Soft Intersection Bi-quasi-interior Ideals of Semigroups

Aslıhan Sezgin, Zeynep Hare Baş, Thiti Gakatem, Akın Osman Atagün

Abstract—In this paper, we introduce the concept of the soft intersection (S-int) bi-quasi-interior (BQĪ) ideal of semigroups and provide an equivalent definition. The relationships between S-int ideals and S-int BQI ideals are established. We prove that every S-int bi-ideal, left ideal, right ideal, interior ideal, quasi-ideal, bi-interior ideal, left/right bi-quasi-ideal, and left/right quasi-interior ideal is also an S-int BQI ideal. Counterexamples are given to show that the converses do not hold, and we demonstrate that additional conditions, such as regularity or right/left simplicity, are required for the converses. We also show that if a subsemigroup of a semigroup is a BQI ideal, then its soft characteristic function is an S-int BQI ideal, and the converse holds as well. Thus, this work establishes an important connection between classical semigroup theory and soft set theory. Furthermore, we show that finite soft AND-products, Cartesian products, and intersections of S-int BQI ideals remain S-int BQI ideals, whereas finite soft OR-products and unions do not. This study provides a broad conceptual characterization and analysis of Sint BQI ideals.

Index Terms—(soft intersection) bi-quasi-interior ideals, (regular) semigroup, soft set

I. INTRODUCTION

Semigroups play a crucial role in various areas of mathematics. In applied mathematics, semigroups, first studied in the early 20th century, serve as essential tools for analyzing linear time-invariant processes. Moreover, because finite semigroups are closely related to finite automata, their study is fundamental in theoretical computer science. In probability theory, semigroups are also connected to Markov processes. The concept of ideals plays a key role in understanding mathematical structures and their applications. Consequently, many mathematicians have focused their research on generalizing ideals within algebraic structures. Indeed, further exploration of algebraic structures necessitates the generalization of ideals. By employing the notions and properties of these generalized

Manuscript received May 4, 2025; revised September 11, 2025.

This research was supported by University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund 2026, Grant No. 2287/2568).

- A. Sezgin is a lecturer at the Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya 05100, Türkiye (e-mail: aslihan.sezgin@amasya.edu.tr).
- Z. Hare Baş is a PhD candidate of Natural and Applied Sciences, Amasya University, Amasya 05100, Türkiye (e-mail: zeynephare05@gmail.com).
- T. Gaketem is a lecturer at the Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand. (corresponding author to provide email: thiti.ga@up.ac.th).
- A. O. Atagün is a lecturer at the Department of Mathematics, Faculty of Arts and Science, Kırşehir Ahi Evran University, Kırşehir 40000, Türkiye (e-mail: aosman.atagun@ahievran.edu.tr)

ideals, many mathematicians have made significant contributions, providing new insights and characterizations

of algebraic structures. Dedekind introduced the concept of ideals in the context of algebraic number theory, and Noether later extended this idea to associative rings. The notion of a one-sided ideal in any algebraic structure can be seen as a generalization of the original ideal concept, and both one-sided and two-sided ideals continue to be central to the study of ring theory.

In 1952, Good and Hughes [1] introduced the concept of bi-ideals in semigroups. Steinfeld [2] was the first to define the concept of quasi-ideals in semigroups and later extended this notion to rings Quasi-ideals generalize R and Ł ideals, while bi-ideals represent a further generalization of quasiideals. The notion of interior ideals was first introduced by Lajos [3] and later studied in more detail by Szasz [4,5]. The concept of interior ideals arose from the generalization of the ideal concept. Rao [6-11] introduced several novel types of semigroup ideals, which expand upon existing ones, such as bi-interior ideals, BQI ideals, bi-quasi ideals, quasiinterior ideals, weak-interior ideals, tri-ideals and tri-quasi ideals. Rao [6-11] introduced several novel types of semigroup ideals, extending existing ones, including biinterior ideals, BQI ideals, bi-quasi-ideals, quasi-interior ideals, weak-interior ideals, tri-ideals, and tri-quasi ideals. Baupradist et al. [12] also introduced the concept of essential ideals in semigroups. As a broader extension of various types of ideals, the notion of "almost" ideals was proposed, and their characteristics, together with their relationships to other ideals, were thoroughly investigated. In this context, the concept of almost ideals in semigroups was first introduced in [13]. Subsequently, [14] expanded the notion of bi-ideals to almost bi-ideals in semigroups. The notion of almost interior ideals was introduced in [15], while almost quasi-ideals in semigroups were first studied in [16]. The authors in [17-19] proposed certain types of almost ideals. Moreover, in [15, 17-22], various fuzzy almost ideal types for semigroups were examined. Many of these new structures have been employed to further characterize semigroups and their generalizations.

Molodtsov [23] introduced the "Soft Set Theory" (8s Theory) to address problems involving uncertainty and to find appropriate solutions for them. Since then, numerous important studies have focused on various concepts related to 8s, particularly on the operations performed on them. Maji et al. [24] proposed several definitions related to 8s and established specific operations for them. Pei and Mia [25] as well as Ali et al. [26] introduced different operations on 8s. Sezgin and Atagün [27] also contributed to the study of 8s operations. For further insights into 8s operations, which have gained popularity since their inception, we refer to [28-39]. The concept and operations of 8s were further modified by Cağman and Enginoğlu [40]. Later, Çağman et

al. [41] developed the idea of S-int groups, which led to the exploration of various soft algebraic systems. Sezer et al. [42-44], by applying 8s to semigroup theory, introduced soft intersection (S-int) semigroups, ideals, interior ideals, quasi-ideal ideals, (generalized) bi-ideals of semigroups, providing an in-depth analysis of their fundamental properties. In the context of S-int substructures of semigroups, Sezgin and Orbay [44] defined and classified several types of semigroups. Soft intersection (int) almost ideals, as a generalization of various types of S-int ideals, were introduced and examined in [45-56]. The soft versions of different algebraic structures were explored in [57-68].

Rao [7] introduced the concept of the BQI ideal as a generalization of the bi-ideal, quasi-ideal, interior ideal, biquasi ideal, and bi-interior ideal of a semigroup, and examined the properties of these ideals and their relationships. In Rao [69], the concept of BQI ideal is studied as a generalization of bi-ideal, quasi-ideal, interior ideal, bi-quasi ideal, and bi-interior ideal in Γ -semirings. The properties of these ideals and their relationships with other ideals are explored. The regular (\mathcal{R}) and simple Γ semirings are characterized, and the conditions necessary for a Γ -semiring to be \mathcal{R} or simple are examined. Additionally, Rao [70,71] investigates the properties of $\beta Q \bar{I}$ ideals in Γ semigroups and semirings and explores their relationships with other ideals. The regularity and simplicity properties of Γ-semigroups and semirings are characterized, and the conditions for Γ -semigroups and semirings to be \mathcal{R} or simple are identified.

The motivation for this study stems from the fact that generalizing classical ideals within the framework of soft set theory opens new directions for algebraic research. In this study, the concept of "Soft intersection bi-quasi ideal" (S-int BQI Ideal) of a semigroup is defined for 8s theory, illustrated with examples, and its properties relationships with other S-int ideals are examined in detail. It is concluded that if a subsemigroup of a semigroup is a BQI ideal, then its soft characteristic function is also an Sint BQI ideal, and the converse is also true. This is an crucial theorem establishing a significant connection between classical semigroup theory and 8s theory. Furthermore, by investigating the relationships of S-int BQI ideal of a semigroup with other S-int ideals, it is observed that every S-int bi-ideal, S-int ideal, S-int interior ideal, Sint quasi-ideal, S-int bi-interior ideal, S-int bi-quasi ideal, and S-int quasi-interior ideal of a semigroup is an S-int BQI ideal, and counterexample sare provided to show that the converses do not hold. The conditions for the converses to hold are also obtained. Additionally, the relationships between S-int BQI ideals and soft set operations as well as the concepts like soft image and soft inverse image are investigated. The paper is structured into four sections. Section 1 offers a general introduction to the topic, while Section 2 explores the fundamental concepts of semigroups and 8s ideals, along with their associated definitions and implications. We introduce the concept of S-int BQI ideals in Section 3 and examine their properties, as well as how they relate to other types of S-int ideals, through concrete examples. Section 4 provides a summary of our findings and considers potential directions for future research.

II. PRELIMINARIES

In this section, we recall some basic definitions and results that will be used throughout this paper. S denotes a semigroup throughout this paper. A subsemigroup K of S is called a bi-quasi-interior($\beta Q \bar{I}$) ideal of S if $KSKSK \subseteq K$ [7]. If there exists an element $y \in S$ such that x = xyx for all $x \in S$, then S is called a regular (\mathcal{R}) semigroup,

Theorem 1[72] Let S be a semigroup. Then

(1) S is L (R) simple if and only if (iff) Sa = S (aS = S) for all $a \in S$. That is, for every $a, b \in S$, there exists $c \in S$ such that b = ca (b = ac)

(2) S is simple iff S is a group. (both E and E simple)

Definition 1 [23,40] Let E be the parameter set, U be the universal set, P(U) be the power set of U, and $\mathfrak{K} \subseteq E$. The soft set $(Ss) f_{\mathbb{K}}$ over U is a function such that $f_{\mathbb{K}} : E \to P(U)$, where for all $\mathfrak{Y} \notin \mathfrak{K}$, $f_{\mathbb{K}}(\mathfrak{Y}) = \emptyset$. That is,

$$f_{K} = \{(y, f_{K}(y)): y \in E, f_{K}(y) \in P(U)\}$$

The set of all 8s over U is designated by $S_E(U)$.

Definition 2 [40] Let $\mathfrak{t}_K \in S_E(U)$. If $\mathfrak{t}_K(\mathfrak{z}) = \emptyset$ for all $\mathfrak{z} \in E$, then \mathfrak{t}_K is called a null Ss and indicated by \emptyset_E .

Definition 3[40] Let $\mathfrak{t}_A, \mathfrak{t}_B \in S_E(U)$. If $\mathfrak{t}_A(\mathfrak{Y}) \subseteq \mathfrak{t}_B(\mathfrak{Y})$, for all $\mathfrak{Y} \in E$, then \mathfrak{t}_A is a soft subset of \mathfrak{t}_R and indicated by $\mathfrak{t}_A \cong \mathfrak{t}_B$. If $\mathfrak{t}_A(\mathfrak{Y}) = \mathfrak{t}_B(\mathfrak{Y})$, for all $\mathfrak{Y} \in E$, then \mathfrak{t}_A is called soft equal to \mathfrak{t}_B and denoted by $\mathfrak{t}_A = \mathfrak{t}_B$.

Definition 4 [40] Let $\mathfrak{t}_A, \mathfrak{t}_B \in S_E(U)$. The union (intersection) of \mathfrak{t}_A and \mathfrak{t}_B is the $Ss \, \mathfrak{t}_A \, \widetilde{\cup} \, \mathfrak{t}_B(\mathfrak{t}_A \, \widetilde{\cap} \, \mathfrak{t}_B)$, where $(\mathfrak{t}_A \, \widetilde{\cup} \, \mathfrak{t}_B)(\mathfrak{l}) = \mathfrak{t}_A(\mathfrak{l}) \, \cup \, \mathfrak{t}_B(\mathfrak{l}) \big((\mathfrak{t}_A \, \widetilde{\cap} \, \mathfrak{t}_B)(\mathfrak{l}) = \mathfrak{t}_A(\mathfrak{l}) \, \cap \, \mathfrak{t}_B(\mathfrak{l}) \big)$, for all $\mathfrak{l} \in E$, respectively.

Definition 5[40] Let $\mathfrak{t}_A, \mathfrak{t}_B \in S_E(U)$. Then, \land -product (V-product) of \mathfrak{t}_A and \mathfrak{t}_B , denoted by $\mathfrak{t}_A \land \mathfrak{t}_B(\mathfrak{t}_A \lor \mathfrak{t}_B)$ is defined by $(\mathfrak{t}_A \land \mathfrak{t}_B)(x,y) = \mathfrak{t}_A(x) \cap \mathfrak{t}_B(y)((\mathfrak{t}_A \lor \mathfrak{t}_B)(x,y) = \mathfrak{t}_A(x) \cup \mathfrak{t}_B(y))$ for all $(x,y) \in E \times E$, respectively.

Definition 6[41] Let $\mathfrak{t}_A, \mathfrak{t}_B \in S_E(U)$ and φ be a function from A to B. Then, the soft image of \mathfrak{t}_A under φ , and the soft pre-image (soft inverse image) of \mathfrak{t}_B under φ are the Ss $\varphi(\mathfrak{t}_A)$ and $\varphi^{-1}(\mathfrak{t}_B)$ such that

$$= \begin{cases} \bigcup_{\emptyset,} \{ f_A(k) | k \in A \text{ and } \varphi(k) = x \}, & \text{if } \varphi^{-1}(x) \neq \emptyset \\ \emptyset, & \text{otherwise} \end{cases}$$

$$for all \ b \in B \ and \left(\varphi^{-1}(f_B) \right)(k) = f_B(\varphi(k)) \text{ for all } k \in A.$$

Definition 7 [41] Let $\mathfrak{t}_A \in S_E(U)$ and $\alpha \subseteq U$. Then, the upper α -inclusion of \mathfrak{t}_A , denoted by $U(\mathfrak{t}_A; \alpha)$, is defined $asU(\mathfrak{t}_A; \alpha) = \{x \in A \mid \mathfrak{t}_A(x) \supseteq \alpha\}$.

