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the Ethanol-Methanol Mixture Concentration
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Abstract— Volatile mixture evaporation is crucial to be
understood for industrial purposes, especially in fuel, food, and
chemical processing. Evaporation of ethanol-methanol is
examined in this research with a capacitive soil moisture sensor
(CSMS) and a built-in heater. The experiment enables real time
monitoring of evaporation by measuring voltage, and the
concentration of the mixture is indirectly determined. Classical
and deep learning regression models were used for the
prediction of ethanol-methanol concentrations. Elastic Net
regression reduced dimensionality with minimal performance
loss, while ANNs captured nonlinear trends effectively. The
highest performance was achieved with a hybrid Elastic Net-
ANN model using 14 features that had a coefficient of
determination (R? of 0.99631 and minimal error rates. A
simplified ANN statistical model with only seven statistics
features provided robust results with R? of 0.9421, confirming
its efficiency to describe critical evaporation features under
lower complexity. Additionally, evaporation dynamics were
modeled using both linear (d-law) and nonlinear exponential
models. Both models yielded effective evaporation rates around
0.001, demonstrate the applicability of capacitive sensing and
machine learning for real-time, non-destructive, and accurate
volatile mix analysis. They can be used to optimize industry
processes, performing correct concentration estimations
without relying on traditional gas chromatographic techniques.

Index Terms— Ethanol,
regression, evaporation

methanol, Elastic Net-ANN,

I. INTRODUCTION

Understanding the dynamics of volatile evaporation is
crucial in many industrial and research processes.

Fitting experimental data to models that depict the
evaporation time curve is necessary to gain this
understanding. The parameters obtained from these models
offer insights into various factors influencing the
evaporation  process, such as temperature, fluid
concentration, and environmental conditions. Accurately
determining these parameters allows for predicting the
effects of different treatments and optimizing the process.
Mixing different fluids is essential in many industrial and
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commercial applications to achieve the required properties
and performance.

This is particularly important for industries such as
chemicals, food, and fuel. For instance, this paper examines
the mixture of ethanol and methanol. Both ethanol and
methanol are alcohols with various industrial and
commercial applications. These mixtures are particularly
significant in the food industry, pharmaceuticals, and
chemical manufacturing.

Ethanol and methanol are very useful solvents in food
industry for extracting flavors and aromas. Both alcohols
also have antimicrobial properties, which are beneficial for
preserving food and sanitizing products. However, methanol
is toxic to humans, necessitating careful control of its
presence in food products to avoid health hazards. Both
ethanol and methanol are volatile, and their volatility can be
utilized to predict the concentration in their mixtures. This
study demonstrates how to measure the concentration
indirectly by assessing volatility through electronic devices.

Ethanol and methanol have distinct physical properties
that significantly influence their behavior in mixtures. These
properties include boiling temperature, dielectric constant,
and volatility rate. Ethanol boiling point is 78.37°C, while
methanol boiling point is around 64.7°C. Ethanol dielectric
constant is 24.3 and methanol dielectric constant is 32.6.
Additionally, the volatility rate between the two alcohols
impacts the evaporation speed of the substances.

This research employs a novel technique to measure the
evaporation dynamics of ethanol and methanol mixtures
using a capacitive sensor. Specifically, it utilizes the voltage
measurement of a capacitor filled with droplets of ethanol-
methanol mixture. Time series formed from voltage readings
presents the evaporation process. This study hypothesizes
that the evaporation rate depends on the concentration of the
components in the mixture.

Monitoring the voltage change over time makes it
possible to determine the evaporation rate, and
consequently, the concentration of ethanol and methanol in
the mixture. This method offers a non-invasive and efficient
means of studying volatile evaporation and could be applied
to similar systems. The research result has potential
applications in optimizing industrial processes and
improving the accuracy of mixture concentration
measurements in various fields.

Further exploration made to predict mixture concentration
from time series data, firstly using Partial Least Squares
Regression (PLSR) to extract and correlate the most relevant
information from the voltage signals. PLSR is particularly
effective in handling multicollinearity, non-normal
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distribution, and uncertainty of factor results, making it
suitable for analyzing complex sensor responses related to
mixture compositions [1]. By reducing the dimensionality of
the data while preserving variance relevant to the target
concentrations, PLSR serves as a foundational model for
comparative analysis.

Regression methods are also employed to achieve
accurate predictions. Specifically Elastic Net with varying L1
and L, regularization values and Artificial Neural Networks
(ANNSs) [2]. Elastic Net combines the properties of both
Lasso and Ridge regression, allowing variable selection and
regularization to enhance prediction accuracy. Adjusting the
L, and L allows us to fine-tune the model to capture the
most relevant features. Additionally, ANNs offer powerful
tool for capturing complex, non-linear relationship within
the data.

In order to better comprehend the underlying evaporation
mechanism, this study also looks at the modeling of
capacitance decay related to mass loss. Most previous
researches on the evaporation dynamics of ethanol,
methanol, and their mixtures, have relied on linear models
such as the classical d?-law, which assumes constant
evaporation rate over the droplet’s lifetime. However, recent
findings, including experiments on water-ethanol systems at
ambient conditions suggest more complex evaporation
profiles, particularly in binary systems [3].

Building upon this, the present study purposes a nonlinear
model to describe capacitance decay during evaporation,
which is more representative of the actual mass loss process
in volatile binary mixtures. Unlike conventional models that
focus solely on flux estimations, this approach integrates
dielectric measurements as a proxy for material quantity and
enables more flexible curve fitting. Thus, this model
captures better evaporation dynamic under moderate heating
condition (e.g., 43°) and accounts for composition
dependent behaviors not addressed in existing linear
frameworks.

This study will also discuss the fitting method models to
experimental data by optimizing the mean squared error
(MSE), a measure of accuracy that frequently used for the
method [4][5]. Finally, we will evaluate the goodness of fit
using metrics such as the coefficient of determination (R?).
These evaluation methods help in comparing the models and
selecting the one that best describes the evaporation process.

