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Graphs Combining

Ibrahim A. Jawarneh and Bilal N. Al-Hasanat

Abstract—A graph operation is a process that creates a new
graph from one or more initial graphs. Certainly, there are
many operations in which the result on the graph satisfies all
or some of the common initial graph properties or produces
some new properties depending on the operation description.
In this paper, we introduce a new operation on finite simple
graphs (both directed and undirected), for which the resulting
graph may possess the same properties as the initial graph.
This operation is called graphs combining and is denoted by
H. In addition, we study the properties of this operation and
analyze the characteristics of its graphs.

Index Terms—Simple graph, undirected graph, directed
graph, connected graph, graphs operations, adjacent matrix,
maximal degree, minimal degree, Hamiltonian graph.

I. INTRODUCTION

RAPH theory is a branch of mathematics that studies

the relationships between pairs of objects. It is one of
the most important sciences since it has been considered by
many other sciences. For example, it is used in designing
circuit connections in electrical engineering. In addition, it
is used to study molecules in physics and chemistry, and
also to represent local connections between the dynamics
of a physical process in statistical physics. Moreover, graph
theory plays a significant role in computer networks, as the
study of the relationships among interconnected computers
within the network, and to configure the network security.

A graph can be considered as a set of vertices (nodes),
connected by a set of edges, corresponding to a specific inci-
dence relation [1]. Therefore, a graph I' is the triple V, £ and
1), where V is the set of vertices (denotes the set of elements),
E is the set of edges (connect the related elements) and v
is the incidence relation (assign the appropriate elements to
each edge). For more about graph theory and its applications,
see [11, [2], [3], [4], [5], [6], [7].

Recently, many studies have been published that focus on
using graph theory in real-life problems. For examples in
medicine, as we can see in [8], they have shown a graph
theory-based approach to model and analyze the human
lymphatic network. In [9], They have proposed a graph-
based analysis method to quantify the topological properties
of the network, both globally and at the nodal level, to detect
systemic or single-organ metabolic abnormalities caused by
diseases such as lung cancer. Since graphs combine nodes
with edges, researchers can examine connections and im-
prove networks in addition to identifying patterns, making
thorough data analysis possible. In [10] they have examined
essential theories and applications of graphs as well as
their analytic methods for analyzing complex systems in
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this study. Network centrality measures and shortest-path
algorithms and graph clustering methods constitute important
analytical techniques which the study presents. These discov-
eries exhibit both the effectiveness and necessity of graph-
based models for addressing real-world difficulties through
their optimization abilities in structure analysis. Graph the-
ory is used in computer science to model and address
problems in many fields, including networking, databases,
artificial intelligence, algorithms, and more. Jingjing has
studied computer science-based graph theory matching al-
gorithms, solved matching problems on large-scale graphs,
reduced computation time, and improved solving efficiency,
see [11]. In our work, for finite simple graphs (directed and
undirected), we apply a new operation, which permits the
resultant graph to retain its features as originally drawn. The
symbol for this operation, known as graphs combining, is
M. We also examine the features of this process and assess
the qualities of its graphs. This can enrich and contribute the
research in graph theory to be used in many applications in
real-life problems.

II. BASIC DEFINITIONS AND NOTATIONS

This research paper primarily focuses on finite, undirected,
simple graphs, which are introduced as follows. A graph I"
is denoted by the pair (V, E), where V is the set of vertices
and E C {(u,v) | u,v € V, u # v} is the set of edges.
Noted that (u,v) = (v,u) for undirected graphs.

To keep this paper is self contained, we list some basic
concepts of graphs in the next definition.

Definition 1. Let I'(V, E) be a finite undirected simple
graphs. Then:

o« A path of length k£ in a graph is a sequence of
k + 1 distinct vertices such that consecutive vertices
are adjacent.

o The distance d(u,v) between two vertices u and v is
the length of the shortest path connecting them.

o The diameter of a graph, denoted diam(I'), is the
maximum distance between any pair of vertices in I'.

« The radius of a graph, denoted rad(T"), is the minimum
eccentricity among all vertices, where the eccentricity
of a vertex v is max{d(v,u) | u € V}.

o The girth g(T") of a graph is the length of its shortest
cycle. If T is acyclic, then g(T") = oc.

o The adjacency matrix A(T') of a graph T' = (V, E) is
the |V'| x |[V'| matrix where A;; = 1 if {v;,v;} € E and
0 otherwise.

