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Abstract—This paper investigates the generalized
quasilinear Schrödinger equation involving a Kirchhoff-
type perturbation:(

a + b
∫

RN g2(u)|∇u|2dx
) [
−div

(
g2(u)∇u

)
+g(u)g′(u)|∇u|2

]
+ λu = f (u),

(P)

where N ≥ 3, a, b > 0, λ ≥ 0 and g ∈ C1(R, R+). By
converting the original problem (P) into an equivalent
system via variable substitution, we prove the existence
of k-node sign-changing solutions through variational
methods and algebraic analysis. Furthermore, we establish
the multiplicity of entire large solutions. Our work extends
previous results on quasilinear Schrödinger equations
with a Kirchhoff-type perturbation.

Index Terms—Quasilinear Schrödinger equation, Nodal
solutions, Entire large solutions, Equivalent transformation.

I. Introduction

IN this paper, we are devoted to studying the
following generalized quasilinear Schrödinger

equation involving a Kirchhoff-type perturbation:(
a + b

∫
RN

g2(u)|∇u|2dx
) [
−div

(
g2(u)∇u

)
+g(u)g′(u)|∇u|2

]
+ λu = f (u),

(1)

where N ≥ 3, a, b > 0, λ ≥ 0, u(x) ∈ H1 (RN) and
g ∈ C1(R, R+).

Setting g(t) = 1 in (1) yields the well-established
Kirchhoff equation:

−
(

a + b
∫

RN
|∇u|2dx

)
∆u + λu = f (u). (2)

This model originates from its time-dependent
counterpart,

utt −
(

a + b
∫

RN
|∇u|2dx

)
∆u + λu = f (u),

initially formulated by Kirchhoff [1] to generalize the
classical D’Alembert’s wave equation for modeling the
free vibrations of elastic strings. The Kirchhoff equation
(2) now serves as a foundational model in several
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disciplines, including physics and engineering, where
it effectively describes complex nonlinear phenomena
such as the vibrations of beams and plates. The
profound implications of this model have motivated
extensive research into the existence and multiplicity
of its solutions, as evidenced by the substantial body
of literature on the topic [2–7].

In the past decades, researchers have extensively
studied the generalized quasilinear Schrödinger
equation

−div
(

g2(u)∇u
)
+ g(u)g′(u)|∇u|2 + V(x)u = f (u).

(3)

In fact, its solutions are closely related to the standing
wave solutions of the fundamental equation:

i∂tz =− ∆z + W(x)z− l
(
|z|2
)

z

−
[
∆h
(
|z|2
)]

h′
(
|z|2
)

z,
(4)

where W(x) : RN → R is a given potential and the
functions l, h are real-valued. Equation (4) arises in
several areas of physics, with the function h taking
different forms depending on the application. For
example, with h(t) = t, it models superfluid films in
plasma physics [8]. With h(t) = (1 + t)1/2, it describes
self-channeling of powerful lasers [9, 10]. Furthermore,
the equation also applies to quantum mechanics and
condensed matter theory [11, 12].

Under the standard transformation

z(t, x) := exp(−iEt)u(x), E > 0,

equation (4) reduces to the following form:

−∆u + V(x)u−
[
∆h
(
|u|2

)]
h′
(
|u|2

)
u = f (u). (5)

Here, the potential is defined as V(x) = W(x)− E, and
the nonlinearity is given by f (t) := l

(
|t|2
)

t. Moreover,
putting g2(u) = 1 + [(h(u2))′]2/2, then equation (3)
turns into equation (5).