By training the network on the optimal parameters, we can
predict the mixture ratio with high accuracy. These
approaches provide the novelty of this research, i.e., the
behavior of ethanol-methanol  mixtures, ultimately
contributing to better control and optimization in various
industrial applications.

Il. MODELLING PROCESS

A. Materials

The data used in this study consist of evaporation time
series measurements of ethanol-methanol mixtures for
regression analysis. Measurements were conducted using an
Arduino microcontroller connected to a capacitive soil
moisture sensor (CSMS). The CSMS was used to determine
the evaporation rate over time based on changes in electrical
conductivity during evaporation. It also measured the
differences in electrical conductivity of the pure substances,

namely ethanol 99% and methanol 99%, for classification
purposes. The ethanol-methanol mixtures were labeled based
on their composition as 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0. Here,
1.0 represents pure ethanol (99%), and 0.0 represents pure
methanol (99%). Labels 0.8, 0.6, and 0.4 represent mixtures
containing 80%, 60%, and 40% ethanol and 20%, 40%, and
60% methanol, respectively.

A BME280 temperature sensor was also employed to
monitor the environmental conditions affecting the
evaporation rate, particularly temperature, which was
included in the regression analysis. Additionally, the actual
ethanol and methanol concentrations were validated using
Gas Chromatography (GC). The evaporation rates for each
sample, measured as time series data, were analyzed using
machine learning and neural networks (NN) for regression
based on the sample's composition. [6] developed a two-
phase numerical model to simulate the transient vaporization
of spherical, two-component liquid fuel droplets,
considering variations in thermo-physical properties, multi-
component diffusion, and surface tension. However, this
mathematical model is much more expensive than some
empirical models proposed in this paper.

Measurement of the content of ethanol and methanol is
usually done using gas chromatography, as given by [7]
This study introduces a rapid gas chromatography method to
simultaneously measure ethanol and methanol in wines.
Using a small sample (10 pL) in a headspace vial at 105°C,
it achieves precise measurement within three minutes. The
results demonstrate high accuracy with reproducibility
values of 1.02% for ethanol and 2.11% for methanol, and
recoveries between 96.1% and 104%. This method is
efficient for quality control in wine production.

Instead of using the gas chromatography technique,
Effective Chemical Information (ECI) models using near-
infrared (NIR) spectra for identifying and analyzing
methanol and ethanol in gasoline were developed [8]. Using
PLS-DA and PLS algorithms, the ECI models achieved
100% accuracy in identifying methanol and ethanol gasoline.
The ECI-PLS models also showed the lowest RMSEP for
quantitative analysis. The ECI model demonstrated superior
recognition and accuracy compared to other spectral models,
making it a promising tool for rapid, accurate fuel analysis.
An example of a dynamic model related to volatility, who
analyzed the volatility and droplet evaporation dynamics of
hydrous and anhydrous ethanol-gasoline blends using
advanced distillation curves. The authors used only 3
different blends unsuitable for regression analysis [9].

Artificial Neural Network (ANN) models were developed
to optimize ethanol/gasoline dual fuel spark ignition (DFSI)
engines, which require complex calibration [10]. The study
proposed ANN topologies to model performance,
combustion characteristics, and emissions, achieving high
accuracy with regression values between 0.9387 and 0.9962
and mean square relative errors between 0.000184 and
0.03935. These ANN models demonstrated strong
robustness and reliability, beneficial for engine calibration

and optimization.

B. Ethanol-Methanol Measurement with Capacitor

The ethanol concentration in an ethanol-methanol mixture
was indirectly measured using a capacitive soil moisture
sensor (CSMS v2.0). This sensor utilizes a TL5551 oscillator
operating at a frequency of f=1.5 MHz. The CSMS output
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voltage is derived from frequency conversion based on
Equation (1), i.e.,
Vpeak (1)

Vour = ———
out = f14(2mfRC)2

The capacitance C can be modified by introducing a
dielectric material into the capacitor. Assuming the capacitor
is parallel-plate with a cross-sectional area A and a

separation distance d, the capacitance formula is expressed

as:
_ kegd

C="= )

with K is the relative permittivity of the material, &g is the

vacuum permittivity (8.854 x 1012 F/m), A is the plate area
(m?), and d is the distance between the plates (m). In a
vaccum the x value is 1, in air, the K value is 1.0006, in

water, the K value is 78.5, in ethanol, the value is 24.3 and
in methanol is 32.6. Therefore, if the vacuum (or air) is used
as the reference capacitance, the capacitance of a material
can be expressed as shown in (3), i.e.,
C = kCy. 3)
In this study, ethanol, methanol, or their mixtures were
used as dielectric materials to modify C. During the
experiment, ethanol-methanol at room temperature (25°C)
was heated in the CSMS equipped with a heater, raising its
temperature to 43°C. The ethanol-methanol evaporates,
causing C to change. The hypothesis assume that the
capacitance C is proportional to the material quantity, and its
rate of change follows a power law with time, +¢2. When all
ethanol-methanol evaporates, the capacitance reaches C..
Thus, the rate of change of capacitance is given by:
= —rt(C-Cy). (4)
This equation can be modified by introducing an effective
time parameter to shift the peak time of the capacitance

change, resulting in the following:
ac

== max(0,t —t,)? (C —C,) - (5)
The analytical solution to this equation is shown in (6),
ie.,
Cs) t=t,

C = r
Co+(C—C,)exp (—b—H(t — ta)b+1), t>t,

(6)

Fig. 1 and Fig. 2 illustrate the function in (6) for some
given parameters.

