
The M/M/c/N Vacation Queueing System with
Impatient Customers and Repairable Server

Shengli Lv, Member, IAENG, Ning Wang, Yan Zhao

Abstract—This study develops a queueing model that incor-
porates server vacations, customer impatience, and repairable
server breakdowns. To enhance customer satisfaction and reduce
server operational costs, this study introduces a specific strategy.
Servers follow startup and shutdown periods, and some servers
continue working during vacation. This design makes the model
more practical. Based on the model description, this study derives
the transition rate matrix for the system and employs an iterative
approach to determine steady-state probabilities and evaluate
performance metrics. The impact of various parameters on
system performance is investigated using numerical experiments.
Finally, the benefits for individuals and the overall system are
analyzed, and suggestions are provided to improve personal
earnings and overall benefits.

Index Terms—Startup and shutdown periods, repairable
server, impatient customers, system optimization.

I. INTRODUCTION

TO minimize the system’s operational energy consump-
tion, save the operation costs and maintain the equipment

at regular intervals, servers need various modes of vacation.
Vacation queueing has become an essential strategy in modern
operations management across fields. Its key advantages
include better resource use, improved service quality, and
lower operating costs. Li et al. [1] introduced a GI/M/1
queueing model that incorporates bernoulli vacations and
vacation interruptions. They employed matrix analysis to
derive system performance metrics, conducted numerical
experiments to evaluate the impact of various parameters on
queue indicators, and performed a cost optimization analysis.
Saravanan et al. [2] investigated an M/M/m retrial queueing
model with simultaneous vacations, impatient customers, and
unreliable servers. They linked the model to a practical
application in health helpline services and derived the steady-
state probabilities for the system’s performance metrics. Ma
et al. [3] designed and studied a multiple vacation queueing
system that accounts for impatient customers and working
breakdowns, based on the M/M/1 multiple vacation queueing
structure. Laxmi and Jyothsna [4] developed a queueing
system incorporating impatient customers and bernoulli
vacation interruptions. By utilizing the method of probability
generating functions, they obtained explicit expressions for
the steady-state probabilities. Zhu and Xu [5] built upon the
classic M/M/c queueing model by incorporating impatient
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customers and a partial working vacation strategy. They also
introduced the N -policy as a vacation termination criterion.
By applying the quasi-birth-and-death process alongside
the matrix-geometric solution approach, they calculated the
steady-state queue-length distribution for the system. Fur-
thermore, they established a random decomposition structure
under the assumption that all servers are occupied. Yang et
al. [6] added startup time, working vacations, and working
breakdown policies to a repairable M/M/1/N queueing system
and derived significant performance metrics for the system.
In their research, Zhang et al. [7] proposed an M/M/c
queueing system incorporating a startup period, shutdown
period, synchronous multiple working vacations, vacation
interruptions, and impatient customer behavior. Through
the quasi-birth-and-death process and the matrix-geometric
solution method, they calculated the steady-state distribution
of the system.

In numerous related studies, authors frequently assume
that servers are entirely reliable. In practice, however, servers
are prone to failures caused by various factors, such as
environmental changes, operational obstructions, upgrades,
and natural wear and tear. The restored servers can then
resume normal service rates. Many researchers have studied
and analyzed repairable queueing models with server failures.
Avi-Itzhak and Naor [8] investigated multiclass queueing
models that incorporate server breakdowns and repairable
strategies, deriving steady state distributions and performance
metrics, such as queue length and sojourn time for each model.
Seenivasan et al. [9] investigated an M/M/1 single vacation
queueing system with variable arrival and service rates, server
breakdowns, and a feedback mechanism, deriving the steady-
state probabilities for each period of the system. Tian et
al. [10] studied a queueing system incorporating working
breakdowns and additional services, utilizing the probability
generating function method to derive the state probabilities
of the service station, and further obtaining performance
metrics such as the system’s average queue length under
steady-state conditions. Ye and Chen [11] investigated an
M/M/1 retry queueing system with working breakdowns.
Based on the generalized characteristic value method, they
derived key performance metrics for the queueing system
and applied the L-S transform to the distribution function
of arbitrary customer sojourn times to obtain the average
sojourn time for any customer. Towsley and Tripathi [12]
studied a single-server queueing model with priorities and
repairable failures, deriving the expression for the queue
length generating function. Falin [13] explored an M/G/1
retrial queueing framework with an unreliable server and
repair times governed by a general distribution, deriving the
steady-state distribution under the condition that both service
and repair times are generally distributed. V. Karthick and V.
Suvitha [14] explored repairable Markovian queueing systems
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featuring three service counters where servers are on vacation.
Lv et al. [15] examined the impact of varying input and failure
rates on queueing systems.

