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Abstract—A graph operation is a process that creates a new
graph from one or more initial graphs. Certainly, there are
many operations in which the result on the graph satisfies all
or some of the common initial graph properties or produces
some new properties depending on the operation description.
In this paper, we introduce a new operation on finite simple
graphs (both directed and undirected), for which the resulting
graph may possess the same properties as the initial graph.
This operation is called graphs combining and is denoted by
⊞. In addition, we study the properties of this operation and
analyze the characteristics of its graphs.

Index Terms—Simple graph, undirected graph, directed
graph, connected graph, graphs operations, adjacent matrix,
maximal degree, minimal degree, Hamiltonian graph.

I. INTRODUCTION

GRAPH theory is a branch of mathematics that studies
the relationships between pairs of objects. It is one of

the most important sciences since it has been considered by
many other sciences. For example, it is used in designing
circuit connections in electrical engineering. In addition, it
is used to study molecules in physics and chemistry, and
also to represent local connections between the dynamics
of a physical process in statistical physics. Moreover, graph
theory plays a significant role in computer networks, as the
study of the relationships among interconnected computers
within the network, and to configure the network security.

A graph can be considered as a set of vertices (nodes),
connected by a set of edges, corresponding to a specific inci-
dence relation [1]. Therefore, a graph Γ is the triple V, E and
ψ, where V is the set of vertices (denotes the set of elements),
E is the set of edges (connect the related elements) and ψ
is the incidence relation (assign the appropriate elements to
each edge). For more about graph theory and its applications,
see [1], [2], [3], [4], [5], [6], [7].

Recently, many studies have been published that focus on
using graph theory in real-life problems. For examples in
medicine, as we can see in [8], they have shown a graph
theory-based approach to model and analyze the human
lymphatic network. In [9], They have proposed a graph-
based analysis method to quantify the topological properties
of the network, both globally and at the nodal level, to detect
systemic or single-organ metabolic abnormalities caused by
diseases such as lung cancer. Since graphs combine nodes
with edges, researchers can examine connections and im-
prove networks in addition to identifying patterns, making
thorough data analysis possible. In [10] they have examined
essential theories and applications of graphs as well as
their analytic methods for analyzing complex systems in
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this study. Network centrality measures and shortest-path
algorithms and graph clustering methods constitute important
analytical techniques which the study presents. These discov-
eries exhibit both the effectiveness and necessity of graph-
based models for addressing real-world difficulties through
their optimization abilities in structure analysis. Graph the-
ory is used in computer science to model and address
problems in many fields, including networking, databases,
artificial intelligence, algorithms, and more. Jingjing has
studied computer science-based graph theory matching al-
gorithms, solved matching problems on large-scale graphs,
reduced computation time, and improved solving efficiency,
see [11]. In our work, for finite simple graphs (directed and
undirected), we apply a new operation, which permits the
resultant graph to retain its features as originally drawn. The
symbol for this operation, known as graphs combining, is
⊞. We also examine the features of this process and assess
the qualities of its graphs. This can enrich and contribute the
research in graph theory to be used in many applications in
real-life problems.

II. BASIC DEFINITIONS AND NOTATIONS

This research paper primarily focuses on finite, undirected,
simple graphs, which are introduced as follows. A graph Γ
is denoted by the pair (V,E), where V is the set of vertices
and E ⊆ {(u, v) | u, v ∈ V, u ̸= v} is the set of edges.
Noted that (u, v) = (v, u) for undirected graphs.

To keep this paper is self contained, we list some basic
concepts of graphs in the next definition.

Definition 1. Let Γ(V,E) be a finite undirected simple
graphs. Then:

• A path of length k in a graph is a sequence of
k + 1 distinct vertices such that consecutive vertices
are adjacent.

• The distance d(u, v) between two vertices u and v is
the length of the shortest path connecting them.

• The diameter of a graph, denoted diam(Γ), is the
maximum distance between any pair of vertices in Γ.