Capacity changes due to Evaporation

—— k=32.6,r=5e-06,b=15
3.5 k=243,r=6e-06,b=15
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\
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Fig 1. The simulation of capacitance variation due to evaporation for two
different materials was conducted in accordance with (6). Each material
has an initial capacitance value of 32.6C,; + C;and 24.3C,.; + Cj,

where C; = 5C, represents the capacitance of the device without external
material, and C,.., = 0.1 nf serves as the reference capacitance.
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Fig 2. Simulation of CSMS output voltage with a 3.3-Volt power
supply and internal resistor R=100 ohm according to (1) and (6).

Additionally, a classical linear evaporation model is
frequently used to describe sessile or suspended droplet
behavior, where the squared droplet diameter decreases
linearly with time according to :

d 2
(&) = ™)
In this equation, d represents the instantaneous droplet
diameter at time t, and do is the initial diameter of the droplet
at the beginning of the evaporation process. The parameter r
denotes the evaporation rate constant (in s), which
quantifies the rate at which the squared diameter decreases
due to mass loss. Finally, t is the elapsed time (in seconds).
In one study, this model was applied to a 92% ethanol
droplet at 24 °C, and the evaporation rate constant was
reported as r = 0.001111s™!' [3]. While this approach
provides a good approximation for diffusion-limited
evaporation under isothermal conditions, it does not capture
the nonlinear characteristics observed in this study under
heating and binary composition effects. Nonetheless, it
offers a valuable reference point to compare the effective
evaporation dynamics derived from the capacitance
response.

C. Regularization

Regularization  techniques in classical regression
penalization parameters, including Ridge (L), Lasso (L1), or
Elastic Net (combination of L; and L, penalties) [11]. Least
Absolute Shrinkage and Selection Operator (Lasso)
performs feature selection by adding the absolute sum of
coefficients as a penalty, simplifying the model to include
only the most significant features. Ridge adds the squared
sum of coefficients as a penalty, stabilizing coefficients even
in the presence of multicollinearity. Ridge effectively
reduces overfitting without feature selection. Elastic Net
combines Elastic Net combines L; and L, penalties, enabling
feature selection like Lasso while stabilizing coefficients and
mitigating overfitting like Ridge. Additionally, cross
validation is a robust approach to split datasets into subsets
for model training and validation, ensures better
generalization and reduce overfitting, especially when the
data is limited [11].
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D. Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is a multivariate
regression method to form linear relationship between
response variables (Y) and predictor variables (X).
Operation of PLSR is used by bulding the linear
combination from the predictor variables (X), thereby
effectively managing multicollinearity by identifying the
most correlated X variables with Y variables [1]. PLSR
mostly used for spectral data, such as in quantifying
methanol and ethanol content in wine using FTIR [12].
PLSR also used for complex data like artificial intelligence
with 36 predictor variables [13]. PLSR capability to handle
complex data make it ideal to analyze time series data from
sensor reading, where strong correlations often exist
between data points, as is the case with ethanol-methanol
mixtures evaporation over time. Furthermore, by its latent
variables, PLSR can identify smooth patterns within the data
that might not be seen with univariate regression methods.

E. Deep Learning

Both deep learning and ANN can perform classification or
regression predictions. They are applicable in tasks such as
image and voice recognition, natural language processing,
and predictive modeling [14]. Neural Networks (NN) consist
of layers or interconnected nodes or usually called by
neurons that used to model complex pattens and
relationships in data. They can be applied to various tasks,
including image and voice recognition, natural language
processing, and predictive modeling. NN has become an
integral part of the study and application of machine
learning. A explained previously, NN can be used for
predictions in classification and regression [15]. In
classification, NN creates a model that can classify data into
different categories. During the training process, predefined
inputs and outputs used to adjust the weights and biases in
every neurons in the network [16]. For regression, NN us
used to predict continuous values. Regression in NN is a
classification in NN with a single class. In regression, NN’s
output generates a continuous value, such as temperature,
humidity levels, or stock prices [17].

Several steps must be considered to design NN for
classification, from selecting the appropriate type of NN for
the problem to be solved, such as Multi-Layer Perceptron
(MLP), Convolutional Neural Network (CNN), or Recurrent
Neural Network (RNN). After that, configure the number of
neurons and layers, choose the activation function, set the
regularization level, train the NN methods, and finally
evaluating the prediction results [18]. Common activation
functions used in classification are sigmoid, tangent
hyperbolic, or ReLU [19]. Meanwhile, commonly used
optimization algorithms include gradient descent, stochastic
gradient descent, or Adam [20].

F. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are utilized to predict
material compositions based on parameters, for example, as
shown by [21]. Here, mango peel, rich in antioxidants and
other bioactive compounds, was studied using microwave-
assisted extraction and Response Surface Methodology
(RSM) alongside ANN. Variables like extraction time,
solvent-to-plant ratio, and ethanol concentration significantly
influenced total phenol compounds (TPC) and antioxidant

activity (TEAC) in extracts from Tommy and Sugar mango
peel varieties. The ANN has been used to develop predictive
models for the compressive strength of rubberized concrete,
incorporating features such as rubber size, percentage of
rubber replacement for natural aggregates, cement content,
water content, fine aggregate content, coarse aggregate
content, and curing time[22]. The other author used ANN to
predict the density and heat capacity of ionic liquid (IL)-
water binary systems, addressing the high viscosity and
synthesis cost of 1Ls[23]. The ANN model, XGBoost, and
LightGBM were applied using features such as system
components and substituents on the cation. ANN can predict
surface tension and viscosity using some chemical and
physical properties as the features. In those examples, the
authors used standard ANN as the architecture [24]. In this
paper, a new layer of neural networks is introduced. A
typical ANN is structured as a composition of activation
functions applied to linear functions. The mathematical form
of a layer of ANN is
zp = fi(zp—1 - WL+ by) 8
The input layer needs zy=X as the input. Here, f; is the
activation function of the layer-L. Usually “relu” is chosen
for the activation functions of the internal layers. For
nonlinear regression, the last layer has no activation layer (or
fi(x) = x). W, and b; are the weights and biases of
layer-L.