Early work by Shen and Wang [13] established
the existence of positive solutions for equation (3)
with subcritical nonlinearity. They introduced a novel
variable substitution technique to effectively handle
the generalized function h(t). Subsequently, Deng et
al. [14] expanded this result to the critical exponent
case. Building on this foundation, Deng et al. [15]
developed a minimization approach to construct
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k-node sign-changing solutions for every integer k > 0.
Their analysis relies on structural assumptions for
V(x), g and f , which are as follows:
(V) V ∈ C1 (RN , R

)
∩ L∞ (RN), V(0) > 0 and V′(r) ≥

0 for all r = |x| ∈ (0, ∞);
(g) g ∈ C1 (R, R+) is even, and g′(t) ≥ 0 for all t ≥ 0;
( f1) f (t) = o(t) as t→ 0;
( f2) There exists 2 < p < 2∗ such that for all t ∈ R,

| f (t)| ≤ C
(
1 + g(t)|G(t)|p−1), where G(t) =∫ t

0 g(s)ds;
( f3) There is a constant δ > 0 satisfying the condition

that for every t > 0, (1 + δ) f (t) ≤ G(t)
(

f (t)
g(t)

)′
;

( f4) f ∈ C1 (R) is odd, and f (t) > 0 for t > 0.
Additionally, in contrast to the above results, the
authors in [16] proved the existence and nonexistence
of entire large solutions for the equation:

−div
(

g2(u)∇u
)
+ g(u)g′(u)|∇u|2 = Q(x) f (u), (6)

under the assumption that g(t) satisfies (g) as well as
an additional condition:
(g′) There exists σ > 0 such that tg′(t) ≤ σg(t), ∀t > 0.
Meanwhile, f (t) ∈ C (R+) is required to satisfy:(

f ′1
)

f (t) is nondecreasing for t ≥ 0;
( f ′2) There exist constants C > 0 and 0 < µ < 1 such

that f (t) ≤ C (1 + g(t)Gµ(t)) , ∀t > 0;
( f ′3) There exists a constant C > 0 such that f (t) ≤

C (1 + g(t)Gκ(t)) , ∀t > 0, where κ > 0 fulfills∫ ∞
c̃ G

−κ−1
2 (t)dt = ∞, and c̃ > 0 is any given

constant.(
f ′4
)

There exists τ ≥ σ such that m := inft>0
f (t)
tτ > 0.

For further related work on equation (3), see [18–23]
and the references therein.

Equation (1) generalizes both the Kirchhoff equation
(2) and the generalized quasilinear Schrödinger
equation (3), highlighting the importance of its study.
Recent advancements in the analysis of equations
like (1) have attracted considerable attention. For
instance, Li et al. [24] conducted a seminal study on
the existence of both ground state and ground state
sign-changing solutions. Subsequently, Chen et al. [25]
employed a non-Nehari manifold approach to establish
the existence of ground state sign-changing solutions.
Their analysis further examined the convergence
behavior of these solutions as the parameter b → 0,
thereby refining the results in [24] and overcoming
certain parameter limitations. Building on this
foundation, Chen et al. in [26] established the existence
and nonexistence of positive solutions with critical
Sobolev exponent. These studies have profoundly
advanced the theoretical framework for quasilinear
systems; for related asymptotic analyses, see [27, 28].

Inspired by the techniques in [29], we tackle this
open question concerning k-node solutions and entire
large solutions for problem (1). Our approach is
built upon the method of equivalent transformation.
We begin by establishing the equivalence between

equation (1) and the subsequent system:{
−div

(
g2(u)∇u

)
+ g(u)g′(u)|∇u|2 + λu = f (u),

t− a− bt
N−2

2
∫

RN g2(u)|∇u|2dx = 0,
(7)

where (u, t) ∈ H1 (RN) × R+. By systematically
analyzing the coupled system (7) in the variables
(u, t), we rigorously establish the existence of k-node
sign-changing solutions and the multiplicity of entire
large solutions for problem (1). These results constitute
novel contributions to the field, significantly extending
prior existence theorems in [24–28].

We now present the main theorems of this work.
To state them precisely, we first recall the definition
of k-node solutions following [15]. A pair of solutions
v±k to problem (1) are termed k-node solutions if they
satisfy:
(i) v−k (0) < 0 < v+k (0);
(ii) v±k possess exactly k nodes ri with 0 < r1 < r2 < · · ·

< rk < +∞, and v±k (ri) = 0, i = 1, 2, · · ·, k.