• The radius of a graph, denoted rad(Γ), is the minimum
eccentricity among all vertices, where the eccentricity
of a vertex v is max{d(v, u) | u ∈ V }.

• The girth g(Γ) of a graph is the length of its shortest
cycle. If Γ is acyclic, then g(Γ) = ∞.

• The adjacency matrix A(Γ) of a graph Γ = (V,E) is
the |V |×|V | matrix where Aij = 1 if {vi, vj} ∈ E and
0 otherwise.

III. DEFINITION OF GRAPHS COMBINING

A. Undirected simple graphs combining

The considered graphs in this section are finite, undirected,
and simple graphs (graphs have neither loops nor parallel
edges). Consider the graph Γ associated with a set of vertices
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V and set of edges E, then the order of Γ is the number of
its vertices and denoted by O(Γ) = |V |, and the size of Γ
is the number of its edges and denoted by S(Γ) = |E|. The
degree of a vertex v ∈ V is the number of edges incidence
with v and denoted by deg v, the maximal degree of Γ is
max{deg v | v ∈ V } and denoted by ∆(Γ), and the minimal
degree of Γ is δ(Γ) = min{deg v | v ∈ V }.

The following definition introduces a new operation on
given graphs, namely the graph combining which is denoted
by ⊞.

Definition 2. Let Γ1 and Γ2 be two finite, simple, and
undirected graphs associated with sets of vertices V1 and V2,
and sets of edges E1 and E2 (respectively). The combining
graph Γ of Γ1 and Γ2, denoted by Γ1 ⊞ Γ2, is a graph
associated with set of vertices VΓ and set of edges EΓ, where

VΓ = V1 ∪ V2
and EΓ = E1 ∪ E2 ∪ {uv | u ∈ V1 \ V2 and v ∈ V2 \ V1}.

Example 1. Let Γ1 = P3 and Γ2 = P2. Then Γ = Γ1 ⊞ Γ2

is the combining graph of P3 and P2, which associated with
set of vertices V and set of edges E defined as:

V = {v1, v2, v3} ∪ {u1, u2} = {v1, v2, v3, u1, u2}

E = {v1v2, v2v3} ∪ {u1u2}
⋃

i=1,2,3
j=1,2

{viuj}

= {v1v2, v2v3, u1u2, v1u1, v1u2, v2u1, v2u2, v3u1, v3u2}.

which is shown in the following figure:

v1

v2

v3

Γ1 = P3

u1

u2

Γ2 = P2

v1

v2

v3

u1

u2

Γ = Γ1 ⊞ Γ2

Fig. 1: The combining of disjoint graphs

Example 2. Consider the graphs Γ1(V1, E1) = P3 and
Γ2(V2, E2) = P2 having the vertex v2 in common as:

V1 = {v1, v2, v3} , E1 = {v1v2, v2v3}

and
V2 = {u1, v2} , E2 = {v2u1}.

Then, the set of verities of Γ = Γ1 ⊞ Γ2 is

V = {v1, v2, v3} ∪ {u1, v2} = {v1, v2, v3, u1},

and the set of edges of Γ is

E = E1 ∪ E2 ∪ {uv | u ∈ V1 \ V2 and v ∈ V2 \ V1}
= {v1v2, v2v3} ∪ {v2u1}
∪ {uv | u ∈ {v1, v3} and v ∈ {u1}}
= {v1v2, v2v3} ∪ {v2u1} ∪ {v1u1, v3u1}
= {v1u1, v1v2, v2v3, v2u1, v3u1}

v1

v2

v3

Γ1 = P3

v2

u1

Γ2 = P2

v1

v2

v3

u1

Γ = Γ1 ⊞ Γ2

Fig. 2: The combining of none disjoint graphs

Then the combining graph Γ = Γ1 ⊞ Γ2 is shown on the
following figure:

Remark 3. One can easily show that, Γ ⊞ Γ = Γ for any
graph Γ.