I. METHOD

A. Instrument preparation

The research process is summarized in the flowchart
shown in Fig. 3.

O= (7=

0
START Instrument Measurements of ethanol dan

preparation methanol levels with GC-MS

n | I:ﬁ A\
e KT !ép

RS

Regression : Ridge, Preprocessing Data collection (ethanol

ElasticNet, and NN Data

k@

o=
Fig 3. Flowchart of research steps

99%. methanol 99%. and
ethanol methanol mixture

Result Evaluation

The CSMS was modified by adding a heater and a ring at
the top to ensure the sample droplets remained localized. A
single CSMS was connected to the AO pin of the ESP8266
microcontroller. The heater was constructed using nichrome
wire powered by 5V and positioned beneath the CSMS. This
modification ensured that the heater operated as a solenoid
without contacting the sensor's electrodes. The electrodes of
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the CSMS were shortened to prevent direct contact with the
heater (Figure 4).

B. Measurement Design

The evaporation of an ethanol-methanol mixture is
indirectly assessed using a modified Capacitive Soil
Moisture Sensor (CSMS) V2.0 paired with an ESP8266
microcontroller. Approximately 10 drops of the ethanol-
methanol mixture typically induce a 0.6 Volt deviation from
its initial empty state. The CSMS includes a custom-made
heater powered by a 5 Volt supply, constructed from a 3.5
cm length of nichrome wire with a resistance of 14 ohms at
room temperature, configured as a solenoid. The CSMS
output connects to the ESP8266's AO pin as an analog input,
operating at 3.3 volts.

32
|

=

Capacltlve Soll

@Molsture Sensor v2.0

Fig 4. The modified CSMS includes a heater (red) and an O-ring (blue).
The original electrode needs to be shortened to accommodate the heater,
ensuring that the heater has no contact with the electrodes.

Fig 5. Sketch of tools used in the research

The heater provides a stable temperature under a
constant voltage. In this setup, applying 5.12 volts raises the
temperature from room temperature to an asymptotically
stable 43°C. The final temperature is influenced by
environmental conditions; however, incorporating a
temperature regulator into the circuit can ensure consistent
temperature control. A rubber O-ring with a radius of 1.0 cm
is installed on the CSMS electrode, designating it as the
designated area for depositing the ethanol-methanol mixture.
The ethanol-methanol mixture should pour a volume of 0.7
milliliters (or approximately 10 drops) into the O-ring. A
BME280 temperature sensor is attached beneath the O-ring,
allowing it to measure the actual temperature in the area
where the liquid drops are deposited. In addition to

temperature, the BME280 sensor also measures air humidity
and atmospheric pressure.

C. Measurement of Methanol and Ethanol Levels with
GC-MS

Ethanol and methanol concentrations were validated using
GC-MS in a standardized laboratory to ensure the purity of
the 99% ethanol and methanol used in the experiments. The
results included the area response and concentrations as
indicated by the chromatograms obtained from the GC-MS
analysis.

D. Data Collection

A dropper was used to dispense precisely 10 drops
(approximately 0.70 mL) of the ethanol-methanol mixture
into the ring-shaped container of the CSMS. The
measurement procedure is as follows:

1. Start the heater and wait until the BME280 sensor

indicates a stable temperature of around 43°C.

2. Begin continuous data acquisition at one-second

intervals.

3. Pour a 0.7 milliliter sample of ethanol-methanol into
the O-ring.

4. Record data for 600 seconds (10 minutes) for each
sample.

The heater remains active throughout, ensuring the
temperature remains constant even as samples are replaced.
The samples of ethanol-methanol mixture are labeled as
the fraction of ethanol in the mixture, i.e., 1.0, 0.8, 0.6, 0.4,
0.2, 0.0. For example, label 0.6 consists of 60% ethanol and
40% methanol. The label 1.0 is the approximation of the real
concentration of pure ethanol, which is only 0.96 according
to the gas chromatography (GC) measurement. On the other
hand, the label 0.0 is related to the approximation of pure
methanol, i.e., 0.97 according to GC. The labels 0.2, 0.4,
0.6, and 0.8 are associated with the ratio of those pure
solvents.

1) Preprocessing Data

Preprocessing steps included central-shifting, padding,
and smoothing to refine the evaporation time series data for
regression analysis. Central-shifting aligned curves in the
time domain by shifting them to overlap based on the
median time when drastic evaporation occurred. Padding
added values at the beginning and end of measurements with
varying lengths, standardizing the time series for consistent
sample duration. Average smoothing was applied to reduce
noise in the evaporation curves. This method smoothed the
data by calculating the average of several data points around
each point to create a more regular curve.

2) Regression Method with Ridge, Elastic Net, and NN

Regression modeling was performed using various
methods, employing features derived from the preprocessed
raw data. Specific feature points were selected by Gaussian
distribution or with Elastic Net and Ridge regularization.
Additionally, the results were analyzed using Atrtificial
Neural Networks (ANNs) with multiple layers, as well as
hybrid approaches sucah as ANN-Ridge and ANN-Elastic
Net. Descriptive statistics were also Descriptive statistics
were also incorporated as features in conuction with ANNs
for further analysis.
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Representative points were choosen from 800 sampled
points in the original dataset for feature selection from the
raw signals, guided by the Gaussian distribution. These
pounts wew concentrated aroung the steeoest portion of the
evaporation curve. The time range was constrained between
0.0 to 0.80 to simplify the range and avoid excessive
complexity. A subset of n points was selected to reduce the
number of features, thus minimizing model complexity. For
example, 55 and 35 feature points were selected for Ridge
regression using Gaussian-distributed representative points.
The selected features for each sample were divided into 70%
training data and 30% testing data. Regression modeling
based on concentrations was performed using Ridge and
Elastic Net penalties, with varying alpha values to determine
the strength of regularization. Features selected through
Elastic Net were prioritized and filtered based on their
importance, followed by an evaluation of model
performance using coefficients of determination (R?), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
RMSE standardized by standard deviation (RMSE/SD),
Mean Absolute Error (MAE), and MAE standardized by
standard deviation (MAE/SD).