The phenomenon where customers leave before entering
the service system is known as balking, and the phenomenon
where customers abandon the queue during the waiting
process is known as reneging. Both are collectively referred to
as impatience phenomena. As researchers in queueing theory
have delved deeper into their studies, they have introduced
impatience phenomena into their research. In 1963, Ancker
and Gafarian [16] studied the M/M/1 queueing model with
impatient customers. Subsequently, Stanford [17] discussed
the GI/G/1 single-server queueing system with impatient
customers, deriving the waiting time and queue length distri-
butions within the system. Bae et al. [18] examined the M/G/1
queueing system with impatient customers, analyzing the
waiting time of customers in the system. Altman and Yechiali
[19] studied vacation queueing systems such as M/M/1 and
M/G/1 with impatient customers. The work of Yue et al. [20]
utilized the probability generating function method to explore
an M/M/1 queueing framework with impatient customers
and K-vacations, calculating relevant indicators such as
the steady-state queue length and verifying special cases
where K takes specific values. Chen [21] studied a multi-
server queueing system with balking, reneging, and negative
customers in the context of customers using mobile travel
apps. Shan [22] investigated the M/M/1/N queueing inventory
system model with impatient customers and multiple working
vacations. Based on the (s, S) inventory policy, they used
matrix iteration methods to obtain the steady-state probability
distribution of the system and provided relevant performance
indicators, further establishing the average inventory cost
function of the system.

Based on the aforementioned literature, this paper estab-
lishes a queueing system with impatient customers, startup and
shutdown periods, repairable server breakdowns, and partial
server working vacations. The aim is to enhance customer
satisfaction while reducing server operational costs. This
model enriches the theoretical framework and enhances its
applicability to real-world scenarios.

II. MODEL DESCRIPTION

1) This is an M/M/c/N queueing model. In this model,
customer arrivals obey a Poisson process with a rate of arrival
λ.

2) To reduce the system’s operating energy consumption,
this paper introduces strategies involving startup and shutdown
periods (state 1), as well as partial server working vacations
(state 0). (i) If no customers are present in the system, it
transitions into a shutdown period, where the shutdown time
D is exponentially distributed with parameter γ. (ii) If the
customer arrives during the system shutdown period, the
system immediately enters the busy period (state 2), and the
customer’s service time obeys an exponential distribution with
parameter µ1. (iii) If no customers arrive during the shutdown
period, all servers synchronously initiate a random-length
vacation, with the vacation time following an exponential
distribution parameterized by θ. During the vacation period, it
is assumed that up to d (0 < d < c) servers do not completely
cease service and serve customers at a reduced service
rate, with service times following an exponential distribution

parameterized by µ2 (µ2 < µ1). The remaining c− d servers
are in a complete vacation state and do not serve customers.
If no customers are present in the system at the end of a
vacation period, the servers continue into an independent
and synchronous vacation process. If customers are present
in the system at the end of a vacation period, all servers
simultaneously enter the startup phase. (iv) Considering that
servers in the working vacation state and those in complete
vacation state require a period of startup adaptation to resume
normal busy period operations from their vacation states,
the startup time U for all servers follows an exponential
distribution parameterized by ξ.

3) Server Breakdowns and Repair Process: Failures of the
server can occur during regular busy periods, startup/shutdown
phases, and vacation periods. These failures result in the
server’s inability to operate normally, causing service interrup-
tions for customers currently being served. These customers
are then placed back at the front of the queue to resume
service, with the previously served time becoming invalid. The
failure process follows a Poisson distribution with a parameter
α. Servers are repairable, upon failure, it is immediately sent
for repair. Only one repairman can maintain each server,
and the repair time adheres to an exponential distribution
characterized by parameter β. The paper assumes that failures
occur randomly, mutually independent, and the count of
repairmen equals the number of servers.

