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Abstract— Volatile mixture evaporation is crucial to be 

understood for industrial purposes, especially in fuel, food, and 

chemical processing. Evaporation of ethanol-methanol is 

examined in this research with a capacitive soil moisture sensor 

(CSMS) and a built-in heater. The experiment enables real time 

monitoring of evaporation by measuring voltage, and the 

concentration of the mixture is indirectly determined. Classical 

and deep learning regression models were used for the 

prediction of ethanol-methanol concentrations. Elastic Net 

regression reduced dimensionality with minimal performance 

loss, while ANNs captured nonlinear trends effectively. The 

highest performance was achieved with a hybrid Elastic Net-

ANN model using 14 features that had a coefficient of 

determination (R2) of 0.99631 and minimal error rates. A 

simplified ANN statistical model with only seven statistics 

features provided robust results with R2 of 0.9421, confirming 

its efficiency to describe critical evaporation features under 

lower complexity. Additionally, evaporation dynamics were 

modeled using both linear (d2-law) and nonlinear exponential 

models. Both models yielded effective evaporation rates around 

0.001, demonstrate the applicability of capacitive sensing and 

machine learning for real-time, non-destructive, and accurate 

volatile mix analysis. They can be used to optimize industry 

processes, performing correct concentration estimations 

without relying on traditional gas chromatographic techniques.  

 
Index Terms— Ethanol, methanol, Elastic Net-ANN, 

regression, evaporation 

I. INTRODUCTION 

nderstanding the dynamics of volatile evaporation is 

crucial in many industrial and research processes. 

Fitting experimental data to models that depict the 

evaporation time curve is necessary to gain this 

understanding. The parameters obtained from these models 

offer insights into various factors influencing the 

evaporation process, such as temperature, fluid 

concentration, and environmental conditions. Accurately 

determining these parameters allows for predicting the 

effects of different treatments and optimizing the process. 

Mixing different fluids is essential in many industrial and 
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commercial applications to achieve the required properties 

and performance. 

This is particularly important for industries such as 

chemicals, food, and fuel. For instance, this paper examines 

the mixture of ethanol and methanol. Both ethanol and 

methanol are alcohols with various industrial and 

commercial applications. These mixtures are particularly 

significant in the food industry, pharmaceuticals, and 

chemical manufacturing. 

Ethanol and methanol are very useful solvents in food 

industry for extracting flavors and aromas. Both alcohols 

also have antimicrobial properties, which are beneficial for 

preserving food and sanitizing products. However, methanol 

is toxic to humans, necessitating careful control of its 

presence in food products to avoid health hazards. Both 

ethanol and methanol are volatile, and their volatility can be 

utilized to predict the concentration in their mixtures. This 

study demonstrates how to measure the concentration 

indirectly by assessing volatility through electronic devices.  

Ethanol and methanol have distinct physical properties 

that significantly influence their behavior in mixtures. These 

properties include boiling temperature, dielectric constant, 

and volatility rate. Ethanol boiling point is 78.37°C, while 

methanol boiling point is around 64.7°C. Ethanol dielectric 

constant is 24.3 and methanol dielectric constant is 32.6. 

Additionally, the volatility rate between the two alcohols 

impacts the evaporation speed of the substances. 

This research employs a novel technique to measure the 

evaporation dynamics of ethanol and methanol mixtures 

using a capacitive sensor. Specifically, it utilizes the voltage 

measurement of a capacitor filled with droplets of ethanol-

methanol mixture. Time series formed from voltage readings 

presents the evaporation process. This study hypothesizes 

that the evaporation rate depends on the concentration of the 

components in the mixture. 

Monitoring the voltage change over time makes it 

possible to determine the evaporation rate, and 

consequently, the concentration of ethanol and methanol in 

the mixture. This method offers a non-invasive and efficient 

means of studying volatile evaporation and could be applied 

to similar systems. The research result has potential 

applications in optimizing industrial processes and 

improving the accuracy of mixture concentration 

measurements in various fields. 

Further exploration made to predict mixture concentration 

from time series data, firstly using Partial Least Squares 

Regression (PLSR) to extract and correlate the most relevant 

information from the voltage signals. PLSR is particularly 

effective in handling multicollinearity, non-normal 
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distribution, and uncertainty of factor results, making it 

suitable for analyzing complex sensor responses related to 

mixture compositions [1]. By reducing the dimensionality of 

the data while preserving variance relevant to the target 

concentrations, PLSR serves as a foundational model for 

comparative analysis. 

Regression methods are also employed to achieve 

accurate predictions. Specifically Elastic Net with varying L1 

and L2 regularization values and Artificial Neural Networks 

(ANNs) [2]. Elastic Net combines the properties of both 

Lasso and Ridge regression, allowing variable selection and 

regularization to enhance prediction accuracy.  Adjusting the 

L1 and L2 allows us to fine-tune the model to capture the 

most relevant features. Additionally, ANNs offer powerful 

tool for capturing complex, non-linear relationship within 

the data. 

In order to better comprehend the underlying evaporation 

mechanism, this study also looks at the modeling of 

capacitance decay related to mass loss. Most previous 

researches on the evaporation dynamics of ethanol, 

methanol, and their mixtures, have relied on linear models 

such as the classical d2-law, which assumes constant 

evaporation rate over the droplet’s lifetime. However, recent 

findings, including experiments on water-ethanol systems at 

ambient conditions suggest more complex evaporation 

profiles, particularly in binary systems [3]. 

Building upon this, the present study purposes a nonlinear 

model to describe capacitance decay during evaporation, 

which is more representative of the actual mass loss process 

in volatile binary mixtures. Unlike conventional models that 

focus solely on flux estimations, this approach integrates 

dielectric measurements as a proxy for material quantity and 

enables more flexible curve fitting. Thus, this model 

captures better evaporation dynamic under moderate heating 

condition (e.g., 43°) and accounts for composition 

dependent behaviors not addressed in existing linear 

frameworks. 

This study will also discuss the fitting method models to 

experimental data by optimizing the mean squared error 

(MSE), a measure of accuracy that frequently used for the 

method [4][5]. Finally, we will evaluate the goodness of fit 

using metrics such as the coefficient of determination (R²). 