Tests were also conducted using ANNs combined with
Ridge and Elastic Net, varying the number of neurons per
layer based on the feature selection results from Elastic Net.
Additionally, ANN models incorporating seven statistical
features (Stat-ANN) were tested. These statistical features
included mean, standard deviation, minimum, maximum,
range, skewness, and kurtosis. The formulas for standard
deviation, mean, skewness and kurtosis were calculated
using equations (9) to (12).

1 n
sh= |- E ; — ©)?
n i:l(x‘ %)

©)
=5 (10)
Skewness = Wn(n—z) T (x;—;) (11)
Kurtosis =
n(n+1) n [(xi—% 4 3(n—1)2
(n-1)(n—-2)(n—3) i=1( SD )  (n—-2)(n-3)
12)

Here, n represents the total number of data points, X;

denotes an individual data value, X is the mean, and SD is
the standard deviation [25]. Descriptive statistics were
employed to capture the unique characteristics of each
alcohol concentration.

The training results for each model—classic methods like
Ridge and Elastic Net, ANN with varying neuron layers,
ANN-Elastic Net hybrids, and Stat-ANN—were compared
based on model performance metrics. These included the
coefficient of determination (R?), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), RMSE/SD,
Mean Absolute Error (MAE), and MAE/SD.

The goodness-of-fit metrics for Ridge, Elastic Net, and
ANN models included performance indicators such as
determination coefficient, MSE, RMSE, RMSE/SD, MAE,
and MAE/SD. For Elastic Net models, modifications to the
Li:L, ratio were tested to optimize model performance. This
comprehensive approach ensured robust model performance,
with each method tailored to effectively analyze and predict
ethanol-methanol mixtures.

IV. RESULT AND DISCUSSION

Dropping ethanol-methanol into the CSMS O-ring is
highly susceptible to human error. Therefore, the X(t) data
recorded for each sample needs to be time-shifted so that the
median value of X(t) aligns with the center of the time
domain. This shift must be followed by padding to ensure
uniform sample length. Data smoothing can be performed
using averaging techniques. Example results are illustrated
in Fig. (6).

Preprocessing: Central-shifting, padding, smoothing

0.650 3 examples:

+++ original
average smoothing

0.625

0.600

Scaled voltage
s o
wu w
w ~
o w

0.525

0.500

0.475

0 100 200 300 400 500 600 700 800
time (seconds)

Fig 6. Curves from Example Preprocessing Data Result by : central-
shifting, padding, smoothing

The preprocessing process revealed that each sample
curve exhibited three distinct phases: a gradual increase
during the initial stage of evaporation, a steep rise in the
mid-phase, and a plateau at the final stage. The initial
gradual increase reflects minimal evaporation as the sample
absorbs heat energy. The mid-phase is marked by a
significant increase in evaporation, driven by molecules
gaining sufficient energy to transition into the gaseous phase.
The final plateau occurs due to the reduced liquid volume,
limiting further evaporation. This trend is consistent with
findings by [26], which highlight that before the steep
evaporation phase, minimal evaporation occurs as molecules
absorb heat, while at the end, the trend flattens due to the
diminished liquid volume.

The results revealed an S-shaped evaporation curve
across all samples, beginning with an initial increase,
followed by a rapid rise, and finally a decline. This pattern
aligns with the description provided by (1). Additionally, it
is consistent with the equation relating voltage to
capacitance. As capacitance increases, the voltage decreases.
Therefore, the initial liquid with specific capacitance
produces a very low output, as observed in the samples (Fig.
6). The high initial capacitance (low voltage output) is due
to the dielectric material enhancing the capacitor's ability to
store charge. The capacitance decreases as evaporation
progresses, reducing the liquid material and rapidly
increasing voltage in accordance with the exponential
function described in (6).

Several methods can be used to perform non-linear
regression on data in Fig. 6. Firstly, the data is resampled at
specific time points t;, where j does not need to be chosen
linearly. Resampling is necessary to reduce the number of
data points compared to the number of samples. To prevent
overfitting, it is important to choose M<N. Consequently,
data X will have dimensions NxM, where N represents the
number of samples, and M represents the number of time
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samples, which are treated as features. The method can be
addressed using classical regression techniques like Ridge,
Elastic-net, or modern approaches such as ANN. This is in
accordance with the statement that the number of features
should not exceed the number of samples because the more
features there are, the greater the tendency for overfitting to
occur[27].

The dataset comprises 88 samples, each containing 800
data points. Prior to performing regression analysis, the data
undergo resampling. In this process, a Gaussian function is
employed to select points, resulting in non-uniform intervals.
These intervals are denser near the center of the sample data.
The configuration of the selected time coordinates is
depicted in Fig. (7).

Gaussian time intervals

0.0 0.2 0.4 0.6 0.8 1.0
Resampled scaled-times

Fig 7. Time Coordinates Selected by Gaussian Method

In Fig. (7), the original time domain 0-800 seconds is
scaled into 0-1, and then 55 selected points are utilized for
the regression analysis instead of the original 800 points.
Consequently, the data has a shape of 88 x 55, which can be
split into training and test sets. The training set comprises
70% of the data (61 x 55), while the test set comprises 30%
(27 x 55).

Partial Least Squares Regression (PLSR) was initially
employed as a baseline method to evaluate the predictive
capability of the capacitance-derived feature set. Given the
structure of the dataset (88 samples, 55 selected time
features), PLSR is particularly advantageous due to its
ability to handle multicollinearity and extract latent variables
that best explain the variance in both predictors and response
variables. This is especially relevant in high-dimensional
problems, where the number of features approaches or
exceeds the number of samples.