Theorem I.1. Assume that conditions (g) , ( f1) − ( f4)
hold. Then for every positive integer k, the following
conclusions hold:
(1) If N = 3, problem (1) admits at least one pair of k-node
solutions for all a, b > 0;
(2) If N = 4, there exists a constant αk > 0 such that
problem (1) admits at least one pair of k-node solutions for
all a > 0 and 0 < b < αk;
(3) If N ≥ 5, there exists a constant βk > 0 such that:
◦ problem (1) admits at least one pair of k-node solutions

if ab
2

N−4 = βk;
◦ problem (1) admits at least two pairs of k-node solutions

if ab
2

N−4 < βk.

The main results of Theorem (I.1) are summarized in
Table I.

TABLE I
Existence Conditions of Solutions Across Spatial Dimensions

Dimension (N) Parameter Constraints Number of Solutions

N = 3 a > 0, b > 0 At least 1 pair
N = 4 a > 0, 0 < b < αk At least 1 pair
N ≥ 5 ab

2
N−4 = βk At least 1 pair

N ≥ 5 ab
2

N−4 < βk At least 2 pairs

Note: The thresholds αk and βk are defined as in the proof
of Theorem (I.1) below.

Remark I.2. For N ≥ 5, the critical threshold βk in Table
I reflects the essential interplay between the parameters
a and b, a key phenomenon that was not explored in
previous studies.

From the perspective of exponential asymptotics, a
solution u satisfying

lim
|x|→+∞

u(x) = +∞

is said to be an entire large solution.

Theorem I.3. Let λ = 0. Assume that conditions
(g) , (g′) ,

(
f ′1
)
, ( f ′3) and

(
f ′4
)

are satisfied. Then, for any
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integer k > 0, the following conclusions hold:
(1) If N = 3, problem (1) admits infinitely many positive
entire large solutions for all a, b > 0;
(2) If N = 4, there exists a constant α̃k > 0 such that
problem (1) admits infinitely many positive entire large
solutions for all a > 0 and 0 < b < α̃k;
(3) If N ≥ 5, there exists a constant β̃k > 0 such that
problem (1) admits infinitely many positive entire large
solutions whenever ab

2
N−4 ≤ β̃k.

Corollary I.4. In the case g(t) ≡ 1, Theorem I.3 applies
directly to the classical Kirchhoff equation. Specifically, under
conditions

(
f ′1
)
, ( f ′3), and

(
f ′4
)
, the Kirchhoff equation

−
(

a + b
∫

RN
|∇u|2dx

)
∆u = f (u)

admits infinitely many positive entire large solutions under
the same parameter constraints stated in Theorem I.3.

To simplify the subsequent analysis, we define

Tu =
∫

RN
g2(u)|∇u|2dx,

which arises from the nonlocal Kirchhoff perturbation
and will be employed in the following analysis.

II. Proof of Main Theorems

To derive an equivalent system, let u ∈ H1 (RN) be a
nontrivial solution of equation (1) and set a + bTu = t.
Substituting this into (1) yields

t
[
−div

(
g2(u)∇u

)
+ g(u)g′(u)|∇u|2

]
+ λu = f (u).

This implies that for any translation vector c ∈ RN ,
v(x) := u(

√
tx + c) is a solution of the base equation

−div
(

g2(v)∇v
)
+ g(v)g′(v)|∇v|2 + λv = f (v). (8)

Conversely, let K(x) be a solution of equation
(8). Then, defining a new function via the scaling
transformation

u(x) := K
(

t−
1
2 x + c

)
leads to the identity∫

RN
g2(u)|∇u|2dx = t

N−2
2

∫
RN

g2(K)|∇K|2dx. (9)

Relying on the above process, we can infer the
following conclusions.