These evaluation methods help in comparing the models and 

selecting the one that best describes the evaporation process. 

By training the network on the optimal parameters, we can 

predict the mixture ratio with high accuracy. These 

approaches provide the novelty of this research, i.e., the 

behavior of ethanol-methanol mixtures, ultimately 

contributing to better control and optimization in various 

industrial applications. 

II. MODELLING PROCESS 

A. Materials 

The data used in this study consist of evaporation time 

series measurements of ethanol-methanol mixtures for 

regression analysis. Measurements were conducted using an 

Arduino microcontroller connected to a capacitive soil 

moisture sensor (CSMS). The CSMS was used to determine 

the evaporation rate over time based on changes in electrical 

conductivity during evaporation. It also measured the 

differences in electrical conductivity of the pure substances, 

namely ethanol 99% and methanol 99%, for classification 

purposes. The ethanol-methanol mixtures were labeled based 

on their composition as 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0. Here, 

1.0 represents pure ethanol (99%), and 0.0 represents pure 

methanol (99%). Labels 0.8, 0.6, and 0.4 represent mixtures 

containing 80%, 60%, and 40% ethanol and 20%, 40%, and 

60% methanol, respectively. 

A BME280 temperature sensor was also employed to 

monitor the environmental conditions affecting the 

evaporation rate, particularly temperature, which was 

included in the regression analysis. Additionally, the actual 

ethanol and methanol concentrations were validated using 

Gas Chromatography (GC). The evaporation rates for each 

sample, measured as time series data, were analyzed using 

machine learning and neural networks (NN) for regression 

based on the sample's composition. [6] developed a two-

phase numerical model to simulate the transient vaporization 

of spherical, two-component liquid fuel droplets, 

considering variations in thermo-physical properties, multi-

component diffusion, and surface tension. However, this 

mathematical model is much more expensive than some 

empirical models proposed in this paper.  

Measurement of the content of ethanol and methanol is 

usually done  using gas chromatography, as given by [7] 

This study introduces a rapid gas chromatography method to 

simultaneously measure ethanol and methanol in wines. 

Using a small sample (10 μL) in a headspace vial at 105°C, 

it achieves precise measurement within three minutes. The 

results demonstrate high accuracy with reproducibility 

values of 1.02% for ethanol and 2.11% for methanol, and 

recoveries between 96.1% and 104%. This method is 

efficient for quality control in wine production. 

Instead of using the gas chromatography technique, 

Effective Chemical Information (ECI) models using near-

infrared (NIR) spectra for identifying and analyzing 

methanol and ethanol in gasoline were developed [8]. Using 

PLS-DA and PLS algorithms, the ECI models achieved 

100% accuracy in identifying methanol and ethanol gasoline. 

The ECI-PLS models also showed the lowest RMSEP for 

quantitative analysis. The ECI model demonstrated superior 

recognition and accuracy compared to other spectral models, 

making it a promising tool for rapid, accurate fuel analysis. 

An example of a dynamic model related to volatility, who 

analyzed the volatility and droplet evaporation dynamics of 

hydrous and anhydrous ethanol-gasoline blends using 

advanced distillation curves. The authors used only 3 

different blends unsuitable for regression analysis [9].  

Artificial Neural Network (ANN) models were developed 

to optimize ethanol/gasoline dual fuel spark ignition (DFSI) 

engines, which require complex calibration [10]. The study 

proposed ANN topologies to model performance, 

combustion characteristics, and emissions, achieving high 

accuracy with regression values between 0.9387 and 0.9962 

and mean square relative errors between 0.000184 and 

0.03935. These ANN models demonstrated strong 

robustness and reliability, beneficial for engine calibration 

and optimization. 

B. Ethanol-Methanol Measurement with Capacitor 

The ethanol concentration in an ethanol-methanol mixture 

was indirectly measured using a capacitive soil moisture 

sensor (CSMS v2.0). This sensor utilizes a TL555I oscillator 

operating at a frequency of  f =1.5 MHz. The CSMS output 
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voltage is derived from frequency conversion based on 

Equation (1), i.e.,  

                                (1) 

The capacitance C can be modified by introducing a 

dielectric material into the capacitor. Assuming the capacitor 

is parallel-plate with a cross-sectional area A and a 

separation distance , the capacitance formula is expressed 

as: 

           (2) 

with  is the relative permittivity of the material,  is the 

vacuum permittivity (8.854 x 10-12 F/m), A is the plate area 

(m2), and  is the distance between the plates (m). In a 

vaccum the  value is 1, in air, the   value is 1.0006, in 

water, the  value is 78.5, in ethanol, the value is 24.3 and 

in methanol is 32.6.  Therefore, if the vacuum (or air) is used 

as the reference capacitance, the capacitance of a material 

can be expressed as shown in (3), i.e., 

.          (3) 

In this study, ethanol, methanol, or their mixtures were 

used as dielectric materials to modify C. During the 

experiment, ethanol-methanol at room temperature (25°C) 

was heated in the CSMS equipped with a heater, raising its 

temperature to 43°C. The ethanol-methanol evaporates, 

causing C to change. The hypothesis assume that the 

capacitance C is proportional to the material quantity, and its 

rate of change follows a power law with time, . When all 

ethanol-methanol evaporates, the capacitance reaches .  

Thus, the rate of change of capacitance is given by: 

.        (4) 

This equation can be modified by introducing an effective 

time parameter to shift the peak time of the capacitance 

change, resulting in the following: 

 .   (5) 

The analytical solution to this equation is shown in (6), 

i.e.,  

   (6) 

 

Fig. 1 and Fig. 2 illustrate the function in (6) for some 

given parameters. 

 

 
 

Fig 1. The simulation of capacitance variation due to evaporation for two 

different materials was conducted in accordance with (6). Each material 

has an initial capacitance value of   and , 

where  represents the capacitance of the device without external 

material, and  serves as the reference capacitance. 