4) Impatient Waiting Process of Customers: During server
vacation periods, the reduced service rate may lead to cus-
tomer impatience, causing some to leave the system without
receiving service. however, customers who are currently being
served within the queue will not experience impatience. The
impatient waiting time of customers is assumed to follow an
exponential distribution characterized by parameter ε.

5) The service follows the First-Come-First-Served (FCFS)
queueing rule. Additionally, it is assumed that all processes
are independent of each other.

III. TRANSFER RATE MATRIX

Let L (t) represent the number of customers in the system
at time t, Y (t) denote the number of normally functioning
servers at time t, and J (t) indicate the states of the servers
at time t.

Then {L (t) , Y (t) , J (t)} is a three-dimensional Markov
process, its state space is

Ω = Ω1 ∪ Ω2 ∪ Ω3.

among which

Ω1 = { (l, y, j) , 0 ≤ l ≤ N, 0 ≤ y ≤ c, j = 0} ,

Ω2 = { (l, y, j) , 0 ≤ l ≤ N, 1 ≤ y ≤ c, j = 1} ,

Ω3 = { (l, y, j) , 1 ≤ l ≤ N, 1 ≤ y ≤ c, j = 2} .

The state space is arranged in dictionary order to derive
the infinitesimal generators of the state transition matrix as
follows:
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Q =



A0 C0

B1 A1 C

B2 A2 C

. . . . . . . . .

Bc Ac C

. . . . . . . . .

BN−1 AN−1 C

BN AN


.

In which A0, C0, C,Ak (1 ≤ k ≤ N) , Bk (1 ≤ k ≤ N)
denote the state transition rate matrices between the cor-
responding levels, respectively. To ensure that the matrices
are concise and readable, numerical symbols are appended
below the matrices. The specific matrices are as follows:

The square matrix A0 of order (2c+ 1) is

A0 =



D0 F0

E1 D1 F1

E2 D2 F2

. . . . . . . . .

Ec−1 Dc−1 Fc−1

Ec Dc−1


.

D0 = a0,0, F0 = (cβ, 0) ,

E1 =

(
α

0

)
, Di =

(
ai,0 0

γ ai,1

)
, 1 ≤ i ≤ c.

Ei =

(
iα 0

0 iα

)
, 2 ≤ i ≤ c.

Fi =

(
(c− 1)β 0

0 (c− 1)β

)
, 1 ≤ i ≤ c− 1.

where

ai,0 = − [(c− i)β + iα+ λ] , 0 ≤ i ≤ c,

ai,1 = − [(c− i)β + iα+ r + λ] , 2 ≤ i ≤ c,

a1,1 = − [(c− 1)β + r + λ] .

The (2c+ 1)× (3c+ 1)-order matrix C0 is

C0 =



λ

λ

0 λ

. . .

λ

0 λ


.

The (3c+ 1)× (2c+ 1)-order matrix B1 is

B1 =



0

µ2

0

µ1

µ2

0

µ1

. . .

µ2

0

µ1



.

The square matrix Bi (2 ≤ i < c) of order (3c+ 1) is

Bi =



0

b1

b2

. . .

bi

bi


.

where

bk =

 kµ2 + (i− k) ε

0

kµ1

 , k ≤ d,

bk =

 dµ2 + (i− d) ε

0

kµ1

 , d < k < c.

The square matrix Bi (c ≤ i ≤ N) of order (3c+ 1) is

Bi =



0

b1

. . .

bd

bd+1

. . .

bc−1

bc


.

where

bk =

 kµ2 + (i− k) ε

0

kµ1

 , k ≤ d,

bk =

 dµ2 + (i− d) ε

0

kµ1

 , d < k ≤ c.

The square matrix Ai (1 ≤ i ≤ N) of order (3c+ 1) is
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Ai =



A1
i,0 A2

i,0

A0
i,1 A1

i,1 A2
i,1

A0
i,2 A1

i,2 A2
i,2

. . . . . . . . .