Consider the combining graph Γ(V,E) of the graphs
Γ1(V1, E2) and Γ2(V2, E2) in which Γ1 is a subgraph of
Γ2. Then V = V1 ∪ V2 = V2, because V1 ⊆ V2. Also,
E = E1 ∪ E2 ∪ {uv |u ∈ V1 \ V2 and v ∈ V2 \ V1} =
E1 ∪ E2 ∪ Φ = E2. Therefore, Γ1 ⊞ Γ2 = Γ2. In this case,
the result of the graphs combining aligns perfectly with the
result of the union of these graphs. That is to say, if Γ1 is a
subgraph of Γ2, then Γ1 ⊞ Γ2 = Γ1 ∪ Γ2 = Γ2.

Lemma 4. Let Γ1 and Γ2 be two graphs associated with
sets of vertices V1 and V2, and sets of edges E1 and E2

(respectively), and let Γ = Γ1 ⊞ Γ2. Then:

1) |VΓ| = |V1|+ |V2 \ V1| = |V1 \ V2|+ |V2|.
2) |EΓ| = |E1|+ |E2|+ |V1 \ V2||V2 \ V1|.

Proof: Consider the graphs Γ1 and Γ2 associated with
sets of vertices V1 and V2, and sets of edges E1 and E2

(respectively). Let Γ = Γ1 ⊞ Γ2. Then V1 ∪ V2 = VΓ and

|VΓ| = |V1 ∪V2| = |V1|+ |V2|− |V1 ∩V2| = |V1|+ |V2 \V1|.

In addition, E1 ∪ E2 ⊂ EΓ, also if u ∈ V1 \ V2 and v ∈
V2 \ V1, then uv ∈ EΓ and the number of such edges is
|V1 \ V2||V2 \ V1|.

As a direct consequence of the previous lemma, one can
find that, if Γ1 and Γ2 be two disjoint graphs and Γ = Γ1 ⊞
Γ2. Then:

1) |VΓ| = |V1|+ |V2|.
2) |EΓ| = |E1|+ |E2|+ |V1||V2|.
Applying the previous results on example 1 and example

2. In these examples, the combining operation was demon-
strated in two different cases. In example 1, the operation
was performed on two disjoint graphs, revealing that, the
order of the result graph is 5 = 3 + 2 = O(Γ1) + O(Γ2)
and size 9, given by 9 = 2+1+ (3)(2) = S(Γ1)+S(Γ2)+
O(Γ1)O(Γ2). In contrast, the second example involved the
composition of the same graphs as in example 1, but sharing
a common vertex, revealing that, the order of the result
graph is 4 = O(Γ1) + O(Γ2) − 1 and size 5, given by
5 = S(Γ1) + S(Γ2) + (O(Γ1)− 1) (O(Γ2)− 1). In both
examples, the resulting graphs exhibit different orders and
sizes.
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B. Basic Properties of Undirected Graphs Combining

This section presents some essential properties of undi-
rected graph combining. These properties form the foun-
dation for understanding more advanced graph-theoretic
concepts and highlight the key distinctions between graph
combining and other graph operations.

Theorem 5. The graph combining is commutative, that is
Γ1 ⊞ Γ2 = Γ2 ⊞ Γ1.

Proof: Let Γ1 and Γ2 be two graphs associated with
sets of vertices V1 and V2, and sets of edges E1 and E2

(respectively). Then the set of vertices of Γ = Γ1 ⊞ Γ2 is
VΓ = V1 ∪ V2. In addition, if u and v in VΓ, then uv in EΓ

if u, v ∈ V1 and uv ∈ E1 or u, v ∈ V2 and uv ∈ E2, or
(without lose of generality) u ∈ V1 \ V2 and v ∈ V2 \ V1.
Clearly, the set of vertices of Γ2 ⊞ Γ1 is V2 ∪ V1 = V1 ∪ V2
and it also has the same incidence relation as Γ1 ⊞ Γ2.