 

 

 
 

Fig 2. Simulation of CSMS output voltage with a 3.3-Volt power 

supply and internal resistor R=100 ohm according to (1) and (6). 

 

Additionally, a classical linear evaporation model is 

frequently used to describe sessile or suspended droplet 

behavior, where the squared droplet diameter decreases 

linearly with time according to : 

         (7) 

In this equation, d represents the instantaneous droplet 

diameter at time t, and d0 is the initial diameter of the droplet 

at the beginning of the evaporation process. The parameter r 

denotes the evaporation rate constant (in s⁻¹), which 

quantifies the rate at which the squared diameter decreases 

due to mass loss. Finally, t is the elapsed time (in seconds). 

In one study, this model was applied to a 92% ethanol 

droplet at 24 °C, and the evaporation rate constant was 

reported as r = 0.001111 s−1 [3]. While this approach 

provides a good approximation for diffusion-limited 

evaporation under isothermal conditions, it does not capture 

the nonlinear characteristics observed in this study under 

heating and binary composition effects. Nonetheless, it 

offers a valuable reference point to compare the effective 

evaporation dynamics derived from the capacitance 

response. 
 

C. Regularization 

Regularization techniques in classical regression 

penalization parameters, including Ridge (L2), Lasso (L1), or 

Elastic Net (combination of L1 and L2 penalties) [11].  Least 

Absolute Shrinkage and Selection Operator (Lasso) 

performs feature selection by adding the absolute sum of 

coefficients as a penalty, simplifying the model to include 

only the most significant features. Ridge adds the squared 

sum of coefficients as a penalty, stabilizing coefficients even 

in the presence of multicollinearity. Ridge effectively 

reduces overfitting without feature selection. Elastic Net 

combines Elastic Net combines L1 and L2 penalties, enabling 

feature selection like Lasso while stabilizing coefficients and 

mitigating overfitting like Ridge. Additionally, cross 

validation is a robust approach to split datasets into subsets 

for model training and validation, ensures better 

generalization and reduce overfitting, especially when the 

data is limited [11]. 
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D. Partial Least Squares Regression 

Partial Least Squares Regression (PLSR) is a multivariate 

regression method to form linear relationship between 

response variables (Y) and predictor variables (X). 

Operation of PLSR is used by bulding the linear 

combination from the predictor variables (X), thereby 

effectively managing multicollinearity by identifying the 

most correlated X variables with Y variables [1]. PLSR 

mostly used for spectral data, such as in quantifying 

methanol and ethanol content in wine using FTIR [12]. 

PLSR also used for complex data like artificial intelligence 

with 36 predictor variables [13]. PLSR capability to handle 

complex data make it ideal to analyze time series data from 

sensor reading, where strong correlations often exist 

between data points, as is the case with ethanol-methanol 

mixtures evaporation over time. Furthermore, by its latent 

variables, PLSR can identify smooth patterns within the data 

that might not be seen with univariate regression methods. 

 

E. Deep Learning 

Both deep learning and ANN can perform classification or 

regression predictions. They are applicable in tasks such as 

image and voice recognition, natural language processing, 

and predictive modeling [14]. Neural Networks (NN) consist 

of layers or interconnected nodes or usually called by 

neurons that used to model complex pattens and 

relationships in data. They can be applied to various tasks, 

including image and voice recognition, natural language 

processing, and predictive modeling. NN has become an 

integral part of the study and application of machine 

learning. A explained previously, NN can be used for 

predictions in classification and regression [15]. In 

classification, NN creates a model that can classify data into 

different categories. During the training process, predefined 

inputs and outputs used to adjust the weights and biases in 

every neurons in the network [16]. For regression, NN us 

used to predict continuous values. Regression in NN is a 

classification in NN with a single class. In regression, NN’s 

output generates a continuous value, such as temperature, 

humidity levels, or stock prices [17]. 

Several steps must be considered to design NN for 

classification, from selecting the appropriate type of NN for 

the problem to be solved, such as Multi-Layer Perceptron 

(MLP), Convolutional Neural Network (CNN), or Recurrent 

Neural Network (RNN). After that, configure the number of 

neurons and layers, choose the activation function, set the 

regularization level, train the NN methods, and finally 

evaluating the prediction results [18]. Common activation 

functions used in classification are sigmoid, tangent 

hyperbolic, or ReLU [19]. Meanwhile, commonly used 

optimization algorithms include gradient descent, stochastic 

gradient descent, or Adam [20]. 

F. Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) are utilized to predict 

material compositions based on parameters, for example, as 

shown by [21]. Here, mango peel, rich in antioxidants and 

other bioactive compounds, was studied using microwave-

assisted extraction and Response Surface Methodology 

(RSM) alongside ANN. Variables like extraction time, 

solvent-to-plant ratio, and ethanol concentration significantly 

influenced total phenol compounds (TPC) and antioxidant 

activity (TEAC) in extracts from Tommy and Sugar mango 

peel varieties. The ANN has been used to develop predictive 

models for the compressive strength of rubberized concrete, 

incorporating features such as rubber size, percentage of 

rubber replacement for natural aggregates, cement content, 

water content, fine aggregate content, coarse aggregate 

content, and curing time[22]. The other author used ANN to 

predict the density and heat capacity of ionic liquid (IL)-

water binary systems, addressing the high viscosity and 

synthesis cost of ILs[23]. The ANN model, XGBoost, and 

LightGBM were applied using features such as system 

components and substituents on the cation. ANN can predict 

surface tension and viscosity using some chemical and 

physical properties as the features. In those examples, the 

authors used standard ANN as the architecture [24]. In this 

paper, a new layer of neural networks is introduced. A 

typical ANN is structured as a composition of activation 

functions applied to linear functions. The mathematical form 

of a layer of ANN is 

      (8) 

The input layer needs =X as the input. Here,  is the 

activation function of the layer-L. Usually “relu” is chosen 

for the activation functions of the internal layers. For 

nonlinear regression, the last layer has no activation layer (or 

.  and  are the weights and biases of 

layer-L. 

III. METHOD 

A. Instrument preparation 

The research process is summarized in the flowchart 

shown in Fig. 3. 