To determine the optimal number of latent components,
models were trained and evaluated with varying component
counts from 10 to 50, using an 80:20 train-test split. The
model performance stabilized around 30 components, where
the additional latent dimensions did not significantly
improve the prediction.

0.0192 —— MSE
0.0191
0.0190

o
=
T 0.0189

0.0188

0.0187

10 15 20 25 30 35 40 45 50
Number of Compaonents

Fig. 8. MSE Value in Every Components Result

At the optimal setting (30 n components), PLSR
achieved 0.01872 for Mean Squared Error (MSE), 0.1368
for Root Mean Squared Error (RMSE), 0.3457 for

RMSE/SD, and 0.8805 for Coefficient of Determination
(R?).

These results demonstrate that the model could explain
approximately 88% of the variance in ethanol-methanol
concentrations. The RMSE/SD value < 1 confirms that the
prediction error is notably smaller than the inherent
variability of the target data. While PLSR effectively
handled the high-dimensional dataset (800 features with only
88 samples), it required a relatively large number of latent
components, up to 30 to achieve this level of performance.
This indicates that although the model works well, its
complexity remains considerable.

To reduce model complexity and the number of required
features, further analyses were carried out using alternative
regression methods. Methods such as ridge and elastic net
regression were explored because they offer feature
reduction through regularization, potentially decreasing the
number of predictors to fewer than the number of samples.
Additionally, these techniques provide more interpretable
models and are less prone to overfitting when the feature
count is minimized.

The ridge regression analysis produces various results
depending on the ridge parameter alpha, as shown in Table
1. According to the table, the optimal result (lowest RMSE)
is obtained with an alpha value of 0.001, using 55 points as
the number of features. In addition to using 55 points, 35
points were also used as features in the same way as
selecting 55 points. According to Table 1, the reduction of
the number of features changes slightly the RMSE, MAE,
and R2,

TABLE 1. 55 OR 35 POINTS IS USED AS THE FEATURES OF RIDGE-REGRESSION.
HERE THE STANDARD DEVIATION OF TEST-DATA IS 0.379

Alpha _RMSE MAE RMSE/SD
55 35 55 35 55 35
0.000 0249 0213 0206 0162 0658 0.562
6 0 4 5 5 1
0001 0119 0120 008L 008 0315 0316
6 0 9 1 6 6
0010 0128 0129 0093 0094 0340 0.341
9 6 2 0 1 8
0100 0156 0161 0119 0123 0412 0424
5 0 2 8 9 8
0500 0231 0244 0198 0211 0610  0.643
4 0 5 6 5 8
1.000 0277 0289 0244 0256 0731 0.763
4 4 4 0 9 4
MAE/SD R?
55 35 55 35
0544 0428 0566 0.684
5 8 3 1
0216 0216 0900  0.899
2 5 4 7
0245 0248 0884  0.883
9 1 3 2
0314 0326 0829 0819
4 7 5 6
0523 0558 0.627 0.585
7 3 3 6
0.644 0675 0464 0417
9 4 3 2

Reducing the number of features to 35 slightly decreases
the model’s predictive power compared to 55 features, the
performance degradation is minimal. These findings suggest
that a more compact feature set can still provide high
accuracy while reducing computational cost and risk of
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overfitting. Accuracy and parsimony balance is important to
future model deployment and hardware constrained
environments.

To further investigate the relevance of the selected time
coordinates and to identify which features contribute most to
prediction, Elastic Net regression was employed. Using the
55 selected points, the number of features (nf) those have
nonzero values of Elastic Net coefficients was counted
(Table 2), providing deeper insight into feature importance
and potential for dimensionality reduction.

TABLE 2. MODEL PERFORMANCE OF ELASTIC NET BASED ON VARIATIONS
IN ALPHA, FEATURES, AND L1/L2 RATIOS

Alpha L1 RMSE MAE RMSE MAE/ R? nf
Ratio / SD SD

0.006 0.001 0.208 0.173 0.5487  0.457 0.699 5
0 5 7 0 5

0.000 0.238 0.120 0.082 0.3177 0.218 0.899 4
4 9 8 1 1

0.000 0.475 0.120 0.082 0.3179 0.216 0.899 3
5 2 9 0 4

0.000 0.713 0.121 0.082 0.3206 0.218 0.897 2
5 7 2 2 2

0.000 0948 0.124 0.084 0.3291 0.222 0.891 1
7 5 9 7 0

0.000 0956 0.124 0.084 0.3292 0.222 0.891 1
8 5 8 6 0

0.000 0964 0.124 0.084 0.3294 0.222 0.891 9
9 4 8 5

0.000 0972 0.125 0.084 0.3297 0.222 0.891 9
0 5 9 3

The model performance metrics showed no significant
differences in RMSE, MAE, RMSE/SD, MAE/SD, and R?
except when using 55 features, which resulted in the lowest
R? value and the highest errors among all cases. Table 1.
indicates that most alpha values in Elastic Net regression
were close to 0.000. However, the results and feature
selection were still influenced by an increase in the L; ratio,
which eliminated less impactful features and thus influenced
the outcomes. In Elastic Net, the L; ratio determines the
number of retained features; a higher L; ratio reduces the
selected features, leaving only 9 features out of 55, with
results comparable to using 41 features. Fewer features
reduce the likelihood of overfitting, indicating that 9 features
are sufficient to model the samples using Elastic Net
regression.

At L, ratios of 0.972 and 0.964 with 9 features, the results
were similar, but the 0.964 ratio provided slightly better
performance. Thus, the L; ratio of 0.964 with 9 features was
deemed optimal, as it achieved low error values and a high
coefficient of determination (approaching 1.0) without
significant deviation from the results obtained with more
features and higher L; ratios. An example of feature
selection using Elastic Net is shown in Fig. (9). The feature
selection results from Elastic Net are depicted in Fig. 8(a),
where selected coefficients are marked with red diamonds,
while other coefficients with zero values are shown in gray.
Additionally, Fig. 9(b) highlights several peaks among the
selected coefficients, indicating higher values that represent
the most significant features for prediction.