Theorem 6. The graph combining is associative, that is
(Γ1 ⊞ Γ2)⊞ Γ3 = Γ1 ⊞ (Γ2 ⊞ Γ3).

Proof: Let Γ1,Γ2 and Γ3 be three graphs associated
with sets of vertices V1, V2 and V3, and sets of edges E1, E2

and E3 (respectively), and let:

Γ = (Γ1 ⊞ Γ2)⊞ Γ3

and

Γ′ = Γ1 ⊞ (Γ2 ⊞ Γ3) .

Then, VΓ = VΓ′ = V1 ∪ V2 ∪ V3 = V .
Let V U

i = {v ∈ Vi | v ̸∈ V j , i ̸= j = 1, 2, 3}. Then, for
any u, v ∈ V , we have the following cases:

Case 1: If u, v ∈ Vi and uv ∈ Ei for some i = 1, 2, 3,
then uv ∈ EΓ and EΓ′ using Lemma 4.

Case 2: If u, v ∈ Vi and uv ̸∈ Ei , i = 1, 2, 3, then uv
not in EΓ and not in EΓ′ using Lemma 4.

Case 3: If u ∈ V U
i and v ∈ V U

j for i ̸= j = 1, 2, 3, then
uv ∈ Γi ⊞ Γj which is a subgraph of Γ and also a
subgraph of Γ′.

Thus Γ and Γ′ have the same set of vertices and the same
incidence relation. Hence, Γ = Γ′.

The previous theorems highlight several key properties of
the graphs combining operation, namely the commutative and
associative properties. While these properties may hold for
some other operations, such as the union and intersection of
graphs, they certainly do not apply to all graphs operations.
For instance, the Corona product is not commutative. See the
following example.

Example 3. Consider the next graphs Γ1 and Γ2:

v1

v2 v3

Γ1

u1 u2

Γ2

Then:

v1

v2 v3

u11u21

u12

u22

u13

u23

Γ1 ⊙ Γ2

u1 u2

v11

v21 v31

v12

v22 v32

Γ2 ⊙ Γ1

Fig. 3: None commutativity of the Corona product

On the other hand:

v1

v3

v2

u1

u2

Γ1 ⊞ Γ2

v1

v3

v2

u1

u2

Γ2 ⊞ Γ1

Fig. 4: The commutativity of the graphs combining

This shows that Γ1⊙Γ2 ̸= Γ2⊙Γ1, but Γ1⊞Γ2 = Γ2⊞Γ1.

C. Structural Analysis of Undirected Graphs Combining

This section is devoted to the structural analysis of graphs
formed by combining two or more undirected simple graphs.

Graph combining methods—such as the union, intersec-
tion, Corona product, Cartesian product, and other binary
operations—offer powerful tools for constructing complex
networks from simpler components. Understanding the struc-
tural properties of these combined graphs is essential for
both theoretical investigations and practical applications,
including network design, modeling biological systems, and
studying algebraic or topological properties of graphs.

Theorem 7. Let Γ1 and Γ2 be two disjoint graphs associated
with sets of vertices V1 and V2, and sets of edges E1 and
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E2 (respectively), and let Γ = Γ1 ⊞ Γ2. Then

∆(Γ) = max{∆(Γ1) + |V2|,∆(Γ2) + |V1|}.

Proof: Consider the disjoint graphs Γ1 and Γ2 which
associated with sets of vertices V1 and V2, and sets of edges
E1 and E2 (respectively). Let Γ = Γ1⊞Γ2. If v ∈ VΓ, then,
we have two cases:

Case1: v ∈ V1, then v is adjacent with all u ∈ V2. Which
implies that degΓ v = degΓ1

v + |V2|.
Case2: v ∈ V2, then v is adjacent with all u ∈ V1. This

implies that degΓ v = degΓ2
v + |V1|.