 

 
 

Fig 3. Flowchart of research steps 

 

The CSMS was modified by adding a heater and a ring at 

the top to ensure the sample droplets remained localized. A 

single CSMS was connected to the A0 pin of the ESP8266 

microcontroller. The heater was constructed using nichrome 

wire powered by 5V and positioned beneath the CSMS. This 

modification ensured that the heater operated as a solenoid 

without contacting the sensor's electrodes. The electrodes of 
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the CSMS were shortened to prevent direct contact with the 

heater (Figure 4). 

B. Measurement Design 

The evaporation of an ethanol-methanol mixture is 

indirectly assessed using a modified Capacitive Soil 

Moisture Sensor (CSMS) V2.0 paired with an ESP8266 

microcontroller. Approximately 10 drops of the ethanol-

methanol mixture typically induce a 0.6 Volt deviation from 

its initial empty state. The CSMS includes a custom-made 

heater powered by a 5 Volt supply, constructed from a 3.5 

cm length of nichrome wire with a resistance of 14 ohms at 

room temperature, configured as a solenoid. The CSMS 

output connects to the ESP8266's A0 pin as an analog input, 

operating at 3.3 volts. 

 

 
 

Fig 4.  The modified CSMS includes a heater (red) and an O-ring (blue). 

The original electrode needs to be shortened to accommodate the heater, 

ensuring that the heater has no contact with the electrodes. 

 

 
Fig 5. Sketch of tools used in the research 

 

 The heater provides a stable temperature under a 

constant voltage. In this setup, applying 5.12 volts raises the 

temperature from room temperature to an asymptotically 

stable 43°C. The final temperature is influenced by 

environmental conditions; however, incorporating a 

temperature regulator into the circuit can ensure consistent 

temperature control. A rubber O-ring with a radius of 1.0 cm 

is installed on the CSMS electrode, designating it as the 

designated area for depositing the ethanol-methanol mixture. 

The ethanol-methanol mixture should pour a volume of 0.7 

milliliters (or approximately 10 drops) into the O-ring.  A 

BME280 temperature sensor is attached beneath the O-ring, 

allowing it to measure the actual temperature in the area 

where the liquid drops are deposited. In addition to 

temperature, the BME280 sensor also measures air humidity 

and atmospheric pressure. 

C. Measurement of Methanol and Ethanol Levels with 

GC-MS 

Ethanol and methanol concentrations were validated using 

GC-MS in a standardized laboratory to ensure the purity of 

the 99% ethanol and methanol used in the experiments. The 

results included the area response and concentrations as 

indicated by the chromatograms obtained from the GC-MS 

analysis. 

D. Data Collection 

A dropper was used to dispense precisely 10 drops 

(approximately 0.70 mL) of the ethanol-methanol mixture 

into the ring-shaped container of the CSMS. The 

measurement procedure is as follows: 

1. Start the heater and wait until the BME280 sensor 

indicates a stable temperature of around 43°C. 

2. Begin continuous data acquisition at one-second 

intervals. 

3. Pour a 0.7 milliliter sample of ethanol-methanol into 

the O-ring. 

4. Record data for 600 seconds (10 minutes) for each 

sample. 

The heater remains active throughout, ensuring the 

temperature remains constant even as samples are replaced. 

The samples of ethanol-methanol mixture are labeled as 

the fraction of ethanol in the mixture, i.e., 1.0, 0.8, 0.6, 0.4, 

0.2, 0.0.  For example, label 0.6 consists of 60% ethanol and 

40% methanol. The label 1.0 is the approximation of the real 

concentration of pure ethanol, which is only 0.96 according 

to the gas chromatography (GC) measurement. On the other 

hand, the label 0.0 is related to the approximation of pure 

methanol, i.e., 0.97 according to GC. The labels 0.2, 0.4, 

0.6, and 0.8 are associated with the ratio of those pure 

solvents. 

 

1) Preprocessing Data 

Preprocessing steps included central-shifting, padding, 

and smoothing to refine the evaporation time series data for 

regression analysis. Central-shifting aligned curves in the 

time domain by shifting them to overlap based on the 

median time when drastic evaporation occurred. Padding 

added values at the beginning and end of measurements with 

varying lengths, standardizing the time series for consistent 

sample duration. Average smoothing was applied to reduce 

noise in the evaporation curves. This method smoothed the 

data by calculating the average of several data points around 

each point to create a more regular curve. 

 

2) Regression Method with Ridge, Elastic Net, and NN  

Regression modeling was performed using various 

methods, employing features derived from the preprocessed 

raw data. Specific feature points were selected by Gaussian 

distribution or with Elastic Net and Ridge regularization. 

Additionally, the results were analyzed using Artificial 

Neural Networks (ANNs) with multiple layers, as well as 

hybrid approaches sucah as ANN-Ridge and ANN-Elastic 

Net. Descriptive statistics were also Descriptive statistics 

were also incorporated as features in conuction with ANNs 

for further analysis.  
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Representative points were choosen from 800 sampled 

points in the original dataset for feature selection from the 

raw signals, guided by the Gaussian distribution. These 

pounts wew concentrated aroung the steeoest portion of the 

evaporation curve. The time range was constrained between 

0.0 to 0.80 to simplify the range and avoid excessive 

complexity. A subset of n points was selected to reduce the 

number of features, thus minimizing model complexity. For 

example, 55 and 35 feature points were selected for Ridge 

regression using Gaussian-distributed representative points. 

The selected features for each sample were divided into 70% 

training data and 30% testing data. Regression modeling 

based on concentrations was performed using Ridge and 

Elastic Net penalties, with varying alpha values to determine 

the strength of regularization. Features selected through 

Elastic Net were prioritized and filtered based on their 

importance, followed by an evaluation of model 

performance using coefficients of determination (R²), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), 

RMSE standardized by standard deviation (RMSE/SD), 

Mean Absolute Error (MAE), and MAE standardized by 

standard deviation (MAE/SD). 

Tests were also conducted using ANNs combined with 

Ridge and Elastic Net, varying the number of neurons per 

layer based on the feature selection results from Elastic Net. 