A0
i,c−1 A1

i,c−1 A2
i,c−1

A0
i,c A1

i,c


.

where j is 1 ≤ j ≤ c, defines the symbol:

n1
i,j =


−λ− θ −min { i, j, d} µ2 − (c− j)β−
(i−min { i, j, d} ) ε− jα, 1 ≤ i ≤ N − 1,

−θ −min { i, j, d} µ2 − (i−min { i, j, d} ) ε
− (c− j)β − jα, i = N.

n2
i,j =

{
− [λ+ ξ + (c− j)β + jα] , 1 ≤ i ≤ N − 1,

− [ξ + (c− j)β + jα] , i = N.

n3
i,j =


− [λ+min { i, j} µ1 + (c− j)β + jα] ,

1 ≤ i ≤ N − 1,

− [min { i, j} µ1 + (c− j)β + jα] , i = N.

where

A1
i,0 =

{
− (λ+ cβ) , 1 ≤ i ≤ N − 1,

−cβ, i = N.

A2
i,0 = (cβ, 0, 0) , A0

i,1 =

 α

0

0

 ,

A0
i,j =

 jα

jα

jα

 (2 ≤ j ≤ c) ,

A1
i,j =

 n1
i,j θ

n2
i,j ξ

n3
i,j

 (1 ≤ j ≤ c) ,

A2
i,j =

 (c− j)β

(c− j)β

(c− j)β

 ,

(1 ≤ j ≤ c− 1) .

The square matrix C of order (3c+ 1) is

C =



λ

λ

λ

. . .

λ


.

IV. MATRIX SOLUTIONS FOR STEADY STATE
PROBABILITY

From the structure of matrix Q, it can be seen that the state
process of the system is a horizontally dependent proposed
birth and death process, and when the Markov process returns
normally, the steady state distribution is defined as follows:

Pk,y,j = lim
t→∞

P {L(t) = k, Y (t) = y, J(t) = j},

(k, y, j) ∈ Ω.

To accommodate the structure of matrix Q, the steady-state
probability vector P is segmented as follows:

P = (P0, P1, P2, ......, PN ) ,

P0 = (P0,0,0, P0,1,0, P0,1,1, · · · , P0,c,0, P0,c,1) ,

where k ≥ 1,

Pk = (Pk,0,0, Pk,1,0, Pk,1,1, Pk12, · · · , Pk,c,0, Pk,c,1, Pk,c,2) .

The steady-state probability vector P satisfies the system
of equations {

PQ = 0,

P e = 1.

where e represents a column vector of suitable dimension,
with every element being 1.

Expanding the system of equations satisfied by the steady-
state probability vector P yields,

P0A0 + P1B1 = 0, (1)

P0C0 + P1A1 + P2B2 = 0, (2)

PkC + Pk+1Ak+1 + Pk+2Bk+2 = 0, 1 ≤ k ≤ N − 2, (3)

PN−1C + PNAN = 0, (4)

P0e2c+1 +

N∑
k=1

pke3c+1 = 1, (5)

where e2c+1 denotes a 2c + 1 -dimensional column vector
with all entries being 1, and e3c+1 is a 3c+ 1 -dimensional
column vector with all elements set to 1.

The iterative formula for the steady state probability vector
p can be obtained by solving Eq. (1) to Eq. (5) jointly.

Theorem 1. The steady-state probability vector

Pk = PNRk (0 ≤ k ≤ N) .

where PN satisfies
PN (R0C0 +R1A1 +R2C2) = 0,

PN

(
R0e2c+1 +

N∑
k=1

Rke3c+1

)
= 1.

Rk (0 ≤ k ≤ N) is
R0 = −R1B1A0

−1,

Rk = − (Rk+1Ak+1 +Rk+2Bk+2)C
−1, 1 ≤ k ≤ N − 2

RN−1 = −ANC−1,

RN = I.

Lemma 1. Let A = (aij) be a square matrix of order n over
the field of real numbers, if |aii| >

∑
j ̸=i

|aij |, i = 1, 2, ..., n,

Then |A| ̸= 0. For proof, see [23].
Proof 1) Prove that the matrix A0 is invertible.
Since a0,0, a1,0, a1,1, ......ac,0, ac,1 is on the diagonal of

the matrix A0 and there are

|ai,0| = (c− i)β + iα+ λ > (c− i)β + iα, 0 ≤ i ≤ c,

|a1,1| = (c− 1)β + γ + λ > (c− 1)β + γ,

|ai,1| = (c− i)β+iα+γ+λ > (c− i)β+iα+γ, 2 ≤ i ≤ c.