Thus,

∆(Γ) = max {deg v | v ∈ VΓ}
= max {max{deg v | v ∈ V1}+ |V2|

,max{deg v | v ∈ V2}+ |V1|}
= max {∆(Γ1) + |V1|,∆(Γ2) + |V1|}.

Theorem 8. Let Γ1 and Γ2 be two disjoint graphs associated
with sets of vertices V1 and V2, and sets of edges E1 and
E2 (respectively), and let Γ = Γ1 ⊞ Γ2. Then

δ(Γ) = min{δ(Γ1) + |V2|, δ(Γ2) + |V1|}.

Proof: The proof has the same outlines as the previous
proof and so it is emitted.

Recall that, an empty graph Γ is Γ(V,E) for which
|V | ≥ 1 and |E| = 0.

Lemma 9. If Γ1 and Γ2 are two disjoint empty graphs of
orders m and n, respectively, then Γ1 ⊞ Γ2

∼= Km,n (the
complete bipartite graph).

Proof: Let Γ1 and Γ2 be two disjoint empty graphs for
which |V1| = m and |V2| = n. Set Γ = Γ1 ⊞ Γ2 and let
u, v ∈ VΓ. Then, we have the following cases:

Case 1: If u, v ∈ V1, then u and v are not adjacent,
because Γ1 is empty graph.

Case 2: If u, v ∈ V2, then u and v are not adjacent,
because Γ2 is empty graph.

Case 3: If u ∈ V1 and v ∈ V2, or u ∈ V2 and v ∈ V1,
then v and u are adjacent.

Therefore, VΓ the set of vertices of Γ is partitioned into two
disjoint subsets V1 and V2, for which every vertex in one part
is adjacent to all vertices in the other part and not adjacent
to any vertex on the same part. Hence, Γ ∼= Km,n.

Corollary 10. Consider the disjoint graphs Γ1 and Γ2 of
orders m and n, respectively. Then, Km,n is a spanning
subgraph of Γ1 ⊞ Γ2.

Proof: Let Γ1 and Γ2 be two disjoint graphs of orders
m and n respectively and Γ = Γ1 ⊞ Γ2. Since the empty
graph Hk of order k is a subgraph of any graph of order
n ≥ k. Then Hm ⊞ Hn ⊆ Γ1 ⊞ Γ2. Using Lemma 9, we
have Km,n

∼= Hm⊞Hn and thus Km,n ⊆ Γ1⊞Γ2 and since
the order of Km,n = m+ n = |V1|+ |V2|. Then Km,n is a
spanning subgraph of Γ1 ⊞ Γ2.

Remark 11. Consider any two non-disjoint graphs
Γ1(V1, E1) and Γ2(V2, E2), and let V = V1 ∩ V2 with
|V1| = n1 |V2| = n2, and |V | = k. Then, both complete
bipartite graphs Kn1, n2−k and Kn2, n1−k are subgraphs of
Γ1 ⊞ Γ2.

Clearly, the total number of distinct vertices in Γ1⊞Γ2 is
given by

|V1 ∪ V2| = |V1|+ |V2| − |V1 ∩ V2| = n1 + n2 − k,

which implies that the complete bipartite graphs in both
cases span the vertex set of Γ1 ⊞ Γ2. Therefore, they are
spanning subgraphs of Γ1 ⊞ Γ2.

Corollary 12. For any disjoint graphs Γ1 and Γ2, then
Γ1 ⊞ Γ2 is a connected graph.

Proof: Since, Km,n is a spanning subgraph of
Γ1 ⊞ Γ2 for any disjoint graphs Γ1 and Γ2 of orders m and
n respectively, and Km,n is a connected spanning subgraph
of Γ. Then, the graph Km,n ∪ E, where E is a non-empty
set of edges is also connected graph. Hence, Γ1 ⊞Γ2 is also
connected.