Additionally, ANN models incorporating seven statistical 

features (Stat-ANN) were tested. These statistical features 

included mean, standard deviation, minimum, maximum, 

range, skewness, and kurtosis. The formulas for standard 

deviation, mean, skewness and kurtosis were calculated 

using equations (9) to (12).  

        (9) 

        (10) 

   (11) 

Kurtosis = 

   

 (12)  

 

Here, n represents the total number of data points,  

denotes an individual data value,  is the mean, and  is 

the standard deviation [25]. Descriptive statistics were 

employed to capture the unique characteristics of each 

alcohol concentration. 

The training results for each model—classic methods like 

Ridge and Elastic Net, ANN with varying neuron layers, 

ANN-Elastic Net hybrids, and Stat-ANN—were compared 

based on model performance metrics. These included the 

coefficient of determination (R2), Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), RMSE/SD, 

Mean Absolute Error (MAE), and MAE/SD. 

The goodness-of-fit metrics for Ridge, Elastic Net, and 

ANN models included performance indicators such as 

determination coefficient, MSE, RMSE, RMSE/SD, MAE, 

and MAE/SD. For Elastic Net models, modifications to the 

L1:L2 ratio were tested to optimize model performance. This 

comprehensive approach ensured robust model performance, 

with each method tailored to effectively analyze and predict 

ethanol-methanol mixtures. 

 

IV. RESULT AND DISCUSSION 

Dropping ethanol-methanol into the CSMS O-ring is 

highly susceptible to human error. Therefore, the X(t) data 

recorded for each sample needs to be time-shifted so that the 

median value of X(t) aligns with the center of the time 

domain. This shift must be followed by padding to ensure 

uniform sample length. Data smoothing can be performed 

using averaging techniques. Example results are illustrated 

in Fig. (6). 

 
Fig 6. Curves from Example Preprocessing Data Result by : central-

shifting, padding, smoothing 

 

The preprocessing process revealed that each sample 

curve exhibited three distinct phases: a gradual increase 

during the initial stage of evaporation, a steep rise in the 

mid-phase, and a plateau at the final stage. The initial 

gradual increase reflects minimal evaporation as the sample 

absorbs heat energy. The mid-phase is marked by a 

significant increase in evaporation, driven by molecules 

gaining sufficient energy to transition into the gaseous phase. 

The final plateau occurs due to the reduced liquid volume, 

limiting further evaporation. This trend is consistent with 

findings by [26], which highlight that before the steep 

evaporation phase, minimal evaporation occurs as molecules 

absorb heat, while at the end, the trend flattens due to the 

diminished liquid volume. 

The results revealed an S-shaped evaporation curve 

across all samples, beginning with an initial increase, 

followed by a rapid rise, and finally a decline. This pattern 

aligns with the description provided by (1). Additionally, it 

is consistent with the equation relating voltage to 

capacitance. As capacitance increases, the voltage decreases. 

Therefore, the initial liquid with specific capacitance 

produces a very low output, as observed in the samples (Fig. 

6). The high initial capacitance (low voltage output) is due 

to the dielectric material enhancing the capacitor's ability to 

store charge. The capacitance decreases as evaporation 

progresses, reducing the liquid material and rapidly 

increasing voltage in accordance with the exponential 

function described in (6). 

Several methods can be used to perform non-linear 

regression on data in Fig. 6. Firstly, the data is resampled at 

specific time points 𝑡𝑗, where j does not need to be chosen 

linearly. Resampling is necessary to reduce the number of 

data points compared to the number of samples. To prevent 

overfitting, it is important to choose M<N. Consequently, 

data X will have dimensions N×M, where N represents the 

number of samples, and M represents the number of time 
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samples, which are treated as features. The method can be 

addressed using classical regression techniques like Ridge, 

Elastic-net, or modern approaches such as ANN. This is in 

accordance with the statement that the number of features 

should not exceed the number of samples because the more 

features there are, the greater the tendency for overfitting to 

occur[27].  

The dataset comprises 88 samples, each containing 800 

data points. Prior to performing regression analysis, the data 

undergo resampling. In this process, a Gaussian function is 

employed to select points, resulting in non-uniform intervals. 

These intervals are denser near the center of the sample data. 

The configuration of the selected time coordinates is 

depicted in Fig. (7). 

 

 
Fig 7. Time Coordinates Selected by Gaussian Method 

 

In Fig. (7), the original time domain 0-800 seconds is 

scaled into 0-1, and then 55 selected points are utilized for 

the regression analysis instead of the original 800 points. 

Consequently, the data has a shape of 88 x 55, which can be 

split into training and test sets. The training set comprises 

70% of the data (61 x 55), while the test set comprises 30% 

(27 x 55).  

Partial Least Squares Regression (PLSR) was initially 

employed as a baseline method to evaluate the predictive 

capability of the capacitance-derived feature set. Given the 

structure of the dataset (88 samples, 55 selected time 

features), PLSR is particularly advantageous due to its 

ability to handle multicollinearity and extract latent variables 

that best explain the variance in both predictors and response 

variables. This is especially relevant in high-dimensional 

problems, where the number of features approaches or 

exceeds the number of samples. 

To determine the optimal number of latent components, 

models were trained and evaluated with varying component 

counts from 10 to 50, using an 80:20 train-test split. The 

model performance stabilized around 30 components, where 

the additional latent dimensions did not significantly 

improve the prediction. 

 

 
Fig. 8. MSE Value in Every Components Result   

 

At the optimal setting (30 n components), PLSR 

achieved 0.01872 for Mean Squared Error (MSE), 0.1368 

for Root Mean Squared Error (RMSE), 0.3457 for 

RMSE/SD, and 0.8805 for Coefficient of Determination 

(R²). 

These results demonstrate that the model could explain 

approximately 88% of the variance in ethanol–methanol 

concentrations. The RMSE/SD value < 1 confirms that the 

prediction error is notably smaller than the inherent 

variability of the target data. While PLSR effectively 

handled the high-dimensional dataset (800 features with only 

88 samples), it required a relatively large number of latent 

components, up to 30 to achieve this level of performance. 