Definition 8 [42] Let $\mathfrak{t}_K, \mathfrak{t}_K \in S_S(U)$, where K is a semigroup. S-int product $\mathfrak{t}_K \circ \mathfrak{t}_K$ is defined by

$$= \begin{cases} \bigcup_{y=yz} \{ f_{K}(x) \cap f_{K}(y) \}, & \text{if } \exists x, y \in K \text{ such that } y = xy \\ \emptyset, & \text{otherwise} \end{cases}$$

Theorem 2 [42] Let $\mathfrak{t}_{K}, \mathfrak{t}_{K}, \mathfrak{p}_{K} \in S_{K}(U)$, where K is a semigroup. Then,

i) $(f_K \circ f_K) \circ p_K = f_K \circ (f_K \circ p_K)$

 $(ii) f_{K} \circ f_{K} \neq f_{K} \circ f_{K}$

 $\begin{array}{ll} \mathit{iii)} & \mathfrak{t}_{K} \circ (\mathfrak{t}_{K} \, \widetilde{\cup} \, \mathfrak{p}_{K}) = (\mathfrak{t}_{K} \circ \mathfrak{t}_{K}) \, \widetilde{\cup} \, (\mathfrak{t}_{K} \circ \mathfrak{p}_{K}) \quad and \quad (\mathfrak{t}_{K} \, \widetilde{\cup} \, \mathfrak{t}_{K}) \circ \\ \mathfrak{p}_{K} = (\mathfrak{t}_{K} \circ \mathfrak{p}_{K}) \, \widetilde{\cup} \, (\mathfrak{t}_{K} \circ \mathfrak{p}_{K}) \end{array}$

 $iv) \quad f_{K} \circ (\mathfrak{t}_{K} \overset{\circ}{\cap} \mathfrak{p}_{K}) = (f_{K} \circ \mathfrak{t}_{K}) \overset{\circ}{\cap} (f_{K} \circ \mathfrak{p}_{K}) \quad and \quad (f_{K} \overset{\circ}{\cap} \mathfrak{t}_{K}) \circ \mathfrak{p}_{K} = (f_{K} \circ \mathfrak{p}_{K}) \overset{\circ}{\cap} (\mathfrak{t}_{K} \circ \mathfrak{p}_{K})$

v) If $\mathbf{f}_K \cong \mathbf{t}_K$, then $\mathbf{f}_K \circ \mathbf{p}_K \cong \mathbf{t}_K \circ \mathbf{p}_K$ and $\mathbf{p}_K \circ \mathbf{f}_K \cong \mathbf{p}_K \circ \mathbf{t}_K$ vi) If $\mathbf{z}_K, \mathbf{s}_K \in S_K(U)$ such that $\mathbf{z}_K \cong \mathbf{f}_K$ and $\mathbf{s}_K \cong \mathbf{t}_K$, then $\mathbf{z}_K \circ \mathbf{s}_K \cong \mathbf{f}_K \circ \mathbf{t}_K$.

Definition 9 [42] Let $\emptyset \neq K \subseteq S$. The soft characteristic function ($\emptyset \notin fg$) of K, denoted by S_K , is defined as

$$S_K(x) = \begin{cases} U, & \text{if } x \in K \\ \emptyset, & \text{if } x \in S \backslash K \end{cases}$$

Theorem 3[42,51] Let $G, B \subseteq S$. Then i) $G \subseteq B$ iff $S_G \cong S_B$ ii) $S_G \cap S_B = S_{G \cap B}$ and $S_G \cap S_B = S_{G \cup B}$ iii) $S_G \circ S_B = S_{G B}$

From now on, K denotes a semigroup like S.

Definition 10 [42] An Ss f_K over U is called an S-int subsemigroup of S if $f_K(\ln) \supseteq f_K(\ln) \cap f_K(\ln)$ for all $l, n \in S$

Note that in [42], the definition of "S-int subsemigroup of S" is given as "S-int semigroup of S"; however in this paper, without loss of generality, we prefer to use "S-int subsemigroup of S".

From now on, "ideal" is abbreviated by "id".

Definition 11[42,43] An Ss \mathfrak{t}_K over U is called an S-int L (R) id of S if $\mathfrak{t}_K(\ln) \supseteq \mathfrak{t}_K(\ln)(\mathfrak{t}_K(\ln) \supseteq \mathfrak{t}_K(\ln))$ for all $L, n \in S$, and is called an S-int two-sidedid (S-intid) of S if it is both S-int L id of S over U and S-int R id of S over U. An S-int subsemigroup \mathfrak{t}_K is called an S-int bi-id of S if $\mathfrak{t}_K(\ln t) \supseteq \mathfrak{t}_K(L) \cap \mathfrak{t}_K(t)$ for all $L, n, t \in S$. An $Ss \mathfrak{t}_K$ over U is called an S-int interior id of S if $\mathfrak{t}_K(\ln t) \supseteq \mathfrak{t}_K(n)$ for all $L, n, t \in S$.

An $Ss \ f_K$ over U is called an S-int L weak-interior (R) id of S if $f_K(lnt) \supseteq f_K(n) \cap f_K(n) \cap f_K(n) = f_K(n) \cap f_K(n)$ for all $l, n, t \in S$, and is called an S-int weak-interior id of S if it is both S-int L weak-interior id of S over U and S-int R weak-interior id of S over U. An $Ss \ f_K$ over U is called an S-int L quasi-interior (R) id of S if $f_K(lnt) \supseteq f_K(n) \cap f_K(n) \cap f_K(n) \cap f_K(n) \supseteq f_K(n) \cap f_K(n)$ for all $l, n, t, n \in S$, and is called an S-int quasi-interior id of S if it is both S-int L quasi-interior id of S over U and S-int R quasi-interior id of S over U[73,74].

If $f_K(x) = U$ for all $x \in S$, then f_K is an S-int subsemigroup (id, bi-id, interior id, weak-interior id, quasi-interior id). We denote such a kind of S-int subsemigroup (id, bi-id, interior id, weak-interior id, quasi-interior id) by \widetilde{S} [42,43,73-75]. Moreover, $\widetilde{S} = S_S$, that is, $\widetilde{S}(x) = U$ for all $x \in S[42]$.

Definition 12[73-75] An Ss f_K over U is called an S-int quasi-id of S over U if $(\widetilde{S} \circ f_K) \cap (f_K \circ \widetilde{S}) \subseteq f_K$. An Ss f_K

over U is called an S-int bi-interior id of S over U if $(\widetilde{S}' \circ f_K \circ \widetilde{S}') \cap (f_K \circ \widetilde{S}' \circ f_K) \cong f_K$. An $Ss \ f_K$ over U is called an S-int E bi-quasi (R) id of S if $(\widetilde{S}' \circ f_K) \cap (f_K \circ \widetilde{S}' \circ f_K) \cong f_K$ $((f_K \circ \widetilde{S}') \cap (f_K \circ \widetilde{S}' \circ f_K) \cong f_K)$, and is called an S-intbi-quasi id of S if it is both S-int E bi-quasi id of S over E and S-int E bi-quasi id of E over E over E.

Theorem 4 [42]Let $\dot{f}_S \in S_S(U)$. Then,

$$\begin{array}{ll} i) \ \widetilde{\mathcal{S}}' \circ \widetilde{\mathcal{S}}' \widetilde{\subseteq} \ \widetilde{\mathcal{S}}' \\ ii) \ \widetilde{\mathcal{S}}' \circ \dot{\mathbf{f}}_S \ \widetilde{\subseteq} \ \widetilde{\mathcal{S}}' \ and \ \dot{\mathbf{f}}_S \circ \widetilde{\mathcal{S}}' \widetilde{\subseteq} \ \widetilde{\mathcal{S}}' \\ iii) \ \dot{\mathbf{f}}_S \ \widetilde{\mathbf{O}} \ \widetilde{\mathcal{S}}' = \ \widetilde{\mathcal{S}}'' \ and \ \dot{\mathbf{f}}_S \ \widetilde{\cap} \ \widetilde{\mathcal{S}}'' = \dot{\dot{\mathbf{f}}}_S. \end{array}$$

Theorem 5 [42,43] Let K be a nonempty subset of a semigroup S. Then, K is a subsemigroup of S iff S_K is an S-int subsemigroup.

Theorem 6 [42,43,73-75] Let $f_S \in S_S(U)$. Then,

- (1) f_S is an S-int subsemigroup iff $(f_S \circ f_S) \subseteq f_S$,
- (2) f_S is an S-int L (R) id iff $(\widetilde{S}' \circ f_S) \cong f_S$ and $(f_S \circ f_S) \cong f_S$
- \widetilde{S}) $\cong f_S$,
- (3) \mathbf{f}_S is an S-int bi-id iff $(\mathbf{f}_S \circ \mathbf{f}_S) \subseteq \mathbf{f}_S$ and $(\mathbf{f}_S \circ \widetilde{\mathbf{S}}' \circ \mathbf{f}_S) \subseteq \mathbf{f}_S$,
- (4) f_S is an S-int interior id iff $(\widetilde{S}' \circ f_S \circ \widetilde{S}) \cong f_S$,
- (5) f_S is an S-int L (R) weak-interior id iff $(\widetilde{S} \circ f_S \circ f_S) \subseteq f_S ((f_S \circ f_S \circ \widetilde{S}) \subseteq f_S)$,
- (6) f_S is an S-int L (R) quasi-interior id iff $(\tilde{S}' \circ f_S \circ \tilde{S}' \circ f_S)$

$$f_S$$
 $\cong f_S$ $((f_S \circ \widetilde{\mathcal{S}}' \circ f_S \circ \widetilde{\mathcal{S}}) \cong f_S),$

Theorem 7[42,43] The following assertions hold:

- (1) Every S-int L (R/two-sided) id is an S-int subsemigroup (S-int bi-id/S-int quasi-id).
- (2) Every S-int id is an S-int interior id (S-int quasi-id).
- (3) Every S-int quasi id is an S-int subsemigroup (S-int biid).

Theorem 8[42] Let $\mathfrak{t}_S \in S_S(U)$, α be a subset of U, $Im(\mathfrak{t}_S)$ be the image of \mathfrak{t}_S such that $\alpha \in Im(\mathfrak{t}_S)$. If \mathfrak{t}_S is an S-int subsemigroup of S, then $U(\mathfrak{t}_S;\alpha)$ is a subsemigroup of S.

III. SOFT INTERSECTION BI-QUASI-INTERIOR IDEALS OF SEMIGROUPS

In this section, we present the concept of soft intersection (S-int) bi-quasi-interior ids in semigroups, provide its examples, thoroughly examine its relationships with other soft intersection ids, and analyze the concept in terms of certain SS concepts and operations.

Definition 13 A soft set f_S over U is called a soft intersection (S-int) $\beta Q \bar{I}$ ideal of S over U if $f_S(b d f m n) \supseteq f_S(b) \cap f_S(f) \cap f_S(n)$ for all $b, d, f, m, n \in S$.

S-int bi-quasi-interior of S over U is abbreviated by S-int $BQ\overline{I}$ -id in what follows.

Example 1 Let the semigroup $S = \{z, lu, uj\}$ be defined as follows:

::	Z	L	щ
Z	щ	щ	щ
և	Z	և	ጣ
щ	щ	щ	ጣ

Let \mathfrak{t}_S and \mathfrak{G}_S be 8ss over $U = Z_8^*$ as follows:

$$\begin{array}{l} \mathfrak{t}_S = \{(z, \{\bar{1}, \bar{3}, \bar{5}\}), (\mathsf{L}, \{\bar{1}, \bar{3}, \bar{7}\}), (\mathsf{u}, \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\})\}, 6_S = \\ \{(z, \{\bar{1}, \bar{3}, \bar{5}\}), (\mathsf{L}, \{\bar{1}, \bar{3}, \bar{7}\}), (\mathsf{u}, \{\bar{1}, \bar{3}, \bar{5}\})\} \end{array}$$

 \mathbf{t}_S is an S-int $\mathbf{B}Q\overline{\mathbf{I}}$ -id of S. Here, we find it appropriate to give a few concrete examples of elements for ease of illustration in order to be more understandable. In fact,

$$\begin{split} & \mathfrak{t}_S(zz \mathsf{L} \mathsf{L} \mathsf{L} \mathsf{L} \mathsf{U}) = \mathfrak{t}_S(\mathsf{U}) \supseteq \mathfrak{t}_S(z) \cap \mathfrak{t}_S(\mathsf{L}) \cap \\ & \mathfrak{t}_S(\mathsf{U}), \mathfrak{t}_S(\mathsf{L} \mathsf{L} \mathsf{L} \mathsf{L} \mathsf{U}) = \mathfrak{t}_S(\mathsf{U}) \supseteq \mathfrak{t}_S(\mathsf{L}) \cap \mathfrak{t}_S(\mathsf{L}) \cap \\ & \mathfrak{t}_S(\mathsf{U}), \mathfrak{t}_S(zzz\mathsf{L} z) = \mathfrak{t}_S(\mathsf{U}) \supseteq \mathfrak{t}_S(z) \cap \mathfrak{t}_S(z) \cap \mathfrak{t}_S(z) \end{split}$$

It can be easily shown that the \$s set $\$_S$ satisfies the S-int $\Bar{B}Q\Bar{I}$ -id condition for all other element combinations of the set \$. However, since $6_S(\blue{L}\blu$

Theorem 9 Let $\mathfrak{t}_S \in S_S(U)$. Then, \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id iff $\mathfrak{t}_S \circ \widetilde{S}' \circ \mathfrak{t}_S \circ \widetilde{S}' \circ \mathfrak{t}_S \subseteq \mathfrak{t}_S$.