Corollary 13. Let Γ1 and Γ2 be two graphs. Then for any
u, v ∈ Γ1 ⊞ Γ2, we have d(u, v) ≤ 2.

Proof: Let Γ1 and Γ2 be two graphs. Note that the
complete bipartite graph Km,n is a spanning subgraph of
Γ1⊞Γ2, where n+m = |V1∪V2| (See Remark 11). Consider
any two vertices u and v in Γ1 ⊞ Γ2. Then u, v ∈ Km,n,
whose vertex set is partitioned into two disjoint subsets V1
and V2.

• If u ∈ V1 and v ∈ V2 (or vice versa), then u and v are
adjacent, so d(u, v) = 1.

• If u, v ∈ V1 or u, v ∈ V2, then there exists a vertex w
in the opposite subset such that u, uw,w,wv, v is the
shortest path joining u and v, which implies
d(u, v) = 2.

Hence, d(u, v) ≤ 2.

Theorem 14. Let Γ1 and Γ2 be two disjoint graphs of order
n and m, respectively. The adjacency matrix A of Γ1 ⊞ Γ2

can be written as:

A =

[
A1 1
1 A2

]
,

where A1 and A2 are the n × n and m × m adjacency
matrices of Γ1 and Γ2, respectively.

Proof: Let Γ1 and Γ2 be two disjoint graphs of order n
and m associated with sets of vertices V1 = {u1, u2, . . . , un}
and V2 = {v1, v2, . . . , vm}, and sets of edges E1 and E2
(respectively). Then ui is adjacent with vj in Γ1 ⊞ Γ2 for
all i = 1, 2, . . . , n and j = 1, 2, . . . ,m, this impose 1
on all entries corresponding the raw ui with the column
vj in A. In addition, ui adjacent with uj in Γ1 ⊞ Γ2 if
uiuj ∈ E1 for all i, j = 1, 2, . . . , n. Also, vi adjacent with
vj in Γ1 ⊞ Γ2 if vivj ∈ E2 for all i, j = 1, 2, . . . ,m.
Then, A consists of 4 blocks, the first indicates the entries
corresponding to the set V1 which is A1, the second indicates
the entries corresponding to the raw ui with the column vj
for i = 1, 2, . . . , n , j = 1, 2, . . . ,m, the third indicates the
entries corresponding to the raw vj with the column ui for
i = 1, 2, . . . , n , j = 1, 2, . . . ,m, and the last block indicates
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the entries corresponding to the set V2 which is A2. That is:

A =

u1 u2 · · · un v1 v2 · · · vm
u1

u2

...
un

v1
v2
...

vm



A1

1 1 · · · 1
1 1 · · · 1
...

... · · ·
...

1 1 · · · 1
1 1 · · · 1
1 1 · · · 1
...

... · · ·
...

1 1 · · · 1

A2


=

[
A1 1
1 A2

]
.

Theorem 15. For any disjoint graphs Γ1 and Γ2, the graph
Γ1 ⊞ Γ2 is Hamiltonian graph.

Proof: Set V1 = {u1, u2, . . . , un} to be the set of
vertices of Γ1 and V2 = {v1, v2, . . . , vm} be the set of
vertices of Γ2. Then,

u1, u1v1, v1, v1u2, u2, u2v3, v3, . . . , vm−1, vm−1u1, u1

is a cycle in Γ = Γ1⊞Γ2 that visits each vertex in Γ exactly
once. Hence, Γ is Hamiltonian graph.

Remark 16. Since, every edge in the combining of any
disjoint graphs is in a cycle. Then, the combining operation
on distinct graphs produce a graph that has no bridges. That
is, if Γ1 ̸= Γ2 are two graphs, then every edge in Γ = Γ1⊞Γ2

is not a bridge.