Using Elastic Net regression with 9 features, it was
determined that only 9 distinguishing points were necessary
to differentiate one sample type from another. These 9
feature points, based on time, also demonstrated that the
median value during the rapid evaporation phase did not

indicate critical points, as previously hypothesized in Ridge
regression. Fig. 9(b) shows the Elastic Net coefficient
points, with 9 peaks, where higher peak values signify a
greater influence of the feature on prediction outcomes.
Overall, Elastic Net results demonstrated that the 9 features
sufficiently distinguished the sample types. Among the
selected points, those occurring just before the steep
evaporation phase and at the transition between steep and
plateau phases were identified as critical for distinguishing
one alcohol mixture from another. These points differentiate
samples due to the ethanol-methanol mixture's unique
evaporation characteristics when reaching the liquid-gas
equilibrium, varying between concentrations. This behavior
is influenced by the azeotropic interactions between ethanol
and methanol, which alter the component relationships and
evaporation patterns based on the concentration [28].

Features selection by ElasticNet
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Fig. 9. Results of feature selection with 9 features and Elastic Net
coefficients

In addition to Ridge and Elastic Net, several other
methods were employed to determine the best modeling
approach for predicting sample concentrations. These
included simple ANN, ANN with L; or L, regularization
(EINet-ANN), and ANN using statistical feature values from
the data with varying neuron counts in the ANN layers. A
comparative analysis of the methods used is presented in
Table 3.

TABLE 3. COMPARISON OF MODEL PERFORMANCE ACROSS DIFFERENT

METHODS
Method Alpha L1 RMSE  MAE RMSE
Ratio / SD
Elastic Net 0.000 0.238 0.1204 0.0829  0.3177
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0.000 0475 01205 00822 0.3179

0.000 0964  0.1249 00844  0.3294
Ridge 0.001 - 01196 00819  0.3156
Ridge 0.001 01200 00821 0.3166
ANN - 00855 0.0597 0.2257
(64,16,1)
ANN 00810 00576 0.2137
(32,16,1)
ANN 00881 00674 0.2324
(16,8,1)
ANN 00854 00597 0.2253
(32,16,1)
EINet-ANN  0.000 0.97 01065 0.0842  0.2809
(32,16,1)
EINet- 2.3x105 090 00728 00533 0.1921
ANN
(32,16,1)
Stat-ANN 00912 00725  0.2406
(32,16,1)

MAE / SD R? nf

0.2188 08991 41

0.2169 08990 34

0.2228 08915 9

0.2162 09004 55

0.2165 08997 35

0.1575 09491 55

0.1520 09543 55

0.1779 09460 55

0.1575 09492 35

0.2222 09211 9

0.1405 09631 14

0.1912 09421 7

Based on the comparison of methods, all approaches

yielded RMSE/SD and MAE/SD values below 1.0. These
indicate that each model successfully captured the primary
patterns in the data, as the model errors were smaller than
the natural variation in the data.
The results in Table 3 show that the Elastic Net-ANN
method with 14 feature points and a 3-layer architecture
(with 32, 16, and 1 neurons in each layer, respectively)
achieved the highest coefficient of determination (R?) of
0.9631 This indicates that the model performed
exceptionally well in regression (approaching 1.0) with
relatively low error values, specifically RMSE of 0.0728 and
MAE of 0.0533. Elastic Net-ANN with only 9 features also
yielded a relatively high R? of 0.9211. However, increasing
the feature count to 14 significantly improved the coefficient
of determination. While adding more feature points
enhances the model's ability to represent the evaporation
patterns, excessive features may lead to overfitting, as the
model becomes overly tailored to the training data compared
to the test data.

The next-best performance was observed with an R? of
0.94 for a 3-layer ANN using 55 features, with neuron
counts of 32, 16, and 1 in each layer. Similarly, an R? of
approximately 0.94 was achieved with a 3-layer ANN using
35 features, with neuron counts of 36, 16, and 1.
Additionally, Stat-ANN with only 7 statistical features
(minimum value, maximum value, standard deviation,
skewness, Kkurtosis, range, and mean) and a 4-layer ANN
architecture (32, 16, 16, and 1 neurons) achieved an R?of
0.9421. Although several methods achieved high
coefficients of determination (R? > 0.94) and model errors
smaller than data variability (based on RMSE/SD and
MAE/SD), models with fewer features were generally
preferred due to the limited dataset and to avoid overfitting.
As the number of features increases, the risk of overfitting

also grows. Therefore, the Stat-ANN model with an R? of
0.9421 and a correlation coefficient of 0.9706 was deemed
sufficient to model the data using only 7 features. Stat-ANN
provided a reliable model with a simple approach,
summarizing the dataset effectively and reducing overfitting
risks compared to more complex models such as Elastic Net-
ANN or ANN with 55 or 35 features. This aligns with the
statement that simpler models are more resistant to
overfitting compared to more complex ones.

Based on the comparison of model performance, the
Elastic Net model with 14 features and the Stat-ANN model
with 7 features were identified as the two best-performing
models. Both models used relatively few features while
achieving high R? values exceeding 0.94. However, the Stat-
ANN model with 7 features and a simpler architecture (4
layers with 32, 16, 16, and 1 neurons, respectively) was
determined to be sufficient for predicting ethanol-methanol
mixture concentrations.

In addition to the concentration prediction models, the
present study also investigates the evaporation dynamics of
ethanol-methanol mixtures using a nonlinear modeling
approach. The model is expressed as:

m(t) = exp(-r(t-t,)’*1),t > t, (13)

Where m(t) is the normalized material quantity at time t, r
is the evaporation rate constant, b is the exponent describing
the curvature of the decay, and ta is the activation time or the
onset of significant evaporation. This formulation allows the
modeling of a dynamic, time-shifted evaporation process,
capturing the nonlinearity commonly observed in real binary
volatile systems. From this model, an effective evaporation
rate re can be derived as:

7, =rt’m(r)/m, (14)

Where © = t—t, is the effective duration after activation
and mo is the initial material quantity (before evaporation
begins). A sample fit of the nonlinear model to experimental
capacitance-derived data is shown in Fig. 9, highlighting the
ability of the model to match the observed evaporation
profile.