III. DEFINITION OF GRAPHS COMBINING
A. Undirected simple graphs combining

The considered graphs in this section are finite, undirected,
and simple graphs (graphs have neither loops nor parallel
edges). Consider the graph I" associated with a set of vertices
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V and set of edges F, then the order of I" is the number of
its vertices and denoted by O(T") = |V, and the size of T’
is the number of its edges and denoted by S(I') = |E|. The
degree of a vertex v € V' is the number of edges incidence
with v and denoted by degv, the maximal degree of I' is
max{degv | v € V} and denoted by A(T"), and the minimal
degree of ' is §(I") = min{degv | v € V}.

The following definition introduces a new operation on
given graphs, namely the graph combining which is denoted
by H.

Definition 2. Let I'; and I's be two finite, simple, and
undirected graphs associated with sets of vertices V; and V5,
and sets of edges Iy and E5 (respectively). The combining
graph I' of I';y and I's, denoted by I'y H I'y, is a graph
associated with set of vertices Vr and set of edges Er, where

Vr=V1ul,
and Er = EyUFEyU{uv |ue Vi \Va and v € Vo \ V1 }.
Example 1. Let 'y = Ps and I's = P,. Then ' =T BT

is the combining graph of Ps and P», which associated with
set of vertices V' and set of edges E defined as:

V = {vi,v9,v3} U{ui,us} = {v1,v2,v3,u1, us}

E = {1}1’02,1}21)3} U {u1u2} U {’Uiu]'}
i=1,2,3
Jj=1,2

= {v1v2, V2U3, U U2, V1 U1, V1 U, VaU1 , V2Us, V3UT, V3U2 }.

which is shown in the following figure:

=P Ty=P

I'=T,8T,

Fig. 1: The combining of disjoint graphs

Example 2. Consider the graphs I'y(Vi,E;) = P; and
To(Va, E9) = P; having the vertex vy in common as:

Vi = {vi,v2,v3} , E1 = {v102, 0203}
and
Vo = {u1,v2} , Eo = {vous }.
Then, the set of verities of I' = 1"y HI'; is

V = {v1,v2,v3} U{ur,v2} = {v1,v2,v3,u1 },
and the set of edges of I is
E=F UEU{u|ueVi\Vsand v e Vo \Vi}
= {v1v2, v9v3} U {vous }
U{uv|u € {vi,vs} and v € {u1}}
= {v1va, vaus} U {vous } U {viu1, vsus }

= {U1U1,U102,U203,U2u1,U3U1}

37

T=P; Ty=P T=T,8T,

Fig. 2: The combining of none disjoint graphs

Then the combining graph I' = I'y H I's is shown on the
following figure:

Remark 3. One can easily show that, T BT =T for any
graph T.

Consider the combining graph T'(V, E) of the graphs
I'1(V4, Es) and T'2(Va, E2) in which T’y is a subgraph of
I's. Then V = V3 UV, = V5, because Vi C Vs, Also,
E=FE UEU{w|u e Vi\Veandv € V5 \ 1} =
FEi1 U Ey; U® = FE5. Therefore, I'y HI's = I's. In this case,
the result of the graphs combining aligns perfectly with the
result of the union of these graphs. That is to say, if I'; is a
subgraph of I'y, then I'y HI's =T UT, =T's.

Lemma 4. Let I'y and T's be two graphs associated with
sets of vertices V1 and Vs, and sets of edges E1 and FEs
(respectively), and let I' = 'y B 's. Then:

D Vel = [Vi] + [Va \ V| = [Vi\ V| + [ V3.
2) |Er| = [Er| + [E2| + [Vi\ Val[V2 \ V1.

Proof: Consider the graphs I'; and I's associated with
sets of vertices V7 and Vs, and sets of edges E; and Fs
(respectively). Let I' = T'y HI's. Then V3 U Vo = V1 and

Vol = ViU Va| = Vi| 4 [Va| = [Vin V2| = [Va[ +[V2 \ Wl.

In addition, £y U E5 C Er, also if u € V3 \ V3 and v €
Vo \ Vi, then uv € Er and the number of such edges is
Vi \ Val[V2 \ Al u

As a direct consequence of the previous lemma, one can
find that, if I'; and I'; be two disjoint graphs and I' =T"; H
I's. Then:

D V| = |Vi| + |Val.
2) |Er| = |E1| + |E2| + [Vi][Val.

