and S-int quasi-interior ideal of a semigroup is an S-

int ₿ꝖĪ ideal. We also showed, by means of 

counterexamples, that the converses do not hold in general. 

The conditions for the converses to hold are also explored. 

In addition, we proved that the class of S-int ₿ꝖĪ ideals is 

closed under finite soft AND-products, Cartesian products, 

and intersections, but not under finite soft OR-products or 

unions. Moreover, it is shown that if a subsemigroup of a 

semigroup is a ₿ꝖĪ ideal, then its soft characteristic function 

is also an S-int ₿ꝖĪ ideal, and the converse is also true. The 

results presented here build a bridge between classical 

semigroup theory and soft set theory, offering new 

directions for future research. Future work could explore 

more characterizations of an S-int ₿ꝖĪ ideal with certain 

types of semigroups like intra-regular, weakly-regular, 

quasi-regular, semisimple and duo semigroups. 
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