Curve Fitting Result: r=4.19e-08,b=2.33, ta=181.91
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Fig. 10. Curve Fitting Result for Nonlinear Model
To facilitate comparison with more conventional

evaporation models, the nonlinear profile was also
approximated using a linear fit at the point of maximum
evaporation (e.g., at t = 400s), yielding an estimated linear
evaporation rate constant r;. These values of re and ry are
summarized in Table 4., across different methanol fractions
(Y) in the ethanol-methanol mixtures with pure ethanol as
0.00 and pure methanol written as 0.99.
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TABLE 4. VALUES OF re AND I IN DIFFERENT CONCENTRATION OF ETHANOL-
METHANOL MIXTURES

Y re SD(re) r SD(n)
0.00 0.0093 0.0013 0.0025 0.0003
0.20 0.0067 0.0008 0.0016 0.0002
0.40 0.0065 0.0004 0.0015 0.0001
0.60 0.0066 0.0004 0.0014 0.0001
0.80 0.0063 0.0006 0.0013 0.0002
0.99 0.0065 0.0007 0.0015 0.0001

The results show that the effective rate r. is consistently
higher than the linear approximation r; , indicating that the
actual evaporation process is more dynamic than what a
constant rate model can capture. Notably, the trend in r. also
aligns with prior experimental findings such as those
reported by Sterlyagov (2018), validating the measurement
approach and supporting the adoption of a nonlinear
framework. This nonlinear modeling method enhances
interpretability and flexibility, providing a more realistic
representation of evaporation behavior in heated volatile
binary systems, which has not been extensively addressed in
previous linear evaporation models.

If linear approach is used, the derived evaporation rate (1)
is close to 0.001, as expected and in accordance with the
previous findings reported by Sterlyagov (2018). In this
study, a nonlinear modelling approach was also adopted to
capture the S-shaped behavior of the evaporation process
more accurately, accounting for the time shifts and
concentration dependence. Moreover, the results of the
nonlinear effective rate (r¢) are also close to 0.001, showing
that both modeling strategies, despite their different
complexities yield comparable outcomes. This similarity
indicates that both approaches are valid and capable of
describing ethanol-methanol evaporation under moderate
heating conditions. However, it should be noted that
evaporation rates derived from the models can be influenced
by wvarious factors, such as ambient humidity [29],
temperature fluctuations [30], wind speed, evaporation pan
[31], and other environment conditions. Thus, while the
models serve as useful approximations, their agreement with
prior studies reinforces their reliability and applicability for
analyzing volatile binary mixtures.

Overall, the modeling results show that several
approaches yielded satisfactory performance, with
RMSE/SD and MAE/SD values below 1.0, indicating that
the prediction errors are smaller than the natural variability
of the data. Among these, the Stat-ANN model with only 7
statistical features and a 4-layer architecture (32, 16, 16, 1
neurons) achieved an R2 of 0.9421, making it the most
recommended method in this study. Its simplicity and ability
to generalize well, even with limited input features, make it
suitable for practical implementation. While the results still
offer room for improvement and expansion in future work,
the Stat-ANN approach provides a strong foundation for
accurate and efficient modeling of ethanol-methanol
concentration using sensor data.

V.CONCLUSION

Ethanol and methanol can be mixed to produce more
efficient fuel. The concentration of ethanol and methanol is
typically measured using gas chromatography (GC).
However, their evaporation characteristics, such as dielectric
properties, vary and can be measured using a capacitive soil
moisture sensor (CSMS). The CSMS equipped with a

heating element was utilized in this study to accelerate
evaporation, operating at a temperature of 43 + 1.5°C for a
measurement duration of 10 minutes. The system
demonstrated the ability to determine the ethanol-to-
methanol ratio in mixtures through regression models. The
most effective approach, based on testing, was the Elastic
Net-ANN regression model with 14 features and the
Descriptive Statistics-ANN model. Both methods achieved
high determination coefficients of 0.9631 and 0.9421,
respectively, indicating excellent variability explanation.
Furthermore, the models exhibited low and comparable
RMSE values for both training and testing datasets,
signifying minimal overfitting.

However, the Descriptive Statistics-ANN model with 4
layers is recommended for its simplicity and focus on key
data patterns. By utilizing features such as mean, standard
deviation, minimum value, maximum value, range,
skewness, and kurtosis, this model effectively characterizes
sample variations. It achieved a determination coefficients
value of 0.9421 and RMSE values of 0.0711 (training) and
0.0912 (testing), further supporting its resistance to
overfitting.

Furthermore, the evaporation dynamics were modeled
using both linear (d%-law approximation) and nonlinear
approaches. Both models yielded effective evaporation rates
around 0.001, demonstrating consistency with previous
studies. The nonlinear model, however, captured the
characteristic S-shaped curve observed in the experimental
data more effectively, reflecting the time-shifted and
concentration-dependent nature of the evaporation process.
This confirms that while the linear model remains a valid
and simple approximation, the nonlinear approach offers
improved accuracy in describing real evaporation behavior
under moderate heating conditions.

Thus, the research demonstrated that PLSR, Ridge
Regression, Elastic Net, and Neural Network models
effectively captured the relationship between evaporation
dynamics and influencing factors. Among these, the Neural
Network model exhibited the highest predictive accuracy,
indicating its robustness in handling complex nonlinear
relationships. The findings highlight the significance of
precise modeling techniques for optimizing industrial
applications involving volatile mixtures. Future research
could explore add additional variables, such as temperature
and humidity effects, to further refine the model’s predictive
capability.
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