Lemma II.1. A function u ∈ H1 (RN) \ {0} solves
equation (1) if and only if there exists a pair (K, t) ∈
H1 (RN)×R+ that solves the coupled system (7).

Proof: We establish the equivalence in two steps.
Step 1: System (7) ⇒ Equation (1)
Assume that system (7) has a solution (K, t). Then

we obtain

−div
(

g2(K)∇K
)
+ g(K)g′(K)|∇K|2 + λK = f (K),

and

a + bt
N−2

2

∫
RN

g2(K)|∇K|2dx = t. (10)

Using the substitution u(x) = K
(

t−
1
2 x + c

)
= K(y),

and by (9), we conclude that(
a + b

∫
RN

g2(u)|∇u|2dx
) [
−div

(
g2(u)∇u

)
+g(u)g′(u)|∇u|2

]
+ λu

=t−1
(

a + bt
N−2

2

∫
RN

g2(K)|∇K|2dx
) [
− div

(
g2(K(y))∇K(y)

)
+ g(K(y))g′(K(y))|∇K(y)|2

]
+ λK(y)

= f (K(y))
= f (u(x)),

which demonstrates that u indeed satisfies the weak
form of equation (1).

Step 2: Equation (1) ⇒ System (7)
Conversely, let u be a nontrivial solution of problem

(1). Define the scalar a + bTu = t, and the scaling
K(x) = u

(
t

1
2 x + c

)
= u(z), one has

a + bt
N−2

2

∫
RN

g2(K)|∇K|2dx = t,

and then we get

− div
(

g2(K(x))∇K(x)
)
+ g(K(x))g′(K(x))|∇K(x)|2

+ λK(x)

= −t div
(

g2(u(z))∇u(z)
)
+ tg(u(z))g′(u(z))|∇u(z)|2

+ λu(z)

= (a + bTu)
[
−div

(
g2(u(z))∇u(z)

)
+g(u(z))g′(u(z))|∇u(z)|2

]
+ λu(z)

= f (u(z))
= f (K(x)),

which confirms that the pair (K, t) constitutes a solution
to system (7).

The uniqueness of ground states is fundamental to
the analysis of orbital stability. Accordingly, we state
the following result, omitting its standard proof.

Corollary II.2. Suppose equation (8) has the unique
solution K(x), and suppose the algebraic equation (10)
possesses a unique positive solution, denoted by t̂TK . Then,
up to translations and scaling transformations, the function
defined by

u(x) = K
(

t̂−
1
2

TK
x + c

)
constitutes the unique solution to equation (1).

Lemma II.3. Let K(x) be a nonzero solution of equation
(8). Define the critical constants

b0 = T−1
K , c0 =

(
N − 4
N − 2

)(
2

(N − 2)TK

) 2
N−4

.

The solvability of problem (1) is then characterized as follows:
(i) If N ≤ 3, then equation (1) possesses at least a nontrivial
solution for all a, b > 0;
(ii) If N = 4, then for all a > 0, equation (1) has at least
one nontrivial solution for b < b0, and has no nontrivial
solution for b ≥ b0;
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(iii) For N ≥ 5, then equation (1) admits at least two
nontrivial solutions if ab

2
N−4 < c0, at least one nontrivial

solution if ab
2

N−4 = c0, and no nontrivial solution if
ab

2
N−4 > c0.

Proof: For convenience, define

H(t) = t− a− bt
N−2

2 TK, ∀t ∈ R+.

Case (i)-(ii): The two conclusions are obtained by simple
calculation, so we omit their proof.
Case (iii): If N ≥ 5, by direct calculation, one has
H(t) < 0 for 0 < t ≤ a, and limt→+∞ H(t) = −∞.
For each K 6= 0, we easily get H′(t) = 1− N−2

2 bt
N−4

2 TK.
Setting H′(t) = 0 reveals a unique critical point at

tK =

(
2

(N − 2)bTK

) 2
N−4

> 0,

which is a global maximum. Furthermore, one has

max
t∈R+

H(t) = H (tK) =

(
N − 4
N − 2

)(
2

(N − 2)bTK

) 2
N−4
− a.