Proof: Suppose that f_S is an S-int $\mathbb{B}Q\overline{I}$ -id and $s \in S$. If $(f_S \circ \widetilde{S} \circ f_S \circ \widetilde{S} \circ f_S)(s) = \emptyset$, then $f_S \circ \widetilde{S} \circ f_S \circ \widetilde{S} \circ f_S \subseteq f_S$. Otherwise, there exist elements $l, n, t, \sigma, z, l, u, u, b \in S$ such that $s = ln, l = t\sigma, t = zlu$ and z = ulb, for $s \in S$. Since f_S is an S-int $\mathbb{B}Q\overline{l}$ -id, $f_S(s) = f_S(ln) = f_S(ulban) \supseteq f_S(ul) \cap f_S(ulban)$ Therefore,

$$\begin{aligned}
\left(f_{S} \circ \widetilde{S} \circ f_{S} \circ \widetilde{S} \circ f_{S}\right)(s) &= \left[\left(f_{S} \circ \widetilde{S} \circ f_{S} \circ \widetilde{S}\right) \circ f_{S}\right)\right](s) \\
&= \bigcup_{s=l,n} \left\{\left(f_{S} \circ \widetilde{S} \circ f_{S} \circ \widetilde{S}\right)(l) \\
&\cap (f_{S})(n_{s})\right\} \\
&= \bigcup_{s=l,n} \left\{\bigcup_{l=l:s} \left\{\left(f_{S} \circ \widetilde{S} \circ f_{S}\right)(t) \\
&\cap \widetilde{S}(s)\right\} \cap f_{S}(n_{s})\right\} \\
&= \bigcup_{s=l,n} \left\{\bigcup_{l=l:s} \left\{\bigcup_{l=l:s} \left\{\left(f_{S} \circ \widetilde{S}\right)(z) \\
&\cap (f_{S})(l)\right\} \cap \widetilde{S}(s) \cap f_{S}(n_{s})\right\}\right\}
\end{aligned}$$

$$= \bigcup_{S=\exists_{I}, I} \left\{ \bigcup_{L=\exists_{I}} \left\{ \bigcup_{Z=\exists_{L}} \left\{ (f_{S})(u_{L}) \right\} \right\} \right\}$$

$$= \bigcup_{S=\exists_{L}, I} \left\{ f_{S}(u_{L}) \cap \widetilde{S}(a_{L}) \cap f_{S}(u_{L}) \right\} \right\}$$

$$= \bigcup_{S=\exists_{L}, I} \left\{ f_{S}(u_{L}) \cap f_{S}(u_{L}) \cap f_{S}(u_{L}) \right\}$$

$$\subseteq \bigcup_{S=\exists_{L}, I} \left\{ f_{S}(u_{L}) \cap f_{S}(u_{L}) \cap f_{S}(u_{L}) \right\}$$

$$= f_{S}(I_{I}, I_{I})$$

$$= f_{S}(s)$$

Thus, we have $\mathbf{f}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_S \cong \mathbf{f}_S$. Moreover, in the case where $s = \mathbf{l}$ in and $\mathbf{l} \neq \mathbf{u}_D \mathbf{l} \cdot \mathbf{n}$ for $s \in S$, since $(\mathbf{f}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_S \circ \widetilde{\mathbf{S}})$ (\mathbf{l}) $= \emptyset$, $\mathbf{f}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_S \cong \mathbf{f}_S$ is satisfied.

Conversely, assume that $f_S \circ \widetilde{\mathbb{S}} \circ f_S \circ \widetilde{\mathbb{S}} \circ f_S \subseteq f_S$. Let s = l-ut-z for $l, u, t, v, z \in S$. Then, we have $f_S(\text{l-ut-z}) = f_S(s)$

$$\begin{array}{l}
\mathbf{f}_{S}(\mathbf{f}_{S}, \mathbf{f}_{S}, \mathbf{f}_{S}, \mathbf{f}_{S}, \mathbf{f}_{S}, \mathbf{f}_{S}) & = \mathbf{f}_{S}(\mathbf{f}_{S}) \\
&= \left[\left(\mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \right) \circ \mathbf{f}_{S} \right] (s) \\
&= \bigcup_{s=bz} \left\{ \left(\mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \right) \left(\mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \right) \left(\mathbf{f}_{S} \right) \cap \mathbf{f}_{S}(\mathbf{z}) \right\} \\
&= \bigcup_{s=bz} \left\{ \bigcup_{b=uq} \left\{ \left(\mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_{S} \right) \left(\mathbf{u} \right) \cap \widetilde{\mathbf{S}}(\mathbf{x}) \right\} \cap \mathbf{f}_{S}(\mathbf{z}) \right\} \\
&= \bigcup_{s=bz} \left\{ \bigcup_{b=uq} \left\{ \bigcup_{u=nt} \left\{ \left(\mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \right) \left(\mathbf{n} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \right\} \cap \widetilde{\mathbf{S}}(\mathbf{x}) \right\} \\
&= \bigcup_{s=bz} \left\{ \bigcup_{b=uq} \left\{ \bigcup_{u=nt} \left\{ \bigcup_{u=nt} \left\{ \mathbf{f}_{S}(\mathbf{t}) \cap \widetilde{\mathbf{S}}(\mathbf{t}) \cap \widetilde{\mathbf{S}}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \right\} \right\} \\
&= \bigcup_{s=bz} \left\{ \underbrace{\mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_{S} \circ \widetilde{\mathbf{S}}}_{\mathbf{t}} \right\} \left(\underbrace{\mathbf{t}_{t} \circ \widetilde{\mathbf{S}}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \bigcup_{z=bz} \left\{ \underbrace{\mathbf{f}_{S} \circ \widetilde{\mathbf{S}} \circ \mathbf{f}_{S} \circ \widetilde{\mathbf{S}}}_{\mathbf{t}} \right) \left(\underbrace{\mathbf{t}_{t} \circ \widetilde{\mathbf{S}}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \widetilde{\mathbf{f}}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \widetilde{\mathbf{S}}_{\mathbf{t}} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \widetilde{\mathbf{f}}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \widetilde{\mathbf{f}}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\
&= \underbrace{\mathbf{f}_{S} \left(\mathbf{t} \right) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \cap \mathbf{f}_{S}(\mathbf{t}) \\$$

Hence, $f_S(\text{lota-}z) \supseteq f_S(l) \cap f_S(t) \cap f_S(z)$ implying that f_S is an S-int $\beta Q\overline{l}$ -id.

Corollary 1 $\widetilde{\mathbb{S}}$ and \emptyset_S are S-int $\mathbb{B}Q\overline{\mathbb{I}}$ -ids.

Theorem 10 Let K be a subsemigroup of S. Then, K is a $\not B Q \bar I$ id of S iff S_K , the $S \not e f y$ of K, is an S-int $\not B Q \bar I$ -id.

Proof: Let K be a $\beta Q\overline{I}$ id of S. Then, $KSKSK \subseteq K$. By Theorem 3, $S_K \circ \widetilde{S} \circ S_K \circ \widetilde{S} \circ S_K = S_K \circ S_S \circ S_K \circ S_S \circ S_K = S_{KSKSK} \cong S_K$ Hence, S_K is an S-int $\beta Q\overline{I}$ -id. Conversely, let S_K be an S-int $\beta Q\overline{I}$ -id and K be a subsemigroup of S. Then, $S_K \circ S_K \circ S_K$

$$\begin{split} \widetilde{\mathbb{S}} \circ S_{\mathbb{K}} \circ \widetilde{\mathbb{S}} \circ S_{\mathbb{K}} & \cong S_{\mathbb{K}}. \quad \text{Let} \quad x \in \mathbb{K}S\mathbb{K}S\mathbb{K}. \quad \text{Then,} S_{\mathbb{K}}(x) \supseteq \\ \left(S_{\mathbb{K}} \circ \widetilde{\mathbb{S}} \circ S_{\mathbb{K}} \circ \widetilde{\mathbb{S}} \circ S_{\mathbb{K}}\right)(x) &= (S_{\mathbb{K}} \circ S_{S} \circ S_{\mathbb{K}} \circ S_{S} \circ S_{\mathbb{K}})(x) = \\ S_{\mathbb{K}S\mathbb{K}S\mathbb{K}}(x) &= U\text{Thus,} \ S_{\mathbb{K}}(x) &= U \text{ and so } x \in \mathbb{K}, \text{ implying that } \\ \mathbb{K}S\mathbb{K}S\mathbb{K} \subseteq \mathbb{K}. \text{ Hence, } \mathbb{K} \text{ is a } \mathbb{B}\mathbb{Q}\overline{\mathbb{I}} \text{ id of } S. \end{split}$$

Example 2 Consider the semigroup in Example 1. $A = \{z, y\}$ is a $\beta Q \overline{1}$ id of S. By the definition of $S \notin f \eta$, $S_A = \{(z, U), (u, \emptyset)(y, U)\}$. S_A is an S-int $\beta Q \overline{1}$ -id. Conversely, by choosing the S-int $\beta Q \overline{1}$ -id as $\mathfrak{t}_S = \{(z, U), (u, \emptyset)(y, U)\}$, which is the $S \notin f \eta$ of $X = \{z, y\}$, X is a $\beta Q \overline{1}$ idof S.

Now, we continue with the relationships between S-int $\beta Q\overline{I}$ -ids and other types of S-int ids of S.

Theorem 11 Every S-int bi-id is an S-int $\beta Q\bar{I}$ -id.

Proof: Let \mathbf{t}_S be an S-int bi-id of S. Then, $\mathbf{t}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{t}_S \subseteq \mathbf{t}_S$. Thus, $(\mathbf{t}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{t}_S) \circ \widetilde{\mathbf{S}} \circ \mathbf{t}_S \subseteq \mathbf{t}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{t}_S \subseteq \mathbf{t}_S$. Hence, \mathbf{t}_S is an S-int $\mathbf{B}Q\overline{\mathbf{I}}$ -id of S.

We show with a counterexample that the converse of Theorem 11 is not true:

Example 3 Let the semigroup $S = \{\Psi, \wp, \tau, \overline{\psi}\}$ be defined as follows:

\otimes	ч	В	Ъ	Ŵ
Ч	Ч	Ч	Ч	Ч
В	Ч	Ч	Ч	Ч
ъ	ч	Ч	Ч	80
Ü	Ч	Ч	Ø	ъ

Let \mathfrak{t}_S be 8s over $U = \mathbb{Z}$ as follows: $\mathfrak{t}_S = \{(\mathfrak{t}, \{1,2,3,4,5\}), (\wp, \{2,3\}), (\mathfrak{b}, \{4,5\})(\ddot{\mathfrak{w}}, \{1\})\}$. Here, \mathfrak{t}_S is an S-int $\beta Q\bar{\mathfrak{l}}$ -id. In fact,

$$\begin{split} \left(\mathfrak{t}_{S} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{S} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{S} \right) (\mathfrak{A}) &= \mathfrak{t}_{S} (\mathfrak{A}) \cup \mathfrak{t}_{S} (\varnothing) \cup \mathfrak{t}_{S} (\mathfrak{D}) \cup \mathfrak{t}_{S} (\mathfrak{D}) \cup \mathfrak{t}_{S} (\varnothing) \\ \mathfrak{t}_{S} (\widetilde{\mathbb{D}}) &\subseteq \mathfrak{t}_{S} (\mathfrak{A}), \left(\mathfrak{t}_{S} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{S} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{S} \right) (\varnothing) = \emptyset \subseteq \mathfrak{t}_{S} (\varnothing), \left(\mathfrak{t}_{S} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{S} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{S} \right) (\varpi) = \emptyset \subseteq \mathfrak{t}_{S} (\varpi) \end{split}$$

$$\widetilde{\mathbb{S}} \circ \mathfrak{t}_{S} (\widetilde{\mathbb{D}}) = \emptyset \subseteq \mathfrak{t}_{S} (\widetilde{\mathbb{D}})$$

Thus, \mathfrak{t}_S is an S-int $\beta \mathbb{Q}\overline{I}$ -id of S. However, $\operatorname{since}(\mathfrak{t}_S \circ \widetilde{S} \circ \mathfrak{t}_S)(\wp) = \mathfrak{t}_S(\overline{\omega}) \not\subseteq \mathfrak{t}_S(\wp) \mathfrak{t}_S$ is not an S-int bi-id.

Theorem 12 Let $\mathfrak{t}_S \in S_S(U)$ and S be an \mathscr{R} semigroup. Then, the following conditions are equivalent:

- 1. \mathfrak{t}_S is an S-int bi-id.
- 2. \mathfrak{t}_S is an S-int $\beta Q \overline{I}$ -id.

Proof: (1) implies (2) is by Theorem 11. Lett_S is an S-int $BQ\overline{I}$ -id and $l_n, r_n, t_n \in S$. By assumption, there exists $m, r_n \in S$ such that $l_n = l_n m l_n$ and $r_n = r_n m r_n$. Thus,

$$\begin{aligned} \mathbf{t}_{S}(\mathsf{lnt}) &= \mathbf{t}_{S} \big((\mathsf{lml}) \mathsf{nt} \big) = \mathbf{t}_{S}(\mathsf{lmlnt}) \\ &\supseteq \mathbf{t}_{S}(\mathsf{l}) \cap \mathbf{t}_{S}(\mathsf{l}) \cap \mathbf{t}_{S}(\mathsf{t}) = \mathbf{t}_{S}(\mathsf{l}) \cap \mathbf{t}_{S}(\mathsf{t}) \\ \mathbf{t}_{S}(\mathsf{ln}) &= \mathbf{t}_{S}(\mathsf{lml}(\mathsf{n}y)\mathsf{n}) \supseteq \mathbf{t}_{S}(\mathsf{l}) \cap \mathbf{t}_{S}(\mathsf{l}) \cap \mathbf{t}_{S}(\mathsf{n}) \\ &= \mathbf{t}_{S}(\mathsf{l}) \cap \mathbf{t}_{S}(\mathsf{n}) \end{aligned}$$

Thus, \mathfrak{t}_S is an S-int bi-id.

Proposition 1 Every S-int Ł id is an S-int BQĪ-id.

Proof: Let ξ_S be an S-int \underline{L} id of S. Then, by Theorem 7, ξ_S is an S-int bi-id. The rest of the proof is obvious by Theorem 11. Hence, ξ_S is an S-int $\underline{B}Q\overline{I}$ -id of S.