Applying the previous results on example 1 and example
2. In these examples, the combining operation was demon-
strated in two different cases. In example 1, the operation
was performed on two disjoint graphs, revealing that, the
order of the result graph is 5 = 3+ 2 = O(I'1) + O(T'2)
and size 9, given by 9 =2+ 14 (3)(2) = S(I'1) +5(T2) +
O(T'1)O(T'y). In contrast, the second example involved the
composition of the same graphs as in example 1, but sharing
a common vertex, revealing that, the order of the result
graph is 4 = O(T';) + O(I'2) — 1 and size 5, given by
5 = 85T) + S(Te) + (O(T'1) — 1) (O(T'2) — 1). In both
examples, the resulting graphs exhibit different orders and
sizes.
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B. Basic Properties of Undirected Graphs Combining

This section presents some essential properties of undi-
rected graph combining. These properties form the foun-
dation for understanding more advanced graph-theoretic
concepts and highlight the key distinctions between graph
combining and other graph operations.

Theorem 5. The graph combining is commutative, that is
BT, =T8T;.

Proof: Let I'y and I's be two graphs associated with
sets of vertices V; and Vs, and sets of edges E; and F»
(respectively). Then the set of vertices of I' = I'; HI's is
Vr = V1 U Va. In addition, if v and v in Vf, then wv in Er
if u,v € V4 and uwv € E; or u,v € V5 and uv € Es, or
(without lose of generality) v € Vi \ Vo and v € V5 \ V4.
Clearly, the set of vertices of s HI'; is Vo UV = V3 UV,
and it also has the same incidence relation as I'y HI';. H

Theorem 6. The graph combining is associative, that is
(T1BTy)BIr; =T 8 (T HI;).

Proof: Let I'1,I'; and I's be three graphs associated
with sets of vertices V1, Vo and V3, and sets of edges Ey, Eo
and Ej3 (respectively), and let:

I'= ([, @T,) @,

and

I' =T, @8 (T, @BT;).

Then, Vp =V =V UKL UV =V,
Let V.V ={veVi|vgVj, i#j=1,23}. Then, for
any u,v € V, we have the following cases:

Case 1: If u,v € V; and wv € E; for some ¢ = 1,2, 3,
then uwv € Er and Eyp/ using Lemma 4.

Case 2: If u,v € V; and wv € E; , i = 1,2,3, then uwv
not in Br and not in Frs using Lemma 4.

Case 3: If ue VY and v € VY for i # j = 1,2,3, then
wv € I'; BT'; which is a subgraph of I' and also a
subgraph of T".

Thus T" and T have the same set of vertices and the same
incidence relation. Hence, I' =I". [ |

The previous theorems highlight several key properties of
the graphs combining operation, namely the commutative and
associative properties. While these properties may hold for
some other operations, such as the union and intersection of
graphs, they certainly do not apply to all graphs operations.
For instance, the Corona product is not commutative. See the
following example.

Example 3. Consider the next graphs I'y and T's:

(= (%)
N

Iy Iy

Then:

V2 U3 U23

Lol
Fig. 3: None commutativity of the Corona product

On the other hand:

IPY==R

Fig. 4: The commutativity of the graphs combining
This shows that Fl @Fg # FQ @Fl, but Fl EEFQ = FQEFl.

C. Structural Analysis of Undirected Graphs Combining

This section is devoted to the structural analysis of graphs
formed by combining two or more undirected simple graphs.

Graph combining methods—such as the union, intersec-
tion, Corona product, Cartesian product, and other binary
operations—offer powerful tools for constructing complex
networks from simpler components. Understanding the struc-
tural properties of these combined graphs is essential for
both theoretical investigations and practical applications,
including network design, modeling biological systems, and
studying algebraic or topological properties of graphs.

Theorem 7. Let I'y and I's be two disjoint graphs associated
with sets of vertices Vi and Vs, and sets of edges F1 and

Volume 55, Issue 11, November 2025, Pages 3523-3528



TAENG International Journal of Applied Mathematics

FEs (respectively), and let I' =11 HT's. Then
A(T) = max{A(I'1) + V2|, A(I'2) + Vi [}.