So A0 satisfies Lemma 1. Then |A0| ̸= 0, A0 is invertible.
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2) Prove that the matrix C is invertible.
Since the matrix C = λI , I is a unitary matrix of order

3c+1, the matrix C is also invertible.
3) When k = N , PN = PNRN = PNI is clearly fulfilled.
4) When k = N − 1, from Eq. (4), PN−1 = −PNANC−1

, such that RN−1 = −ANC−1, then PN−1 = PNRN−1.
5) When 1 ≤ k ≤ N − 2, we can use mathematical

induction to prove that Pk = PNRk is valid.
Assuming that Pk = PNRk holds for k = i + 1 and

k = i+ 2, then

P i

= − (Pi+1Ai+1 + Pi+2Bi+2)C
−1

= − (PNRi+1Ai+1 + PNRi+2Bi+2)C
−1

= −PN (Ri+1Ai+1 +Ri+2Bi+2)C
−1

= PNRi

So the formula Pk = PNRk holds for k = i.
6) From Eq. (1), P0 = −P1B1A0

−1 = −PNR1B1A0
−1,

let R0 = −R1B1A0
−1, then P0 = PNR0.

7) Bringing P1 = PNR1 and P2 = PNR2 into Eq. (2)
yields PN (R0C0 +R1A1 +R2B2) = 0.

8) The normalization condition is satisfied by

P0e2c+1 +
N∑

k=1

pke3c+1 = 1, So we conclude that

PN

(
R0e2c+1 +

N∑
k=1

Rke3c+1

)
= 1.

V. SYSTEM STEADY-STATE PERFORMANCE MEASURES

According to Theorem 1, we can find the steady-state
probability of the system, and then we get the performance
indexes of the system, which are expressed as follows:

1) The average length of the queue in the system at steady-
state is

E (L) =
N∑

k=0

kP (L = k)

=
N∑

k=1

c∑
y=1

2∑
j=0

kPk,y,j +
N∑

k=1

kPk,0,0.

2) The average sojourn time is

E (W ) =
1

λ
E (L)

=
1

λ

[
N∑

k=0

kP (L = k)

]

=
1

λ

 N∑
k=1

c∑
y=1

2∑
j=0

kPk,y,j +
N∑

k=1

kPk,0,0

 .

3) The probability that the servers are in the vacation state
is

Pv =
N∑

k=0

c∑
y=0

Pk,y,0.

4) The probability that the servers are in the startup or
shutdown phase is

Pr =
N∑

k=0

c∑
y=1

Pk,y,1.

5) The probability that the servers are in a regular busy
period is

Pm =
N∑

k=1

c∑
y=1

Pk,y,2.

6) The average number of servers breakdown is

E (Y ) =
N∑

k=0

c∑
y=0

(c− y)Pk,y,0 +
N∑

k=0

c∑
y=1

(c− y)Pk,y,1

+
N∑

k=1

c∑
y=1

(c− y)Pk,y,2.

7) The average probability of customer abandonment during
the waiting process in queue is

Pl =

d∑
y=1

N∑
k>y

(k − y)εPk,y,0 +

c∑
y=d+1

N∑
k>d

(k − d)εPk,y,0.

VI. NUMERICAL EXPERIMENTS

A. Performance Indicator Analysis

In this section, we utilize MATLAB to conduct numerical
experiments, resulting in visual images that depict the
variations of key system performance indicators with different
parameters. These images aid our in-depth analysis of the im-
pact of parameter changes on system performance. However,
due to the inability to derive an explicit formula for the steady-
state probability vector P = (P0, P1, P2, P3, · · · , PN ), we
focus our discussion on the case where N = 10. By solving
for the values of P = (P0, P1, P2, P3, · · · , PN ) through the
aforementioned reasoning process, we then proceed to create
graphs that illustrate the trends in performance changes. In
different queueing models, altering parameters has a direct
impact on system performance metrics. Specific numerical
examples are provided in this section to validate the model’s
validity and operational feasibility.