We show with a counterexample that the converse of Proposition 1 is not true:

Example 4 Let the semigroup $\mathfrak{R} = \{ \mathfrak{C}, \kappa \}$ be defined as follows:

Let $\mathfrak{t}_{\mathfrak{K}}$ be Ss over $U = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} \middle| x \in \mathbb{Z} \right\}$ as follows: $\mathfrak{t}_{\mathfrak{K}} = \left\{ \left(\mathfrak{c}_{\mathfrak{K}} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \end{bmatrix} \right\} \right), \left(\kappa, \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\} \right) \right\}$ Here, $\mathfrak{t}_{\mathfrak{K}}$ is an S-int $\mathfrak{B}Q\overline{\mathfrak{l}}$ -id. In fact,

$$\begin{split} \left(\mathfrak{t}_{\mathfrak{K}} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{\mathfrak{K}} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{\mathfrak{K}} \right) (q) &= \mathfrak{t}_{\mathfrak{K}} (q) \subseteq \mathfrak{t}_{\mathfrak{K}} (q), \left(\mathfrak{t}_{\mathfrak{K}} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{\mathfrak{K}} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{\mathfrak{K}} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{\mathfrak{K}} \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{\mathfrak{K}} \right) \\ \widetilde{\mathbb{S}} \circ \mathfrak{t}_{\mathfrak{K}} \right) (\kappa) &= \mathfrak{t}_{\mathfrak{K}} (\kappa) \subseteq \mathfrak{t}_{\mathfrak{K}} (\kappa) \end{split}$$

Thus, $\mathfrak{t}_{\mathfrak{K}}$ is an S-int $\beta Q\overline{I}$ -id of \mathfrak{K} . However, since $\mathfrak{t}_{\mathfrak{K}}(\kappa q) = \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) = \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) = \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) = \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) = \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}}(\kappa q) \not\supseteq \mathfrak{t}_{\mathfrak{K}(\kappa q)$

Proposition 2 Let $\mathfrak{t}_S \in S_S(U)$ and S be an \mathcal{R} semigroup and \mathcal{R} simple semigroup. Then, the following conditions are equivalent:

- 1. \mathfrak{t}_S is an S-int Ł id.
- 2. \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id.

Proof: (1) implies (2) is by Proposition 1. Let \mathfrak{t}_S is an S-int $\mathfrak{B}Q\overline{\mathbb{I}}$ -id and $\mathfrak{l},\mathfrak{n},\mathfrak{t}\in S$. By assumption, there exists $\mathfrak{m},\mathfrak{n}\in S$ such that $\mathfrak{l}=\mathfrak{n}\mathfrak{m}$ and $\mathfrak{n}=\mathfrak{n}\mathfrak{m}\mathfrak{n}$. Thus, $\mathfrak{t}_S(\mathfrak{l}\mathfrak{n})=\mathfrak{t}_S((\mathfrak{n}\mathfrak{m})(\mathfrak{n}\mathfrak{m}\mathfrak{n}))=\mathfrak{t}_S(\mathfrak{n}\mathfrak{m}\mathfrak{n}\mathfrak{m}\mathfrak{n})\supseteq\mathfrak{t}_S(\mathfrak{n})\cap\mathfrak{t}_S(\mathfrak{n})\cap\mathfrak{t}_S(\mathfrak{n})$. Thus, \mathfrak{t}_S is an S-int \mathfrak{t} id.

Proposition 3 Every S-int R id is an S-int $BQ\overline{I}$ -id.

Proof: Let \mathfrak{t}_S be an S-int \mathbb{R} id of S. Then, by Theorem 7, \mathfrak{t}_S is an S-int bi-id. The rest of the proof is obvious by Theorem 11. Hence, \mathfrak{t}_S is an S-int $\mathbb{B}Q\overline{\mathbb{I}}$ -id of S.

We show with a counterexample that the converse of Proposition 3 is not true:

Example 5 Consider the Ss \mathfrak{t}_S in Example 1. It was shown in Example 1 that \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id. Since, $\mathfrak{t}_S(uz) = \mathfrak{t}_S(z) \not\supseteq \mathfrak{t}_S(u) \mathfrak{t}_S$ is not an S-int R id.

Proposition 4 Let $\mathfrak{t}_S \in S_S(U)$ and S be an \mathcal{R} semigroup and L simple semigroup. Then, the following conditions are equivalent:

- 1. \mathfrak{t}_S is an S-int R id.
- 2. ξ_S is an S-int $\beta Q \overline{I}$ -id.

Proof: (1) implies (2) is by Proposition 3. Let ξ_S is an S-int $\beta Q \overline{I}$ -id and ξ_S , ξ_S . By assumption, there exists ξ_S , ξ_S such that ξ_S and ξ_S and ξ_S . Thus, ξ_S

 $\mathfrak{t}_S((\ln \mathfrak{l})(\mathfrak{m}\mathfrak{l})) = \mathfrak{t}_S(\ln \mathfrak{l}\mathfrak{m}\mathfrak{l}) \supseteq \mathfrak{t}_S(\mathfrak{l}) \cap \mathfrak{t}_S(\mathfrak{l}) \cap \mathfrak{t}_S(\mathfrak{l}) = \mathfrak{t}_S(\mathfrak{l})$ Thus, \mathfrak{t}_S is an S-int \mathbb{R} id.

Theorem 13 Every S-int id is an S-int BQĪ-id.

Proof: It is followed by Proposition 1 and Proposition 3. Here note that the converse of Theorem 13 is not true follows from Example 4 and Example 5.

Theorem 14 shows that the converse of Theorem 13 holds for \mathcal{R} groups.

Theorem 14 Let $\mathfrak{t}_S \in S_S(U)$ and S be an \mathcal{R} group. Then, the following conditions are equivalent:

1. \mathfrak{t}_S is an S-intid.

2. \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id.

Proof: (1) implies (2) is by Proposition 1 and Proposition 3. Let ξ_S is an S-int $\beta Q \bar{I}$ -id of a group S. Then, by Theorem 1, S is both an ξ simple and an ξ simple semigroup. The rest of the proof follows from Proposition 2 and Proposition 4.

Theorem 15 Every S-int interior id is an S-int $\beta Q\bar{I}$ -id.

Proof: Let \mathfrak{t}_S be an S-int interior id of S. Then, $\widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \subseteq \mathfrak{t}_S$. Thus, $\mathfrak{t}_S \circ (\widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}}) \circ \mathfrak{t}_S \subseteq \mathfrak{t}_S \circ \mathfrak{t}_S \circ \mathfrak{t}_S \subseteq \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \subseteq \mathfrak{t}_S$. Hence, \mathfrak{t}_S is an S-int $\mathbb{B}Q\overline{\mathbb{I}}$ -id of S.

We show with a counterexample that the converse of Theorem 15 is not true:

Example 6 Consider the Ss \mathfrak{t}_S in Example 1. It was shown in Example 1 that \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ id. Since $\mathfrak{t}_S(\mathfrak{lulz}) = \mathfrak{t}_S(\mathfrak{z}) \not\supseteq \mathfrak{t}_S(\mathfrak{lulz}), \mathfrak{t}_S$ is not an S-int interior id.

Theorem 16 shows that the converse of Theorem 15 holds for the groups.

Theorem 16 Let $\mathfrak{t}_S \in S_S(U)$ and S be a group. Then, the following conditions are equivalent:

1. ξ_S is an S-int interior id.

2. \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id.

Theorem 17 Every S-int quasi-id is an S-int BQĪ-id.

Proof: Let \mathfrak{t}_S be an S-int quasi-id of S. Then, by Theorem 7, \mathfrak{t}_S is an S-int bi-id. The rest of the proof is obvious by Theorem 11. Hence, \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id of S.

We show with a counterexample that the converse of Theorem 17 is not true:

Example 7 Consider the Ss \mathfrak{t}_S in Example 3. It was shown in Example 3 that \mathfrak{t}_S is an S-int $\beta Q\overline{\mathfrak{l}}$ -id. Since, $(\mathfrak{t}_S \circ \mathfrak{t}_S)$

 $\widetilde{S}(\mathscr{D}) \cap (\widetilde{S} \circ \mathfrak{t}_{S})(\mathscr{D}) = \mathfrak{t}_{S}(\overline{\mathfrak{w}}) \cup \mathfrak{t}_{S}(\mathfrak{T}) \not\subseteq \mathfrak{t}_{S}(\mathscr{D}).\mathfrak{t}_{S} \text{ is not an S-int quasi-id.}$

Theorem 18 Let $\mathfrak{t}_S \in S_S(U)$ and S be an \mathcal{R} group. Then, the following conditions are equivalent:

1. \mathfrak{t}_S is an S-int quasi-id.

2. \mathfrak{t}_S is an S-int $\beta Q \overline{I}$ -id.

Proof: (1) implies (2) is by Theorem 17. Let \mathfrak{t}_S is an S-int $\mathfrak{B}Q\overline{I}$ -id. Since S is an \mathscr{R} group, then, by Theorem 14, \mathfrak{t}_S is an S-int id. The rest of the proof is obvious by Theorem 7 \mathfrak{t}_S is an S-int quasi-id of S.

Theorem 19 Every S-int bi-interior id is an S-int $\beta Q\bar{I}$ -id.

Proof: Let \mathfrak{t}_S be an S-int bi-interior id of S. Then, $(\widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}}) \cap (\mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S) \subseteq \mathfrak{t}_S$. Since, $(\mathfrak{t}_S \circ \widetilde{\mathbb{S}}) \circ \mathfrak{t}_S \circ (\widetilde{\mathbb{S}} \circ \mathfrak{t}_S) \subseteq \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ (\widetilde{\mathbb{S}} \circ \mathfrak{t}_S) \subseteq \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \widetilde{\mathbb{S}}$

Conversely, an S-int $\beta Q \overline{I}$ ideal is not necessarily an S-int bi-interior id.

Example 8 Consider the Ss \mathfrak{t}_S in Example 3. It was shown in Example 3 that \mathfrak{t}_S is an S-int $\beta Q \overline{I}$ -id. Since, $(\widetilde{S} \circ \mathfrak{t}_S \circ \widetilde{S}) (\wp) \cap (\mathfrak{t}_S \circ \widetilde{S} \circ \mathfrak{t}_S) (\wp) = \mathfrak{t}_S(\overline{w}) \not\subseteq \mathfrak{t}_S(\wp) \mathfrak{t}_S$ is not an S-int bi-interior id.

The following theorem offers another characterization of S-int $\beta Q \bar{I}$ ideals.

Theorem 20 Le $t \in S_S(U)$ and S be an \mathcal{R} group. Then, the following conditions are equivalent:

1. \mathfrak{t}_S is an S-int bi-interior id.

2. \mathfrak{t}_S is an S-int $\beta Q \overline{I}$ -id.

Proof: (1) implies (2) is by Theorem 19. Let \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id. Since S is an \mathscr{R} group, then, by Theorem 12, \mathfrak{t}_S is an S-int bi-id. The rest of the proof is obvious by Theorem 7 \mathfrak{t}_S is an S-int bi-interior id of S.

This characterization will be useful for proving subsequent results.

Proposition 5 Every S-int \mathcal{L} bi-quasi id is an S-int $\beta Q\bar{I}$ -id.

Proof: Let \mathfrak{t}_S be an S-int $\mathfrak{B}\mathbb{Q}\overline{1}$ -id of S. Then, $(\widetilde{S} \circ \mathfrak{t}_S) \cap (\mathfrak{t}_S \circ \widetilde{S} \circ \mathfrak{t}_S) \cong \mathfrak{t}_S$. Since, $(\mathfrak{t}_S \circ \widetilde{S} \circ \mathfrak{t}_S \circ \widetilde{S}) \circ \mathfrak{t}_S \cong \widetilde{S} \circ \mathfrak{t}_S$ and $\mathfrak{t}_S \circ (\widetilde{S} \circ \mathfrak{t}_S \circ \widetilde{S}) \circ \mathfrak{t}_S \cong \widetilde{S} \circ \mathfrak{t}_S$ and $\mathfrak{t}_S \circ (\widetilde{S} \circ \mathfrak{t}_S \circ \widetilde{S}) \circ \mathfrak{t}_S \cong \mathfrak{t}_S \circ \widetilde{S} \circ \mathfrak{t}_$

We show with a counterexample that the converse of Proposition 5 is not true:

Example 9 Consider the Ss \mathfrak{t}_S in Example 3. It was shown in Example 3 that \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id. Since, $\widetilde{S} \circ$

 \mathfrak{t}_{S}) (\wp) \cap $(\mathfrak{t}_{S} \circ \widetilde{S} \circ \mathfrak{t}_{S})$ (\wp) $= \mathfrak{t}_{S}(\bar{w}) \nsubseteq \mathfrak{t}_{S}(\wp)$. \mathfrak{t}_{S} is not an Sint L bi-quasi id.

Proposition 6 Let $\mathfrak{t}_S \in S_S(U)$ and S bean R simple \mathcal{R} semigroup. Then, the following conditions are equivalent: 1. \mathfrak{t}_S is an S-int L bi-quasi id.

2. \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id.

Proof: (1) implies (2) is by Proposition 5. Let ξ_S is an S-int $\mathbb{B}\mathbb{Q}\overline{\mathbb{I}}$ -id. Since S is \mathbb{R} simple \mathscr{R} semigroup, then, by Theorem 12, ξ_S is an S-int bi-id and by Proposition 2, ξ_S is an S-int \mathbb{E} id. Since, $(\widetilde{\mathbb{S}} \circ \xi_S) \cong \xi_S$ and $(\xi_S \circ \widetilde{\mathbb{S}} \circ \xi_S) \cong \xi_S$ it is obtained $(\widetilde{\mathbb{S}} \circ \xi_S) \cap (\xi_S \circ \widetilde{\mathbb{S}} \circ \xi_S) \cong \xi_S$.

Proposition 7 Every S-int R bi-quasi id is also an S-int BQI-id

Proof: Let \mathbf{t}_{S} be an S-int $\mathbb{B}\mathbb{Q}\overline{\mathbb{I}}$ -id of S. Then, $(\mathbf{t}_{S} \circ \widetilde{\mathbb{S}}) \widetilde{\cap} (\mathbf{t}_{S} \circ \widetilde{\mathbb{S}}) \widetilde{\cap} (\mathbf{t}_{S} \circ \widetilde{\mathbb{S}}) \cong \mathbf{t}_{S}$. Since, $\mathbf{t}_{S} \circ (\widetilde{\mathbb{S}} \circ \mathbf{t}_{S} \circ \widetilde{\mathbb{S}} \circ \mathbf{t}_{S}) \cong \mathbf{t}_{S} \circ \widetilde{\mathbb{S}}$ and $\mathbf{t}_{S} \circ (\widetilde{\mathbb{S}} \circ \mathbf{t}_{S} \circ \widetilde{\mathbb{S}}) \circ \mathbf{t}_{S} \cong \mathbf{t}_{S} \circ \widetilde{\mathbb{S}} \circ \circ \widetilde$

We show with a counterexample that the converse of Proposition 7 is not true:

Example 10 Consider the Ss \mathfrak{t}_S in Example 3. It was shown in Example 3 that \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id. Since, $(\mathfrak{t}_S \circ \widetilde{S})(\wp) \cap (\mathfrak{t}_S \circ \widetilde{S} \circ \mathfrak{t}_S)(\wp) = \mathfrak{t}_S(\overline{w}) \not\subseteq \mathfrak{t}_S(\wp)\mathfrak{t}_S$ is not an S-int \Re bi-quasi id.