Proof: Consider the disjoint graphs I'; and I's which
associated with sets of vertices V; and Va, and sets of edges
F4 and Fs (respectively). Let I' = 'y HTs. If v € Vp, then,
we have two cases:

Casel: v € Vi, then v is adjacent with all u € V5. Which
implies that degp v = degp v + V2.
Case2: v € Vb, then v is adjacent with all v € V;. This
implies that degp v = degp, v + |V4].
Thus,

{degv |v eV}

{max{degv | v € V;} + | V2]
,max{degv | v € Vo} + |V1|}
{AT) + Vil A(T2) + [VAl}.

Theorem 8. Let I'y and 'y be two disjoint graphs associated
with sets of vertices Vi and Vs, and sets of edges Ey and
Ey (respectively), and let T =Ty @ T'5. Then

6(I') = min{6(I'y) + [Val, 6(I'2) + [V}

Proof: The proof has the same outlines as the previous
proof and so it is emitted. ]
Recall that, an empty graph I' is T'(V, E) for which
[V|>1 and |E| =0.

Lemma 9. If 'y and T's are two disjoint empty graphs of
orders m and n, respectively, then I'1 HI'y = K, ,, (the
complete bipartite graph).

Proof: Let I'y and T’y be two disjoint empty graphs for
which |V1] = m and |Va| = n. Set I' = T'; B T2 and let
u,v € Vp. Then, we have the following cases:

Case 1: If u,v € Vi, then u and v are not adjacent,
because I'; is empty graph.
Case 2: If u,v € Vb, then v and v are not adjacent,
because I'; is empty graph.
Case 3: Ifue Viandv e Vo, oru € Vo and v € V7,
then v and w are adjacent.
Therefore, V1 the set of vertices of I' is partitioned into two
disjoint subsets 1 and V5, for which every vertex in one part
is adjacent to all vertices in the other part and not adjacent
to any vertex on the same part. Hence, I' = K, ,,. ]

Corollary 10. Consider the disjoint graphs T'y and T's of
orders m and n, respectively. Then, K,, , is a spanning
subgraph of I'y ©H .

Proof: Let I'; and I'y be two disjoint graphs of orders
m and n respectively and I' = I'y B I's. Since the empty
graph Hj, of order k is a subgraph of any graph of order
n > k. Then H,, H H, C I'y BT5. Using Lemma 9, we
have K, , = H,, B H,, and thus K,, , € I'1HI'y and since
the order of K, , = m +n = V| + |V|. Then K, ,, is a
spanning subgraph of I'y H ['s. [ |

Remark 11. Consider any two non-disjoint graphs
Fl(‘/laEl) and FQ(VQ,EQ), and let V = Vi N Vo with
Vil = n1 |Va| = no, and |V| = k. Then, both complete
bipartite graphs K, n,—r and K, ,_ are subgraphs of
'y BT,

Clearly, the total number of distinct vertices in I'1 BT's is
given by

|V1UV2| = |V1‘+|V2| — ‘Vlﬂ‘/é| =n1+ne —k,

which implies that the complete bipartite graphs in both
cases span the vertex set of I'y B I's. Therefore, they are
spanning subgraphs of I'y B T's.

Corollary 12. For any disjoint graphs 'y and T's, then
I’y BT is a connected graph.

Proof: Since, K, ,, is a spanning subgraph of
T’y HT; for any disjoint graphs I'y and I'y of orders m and
n respectively, and K, ,, is a connected spanning subgraph
of I'. Then, the graph K, ,, U E, where E is a non-empty
set of edges is also connected graph. Hence, I'y HT'; is also
connected. ]

Corollary 13. Let 'y and T’y be two graphs. Then for any
u,v € 'y BTy, we have d(u,v) < 2.

Proof: Let I'y and T'y be two graphs. Note that the
complete bipartite graph K, , is a spanning subgraph of
Iy BTy, where n4+m = |V UV,| (See Remark 11). Consider
any two vertices v and v in I'y HT'2. Then u,v € Ky, ,
whose vertex set is partitioned into two disjoint subsets V;
and V5.

e If u e V] and v € V5 (or vice versa), then v and v are
adjacent, so d(u,v) = 1.

o If u,v € Vj or u,v € Vb, then there exists a vertex w
in the opposite subset such that u, uw,w,wv,v is the
shortest path joining u and v, which implies
d(u,v) = 2.

Hence, d(u,v) <2 [ ]

Theorem 14. Let I'y and Iy be two disjoint graphs of order
n and m, respectively. The adjacency matrix A of T'1 BTy
can be written as:

A 1
=7 4

where A1 and As are the n X n and m X m adjacency
matrices of 'y and T's, respectively.