This indicates that although the model works well, its 

complexity remains considerable. 

To reduce model complexity and the number of required 

features, further analyses were carried out using alternative 

regression methods. Methods such as ridge and elastic net 

regression were explored because they offer feature 

reduction through regularization, potentially decreasing the 

number of predictors to fewer than the number of samples. 

Additionally, these techniques provide more interpretable 

models and are less prone to overfitting when the feature 

count is minimized. 

The ridge regression analysis produces various results 

depending on the ridge parameter alpha, as shown in Table 

1. According to the table, the optimal result (lowest RMSE) 

is obtained with an alpha value of 0.001, using 55 points as 

the number of features. In addition to using 55 points, 35 

points were also used as features in the same way as 

selecting 55 points. According to Table 1, the reduction of 

the number of features changes slightly the RMSE, MAE, 

and R2.  

 
TABLE 1. 55 OR 35 POINTS IS USED AS THE FEATURES OF RIDGE-REGRESSION. 

HERE THE STANDARD DEVIATION OF TEST-DATA IS 0.379 

Alpha RMSE MAE RMSE/SD 

55 35 55 35 55 35 

0.000 0.249

6 

0.213

0 

0.206

4 

0.162

5 

0.658

5 

0.562

1 

0.001 0.119

6 

0.120

0 

0.081

9 

0.082

1 

0.315

6 

0.316

6 

0.010 0.128

9 

0.129

6 

0.093

2 

0.094

0 

0.340

1 

0.341

8 

0.100 0.156

5 

0.161

0 

0.119

2 

0.123

8 

0.412

9 

0.424

8 

0.500 0.231

4 

0.244

0 

0.198

5 

0.211

6 

0.610

5 

0.643

8 

1.000 0.277

4 

0.289

4 

0.244

4 

0.256

0 

0.731

9 

0.763

4 

 
MAE/SD R2 

55 35 55 35 

0.544

5 

0.428

8 

0.566

3 

0.684

1 

0.216

2 

0.216

5 

0.900

4 

0.899

7 

0.245

9 

0.248

1 

0.884

3 

0.883

2 

0.314

4 

0.326

7 

0.829

5 

0.819

6 

0.523

7 

0.558

3 

0.627

3 

0.585

6 

0.644

9 

0.675

4 

0.464

3 

0.417

2 

 

Reducing the number of features to 35 slightly decreases 

the model’s predictive power compared to 55 features, the 

performance degradation is minimal. These findings suggest 

that a more compact feature set can still provide high 

accuracy while reducing computational cost and risk of 
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overfitting. Accuracy and parsimony balance is important to 

future model deployment and hardware constrained 

environments. 

To further investigate the relevance of the selected time 

coordinates and to identify which features contribute most to 

prediction, Elastic Net regression was employed. Using the 

55 selected points, the number of features (nf) those have 

nonzero values of Elastic Net coefficients was counted 

(Table 2), providing deeper insight into feature importance 

and potential for dimensionality reduction. 

 
TABLE 2. MODEL PERFORMANCE OF ELASTIC NET BASED ON VARIATIONS 

IN ALPHA, FEATURES, AND L1/L2 RATIOS 

Alpha L1 

Ratio 

RMSE MAE RMSE

/ SD 

MAE/ 

SD 

R2 nf 

0.006 0.001 0.208

0 

0.173

5 

0.5487 0.457

7 

0.699

0 

5

5 

0.000 0.238 0.120

4 

0.082

9 

0.3177 0.218

8 

0.899

1 

4

1 

0.000 0.475 0.120

5 

0.082

2 

0.3179 0.216

9 

0.899

0 

3

4 

0.000 0.713 0.121

5 

0.082

7 

0.3206 0.218

2 

0.897

2 

2

2 

0.000 0.948 0.124

7 

0.084

5 

0.3291 0.222

9 

0.891

7 

1

0 

0.000 0.956 0.124

8 

0.084

5 

0.3292 0.222

8 

0.891

6 

1

0 

0.000 0.964 0.124

9 

0.084

4 

0.3294 0.222

8 

0.891

5 

9 

0.000 0.972 0.125

0 

0.084

5 

0.3297 0.222

9 

0.891

3 

9 

 

The model performance metrics showed no significant 

differences in RMSE, MAE, RMSE/SD, MAE/SD, and R2 

except when using 55 features, which resulted in the lowest 

R2 value and the highest errors among all cases. Table 1. 

indicates that most alpha values in Elastic Net regression 

were close to 0.000. However, the results and feature 

selection were still influenced by an increase in the L1 ratio, 

which eliminated less impactful features and thus influenced 

the outcomes. In Elastic Net, the L1 ratio determines the 

number of retained features; a higher L1 ratio reduces the 

selected features, leaving only 9 features out of 55, with 

results comparable to using 41 features. Fewer features 

reduce the likelihood of overfitting, indicating that 9 features 

are sufficient to model the samples using Elastic Net 

regression.  

At L1 ratios of 0.972 and 0.964 with 9 features, the results 

were similar, but the 0.964 ratio provided slightly better 

performance. Thus, the L1 ratio of 0.964 with 9 features was 

deemed optimal, as it achieved low error values and a high 

coefficient of determination (approaching 1.0) without 

significant deviation from the results obtained with more 

features and higher L1 ratios. An example of feature 

selection using Elastic Net is shown in Fig. (9). The feature 

selection results from Elastic Net are depicted in Fig. 8(a), 

where selected coefficients are marked with red diamonds, 

while other coefficients with zero values are shown in gray. 

Additionally, Fig. 9(b) highlights several peaks among the 

selected coefficients, indicating higher values that represent 

the most significant features for prediction. 

Using Elastic Net regression with 9 features, it was 

determined that only 9 distinguishing points were necessary 

to differentiate one sample type from another. These 9 

feature points, based on time, also demonstrated that the 

median value during the rapid evaporation phase did not 

indicate critical points, as previously hypothesized in Ridge 

regression. Fig. 9(b) shows the Elastic Net coefficient 

points, with 9 peaks, where higher peak values signify a 

greater influence of the feature on prediction outcomes. 