Recall that, in a connected graph Γ(V,E), the eccentricity
e(v) of a vertex v ∈ VΓ is the maximum distance between
v and any other vertex u ∈ VΓ, where the distance between
u and v is the length of the shortest path between u and v.
The radius of the connected graph Γ is

rad(Γ) = min{e(v) | v ∈ VΓ}

and the diameter of Γ is

diam(Γ) = max{e(v) | v ∈ VΓ}.

Eccentricity, distance, radius, and diameter are fundamental
concepts in graph theory, and they have significant impor-
tance in understanding the structure and properties of graphs.
These concepts are crucial for understanding and optimizing
the structure and performance of networks and systems
modeled by graphs. They provide valuable insights into
vertex centrality, network efficiency, and overall connectivity,
making them indispensable in fields like communication
theory, network analysis, and complex system modeling.

Given the importance of these measures, we study them
in the context of the graph combining operation.

Theorem 17. Let Γ1 ̸= Γ2 be two graphs and Γ = Γ1⊞Γ2.
Then, the radius of Γ is rad(Γ) = 1 and the diameter of Γ
is diam(Γ) ≤ 2.

Proof: Let Γ1 ̸= Γ2 be two graphs and Γ = Γ1 ⊞ Γ2.
Then, for any vertex u in VΓ, we have two cases:

Case 1: If u ∈ V1 and for any u ̸= v ∈ V1 which is
adjacent to u, then the distance between u and v is
1.

Case 2: If u ∈ V1 and for any u ̸= v ∈ V1 which is not
adjacent to u, then, the shortest path between u and

v is: u, uw,w,wv, v for w ∈ V2. So, the distance
between u and v is 2.

Thus, e(u) = 1, 2 for all u ∈ V1. Similarly, e(u) = 1, 2 for
all u ∈ V2. Note that, if Γ is a complete graph, so every
two vertices are adjacent, then e(u) = 1 for all u ∈ VΓ.
Therefore:

rad(Γ) = min{e(u) | u ∈ VΓ} = min{1, 2} = 1

and

diam(Γ) = max{e(u) | u ∈ VΓ}
= max{1, 2} = 2

or diam(Γ) = 1 if Γ is complete graph

Theorem 18. Let g(Γ) denote the girth of a graph Γ. Then,

g(Γ1 ⊞ Γ2) ≤ min{g(Γ1), g(Γ2), 4}.

Proof: If V1 ∩ V2 = ∅, the new edges form a complete
bipartite subgraph Kn,m between V1 and V2. Such a graph
contains 4-cycles but no 3-cycles. Thus, the girth is at most
4. If either of Γ1 or Γ2 has a shorter cycle, it will appear in
the union, hence the bound.

IV. COMBINING DIRECTED GRAPHS

In this section, we consider finite, simple, and directed
graphs.

Definition 19. Let Γ1 and Γ2 be two finite, simple, directed
graphs associated with sets of vertices V1 and V2, and sets of
arrows E1 and E2 (respectively). The combining graph of Γ1

and Γ2, denoted by Γ1 ⊞ Γ2, is the graph Γ associated with
set of vertices VΓ and set of arrows EΓ, defined as follows:

VΓ = V1 ∪ V2,
EΓ = E1 ∪ E2 ∪ {(u, v) | u ∈ V1 \ V2 and v ∈ V2 \ V1}.

The combining operation defined above allows for the
construction of a new graph that preserves the structure of the
original components while introducing directed connections
between disjoint parts. This operation may be relevant in
modeling interactions between two systems or layers in a
network.

Example 4. Consider the next graphs Γ1 and Γ2:

v1v2v3

Γ1

u1u2

Γ2

Then, the combining graph Γ1 ⊞ Γ2 and Γ2 ⊞ Γ1 are shown
on the next figure:

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3523-3528

 
______________________________________________________________________________________ 



v1

v2

v3

u1

u2

Γ1 ⊞ Γ2

v1

v2

v3

u1

u2

Γ2 ⊞ Γ1

Fig. 5: The none commutativity of directed graphs
combining

A. Properties of Directed Graphs Combining

We present basic structural properties of the combining
operation Γ1 ⊞ Γ2 on finite, simple, directed graphs.