Therefore, by the definition of c0, we immediately
obtain the following: If ab

2
N−4 < c0, there exist t1 ∈

(a, tK) and t2 ∈ (tK,+∞) such that both u1(x) =

K
(

t−
1
2

1 x + c
)

and u2(x) = K
(

t−
1
2

2 x + c
)

are solutions

to equation (1); If ab
2

N−4 = c0, u(x) = K
(

t−
1
2

K x + c
)

solves equation (1); If ab
2

N−4 > c0, equation (1) has no
nontrivial solution.

Prior to proving Theorem I.1, we summarize the
known existence of k-node solutions to equation (3),
which is a direct consequence of Theorem 1.1 in [15].

Proposition II.4. Under the structural assumptions
(V) , (g), and ( f1) − ( f4), problem (3) possesses at least
one pair of k-node sign-changing solutions for every positive
integer k.

We now proceed to prove Theorem I.1.
Proof of Theorem I.1. By Proposition II.4, for every

positive integer k, we know that the first equation of
system (7) has at least one pair v+k and v−k of k-node
solutions when the conditions (g) , ( f1)− ( f4) hold. For
any integer k > 0, set

α±k =
1∫

RN g2(v±k )|∇v±k |2dx

and

β±k =

(
N − 4
N − 2

)(
2

(N − 2)
∫

RN g2(v±k )|∇v±k |2dx

) 2
N−4

.

Furthermore, define αk = min
{

α+k , α−k
}

and
βk = min

{
β+

k , β−k
}

. Then depending on Lemma
II.3, we immediately obtain Theorem I.1.

To establish Theorem I.3, we utilize a known
multiplicity result for entire large solutions. A key
finding from Theorem 1.2 in [16] provides the essential
foundation, which we restate within our framework as
follows.

Proposition II.5. Let Q(x) be a nonnegative, radial
continuous function on RN . Suppose the functions g and
f in equation (6) satisfy hypotheses (g) , (g′) ,

(
f ′1
)
, ( f ′3)

and
(

f ′4
)
. If the potential Q(x) further satisfies the growth

condition ∫ ∞

0
s1−N

(∫ s

0
tN−1Q(t)dt

)
ds = ∞,

then equation (6) possesses infinitely many positive entire
large solutions.

Proof of Theorem I.3. Let Q(x) = 1. Under
conditions (g) , (g′) ,

(
f ′1
)
, ( f ′3) and

(
f ′4
)
, Proposition

II.5 implies that the first equation of system (7) with
λ = 0 admits infinitely many positive entire large
solutions zk. For every integer k > 0, let

α̃k =
1∫

RN g2(zk)|∇zk|2dx

and

β̃k =

(
N − 4
N − 2

)(
2

(N − 2)
∫

RN g2(zk)|∇zk|2dx

) 2
N−4

.

Then Theorem (I.3) is established by applying Lemma
II.3.

III. Conclusion

This work presents two principal advances in the
study of problem (1):

1. Existence of k-Node Solutions: By converting the
original problem into an equivalent system through
variable substitution and employing variational
methods, we establish the existence of sign-changing
solutions with precisely k nodal domains(Theorem I.1).

2. Multiplicity of Entire Large Solutions: We
demonstrate the existence of infinitely many positive
entire large solutions, proven by combining variational
methods with a detailed asymptotic analysis(Theorem
I.3).

These results significantly extend prior studies in
[14, 24, 25], which were limited to single-node solutions
or omitted Kirchhoff perturbations. Furthermore, our
work provides theoretical foundations for multi-mode
wavefield design in nonlinear optics, where nodal
solutions may describe spatially modulated laser
pulses or quantum states.
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