Overall, Elastic Net results demonstrated that the 9 features 

sufficiently distinguished the sample types. Among the 

selected points, those occurring just before the steep 

evaporation phase and at the transition between steep and 

plateau phases were identified as critical for distinguishing 

one alcohol mixture from another. These points differentiate 

samples due to the ethanol-methanol mixture's unique 

evaporation characteristics when reaching the liquid-gas 

equilibrium, varying between concentrations. This behavior 

is influenced by the azeotropic interactions between ethanol 

and methanol, which alter the component relationships and 

evaporation patterns based on the concentration [28]. 

 

 
(a) 

 
 

(b) 
Fig. 9. Results of feature selection with 9 features and Elastic Net 

coefficients 

 

In addition to Ridge and Elastic Net, several other 

methods were employed to determine the best modeling 

approach for predicting sample concentrations. These 

included simple ANN, ANN with L1 or L2 regularization 

(ElNet-ANN), and ANN using statistical feature values from 

the data with varying neuron counts in the ANN layers. A 

comparative analysis of the methods used is presented in 

Table 3. 

 
TABLE 3. COMPARISON OF MODEL PERFORMANCE ACROSS DIFFERENT 

METHODS 

Method Alpha L1 

Ratio 

RMSE MAE RMSE 

/ SD 

Elastic Net 0.000 0.238 0.1204 0.0829 0.3177 
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 0.000 0.475 0.1205 0.0822 0.3179 

 0.000 0.964 0.1249 0.0844 0.3294 

Ridge 0.001 - 0.1196 0.0819 0.3156 

Ridge 0.001 - 0.1200 0.0821 0.3166 

ANN 

(64,16,1) 

- - 0.0855 0.0597 0.2257 

ANN 

(32,16,1) 

- - 0.0810 0.0576 0.2137 

ANN 

(16,8,1) 

- - 0.0881 0.0674 0.2324 

ANN 

(32,16,1) 

- - 0.0854 0.0597 0.2253 

ElNet-ANN 

(32,16,1) 

0.000 0.97 0.1065 0.0842 0.2809 

ElNet-

ANN 

(32,16,1) 

2.3x10-5 0.90 0.0728 0.0533 0.1921 

Stat-ANN 

(32,16,1) 

- - 0.0912 0.0725 0.2406 

 
MAE / SD R2 nf 

0.2188 0.8991 41 

0.2169 0.8990 34 

0.2228 0.8915 9 

0.2162 0.9004 55 

0.2165 0.8997 35 

0.1575 0.9491 55 

0.1520 0.9543 55 

0.1779 0.9460 55 

0.1575 0.9492 35 

0.2222 0.9211 9 

0.1405 0.9631 14 

0.1912 0.9421 7 

 

Based on the comparison of methods, all approaches 

yielded RMSE/SD and MAE/SD values below 1.0. These 

indicate that each model successfully captured the primary 

patterns in the data, as the model errors were smaller than 

the natural variation in the data. 

The results in Table 3 show that the Elastic Net-ANN 

method with 14 feature points and a 3-layer architecture 

(with 32, 16, and 1 neurons in each layer, respectively) 

achieved the highest coefficient of determination (R2) of 

0.9631 This indicates that the model performed 

exceptionally well in regression (approaching 1.0) with 

relatively low error values, specifically RMSE of 0.0728 and 

MAE of 0.0533. Elastic Net-ANN with only 9 features also 

yielded a relatively high R2 of 0.9211. However, increasing 

the feature count to 14 significantly improved the coefficient 

of determination. While adding more feature points 

enhances the model's ability to represent the evaporation 

patterns, excessive features may lead to overfitting, as the 

model becomes overly tailored to the training data compared 

to the test data. 

The next-best performance was observed with an R2 of 

0.94 for a 3-layer ANN using 55 features, with neuron 

counts of 32, 16, and 1 in each layer. Similarly, an R2 of 

approximately 0.94 was achieved with a 3-layer ANN using 

35 features, with neuron counts of 36, 16, and 1. 

Additionally, Stat-ANN with only 7 statistical features 

(minimum value, maximum value, standard deviation, 

skewness, kurtosis, range, and mean) and a 4-layer ANN 

architecture (32, 16, 16, and 1 neurons) achieved an R2of 

0.9421. Although several methods achieved high 

coefficients of determination (R2 > 0.94) and model errors 

smaller than data variability (based on RMSE/SD and 

MAE/SD), models with fewer features were generally 

preferred due to the limited dataset and to avoid overfitting. 

As the number of features increases, the risk of overfitting 

also grows. Therefore, the Stat-ANN model with an R2 of 

0.9421 and a correlation coefficient of 0.9706 was deemed 

sufficient to model the data using only 7 features. Stat-ANN 

provided a reliable model with a simple approach, 

summarizing the dataset effectively and reducing overfitting 

risks compared to more complex models such as Elastic Net-

ANN or ANN with 55 or 35 features. This aligns with the 

statement that simpler models are more resistant to 

overfitting compared to more complex ones.  

Based on the comparison of model performance, the 

Elastic Net model with 14 features and the Stat-ANN model 

with 7 features were identified as the two best-performing 

models. Both models used relatively few features while 

achieving high R2 values exceeding 0.94. However, the Stat-

ANN model with 7 features and a simpler architecture (4 

layers with 32, 16, 16, and 1 neurons, respectively) was 

determined to be sufficient for predicting ethanol-methanol 

mixture concentrations. 

In addition to the concentration prediction models, the 

present study also investigates the evaporation dynamics of 

ethanol–methanol mixtures using a nonlinear modeling 

approach. The model is expressed as: 

     (13) 

Where m(t) is the normalized material quantity at time t, r 

is the evaporation rate constant, b is the exponent describing 

the curvature of the decay, and ta is the activation time or the 

onset of significant evaporation. This formulation allows the 

modeling of a dynamic, time-shifted evaporation process, 

capturing the nonlinearity commonly observed in real binary 

volatile systems. From this model, an effective evaporation 

rate re can be derived as: 

       (14) 

Where τ = t−ta  is the effective duration after activation 

and m0 is the initial material quantity (before evaporation 

begins). A sample fit of the nonlinear model to experimental 

capacitance-derived data is shown in Fig. 9, highlighting the 

ability of the model to match the observed evaporation 

profile. 