Proof: Let I'; and I's be two disjoint graphs of order n
and m associated with sets of vertices Vi = {uy,ug,...,u,}
and Vo = {v1,v2,...,0m}, and sets of edges E; and FE-
(respectively). Then u; is adjacent with v; in I'y EH 'y for
all ¢« = 1,2,...,n and j = 1,2,...,m, this impose 1
on all entries corresponding the raw wu; with the column
v; in A. In addition, u; adjacent with u; in I'y B I'p if
u;u; € Iy forall 4,7 = 1,2,...,n. Also, v; adjacent with
v; n I'y @y if vu; € By for all 4,5 = 1,2,...,m.
Then, A consists of 4 blocks, the first indicates the entries
corresponding to the set V3 which is A;, the second indicates
the entries corresponding to the raw u; with the column v;
fori=1,2,...,n, j =1,2,...,m, the third indicates the
entries corresponding to the raw v; with the column u; for
i=1,2,...,n, j=1,2,...,m, and the last block indicates

Volume 55, Issue 11, November 2025, Pages 3523-3528



TAENG International Journal of Applied Mathematics

the entries corresponding to the set V5 which is As. That is:

UL U2 *++ Up V1L V2 -+ Um
ul [ 1 1 -+ 17
Uz 11 -+ 1
. A .. .
A= up 11 -+ 1 :[‘ﬁl j]
vl 1 1 -+ 1 2
ve | 1 1 - 1
. Ao
vm L1 1 oo 1 i
[ ]

Theorem 15. For any disjoint graphs I'1 and Ty, the graph
I'y BTy is Hamiltonian graph.

Proof: Set Vi = {u1,uq,..
vertices of 'y and V5 = {vy,va,..
vertices of I's. Then,

.,Up} to be the set of
., Um } be the set of

Uy, U1V1, V1, V1U2, U2, U2V3, V3, . . ., Um—1, Um—1U1, U1

isacyclein I' = I'; HT', that visits each vertex in I' exactly
once. Hence, I' is Hamiltonian graph. ]

Remark 16. Since, every edge in the combining of any
disjoint graphs is in a cycle. Then, the combining operation
on distinct graphs produce a graph that has no bridges. That
is, if 'y £ ' are two graphs, then every edge in ' = T'1HI'y
is not a bridge.

Recall that, in a connected graph I'(V, E), the eccentricity
e(v) of a vertex v € Vr is the maximum distance between
v and any other vertex u € Vp, where the distance between
u and v is the length of the shortest path between u and v.
The radius of the connected graph I' is

rad(T") = min{e(v) | v € W1}
and the diameter of I is
diam(T") = max{e(v) | v € Vp}.

Eccentricity, distance, radius, and diameter are fundamental
concepts in graph theory, and they have significant impor-
tance in understanding the structure and properties of graphs.
These concepts are crucial for understanding and optimizing
the structure and performance of networks and systems
modeled by graphs. They provide valuable insights into
vertex centrality, network efficiency, and overall connectivity,
making them indispensable in fields like communication
theory, network analysis, and complex system modeling.

Given the importance of these measures, we study them
in the context of the graph combining operation.

Theorem 17. Let I'y # I's be two graphs and T’ =T'1 BT,
Then, the radius of T is rad(I") = 1 and the diameter of T'
is diam(T") < 2.

Proof: Let I'y # TI'y be two graphs and I' = 'y H .
Then, for any vertex u in Vp, we have two cases:
Case 1: If w € V7 and for any uw # v € V; which is
adjacent to u, then the distance between u and v is
1.
Case 2: If uw € V; and for any u # v € V; which is not
adjacent to u, then, the shortest path between v and

v is: u, uw,w,wv,v for w € Vs, So, the distance
between u and v is 2.

Thus, e(u) = 1,2 for all w € V4. Similarly, e(u) = 1,2 for
all u € V,. Note that, if " is a complete graph, so every
two vertices are adjacent, then e(u) = 1 for all u € Vp.
Therefore:

rad(l") = min{e(u) | w € Vp} = min{1,2} =1

and
diam(I') = max{e(u)|u € Vr}
= max{1l,2} =2
or diam(I') = 1if I is complete graph

Theorem 18. Ler g(I') denote the girth of a graph I'. Then,
g(I'1 B Ts) <min{g(T1), g(I'2), 4}.