Proof: (1) implies (2) is by Proposition 7. Let \mathfrak{t}_S is an S-int $\mathfrak{B}\mathbb{Q}\overline{\mathbb{I}}$ -id. Since S is an \mathfrak{t} simple \mathscr{R} semigroup, then, by Theorem 12, \mathfrak{t}_S is an S-int bi-id and by Proposition 4, \mathfrak{t}_S is an S-int \mathfrak{k} id. Since, $\left(\mathfrak{t}_S \circ \widetilde{\mathbb{S}}\right) \cong \mathfrak{t}_S$ and $\left(\mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S\right) \cong \mathfrak{t}_S$ it is obtained $\left(\mathfrak{t}_S \circ \widetilde{\mathbb{S}}\right) \cap \left(\mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S\right) \cong \mathfrak{t}_S$.

Theorem 21 Every S-int bi-quasi id is also an S-int $\beta Q\bar{I}$ -id.

Proof: It follows by Proposition 5 and Proposition 7.

Theorem 22 Let $\mathfrak{t}_S \in S_S(U)$ and S be an \mathcal{R} group. Then, the following conditions are equivalent:

- 1. \mathfrak{t}_S is an S-int bi-quasi id.
- 2. ξ_S is an S-int $\beta Q \bar{I}$ -id.

Note that the converse of Theorem 21 is not true, following from Example 9 and Example 10. Theorem 22 shows that the converse of Theorem 21 holds for \mathcal{R} groups.

Proposition 9 Every S-int L quasi-interior id is also an S-int $\beta Q \overline{I}$ -id.

Proof: Let \mathfrak{t}_S be an S-int \mathbb{E} quasi-interior id of S. Then, $\widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \subseteq \mathfrak{t}_S$. Thus, $(\mathfrak{t}_S \circ \widetilde{\mathbb{S}}) \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \subseteq \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \cap \widetilde{\mathbb{S}$

Proposition 10 Let $\mathfrak{t}_S \in S_S(U)$ and S be an R simple semigroup. Then, the following conditions are equivalent: 1. \mathfrak{t}_S is an S-int L quasi-interior id. 2. \mathfrak{t}_S is an S-int $BQ\overline{I}$ -id.

Proof: (1) implies (2) is by Proposition 9. Let \mathfrak{t}_S is an S-int $\mathfrak{B}Q\overline{1}$ -id and $\mathfrak{l},\mathfrak{n},\mathfrak{t},\mathfrak{d}\in S$. By assumption, there exists $\mathbf{m}\in S$ such that $\mathfrak{l}=\mathfrak{n}.\mathfrak{m}$. Thus, $\mathfrak{t}_S(\mathbb{l}.\mathfrak{n}\mathfrak{t}\mathfrak{d})=\mathfrak{t}_S((\mathfrak{n}.\mathfrak{m})\mathfrak{n}.\mathfrak{t}\mathfrak{d})=\mathfrak{t}_S(\mathfrak{n}.\mathfrak{m}\mathfrak{n}.\mathfrak{t}\mathfrak{d})=\mathfrak{t}_S(\mathfrak{n}.\mathfrak{m}) \cap \mathfrak{t}_S(\mathfrak{n}) \cap \mathfrak{t}_S(\mathfrak{d})=\mathfrak{t}_S(\mathfrak{n}) \cap \mathfrak{t}_S(\mathfrak{d})$. Thus, \mathfrak{t}_S is an S-int \mathfrak{t} quasi-interior id.

Proposition 11 Every S-int R quasi-interior id is also an S-int $\beta Q\bar{I}$ -id.

Proof: Let \mathfrak{t}_S be an S-int \Re quasi-interior id of S. Then, $\mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \cong \mathfrak{t}_S$. Thus, $\mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \left(\widetilde{\mathbb{S}} \circ \mathfrak{t}_S\right) \cong \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \circ \mathfrak{t}_S \circ \widetilde{\mathbb{S}} \cong \mathfrak{t}_S$. Hence, \mathfrak{t}_S is an S-int $\mathbb{B} \mathbb{Q} \overline{\mathbb{I}}$ -id of S.

Example 11 Let $S = \{\aleph, 9, F, 3, u\}$ be defined as follows:

* **		е	ŀ	3	ư	
×	Х	3	×	3	3	
е	×	е	Х	3	3	
1-	х	3	1-	3	ư	
3	х	3	* * * * * * * * * * * * * * * * * * * *	3	3	
u	х	3	1-	3	ư	

Let f_S be S_S over U as follows: $f_S = \{(\aleph, U), (9, \emptyset), (\ell, U), (3, \emptyset), (u, \emptyset)\}$. Here, f_S is an S-int $\mathbb{R}Q\overline{I}$ -id. However, since $f_S(\ell + 9\ell + 9) = f_S(3) \not\supseteq f_S(\ell)$, f_S is not an S-int \mathbb{R} quasi-interior id.

Proposition 12 Let $f_S \in S_S(U)$ and S be an L simple semigroup. Then, the following conditions are equivalent: $1. \, \xi_S$ is an S-int R quasi-interior id. $2. \, \xi_S$ is an S-int $BQ\overline{I}$ -id.

Proof: (1) implies (2) is by Proposition 11. Let ξ_S is an S-int β_S ξ_S in and ξ_S , ξ_S , ξ_S is an S-int ξ_S that ξ_S is an S-int ξ_S implies that ξ_S is an S-int ξ_S in S-int ξ_S implies that ξ_S is an S-int ξ_S in S-i

Theorem 23 Every S-int quasi-interior id is also an S-int $BQ\bar{I}$ -id.

Proof: It follows from Proposition 9 and Proposition 11.

Theorem 24 Let $\mathfrak{t}_S \in S_S(U)$ and S be a group. Then, the following conditions are equivalent: 1. \mathfrak{t}_S is an S-int quasi-interior id.

2. \mathfrak{t}_S is an S-int $\beta Q \overline{I}$ -id.

Proof: (1) implies (2) is by Proposition 9 and Proposition 11. Let *S* be a group. The rest of the proof is obvious by Proposition 10 and Proposition 12. Note here that the converse of Theorem 23 is not true, following from Example 11. Theorem 24 shows that the converse of Theorem 23 holds for groups.

The following theorem analyzes the behavior of S-int $\beta Q \overline{I}$ ideals under soft set operations. The following theorem analyzes the behavior of S-int $\beta Q \overline{I}$ ideals under soft set operations. We prove that finite soft AND-products, Cartesian products, and intersections of S-int $\beta Q \overline{I}$ ideals remain S-int $\beta Q \overline{I}$ ideals. In contrast, finite soft OR-products and unions of S-int $\beta Q \overline{I}$ ideals are not S-int $\beta Q \overline{I}$ ideals.

Theorem 25 Let ζ_S and ζ_T be S-int $\beta Q\overline{I}$ -ids of S and T, respectively. Then, $\zeta_S \wedge \zeta_T$ is an S-int $\beta Q\overline{I}$ -ids of $S \times T$.

Proof: Let (ϑ_1, b_1) , (ϑ_2, b_2) , (ϑ_3, b_3) , (ϑ_4, b_4) , $(\vartheta_5, b_5) \in S \times T$ Then,

$$\begin{split} & \xi_{S \wedge T} \big((\theta_1, b_1) (\theta_2, b_2) (\theta_3, b_3) (\theta_4, b_4) (\theta_5, b_5) \big) \\ & = \xi_{S \wedge T} (\theta_1 \theta_2 \theta_3 \theta_4 \theta_5, b_1 b_2 b_3 b_4 b_5) \\ & = \xi_S (\theta_1 \theta_2 \theta_3 \theta_4 \theta_5) \cap \xi_T (b_1 b_2 b_3 b_4 b_5) \\ & = (\xi_S (\theta_1) \cap \xi_S (\theta_3) \cap \xi_S (\theta_5)) \\ & \cap (\xi_T (b_1) \cap \xi_T (b_3) \cap \xi_T (b_5)) \\ & = (\xi_S (\theta_1) \cap \xi_T (b_1) \cap \xi_T (b_2)) \\ & = (\xi_S (\theta_1) \cap \xi_T (b_1) \cap \xi_S (\theta_2) \cap \xi_T (b_2)) \\ & = \xi_{S \wedge T} (\theta_1, b_1) \cap \xi_{S \wedge T} (\theta_3, b_3) \cap \xi_{S \wedge T} (\theta_5, b_5) \end{split}$$

Thus, $\xi_S \wedge \xi_T$ is an S-int $\beta Q \overline{I}$ -id of $S \times T$.

Note her that $g_S \vee g_T$ is not always an S-int $\beta Q\overline{I}$ -id with Example 12.

Example 12 Let's consider the subsemigroups in Example 1 and Example 4. Let \mathfrak{t}_8 and $\mathfrak{t}_{\mathfrak{R}}$ be 8s over $U=Z_6=\{0,1,2,3,4,5\}$ as follows:

$$\begin{split} & \mathbf{t}_S = \{(\mathbf{z}, \{1,3\}), (\mathbf{l}\mathsf{L}, \{2,4,5\}), (\mathbf{u}\mathsf{J}, \{1,2,3,4,5\})\}, \\ & \mathbf{t}_\Re = \{(\mathbf{d}, \{1,3,4,5\}), (\kappa, \{2\})\} \end{split}$$

t_S and t_s are S-int ₿QĪ-ids. Here, since

$$\begin{split} \mathfrak{t}_{\text{SVR}}\big((\textbf{l}\textbf{L},\textbf{q})(\textbf{l}\textbf{L},\textbf{q})(\textbf{l}\textbf{L},\textbf{q})(\textbf{l}\textbf{L},\textbf{q})(\textbf{z},\textbf{k}) \big) \\ & \quad \quad \not \supseteq \mathfrak{t}_{\text{SVR}}(\textbf{l}\textbf{L},\textbf{q}) \cap \mathfrak{t}_{\text{SVR}}(\textbf{l}\textbf{L},\textbf{q}) \cap \mathfrak{t}_{\text{SVR}}(\textbf{z},\textbf{k}) \\ \mathfrak{t}_{\text{S}} \lor \mathfrak{t}_{\text{R}} \text{ is not an S-int } \not \exists \textbf{Q} \vec{\textbf{I}}\text{-id}. \end{split}$$

Theorem 26 Let \mathfrak{t}_S and \mathfrak{t}_T be S-int $\beta Q\overline{I}$ -ids of S and T over U, respectively. Then, $\mathfrak{t}_S \times \mathfrak{t}_T$ is an S-int $\beta Q\overline{I}$ -id of $S \times T$ over $U \times U$.

Proof: Let $\mathbf{t}_S \times \mathbf{t}_T = \mathbf{t}_{S \times T}$, where $\mathbf{t}_{S \times T}(\mathbf{e}, \mathbf{b}) = \mathbf{t}_S(\mathbf{e}) \times \mathbf{t}_T(\mathbf{b})$ for all $(\mathbf{e}, \mathbf{b}) \in S \times T$. Then, for all $(\mathbf{e}_1, \mathbf{b}_1)$, $(\mathbf{e}_2, \mathbf{b}_2)$, $(\mathbf{e}_3, \mathbf{b}_3)$, $(\mathbf{e}_4, \mathbf{b}_4)$, $(\mathbf{e}_5, \mathbf{b}_5) \in S \times T$,

$$\begin{aligned}
\mathbf{t}_{S \times T} & \left((\mathbf{e}_{1}, \mathbf{b}_{1}) (\mathbf{e}_{2}, \mathbf{b}_{2}) (\mathbf{e}_{3}, \mathbf{b}_{3}) (\mathbf{e}_{4}, \mathbf{b}_{4}) (\mathbf{e}_{5}, \mathbf{b}_{5}) \right) \\
&= \mathbf{t}_{S \times T} (\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4} \mathbf{e}_{5}, \mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3} \mathbf{b}_{4} \mathbf{b}_{5}) \\
&= \mathbf{t}_{S} (\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4} \mathbf{e}_{5}) \times \mathbf{t}_{T} (\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3} \mathbf{b}_{4} \mathbf{b}_{5})
\end{aligned}$$

$$\supseteq (\mathfrak{t}_{S}(\mathfrak{s}_{1}))$$

$$\cap \mathfrak{t}_{S}(\mathfrak{s}_{3}) \cap \mathfrak{t}_{S}(\mathfrak{s}_{5}))$$

$$\times (\mathfrak{t}_{T}(\mathfrak{b}_{1}) \cap \mathfrak{t}_{T}(\mathfrak{b}_{3}) \cap \mathfrak{t}_{T}(\mathfrak{b}_{5}))$$

$$= (\mathfrak{t}_{S}(\mathfrak{s}_{1}))$$

$$\times \mathfrak{t}_{T}(\mathfrak{b}_{1})) \cap (\mathfrak{t}_{S}(\mathfrak{s}_{3}) \times \mathfrak{t}_{T}(\mathfrak{b}_{3}))$$

$$\cap (\mathfrak{t}_{S}(\mathfrak{s}_{5}) \times \mathfrak{t}_{T}(\mathfrak{b}_{5}))$$

$$= \mathfrak{t}_{S \times T}(\mathfrak{s}_{1}, \mathfrak{b}_{1}) \cap \mathfrak{t}_{S \times T}(\mathfrak{s}_{3}, \mathfrak{b}_{3}) \cap \mathfrak{t}_{S \times T}(\mathfrak{s}_{5}, \mathfrak{b}_{5})$$

Hence, $\mathfrak{t}_S \times \mathfrak{t}_T = \mathfrak{t}_{S \times T}$ is an S-int $\mathbb{B}Q\overline{\mathbb{I}}$ -id of $S \times T$ over $U \times U$.