 

 
Fig. 10. Curve Fitting Result for Nonlinear Model   

 

To facilitate comparison with more conventional 

evaporation models, the nonlinear profile was also 

approximated using a linear fit at the point of maximum 

evaporation (e.g., at t = 400s), yielding an estimated linear 

evaporation rate constant rl. These values of re and rl are 

summarized in Table 4., across different methanol fractions 

(Y) in the ethanol–methanol mixtures with pure ethanol as 

0.00 and pure methanol written as 0.99. 
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TABLE 4. VALUES OF re AND rl IN DIFFERENT CONCENTRATION OF ETHANOL-

METHANOL MIXTURES 

Y  re SD(re) rl SD(rl) 

0.00 0.0093 0.0013 0.0025 0.0003 

0.20 0.0067 0.0008 0.0016 0.0002 

0.40 0.0065 0.0004 0.0015 0.0001 

0.60 0.0066 0.0004 0.0014 0.0001 

0.80 0.0063 0.0006 0.0013 0.0002 

0.99 0.0065 0.0007 0.0015 0.0001 

 

The results show that the effective rate re is consistently 

higher than the linear approximation rl , indicating that the 

actual evaporation process is more dynamic than what a 

constant rate model can capture. Notably, the trend in re also 

aligns with prior experimental findings such as those 

reported by Sterlyagov (2018), validating the measurement 

approach and supporting the adoption of a nonlinear 

framework. This nonlinear modeling method enhances 

interpretability and flexibility, providing a more realistic 

representation of evaporation behavior in heated volatile 

binary systems, which has not been extensively addressed in 

previous linear evaporation models. 

If linear approach is used, the derived evaporation rate (rl) 

is close to 0.001, as expected and in accordance with the 

previous findings reported by Sterlyagov (2018). In this 

study, a nonlinear modelling approach was also adopted to 

capture the S-shaped behavior of the evaporation process 

more accurately, accounting for the time shifts and 

concentration dependence. Moreover, the results of the 

nonlinear effective rate (re) are also close to 0.001, showing 

that both modeling strategies, despite their different 

complexities yield comparable outcomes. This similarity 

indicates that both approaches are valid and capable of 

describing ethanol-methanol evaporation under moderate 

heating conditions. However, it should be noted that 

evaporation rates derived from the models can be influenced 

by various factors, such as ambient humidity [29], 

temperature fluctuations [30], wind speed, evaporation pan 

[31], and other environment conditions. Thus, while the 

models serve as useful approximations, their agreement with 

prior studies reinforces their reliability and applicability for 

analyzing volatile binary mixtures.  

Overall, the modeling results show that several 

approaches yielded satisfactory performance, with 

RMSE/SD and MAE/SD values below 1.0, indicating that 

the prediction errors are smaller than the natural variability 

of the data. Among these, the Stat-ANN model with only 7 

statistical features and a 4-layer architecture (32, 16, 16, 1 

neurons) achieved an R² of 0.9421, making it the most 

recommended method in this study. Its simplicity and ability 

to generalize well, even with limited input features, make it 

suitable for practical implementation. While the results still 

offer room for improvement and expansion in future work, 

the Stat-ANN approach provides a strong foundation for 

accurate and efficient modeling of ethanol–methanol 

concentration using sensor data. 

V. CONCLUSION 

Ethanol and methanol can be mixed to produce more 

efficient fuel. The concentration of ethanol and methanol is 

typically measured using gas chromatography (GC). 

However, their evaporation characteristics, such as dielectric 

properties, vary and can be measured using a capacitive soil 

moisture sensor (CSMS). The CSMS equipped with a 

heating element was utilized in this study to accelerate 

evaporation, operating at a temperature of 43 ± 1.5°C for a 

measurement duration of 10 minutes. The system 

demonstrated the ability to determine the ethanol-to-

methanol ratio in mixtures through regression models. The 

most effective approach, based on testing, was the Elastic 

Net-ANN regression model with 14 features and the 

Descriptive Statistics-ANN model. Both methods achieved 

high determination coefficients of 0.9631 and 0.9421, 

respectively, indicating excellent variability explanation. 

Furthermore, the models exhibited low and comparable 

RMSE values for both training and testing datasets, 

signifying minimal overfitting. 

However, the Descriptive Statistics-ANN model with 4 

layers is recommended for its simplicity and focus on key 

data patterns. By utilizing features such as mean, standard 

deviation, minimum value, maximum value, range, 

skewness, and kurtosis, this model effectively characterizes 

sample variations. It achieved a determination coefficients 

value of 0.9421 and RMSE values of 0.0711 (training) and 

0.0912 (testing), further supporting its resistance to 

overfitting. 

Furthermore, the evaporation dynamics were modeled 

using both linear (d²-law approximation) and nonlinear 

approaches. Both models yielded effective evaporation rates 

around 0.001, demonstrating consistency with previous 

studies. The nonlinear model, however, captured the 

characteristic S-shaped curve observed in the experimental 

data more effectively, reflecting the time-shifted and 

concentration-dependent nature of the evaporation process. 

This confirms that while the linear model remains a valid 

and simple approximation, the nonlinear approach offers 

improved accuracy in describing real evaporation behavior 

under moderate heating conditions. 

Thus, the research demonstrated that PLSR, Ridge 

Regression, Elastic Net, and Neural Network models 

effectively captured the relationship between evaporation 

dynamics and influencing factors. Among these, the Neural 

Network model exhibited the highest predictive accuracy, 

indicating its robustness in handling complex nonlinear 

relationships. The findings highlight the significance of 

precise modeling techniques for optimizing industrial 

applications involving volatile mixtures. Future research 

could explore add additional variables, such as temperature 

and humidity effects, to further refine the model’s predictive 

capability. 
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