Proof: If V1 N V4 = (), the new edges form a complete
bipartite subgraph K, ,, between V; and V5. Such a graph
contains 4-cycles but no 3-cycles. Thus, the girth is at most
4. If either of I'; or I's has a shorter cycle, it will appear in
the union, hence the bound. [ |

IV. COMBINING DIRECTED GRAPHS

In this section, we consider finite, simple, and directed
graphs.

Definition 19. Let I'; and I'; be two finite, simple, directed
graphs associated with sets of vertices V; and Vb, and sets of
arrows Fy and Es (respectively). The combining graph of I'y
and I'y, denoted by I'; HT'5, is the graph I' associated with
set of vertices Vr and set of arrows Er, defined as follows:

Vr =V Uy,
EF:E1UE2U{(U,U)|’UJEV1\V2 andveVg\Vl}.

The combining operation defined above allows for the
construction of a new graph that preserves the structure of the
original components while introducing directed connections
between disjoint parts. This operation may be relevant in
modeling interactions between two systems or layers in a
network.

Example 4. Consider the next graphs I'; and I's:

I'y Iy

Then, the combining graph I'; HI'y and I'; EHI'; are shown
on the next figure:
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PlEE’FQ FQErl

Fig. 5: The none commutativity of directed graphs
combining

A. Properties of Directed Graphs Combining

We present basic structural properties of the combining
operation I'y HH 'y on finite, simple, directed graphs.

Let I'y(V1,Eq) and T'o(Va, E2) be two finite, simple,
directed graphs. The next result show the basic properties
of Fl H FQ.

Proposition 20. The combining operation B of two graphs
is not commutative. That is, in general,

I BT, #T,87T;.

Proof: By definition, the additional arrows go from
V1\ Va2 to Vo \ V1. Swapping T'; and T's reverses the direction
of these additional arrows. Therefore, the resulting arrow sets
differ, see Example 4.

Proposition 21. In general, the operation B is not associa-
tive; that is,

(I, BI,) By £T, B (T, Bl)

Proof: The intermediate graph in each case alters the
direction and presence of new arrows added during the
second application of HH. This causes the final edge set to
differ depending on the grouping. ]

Remark 22. The vertex set of I'1 HT's is
Vr.@r, = ViU Va.

O(I'1) + O(T'2),
O(')+0(T2) — O('1 NTy),

Remark 23. The arrow set of the combining graph satisfies
Er @r, 2 E1 U Ey,
with additional arrows from Vi \ Va to Vo \ V.

S(T1) + S(T2) + [Val, fvinva =0,
S(T1)+ S(T2) —S(T'1NT2), otherwise.
+[V2 \ Vi

Proposition 24. [f 'y and T'y are simple (i.e., have no loops
or multiple arrows), then I'y BT is also simple.

i]CV1ﬂV2:@,

otherwise.

anarg::{

S(Ty80y) =

Proof: The added arrows connect distinct vertices and
no multiple arrows are introduced. ]

Proposition 25. If 'y and T’y are disjoint, i.e., Vi NVo = (),
then I'y BT is weakly connected.

Proof: Every vertex u € V; is connected by a directed
edge to every vertex v € V5, forming paths between the

two vertex sets. Thus, ignoring directions, the resulting
undirected graph is connected. [ ]

Proposition 26. If both 'y and T'5 are acyclic, then T'1 Ty
is also acyclic.

Proof: The additional arrows only go from V3 \ V5 to
V2 \ V1, and not in both directions. Since there are no cycles
in I'y or I's, and no arrows go back from V5 to Vi, no directed
cycles can be formed. ]

Proposition 27. Let deg; (v) and degy (v) denote the out-
degree and indegree of a vertex v in I' ="'y B T's. Then:

o If v eV \ Vs, then
degi (v) = degf, (v) +[V2 \ VA,
degr (v) = degr, (v).
o Ifv e Vo \ V4, then
degrt (v) = degil, (v),
degp (v) = degr, (v) + [Vi \ Val.
o IfveViNVs,, then
degfi (v) = degf:l (v) + degf?2 (v),
degr (v) = degr, (v) + degr, (v).

Proof: The additional arrows connect vertices from
V1\Vz to V2\ V7, thereby increasing outdegrees in V3 \ V, and
indegrees in V5 \ V4 accordingly. Vertices in the intersection
remain unaffected by the added connections. ]
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