Theorem 27 Let ω_S and b_S be S-int $\beta Q\overline{I}$ -ids. Then, $\omega_S \cap b_S$ is an S-int $\beta Q\overline{I}$ -id.

Proof: Let ω_{S} and b_{S} be S-int $\beta_{S}Q\overline{1}$ -ids of S. Then, $\omega_{S} \circ \widetilde{S} \circ \omega_{S} \circ \widetilde{S} \circ \omega_{S} \subseteq \omega_{S}$ and $b_{S} \circ \widetilde{S} \circ b_{S} \circ \widetilde{S} \circ b_{S} \subseteq b_{S}$. Thus, $(\omega_{S} \cap b_{S}) \circ \widetilde{S} \circ (\omega_{S} \cap b_{S}) \circ \widetilde{S} \circ (\omega_{S} \cap b_{S}) \subseteq \omega_{S} \circ \widetilde{S} \circ \omega_{S} \subseteq \omega_{S}$ and $(\omega_{S} \cap b_{S}) \circ \widetilde{S} \circ (\omega_{S} \cap b_{S}) \circ (\omega_{S} \cap b_{S}) \circ \widetilde{S} \circ (\omega_{S} \cap b_{S}) \circ (\omega_{S} \cap$

Proposition 13 Let ω_S be an S-int L id and b_S be an Ss. Then, $\omega_S \circ b_S$ is an S-int $BQ\overline{I}$ -id.

Proof: Let ω_S be S-int Ł id of S. Then, $\widetilde{\mathbb{S}} \circ \omega_S \cong \omega_S$ and $\mathfrak{t}_S \circ \mathfrak{t}_S \cong \mathfrak{t}_S$. Thus, $(\omega_S \circ b_S) \circ \widetilde{\mathbb{S}} \circ (\omega_S \circ b_S) \circ (\widetilde{\mathbb{S}} \circ \omega_S) \circ (\widetilde{\mathbb{S}} \circ$

Proposition 14 Let ω_S be an S-int R id and β_S be an Ss. Then, $\omega_S \circ \beta_S$ is an S-int $\beta Q\overline{I}$ -id.

Proof: Let ω_S be S-int \Re id of S. Then, $\omega_S \circ \widetilde{\mathbb{S}} \cong \omega_S$ and $\omega_S \circ \omega_S \cong \mathfrak{t}_S$. Thus, $(\omega_S \circ \mathfrak{b}_S) \circ \widetilde{\mathbb{S}} \circ (\omega_S \circ \mathfrak{b}_S) \circ (\omega_S \circ \mathfrak$

Theorem 28 Let ω_S be an S-int id and b_S be an Ss. Then, $\omega_S \circ b_S$ is an S-int $\beta Q\overline{I}$ -id.

Proposition 15 Let \mathfrak{h}_S be an S-int L id and \mathfrak{o}_S be an Ss. Then, $\mathfrak{o}_S \circ \mathfrak{h}_S$ is an S-int $BQ\overline{l}$ -id.

Proof: Let b_S be S-int Ł id of S. Then, $\widetilde{S} \circ b_S \cong b_S$ and $b_S \circ b_S \cong b_S$.

Then, $(\omega_S \circ b_S) \circ \widetilde{\mathbb{S}} \circ (\omega_S \circ b_S) \circ \widetilde{\mathbb{S}} \circ (\omega_S \circ b_S) \cong \omega_S \circ b_S \circ (\widetilde{\mathbb{S}} \circ \widetilde{\mathbb{S}}) \circ b_S \circ (\widetilde{\mathbb{S}} \circ \widetilde{\mathbb{S}}) \circ b_S \cong \omega_S \circ b_S \circ (\widetilde{\mathbb{S}} \circ b_S) \circ (b_S \circ b_S) \cong \omega_S \circ (b_S \circ b_S) \cong \omega_S \circ b_S.$ Thus, $\omega_S \circ b_S$ is an S-int $\widehat{\mathbb{B}} \mathbb{Q} \overline{\mathbb{I}}$ -id.

Proposition 16 Let \mathfrak{b}_S be an S-int R id and \mathfrak{o}_S be an Ss. Then, $\mathfrak{o}_S \circ \mathfrak{b}_S$ is an S-int $R \not = \mathbb{Z}[P]$.

Proof: Let b_S be S-int \mathbb{R} id of S. Then, $b_S \circ \widetilde{S} \subseteq b_S$ and $b_S \circ b_S \subseteq b_S$. Thus, $(\omega_S \circ b_S) \circ \widetilde{S} \circ (\omega_S \circ b_S) \circ \widetilde{S} \circ (\omega_S \circ b_S) \circ \widetilde{S} \circ (\omega_S \circ b_S) \subseteq \omega_S \circ (b_S \circ \widetilde{S}) \circ \omega_S \circ (b_S \circ \widetilde{S}) \circ \omega_S \circ b_S \subseteq \omega_S \circ b_S \circ \omega_S \circ b_S \subseteq \omega_S \circ b_S \circ (b_S \circ b_S) \circ (b_S \circ b_S) \circ (b_S \circ b_S) \circ (b_S \circ b_S) \subseteq \omega_S \circ (b_S \circ b_S) \subseteq \omega_S \circ (b_S \circ b_S) \subseteq \omega_S \circ b_S$. Thus, $\mathfrak{t}_S \circ b_S$ is an S-int $\widetilde{\mathbb{R}}$ Q $\widetilde{\mathbb{I}}$ -id.

Theorem 29 Let b_S be an S-int id and ω_S be an Ss. Then, $\omega_S \circ b_S$ is an S-int $\beta Q \overline{I}$ -id.

Proposition 17 Let ω_S and \mathfrak{b}_S be Sss over U. If $\omega_S \circ \mathfrak{b}_S$ is an S-int \mathfrak{L} id, then it is an S-int $\beta Q \overline{I}$ -id.

Proof: Let $\mathbf{t}_S \circ \mathbf{b}_S$ is an S-int L id. Then, $(\omega_S \circ \mathbf{b}_S) \circ \left[\widetilde{S} \circ (\omega_S \circ \mathbf{b}_S)\right] \circ \left[\widetilde{S} \circ (\omega_S \circ \mathbf{b}_S)\right] \subseteq \left[(\omega_S \circ \mathbf{b}_S) \circ (\omega_S \circ \mathbf{b}_S)\right] \circ (\omega_S \circ \mathbf{b}_S) \subseteq (\omega_S \circ \mathbf{b}_S) \subseteq (\omega_S \circ \mathbf{b}_S) \subseteq (\omega_S \circ \mathbf{b}_S) \subseteq (\omega_S \circ \mathbf{b}_S)$ implying that $\mathbf{t}_S \circ \mathbf{b}_S$ is an S-int $BQ\overline{I}$ -id.

Theorem 30 Let \mathfrak{t}_S be an S-int subsemigroup over U, α be a subset of U, $I_{\mathbf{b}}(\mathfrak{t}_S)$ be the image of \mathfrak{t}_S such that $\alpha \in Im(\mathfrak{t}_S)$. If \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id of S, then $U(\mathfrak{t}_S; \alpha)$ is a $\beta Q\overline{I}$ id of S.

Proof: Since, $\mathfrak{t}_S(x) = \alpha$ for some $x \in S$, $\emptyset \neq \mathcal{U}(\mathfrak{t}_S; \alpha) \subseteq S$. Let $k \in \mathcal{U}(\mathfrak{t}_S; \alpha) \cdot S \cdot \mathcal{U}(\mathfrak{t}_S; \alpha) \cdot S \cdot \mathcal{U}(\mathfrak{t}_S; \alpha)$. Then, there exist $x, y, z \in \mathcal{U}(\mathfrak{t}_S; \alpha)$ and $b \in S$ such that k = xbybz. Thus, $\mathfrak{t}_S(x) \supseteq \alpha$, $\mathfrak{t}_S(y) \supseteq \alpha$ and $\mathfrak{t}_S(z) \supseteq \alpha$. Since \mathfrak{t}_S is an S-int $\mathbb{B}Q\overline{1}$ -id, $\mathfrak{t}_S(k) = \mathfrak{t}_S(xbybz) \supseteq \mathfrak{t}_S(x) \cap \mathfrak{t}_S(y) \cap \mathfrak{t}_S(z) \supseteq \alpha \cap \alpha \cap \alpha \supseteq \alpha$. Hence, $\mathfrak{t}_S(k) \supseteq \alpha$, implying that $k \in \mathcal{U}(\mathfrak{t}_S; \alpha)$. Therefore, $\mathcal{U}(\mathfrak{t}_S; \alpha) \cdot S \cdot \mathcal{U}(\mathfrak{t}_S; \alpha) \cdot S \cdot \mathcal{U}(\mathfrak{t}_S; \alpha) \subseteq \mathcal{U}(\mathfrak{t}_S; \alpha)$. Moreover, since \mathfrak{t}_S is an S-int subsemigroup over \mathcal{U} , by Theorem 8, $\mathcal{U}(\mathfrak{t}_S; \alpha)$ is a subsemigroup of S. Thus, $\mathcal{U}(\mathfrak{t}_S; \alpha)$ is a $\mathbb{B}Q\overline{1}$ id.

We illustrate Theorem 30 with Example 13.

Example 13 Consider Example 1. It was shown in Example 1 that \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id.

By considering the image set of \mathfrak{t}_8 , that is, $Im(\mathfrak{t}_8) = \{\{\overline{1}, \overline{3}, \overline{5}\}, \{\overline{1}, \overline{3}, \overline{7}\}, \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}\}$, we obtain the following:

$$\mathcal{U}(\mathbf{t}_{\mathrm{S}};\alpha) = \begin{cases} \{\mathbf{z},\mathbf{u}\}, & \alpha = \{\bar{1},\bar{3},\bar{5}\} \\ \{\mathbf{u},\mathbf{u}\}, & \alpha = \{\bar{1},\bar{3},\bar{7}\} \\ \{\mathbf{u}\}, & \alpha = \{\bar{1},\bar{3},\bar{5},\bar{7}\} \end{cases}$$

Here, $\{z, u_l\}$, $\{u, u_l\}$ and $\{u_l\}$ are all $BQ\overline{I}$ ids of S. In fact, since $\{z, u_l\} \cdot \{z, u_l\} \subseteq \{z, u_l\}, \{u, u_l\} \cdot \{u, u_l\} \subseteq \{u, u_l\}, \{u_l\} \cdot \{u, u_l\} \subseteq \{u_l\}$ each $U(\mathfrak{t}_S; \alpha)$ is a subsemigroup of S. Similarly, since $\{z, u_l\} \cdot S \cdot \{z, u_l\} \cdot S \cdot \{z, u_l\} = \{u_l\} \subseteq \{z, u_l\}, \{u, u_l\} \cdot S \cdot \{u, u_l\} \subseteq \{u, u_l\}, \{u_l\} \cdot S \cdot \{u_l\} = \{u_l\} \subseteq \{u_l\}$ and $\{u, u_l\} \in \{u, u_l\}, \{u_l\} \cdot S \cdot \{u_l\} \subseteq \{u_l\}$ and $\{u, u_l\} \in \{u, u_l\}, \{u_l\} \cdot S \cdot \{u_l\} \subseteq \{u_l\}$ and $\{u, u_l\} \in \{u_l\}$ is a $\{u, u_l\} \in \{u_l\}$ and $\{u, u_l\} \in \{u_l\}$ is a $\{u, u_l\} \in \{u_l\}$ and $\{u, u_l\} \in \{u_l\}$ is a $\{u, u_l\} \in \{u_l\}$ in $\{u, u_l\} \in \{u, u_l\}$ in

consider the 8s 6_8 in Example 1. By taking into account $Im(6_8) = \{\{\bar{1}, \bar{3}, \bar{5}\}, \{\bar{1}, \bar{3}, \bar{7}\}\}$ we obtain the following: $\mathcal{U}(6_8; \alpha) = \begin{cases} \{\mathbf{z}, \mathbf{u}\} & \alpha = \{\bar{1}, \bar{3}, \bar{5}\} \\ \{\mathbf{u}\} & \alpha = \{\bar{1}, \bar{3}, \bar{7}\} \end{cases}$

Here, $\{u\}$ is not a $\beta Q\overline{I}$ id of S. In fact, since $\{u\} \cdot S \cdot \{u\} \cdot S \cdot \{u\} = \{z, u, u\} \not\subseteq \{u\}$ one of the $\mathcal{U}(\delta_S; \alpha)$ is not a $\beta Q\overline{I}$ id of S, hence it is not a $\beta Q\overline{I}$ id of S, It is seen that each of $\mathcal{U}(\delta_S; \alpha)$ is not a $\beta Q\overline{I}$ id of S. On the other hand, in Example 1 it was shown that δ_S is not an S-int $\beta Q\overline{I}$ -id of S.

Definition 14 Let \mathfrak{t}_S be an S-int subsemigroup and S-int $\beta Q \overline{I}$ -id of S. Then, the $\beta Q \overline{I}$ ids $U(\mathfrak{t}_S; \alpha)$ are called upper α - $\beta Q \overline{I}$ ids of \mathfrak{t}_S .

Proposition 18 Let \mathfrak{t}_S be an Ss over $U, U(\mathfrak{t}_S; \alpha)$ be upper α - $\beta Q\overline{I}$ of \mathfrak{t}_S for each $\alpha \subseteq U$ and $Im(\mathfrak{t}_S)$ be an ordered set by inclusion. Then, \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id.