Assuming c = 5, µ2 = 2, α = 2, β = 1, ξ = 1, γ = 1, ε =
5, θ = 2, d = 3. Figure 1 shows the effect of arrival rate λ
and the service rate µ1 on the average queue length E (L)
during peak periods. during normal busy periods in average
queue length. When µ1 remains constant, E (L) increases as
λ increases. This is attributed to the fact that a rise in λ leads
to an increased customer count in the system, thereby causing
an increase in E (L). Conversely, when λ remains constant,
E (L) decreases as µ1 increases. The reason for this is that an
increase in µ1 reflects the ability to serve more customers per
unit of time, resulting in a reduction in E (L). In summary,
reducing the arrival rate λ or increasing the service rate µ1

during normal busy periods can, to a certain degree, decrease
the average queue length E (L) of the system.

Assuming c = 5, µ1 = 4, µ2 = 2, α = 2, β = 1, ξ =
1, γ = 1, ε = 5, θ = 2, d = 3. Figure 2 illustrates the trend
of probability variations with respect to the arrival rate λ for
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Fig. 1. The trend of E (L) versus λ and µ1.

different system states. Observations reveal that, with other
parameters remaining constant, An increase in the arrival rate
λ leads to a higher probability Pm of the system being in the
busy period and a lower probability Pv of being in the vacation
period, and the probability of being in the startup/shutdown
period Pr exhibits an initial increase followed by a decrease.
A low arrival rate causes a slight rise in the probability of the
system entering the startup/shutdown period. However, as the
arrival rate continues to rise, the proportion of time the system
spends serving customers increases accordingly, reducing the
probability of the system being empty. Consequently, the
probability of being in the startup/shutdown period gradually
decreases, the probability of entering the vacation period
diminishes, and the probability of being in the busy period
enhances.
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Fig. 2. The probability of each state versus λ .

Assuming c = 5, 6, 7; d = 3, λ = 4, µ2 = 2, α = 2, β =
1, ξ = 1, γ = 1, ε = 5, θ = 2. Figure 3 demonstrates the
relationship between the average number of customers in the
system, denoted as E (L), and the variations in the service
rate during busy periods, µ1, as well as the number of servers,
c. Observations indicate that E (L) gradually decreases as
both µ1 and c increase. When µ1 and c increase, it enhances

the opportunity for customers to receive service, resulting
in a progressive reduction in the average sojourn time of
customers within the system. Consequently, E (L) decreases
as system and c increase.
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Fig. 3. The trend of E (L) versus c and µ1.

Assuming c = 6, d = 3, λ = 2, µ2 = 2, α = 2, ξ =
1, γ = 1, θ = 2. Figure 4 demonstrates the relationship
between the average queue length of customers E (L) and
the variables µ1 and β. When β is constant, as µ1 increases,
the opportunity for customers to receive service enhances.
Consequently, E (L) decreases gradually with the increase of
µ1. When µ1 is constant, an increase in the repair rate β leads
to an increase in the number of servers available for normal
operation. This, in turn, improves customers’ access to service,
causing the average sojourn time in the system to decrease.
Therefore, E (L) decreases as β increases.

Fig. 4. The trend of E (L) versus β and µ1.

Assuming c = 6, d = 3, λ = 3, µ1 = 4, µ2 = 2, ξ =
1, γ = 1, ε = 5, θ = 2. In Figure 5, the relationship between
the average number of server breakdowns E (Y ) in the
system and the breakdown rate α as well as the repair rate
β is illustrated. When α remains constant and β increases,
the servers are more likely to be repaired promptly after a
breakdown, leading to a reduction in the average number of
server breakdowns E (Y ) in the system. Conversely, when β
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remains constant and α increases, it indicates that the servers
are more susceptible to breakdowns, leading to an increase in
the average number of server breakdowns E (Y ). In summary,
reducing the breakdown rate α or increasing the repair rate
β can, to a certain extent, diminish the average number of
server breakdowns in the system.
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Fig. 5. The trend of E (Y ) versus α and β.