Let Γ1(V1, E1) and Γ2(V2, E2) be two finite, simple,
directed graphs. The next result show the basic properties
of Γ1 ⊞ Γ2.

Proposition 20. The combining operation ⊞ of two graphs
is not commutative. That is, in general,

Γ1 ⊞ Γ2 ̸= Γ2 ⊞ Γ1.

Proof: By definition, the additional arrows go from
V1\V2 to V2\V1. Swapping Γ1 and Γ2 reverses the direction
of these additional arrows. Therefore, the resulting arrow sets
differ, see Example 4.

Proposition 21. In general, the operation ⊞ is not associa-
tive; that is,

(Γ1 ⊞ Γ2)⊞ Γ3 ̸= Γ1 ⊞ (Γ2 ⊞ Γ3).

Proof: The intermediate graph in each case alters the
direction and presence of new arrows added during the
second application of ⊞. This causes the final edge set to
differ depending on the grouping.

Remark 22. The vertex set of Γ1 ⊞ Γ2 is

VΓ1⊞Γ2
= V1 ∪ V2.

O(Γ1⊞Γ2) =

{
O(Γ1) +O(Γ2), if V1 ∩ V2 = ∅,
O(Γ1) +O(Γ2)−O(Γ1 ∩ Γ2), otherwise.

Remark 23. The arrow set of the combining graph satisfies

EΓ1⊞Γ2
⊇ E1 ∪ E2,

with additional arrows from V1 \ V2 to V2 \ V1.

S(Γ1⊞Γ2) =

S(Γ1) + S(Γ2) + |V2|, if V1 ∩ V2 = ∅,
S(Γ1) + S(Γ2)− S(Γ1 ∩ Γ2), otherwise.
+|V2 \ V1|

Proposition 24. If Γ1 and Γ2 are simple (i.e., have no loops
or multiple arrows), then Γ1 ⊞ Γ2 is also simple.

Proof: The added arrows connect distinct vertices and
no multiple arrows are introduced.

Proposition 25. If Γ1 and Γ2 are disjoint, i.e., V1 ∩V2 = ∅,
then Γ1 ⊞ Γ2 is weakly connected.

Proof: Every vertex u ∈ V1 is connected by a directed
edge to every vertex v ∈ V2, forming paths between the

two vertex sets. Thus, ignoring directions, the resulting
undirected graph is connected.

Proposition 26. If both Γ1 and Γ2 are acyclic, then Γ1⊞Γ2

is also acyclic.

Proof: The additional arrows only go from V1 \ V2 to
V2 \V1, and not in both directions. Since there are no cycles
in Γ1 or Γ2, and no arrows go back from V2 to V1, no directed
cycles can be formed.

Proposition 27. Let deg+Γ (v) and deg−Γ (v) denote the out-
degree and indegree of a vertex v in Γ = Γ1 ⊞ Γ2. Then:

• If v ∈ V1 \ V2, then

deg+Γ (v) = deg+Γ1
(v) + |V2 \ V1|,

deg−Γ (v) = deg−Γ1
(v).

• If v ∈ V2 \ V1, then

deg+Γ (v) = deg+Γ2
(v),

deg−Γ (v) = deg−Γ2
(v) + |V1 \ V2|.

• If v ∈ V1 ∩ V2, then

deg+Γ (v) = deg+Γ1
(v) + deg+Γ2

(v),

deg−Γ (v) = deg−Γ1
(v) + deg−Γ2

(v).

Proof: The additional arrows connect vertices from
V1\V2 to V2\V1, thereby increasing outdegrees in V1\V2 and
indegrees in V2 \ V1 accordingly. Vertices in the intersection
remain unaffected by the added connections.
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