Proof: Let $x, y, z, b, c \in S$ and $\mathfrak{t}_S(x) = \alpha_1, \mathfrak{t}_S(y) = \alpha_2$ and $\mathfrak{t}_S(z) = \alpha_3$. Suppose that $\alpha_1 \subseteq \alpha_2$. It is obvious that $x \in \mathcal{U}(\mathfrak{t}_S; \alpha_1)$ and $y \in \mathcal{U}(\mathfrak{t}_S; \alpha_2)$. Since $\alpha_1 \subseteq \alpha_2 \subseteq \alpha_3, x, y, z \in \mathcal{U}(\mathfrak{t}_S; \alpha_1)$ and since $\mathcal{U}(\mathfrak{t}_S; \alpha)$ is a $\beta Q \overline{1}$ of S for all $\alpha \subseteq U$, it follows that $xbycz \in \mathcal{U}(\mathfrak{t}_S; \alpha_1)$. Hence, $\mathfrak{t}_S(xbycz) \supseteq \alpha_1 = \alpha_1 \cap \alpha_2 \cap \alpha_3$. Thus, \mathfrak{t}_S is an S-int $\beta Q \overline{1}$ -id.

Proposition 19 Let \mathfrak{t}_S and \mathfrak{t}_T be Ss over U, and Ψ be a semigroup isomorphism from S to T. If \mathfrak{t}_S is an S-int $\beta Q\overline{I}$ -id of S, then $\Psi(\mathfrak{t}_S)$ is an S-int $\beta Q\overline{I}$ -id of T.

Proof: Let $b_1, b_2, b_3, b_4, b_5 \in T$. Since Ψ is surjective, there exist $\theta_1, \theta_2, \theta_3, \theta_4, \theta_5 \in S$ such that $\Psi(\theta_1) = b_1, \Psi(\theta_2) = b_2, \Psi(\theta_3) = b_3, \Psi(\theta_4) = b_4$ and $\Psi(\theta_5) = b_5$. Then,

$$(\Psi(\mathfrak{t}_{S}))(\mathfrak{b}_{1}\mathfrak{b}_{2}\mathfrak{b}_{3}\mathfrak{b}_{4}\mathfrak{b}_{5})$$

$$= \bigcup \{\mathfrak{t}_{S}(\mathfrak{e}) : \mathfrak{e} \in S, \Psi(\mathfrak{t}_{S})$$

$$= \mathfrak{b}_{1}\mathfrak{b}_{2}\mathfrak{b}_{3}\mathfrak{b}_{4}\mathfrak{b}_{5}\}$$

$$= \bigcup \{\mathfrak{t}_{S}(\mathfrak{e}) : \mathfrak{e} \in S, \mathfrak{e}$$

$$= \Psi^{-1}(\mathfrak{b}_{1}\mathfrak{b}_{2}\mathfrak{b}_{3}\mathfrak{b}_{4}\mathfrak{b}_{5})\}$$

$$= \bigcup \{\mathfrak{t}_{S}(\mathfrak{e}) : \mathfrak{e} \in S, \mathfrak{e}$$

$$= \Psi^{-1}(\Psi(\mathfrak{e}_{1}\mathfrak{e}_{2}\mathfrak{e}_{3}\mathfrak{e}_{4}\mathfrak{e}_{5}))$$

$$= \mathfrak{e}_{1}\mathfrak{e}_{2}\mathfrak{e}_{3}\mathfrak{e}_{4}\mathfrak{e}_{5}\}$$

$$= \bigcup \{\mathfrak{t}_{S}(\mathfrak{e}_{1}\mathfrak{e}_{2}\mathfrak{e}_{3}\mathfrak{e}_{4}\mathfrak{e}_{5}) : \mathfrak{e}_{i} \in S, \Psi(\mathfrak{e}_{i}) = \mathfrak{b}_{i}, i$$

$$= 1,2,3,4,5\}$$

$$\supseteq \bigcup \{\mathfrak{t}_{S}(\mathfrak{e}_{1}) \cap \mathfrak{t}_{S}(\mathfrak{e}_{3}) \cap \mathfrak{t}_{S}(\mathfrak{e}_{5}) : \mathfrak{e}_{1}, \mathfrak{e}_{3}, \mathfrak{e}_{5} \in S, \Psi(\mathfrak{e}_{1})$$

$$= \mathfrak{b}_{1}, \Psi(\mathfrak{e}_{3}) = \mathfrak{b}_{3} \text{ and } \Psi(\mathfrak{e}_{5}) = \mathfrak{b}_{5}\}$$

$$= (\Psi(\mathfrak{t}_{S}))(\mathfrak{e}_{1}) \cap (\Psi(\mathfrak{t}_{S}))(\mathfrak{e}_{3})$$

Hence, $\Psi(\mathfrak{t}_S)$ is an S-int $\beta Q\overline{I}$ -id of T.

Proposition 20 Let \mathfrak{t}_S and \mathfrak{t}_T be Ss over U, and Ψ be a semigroup isomorphism from S to T. If \mathfrak{t}_T is an S-int $\beta Q \overline{I}$ -id of S, then $\Psi^{-1}(\mathfrak{t}_T)$ is an S-int $\beta Q \overline{I}$ -id of T.

Proof: Let
$$\theta_1, \theta_2, \theta_3, \theta_4, \theta_5 \in S$$
. Then, $(\Psi^{-1}(\mathfrak{t}_T))(\theta_1\theta_2\theta_3\theta_4\theta_5) = \mathfrak{t}_T(\Psi(\theta_1\theta_2\theta_3\theta_4\theta_5))$

 $\cap (\Psi(\mathfrak{t}_{S}))(\mathfrak{v}_{S})$

$$\begin{split} &= \mathfrak{t}_T(\Psi(\mathfrak{G}_1)\Psi(\mathfrak{G}_2)\Psi(\mathfrak{G}_3)\Psi(\mathfrak{G}_4)\Psi(\mathfrak{G}_5)) \\ & \supseteq \mathfrak{t}_T\left(\Psi(\mathfrak{G}_1)\right) \cap \mathfrak{t}_T(\Psi(\mathfrak{G}_3)) \\ & \cap \mathfrak{t}_T(\Psi(\mathfrak{G}_5))) \\ & = \left(\Psi^{-1}(\mathfrak{t}_T)\right)\!\left(\mathfrak{G}_1\right) \\ & \cap \left(\Psi^{-1}(\mathfrak{t}_T)\right)\!\left(\mathfrak{G}_3\right) \cap \left(\Psi^{-1}(\mathfrak{t}_T)\right)\!\left(\mathfrak{G}_5\right) \end{split}$$
 Thus, $\Psi^{-1}(\mathfrak{t}_T)$ is an S-int $\beta Q \overline{I}$ -id of T .

Theorem 31 For a semigroup S, the following conditions are equivalent:

1. S is a R semigroup.

2.
$$\mathbf{t}_S = \mathbf{t}_S \circ \widetilde{S}' \circ \mathbf{t}_S \circ \widetilde{S}' \circ \mathbf{t}_S$$
 for every S-int $\beta Q\overline{I}$ -id of S.

Proof: First assume that (1) holds. Let S be an \mathcal{R} semigroup, \mathfrak{t}_{S} be an S-int $\beta Q\overline{I}$ -id of S and $m \in S$. Then, $\mathfrak{t}_{S} \circ$ $\vec{S} \circ t_S \circ \vec{S} \circ t_S \cong t_S$ and there exists an element $n \in S$ such that m = mnm. Thus,

$$\begin{split} \left(\overleftarrow{t}_{S} \circ \widetilde{S} \circ \overleftarrow{t}_{S} \circ \widetilde{S} \circ \overleftarrow{t}_{S} \right) (\mathbf{m}) \\ &= \bigcup_{\mathbf{m} = \mathbb{I} \mathbf{n}} \left\{ \left(\overleftarrow{t}_{S} \circ \widetilde{S} \circ \overleftarrow{t}_{S} \circ \widetilde{S} \right) (\mathbb{I}) \cap \overleftarrow{t}_{S}(\mathbf{n}) \right\} \\ &= \bigcup_{\mathbf{m} = \mathbb{I} \mathbf{n}} \left\{ \left(\overleftarrow{t}_{S} \circ \widetilde{S} \circ \overleftarrow{t}_{S} \circ \widetilde{S} \right) (\mathbf{m} \mathbf{n}) \cap \overleftarrow{t}_{S}(\mathbf{m}) \right. \\ &= \bigcup_{\mathbf{m} = \mathbb{I} \mathbf{n}} \left\{ \left(\overleftarrow{t}_{S} \circ \widetilde{S} \circ \overleftarrow{t}_{S} \right) (\mathbf{p}) \right. \\ &\cap \widetilde{S}(q) \right\} \cap \overleftarrow{t}_{S}(\mathbf{m}) \\ &= \bigcup_{\mathbf{m} = \mathbb{I} \mathbf{n}} \left\{ \left(\overleftarrow{t}_{S} \circ \widetilde{S} \right) (\mathbb{I}) \cap \overleftarrow{t}_{S}(\mathbf{n}) \right\} \\ &\cap \overleftarrow{t}_{S}(\mathbf{m}) \\ &= \bigcup_{\mathbf{m} = \mathbb{I} \mathbf{n}} \left\{ \left(\overleftarrow{t}_{S} \circ \widetilde{S} \right) (\mathbb{I}) \cap \overleftarrow{t}_{S}(\mathbf{n}) \right\} \\ &\cap \overleftarrow{t}_{S}(\mathbf{m}) \\ &= \bigcup_{\mathbf{m} = \mathbb{I} \mathbf{n}} \left\{ \overleftarrow{t}_{S}(\mathbf{p}) \cap \widetilde{S}(q) \right\} \cap \overleftarrow{t}_{S}(\mathbf{m}) \\ &= \bigcup_{\mathbf{m} = \mathbb{I} \mathbf{n}} \left\{ \overleftarrow{t}_{S}(\mathbf{p}) \cap \widetilde{S}(q) \right\} \cap \overleftarrow{t}_{S}(\mathbf{m}) \\ &= \overleftarrow{t}_{S}(\mathbf{m}) \cap \widetilde{S}(\mathbf{n} \mathbf{m} \mathbf{n}) \cap \overleftarrow{t}_{S}(\mathbf{m}) \\ &= \overleftarrow{t}_{S}(\mathbf{m}) \end{split}$$
Therefore, $\overleftarrow{t}_{S} \circ \widecheck{S} \circ \overleftarrow{t}_{S} \circ \widecheck{S} \circ \overleftarrow{t}_{S} \circ \widecheck{S} \circ \overleftarrow{t}_{S} \circ \widecheck{S} \circ \overleftarrow{t}_{S} \circ \overleftarrow{t}_{S} \circ \mathbf{m}$ implying that $\overleftarrow{t}_{S} = \overleftarrow{t}_{S} \circ \widecheck{S} \circ \overleftarrow{S} \circ \overleftarrow{t}_{S} \circ \widecheck{S} \circ \overleftarrow{S} \circ \overleftarrow$

 $\widetilde{\mathbb{S}} \circ \xi_{\varsigma} \circ \widetilde{\mathbb{S}} \circ \xi_{\varsigma}$.

Conversely, let $\mathbf{t}_S = \mathbf{t}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{t}_S \circ \widetilde{\mathbf{S}} \circ \mathbf{t}_S$ where \mathbf{t}_S is an S-int $BQ\overline{I}$ -id of S. To show that S is an \mathcal{R} semigroup, we need to show that A = ASASA for every $\mathbb{B}Q\overline{I}$ id A of S. It is obvious that $ASASA \subseteq A$. Thus, it is enough to show that $A \subseteq$ ASASA. Let $l \in A$, and A be any $\beta Q \overline{l}$ id of S. Then, S_A is an S-int $\beta Q \overline{I}$ of S. Hence, $S_A(L) = (S_A \circ \widetilde{S} \circ S_A \circ \widetilde{S} \circ S_A)(L) = (S_A \circ S_S \circ S_A \circ S_S \circ S_A)(L) = S_{ASASA}(L) = U$ implying that $l \in ASASA$. Hence, A = ASASA, so S is an \mathcal{R} semigroup.

IV. CONCLUSION

In this study, the concept of the soft intersection (S-int) biquasi-interior (BQI) ideal in semigroups is proposed and the relations of several types of S-int ideals with S-int BQI ideals are provided. We established equivalent definitions and investigated the fundamental properties of this ideal. It is obtained that every S-int bi-ideal, S-int ideal, S-int interior ideal, S-int quasi-ideal, S-int bi-interior ideal, S-int bi-quasi ideal, and S-int quasi-interior ideal of a semigroup is an Sint BQI ideal. We also showed, by means of counterexamples, that the converses do not hold in general.

The conditions for the converses to hold are also explored. In addition, we proved that the class of S-int BQI ideals is closed under finite soft AND-products, Cartesian products, and intersections, but not under finite soft OR-products or unions. Moreover, it is shown that if a subsemigroup of a semigroup is a BQI ideal, then its soft characteristic function is also an S-int BQI ideal, and the converse is also true. The results presented here build a bridge between classical semigroup theory and soft set theory, offering new directions for future research. Future work could explore more characterizations of an S-int BQI ideal with certain types of semigroups like intra-regular, weakly-regular, quasi-regular, semisimple and duo semigroups.

ACKNOWLEDGMENT

This paper is derived from the second author's master's thesis supervised by the first author at Amasya University, Türkiye.