Assuming c = 5, d = 3, λ = 4, µ1 = 6, α = 2, β = 1, ξ =
1, γ = 1, θ = 2. Figure 6 illustrates the influence of the
impatience rate of the customers ε and the service rate µ2 of
the servers on vacation on the average abandonment rate of
customers P (l) in the system. As observed in Figure 6, when
µ2 is constant, P (l) increases with increase in ε; conversely,
when ε remains constant, P (l) decreases as µ2 increases. This
is mainly because a higher ε implies that customers are less
willing to wait in the queue, causing them to be more prone
to exit the system, thus leading to an increase in P (l). When
µ2 increases, the server service rate for customers accelerates,
enabling customers to receive service within a shorter period
during their waiting period. Consequently, customers are less
inclined to abandon the system, leading to a decrease in P (l).
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Fig. 6. The trend of P (l) versus µ2 and ε.

Assuming c = 7, λ = 3, µ1 = 4, µ2 = 2, ξ = 1, γ = 1, ε =
5, β = 1, α = 2. Based on Table 1, it can be concluded that

the vacation rate θ and the number of servers d on working
vacation have minor effects on the system’s mean queue length
E (L), mean sojourn time E (W ), and customer abandonment
rate P (l). When d remains constant, both E (L) and E (W )
increase as θ increases, whereas P (l) decreases with the
increase of θ. Conversely, when θ remains constant, both
E (L) and E (W ) increase as d increases, and P (l) also
increases with the increase of d.

TABLE I
θ AND d VALUE-RELATED PERFORMANCE INDICATORS

(θ, d) E (L) E (W ) P (l)

(1,4) 1.9019838 0.6339946 0.0307275

(2,4) 1.9569146 0.6523049 0.0146257

(3,4) 1.9718950 0.6572983 0.0088396

(2,3) 1.9559894 0.6519965 0.0145479

(2,5) 1.9569671 0.6523224 0.0146338

B. Benefit Analysis

From numerical analysis, it is evident that any change in
a parameter within the model impacts the queuing system.
Therefore, we can optimize the model by altering parameter
values. In this section, benefit functions are formulated from
both individual and overall perspectives. Through numerical
analysis, the optimal parameter values for maximizing system
benefit are obtained.

Assuming that upon completion of one service, the individ-
ual benefit received by a customer is Z, and the expenditure
per unit time for a customer within the system is G. Let UI

represent the individual benefit of the customer, then

UI = Z −GE (W )

Assuming that Z = 50, G = 20, N = 10, c = 5, d =
3, λ = 3, ε = 3, β = 1, γ = 1, ξ = 1, µ2 = 2. As illustrated
in Figure 7, the individual benefit of customers increases with
the normal busy period service rate µ1, but decreases with
the vacation rate θ and the failure rate α. This is because an
increase in the normal busy period service rate µ1 leads to a
reduction in the average queue length, which in turn decreases
the average sojourn time, ultimately increasing the individual
expected benefit for customers. A higher failure rate α means
more frequent service failures. This reduces the number of
servers available for normal service, raising the average queue
length. Longer queues lengthen customers’ average sojourn
time and ultimately cut their expected individual benefit.. An
increase in the failure rate α indicates a higher likelihood of
services failures, reducing the number of services available
for normal service, which leads to an increase in the average
queue length, subsequently increasing the average sojourn
time and ultimately decreasing the individual expected benefit
for customers.

Based on the individual benefit functions of customers, the
aggregate benefit function of customers can be defined as

US = λ (Z −GE (W ))

Assuming that Z = 50, G = 20, N = 10, c = 5, d =
3, λ = 3, ε = 3, β = 1, γ = 1, ξ = 1, µ2 = 2. As depicted
in Figure 8, the overall benefit increases with the rise of
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normal busy period µ1, while it decreases with the increase
of vacation rate θ and failure rate α. Therefore, we can
enhance the overall benefit by increasing the service rate µ1

during busy periods, and reducing the vacation rate θ and
failure rate α.
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Fig. 8. The overall benefit of US versus θ and α.

VII. CONCLUSION

This paper introduces an M/M/c/N queueing system
incorporating impatient customers, setup and shutdown times,
repairable failures, and partial work vacations for service
stations. The state transition rate matrix for the system is
established, and the iterative expression for the steady-state
vector is obtained by solving the steady-state equations.
Subsequently, the expressions for the system’s performance
metrics are derived. Additionally, numerical experiments are
conducted on this queuing system to intuitively observe the
impact of various parameters on system performance. In
the final section of this paper, expressions for individual
and overall benefit functions are formulated. By assigning
specific values to the parameters, methods and suggestions
for improving benefits are obtained.
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