REFERENCES

- R. A. Good and D. R. Hughes, "Associated groups for a semigroup, Bulletin of the American Mathematical Society, vol. 58, pp.624–625, 1952
- O. Steinfeld, "Uher die quasi ideals," Von halbgruppend Publication [2] Mathematical Debrecen, vol. 4, pp. 262-275, 1956.
- S. Lajos, " (m;k;n)-ideals in semigroups. Notes on semigroups II."Karl Marx University of Economics Department of Mathematics Budapest, vol. 1, pp. 12-19, 1976.
- G. Szasz, "Interior ideals in semigroups. Notes on semigroups IV," Karl Marx University of Economics Department of [4] MathematicsBudapest, vol. 5, pp. 1-7, 1977.
- G. Szasz, "Remark on interior ideals of semigroup," Studia [5] Scientiarum Mathematicarum Hungarica, vol. 16, pp. 61-63, 1981.
- M. M. K. Rao, "Bi-interior ideals of semigroups," Discussiones Mathematica e-general Algebra and Applications, vol. 38, pp. 69-78,
- M. M. K. Rao, "A study of a generalization of bi-ideal, quasi ideal and interior ideal of semigroup," Mathematica Moravica, vol. 22, pp. 103-115, 2018.
- M. M. K. Rao, "Left Bi-quasi ideals of semigroups," Southeast Asian Bulletin of Mathematics, vol. 44, pp. 369–376, 2020.
- M. M. K. Rao, "Quasi-interior ideals and weak-interior ideals," Asia Pacific Journal of Mathematics, vol. 7, no. 21, pp. 1-20, 2020.
- [10] M. M. K. Rao, "Tri-ideals of semigroups," Bulletin of International Mathematical Virtual Institute, vol. 14, no. 2, pp. 213-223, 2024.
- M. M. K. Rao, R. K. Kona, N. Rafi, "Tri-quasi ideals and fuzzy triquasi ideals of semigroups," Annals of Communications in Mathematics, vol. 7, no. 3, pp. 281-295, 2024.
- [12] S. Baupradist, B. Chemat, K. Palanivel and R. Chinram "Essential ideals and essential fuzzy ideals in semigroups," Journal of Discrete Mathematical Sciences and Cryptography, Vol. 24, no. 1, pp. 223-233, 2021.
- [13] O. Grosek and L. Satko, "A new notion in the theory of semigroup,"Semigroup Forum, vol. 20, pp. 233-240, 1980.
- [14] S. Bogdanovic, "Semigroups in which some bi-idealis a group,"Univerzitet u Novom Sadu, Zbornik Radova Prirodno-Matematičkog Fakulteta, Serija Matematika, vol. 11, pp. 261-266,
- [15] K. Wattanatripop, R. Chinram and T. Changphas, "Quasi-A-ideals and fuzzy A-ideals in semigroups," Journal of Discrete Mathematical Sciences and Cryptography, vol. 21, pp. 1131-1138, 2018.
- N. Kaopusek, T. Kaewnoi and R. Chinram, "On almost interior ideals and weakly almost interior ideals of semigroups," Journal of Discrete Mathematical Sciences and Cryptograpyh, vol. 23, pp. 773-778,
- [17] A. Iampan, R. Chinram and P. Petchka, "A note on almost subsemigroups of semigroups," International Journal of Mathematics and Computer Science, vol. 16, no. 4, pp. 1623-1629, 2021.
- R. Chinram and W. Nakkhasen, "Almost bi-quasi-interior ideals and fuzzy almost bi-quasi-interior ideals of semigroups," Journal of Mathematics and Computer Science, vol. 26, pp. 128-136, 2022.

- [19] T. Gaketem, "Almost bi-interior ideal in semigroups and their fuzzifications," European Journal of Pure and Applied Mathematics, vol. 15, no. 1, pp. 281-289, 2022.
- [20] T. Gaketem and R. Chinram, "Almost bi-quasi-ideal ideals and their fuzzifications in semigroups," Annals of the University of Craiova Mathematicsa and Computer Science Series, vol. 50, pp. 342–352, 2023.
- [21] K. Wattanatripop, R. Chinram and T. Changphas, "Fuzzy almost biideals in semigroups," International Journal of Mathematics and Computer Science, vol. 13, pp. 51–58, 2018.
- [22] W. Krailoet, A. Simuen, R. Chinram and P. Petchkaew, "A note on fuzzy almost interior ideals in semigroups," International Journal of Mathematics and Computer Science, vol. 16, pp. 803–808, 2021.
- [23] D. Molodtsov, "Soft set theory-first results," Computers and Mathematics with Applications, vol. 37 no. 4-5, pp. 19–31, 1999.
- [24] P. K. Maji, R. Biswas and A. R. Roy, "Soft set theory," Computers and Mathematics with Applications, vol. 45, pp. 555–562, 2003.
- [25] D. Pei and D. Miao, "From soft sets to information systems," IEEE International Conference on Granular Computing, vol. 2, pp.617-621, 2005
- [26] M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, "On some new operations in soft set theory," Computers Mathematics with Applications. vol. 57, no. 9, pp. 1547-1553, 2009.
- [27] A. Sezgin and A. O. Atagün, "On operations of soft sets," Computers and Mathematics with Applications, vol. 61, no. 5, pp. 1457-1467, 2011
- [28] A. Sezgin, M. Sarialioğlu, "Complementary extended gamma operation: A new soft set operation", Natural and Applied Sciences Journal, vol. 7, no.1, pp.15-44, 2024.
- [29] A. Sezgin and K. Dagtoros, "Complementary soft binary piecewise symmetric difference operation: A novel soft set operation," Scientific Journal of Mehmet Akif Ersoy University, vol. 6, no. 2, pp.31-45, 2023.
- [30] A. Sezgin and H. Çalışıcı, "A comprehensive study on soft binary piecewise difference operation," Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences, vol. 12, no. 1, pp. 32-54, 2024.
- [31] A. Sezgin, N. Çağman, A. O. Atagün and F. N. Aybek, "Complemental operations of sets and their application to group theory," Matrix Science Mathematic, vol. 7, no. 2, pp.114-121, 2023.
- [32] A. Sezgin and E. Yavuz, "Soft binary piecewise plus operation: A new type of operation for soft sets," Uncertainty Discourse and Applications, vol. 1, no. 1, pp. 79-100, 2024.
- [33] A. Sezgin, A. O. Atagün and N. Çağman, "A complete study on and-product of soft sets," Sigma Journal of Engineering and Natural Sciences, vol. 14, no. 1, pp 1-14, 2025.
- [34] A. Sezgin, N. Çağman and F. Çıtak, "α-inclusions applied to group theory via soft set and logic," Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, pp. 334-352, 2019.
- [35] A. Sezgin, F. N. Aybek and N. B. Güngör, "A new soft set operation: Complementary soft binary piecewise union operation," Acta Informatica Malaysia, vol. 7, no. 1, pp. 38-53, 2023.
 [36] A. Sezgin and A. M. Demirci, "A new soft set operation:
- [36] A. Sezgin and A. M. Demirci, "A new soft set operation: Complementary soft binary piecewise star operation," Ikonion Journal of Mathematics, vol. 5, no. 2, pp. 24-52, 2023.
- [37] A. Sezgin, E. Yavuz and Ş. Özlü, "Insight into soft binary piecewise lambda operation: a new operation for soft sets," Journal of Umm Al-Qura University for Applied Sciences, pp. 1-15, 2024.
- [38] A. Sezgin and E. Yavuz, "A new soft set operation: Soft binary piecewise symmetric difference operation," Necmettin Erbakan University Journal of Science and Engineering, vol. 5, no. 2, pp. 189-208, 2023.
- [39] A. Sezgin, A. and E. Şenyiğit, "A new product for soft sets with its decision-making: Soft star-product. Big data and computing visions," vol. 5, no. 1, pp.52-73, 2025.
- [40] N. Çağman and S. Enginoğlu, "Soft set theory and uni-int decision making," European Journal of Operational Research,vol. 207, no, 2, pp.848-855, 2010.
- [41] N. Çağman, F. Çıtak and H. Aktaş, "Soft int-group and its applications to group theory," Neural Computing and Applications, vol. 2, pp. 151–158, 2012.
- [42] A. S. Sezer, N. Çağman, A. O. Atagün, M. İ. Ali and E. Türkmen, "Soft intersection semigroups, ideals and bi-ideals; A new application on semigroup theory I" Filomat, vol. 29, no. 5, pp. 917-946, 2015.
- [43] A. S. Sezer, N. Çağman, A. O. Atagün, "Soft intersection interior ideals, quasi-ideals and generalized bi-ideals: A New Approach to SemigroupTheory II." Journal of Multiple-Value Logicand Soft Computing, vol. 29, no. 5, pp. 917-946, 2015.

- [44] A. Sezgin and M. Orbay, "Analysis of semigroups with soft intersection ideals," Acta Universitatis Sapientiae Mathematica, vol. 14, no. 1, pp.166-210, 2022.
- [45] A. Sezgin and A. İlgin, "Soft intersection almost ideals of semigroups," Journal of Innovative Engineering and Natural Science, vol. 4, no. 2, pp.466-481, 2024.
- [46] A. Sezgin and A. İlgin, "Soft intersection almost bi-interior ideals of semigroups," Journal of Natural and Applied Sciences Pakistan, vol. 6, no. 1, pp.1619-1638, 2024.
- [47] A. Sezgin and A. İlgin, "Soft intersection almost bi-quasi ideals of semigroups," Soft Computing Fusion with Applications, vol. 1, no.1, pp.27-42, 2024.
- [48] A. Sezgin and A. İlgin, "Soft intersection almost weak-interior ideals of semigroups," Journal of Natural Sciences and Mathematics of UT, vol. 9, no.17-18, pp.372-385, 2024.
- [49] A. Sezgin and B. Onur, "Soft intersection almost bi-ideals of semigroups," Systemic Analytics, vol. 2, no.1, pp.95-105, 2024.
- [50] A. Sezgin, F. Z. Kocakaya and A. İlgin, "Soft intersection almost quasi-interior ideals of semigroups," Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B – Teorik Bilimler, vol. 12, no.2, pp.81-99, 2024.
- [51] A. Sezgin and A. İlgin, "Soft intersection almost subsemigroups of semigroups," International Journal of Mathematics and Physics, vol. 15, no. 1, pp.13-20, 2024.
- [52] A. Sezgin, Z. H. Baş, and A. İlgin, "Soft intersection almost bi-quasiinterior ideals of semigroups," Journal of Fuzzy Extension and Application, vol. 6, no. 1, pp. 43-58, 2024.
- [53] A. Sezgin and B. Onur and A. İlgin, "Soft intersection almost triideals of semigroups," SciNexuses, vol. 1, pp. 126-138, 2024.
- [54] A. Sezgin, A. Îlgin and A. O. Atagün, "Soft intersection almost tri-biideals of semigroups," Science&Technology Asia, vol. 29, no. 4, pp. 1-13, 2024.
- [55] A. Sezgin and F. Z. Kocakaya, "Soft intersection almost quasi-ideals of semigroups," Songklanakarin Journal of Science and Technology. in press
- [56] A. Sezgin and Z. H. Baş, "Soft-int almost interior ideals for semigroups," Information Sciences with Applications, vol. 4, pp. 25-36, 2024.
- [57] A. O. Atagün, H. Kamacı, İ. Taştekin and A. Sezgin, "P-properties in near-rings," Journal of Mathematical and Fundamental Sciences, vol. 51, no. 2, pp. 152-167, 2019.
- [58] C. Jana, M. Pal, F. Karaaslan and A. Sezgin, "(α, β)-soft Intersectional rings and ideals with their applications," New Mathematics and Natural Computation. vol. 15, no. 2, pp. 333–350, 2019.
- [59] T. Manikantan, P. Ramasany and A. Sezgin, "Soft quasi-ideals of soft near-rings," Sigma Journal of Engineering and Natural Science, vol. 41, no. 3, pp. 565-574, 2023.
- [60] A. Khan, I. Izhar and A. Sezgin, "Characterizations of Abel Grassmann's groupoids by the properties of their double-framed soft ideals," International Journal of Analysis and Applications, vol. 15, no. 1, pp. 62-74, 2017.
- [61] A. O. Atagün and A. S. Sezer, "Soft Sets, Soft semimodules and soft substructures of semimodules," Mathematical Sciences Letters, vol. 4, no. 3, pp. 235-242, 2015.
- [62] M. Gulistan, F. Feng, M. Khan and A. Sezgin, "Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets," Mathematics, vol. 6, pp. 293, 2018.
- [63] A. O. Atagün and A. Sezgin, "Int-soft substructures of groups and semirings with applications," Applied athematics & information sciences 11, no. 1 (2017): 105-113.
- [64] A. Sezgin, "A new view on AG-groupoid theory via soft sets for uncertainty modeling," Filomat, vol. 32, no. 8, pp. 2995–3030, 2018.
- [65] A. Sezgin, N. Çağman and A. O. Atagün, "A completely new view to soft intersection rings via soft uni-int product," Applied Soft Computing, vol. 54, pp. 366-392, 2017.
- [66] A. Sezgin, A. O. Atagün, N. Çağman and H. Demir, "On near-rings with soft union ideals and applications," New Mathematics and Natural Computation, vol. 18, no. 2, pp. 495-511, 2022.
- [67] A. O. Atagün and A. Sezgin, "Int-soft substructures of groups and semirings with applications," Applied Mathematics & Information Sciences, vol. 11, no. 1, pp. 105-113, 2017.
- [68] A. S. Sezer, A. O. Atagün and , N. Çağman, "N-group SI-action and its applications to n-group theory," Fasciculi Mathematici, vol. 52, pp. 139-153, 2014.
- [69] M. M. K. Rao, "A Study of bi-quasi-interior ideal as a new generalization of ideal of generalization of semiring," Journal of International Mathematical Virtual Institute, vol. 9, pp. 19-35, 2019.
- [70] M. M. K. Rao., "Bi-quasi-interior Ideals," Annals of Communications in Mathematics, vol.7, no. 3, pp. 296-309, 2024.

IAENG International Journal of Applied Mathematics

- [71] M. M. K. Rao., "Bi-quasi-interior Ideals of Semiring," Journal of International Mathematical Virtual Institute, vol. 14, no. 1, pp. 17-31, 2024
- [72] A. H. Clifford and G. B. Preston, "The Algebraic Theory of Semigroups Vol. I (Second Edition)" American Mathematical Society, 1964.
- [73] A. İlgin, "Soft Intersection (Almost) Bi-interior Ideals and Weak-interior ideals, Soft Intersection Almost Subsemigroups and Ideals, Bi-quasi ideals and Tri-bi-ideals of Semigroups" Master's Thesis. Amasya University Graduate School of Natural and Applied Sciences. Türkiye. 2025.
- [74] F. Z. Kocakaya, "Soft Intersection (Almost) Quasi-interior Ideals and Soft Intersection Almost Quasi-ideals of Semigroups" Master's Thesis. Amasya University Graduate School of Natural and Applied Sciences. Türkiye. 2025.
- [75] B. Onur, "Soft Intersection Bi-quasi Ideals, Soft Intersection Almost Bi-ideals and Tri-ideals of Semigroups." Master's Thesis. Amasya University Graduate School of Natural and Applied Sciences. Türkiye. 2025.