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Abstract—Survival models with random effects (frailty terms)
are used in applied and biostatistical research to account
for unmeasured heterogeneity. These models prevent biases
resulting from the exclusion of significant covariates. However,
little is known about the effects of misspecifying the baseline
hazard or frailty distribution in parametric frailty models. The
study used simulations to assess the impact of such misspeci-
fications on model parameter estimates and predictions, which
is essential for addressing the complexities of survival data
and improving bias correction. Recurrent survival data were
generated with the actual Weibull baseline hazard and accurate
gamma frailty distribution. Model performance was evaluated
when the baseline hazard was misspecified as exponential and
the frailty distribution as inverse Gaussian or Lognormal. Both
the standard and spline-based parametric frailty models were
compared. Misspecifying the baseline hazard, specifically for a
beta estimate, a bias for the spline-based Gamma frailty model
significantly increased from 0.00207% to 194.254% when the
baseline hazard is misspecified as an exponential distribution.
The spline-based gamma frailty model exhibited an almost
negligible bias of 0.00207% for the covariate effect (Beta) and
2.875% frailty variance (theta), outperforming the standard
gamma frailty model with a bias of 6.3% for Beta and 4.0% for
theta. The flexibility of the restricted cubic splines enhanced the
modeling of non-linear relationships, improving the recurrence
rate prediction from 1.865% to 6.211%. Therefore, care is
required when choosing models to analyze recurrent survival
data. Misspecification of the frailty distribution, the baseline
hazard, or both can have important implications for prediction
and inference in survival analysis.

Index Terms—Misspecification, frailty models, restricted cu-
bic splines, recurrent events, baseline hazard, unobserved het-
erogeneity.

I. INTRODUCTION

In many different disciplines, survival analysis is criti-
cal, particularly in epidemiology and biostatistics, where

understanding the influence of risk factors on individual
lifetime is more critical [16]. Traditional survival analysis
techniques, like the semi-parametric and parametric models,
have provided valuable frameworks for analyzing time-to-
event data. Among these, the Cox proportional hazards model
is one of the most widely used due to its flexibility and
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capacity to handle various covariates, including continuous
and categorical variables [7].

However, these traditional models can introduce significant
biases when unobserved variability exists [17]. These often
rely on the assumption that all individuals in a population are
homogeneous concerning their risk of experiencing an event,
i.e., the hazard function is proportional and the hazard ratio is
constant over time. This can lead to significant biases when
unobserved variability exists [13], [30]. This study aimed to
evaluate the impact of misspecifying the frailty distribution
and the baseline hazard in recurrent survival data. The study
specifically focused on the Gamma, Log-normal, and Inverse
Gaussian frailty models.

The Cox proportional hazards model traditionally esti-
mates the coefficients of the covariates and assesses their
impact on survival outcomes [12]. However, the limitations
of the Cox model become especially apparent considering
recurrent survival data. This is because the covariates may
inadequately capture the underlying risk dynamics over time,
leading to biased estimations of treatment impacts on the re-
currence of events, such as malaria episodes [25]. Traditional
non-parametric and standard approaches often overlook crit-
ical components of the data structure, such as potential
time-varying treatment effects, censoring, and the inherent
dependence among occurrences, ultimately compromising
the integrity of the analysis [14]. The concept of frailty was
introduced due to this limitation to account for unobserved
heterogeneity among subjects [26].

Frailty models incorporate random effects that capture
latent characteristics that affect an individual’s risk of ex-
periencing an event [29]. This allows for more accurate
estimates and insights regarding survival times and fac-
tors that influence them [27]. Incorporating random effects
(frailty) into survival models can mitigate the limitations of
the traditional models by accounting for unobserved hetero-
geneity, which significantly enhances the ability to analyze
heterogeneous and complex data structures [4]. However,
selecting a suitable frailty distribution poses a challenge, as
the frailty term is usually hidden from direct observation.
Misspecifying unobserved frailty can lead to biased estimates
and decreased estimation efficiency, potentially resulting in
erroneous conclusions [10].

In scenarios where individuals experience the same event
multiple times, such as disease relapses or hospital readmis-
sions, the challenges become more pronounced and com-
plicate the analysis significantly [6]. Parametric methods
for analyzing recurrent events often rely on assumptions
of independence between occurrences, which overlook the
inherent correlation between repeated events. Frailty mod-
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els thus provide a more nuanced framework for capturing
this correlation by allowing individual risk to vary due
to unobserved factors, which improves the understanding
of recurrent event dynamics, therefore providing a better
representation of how variables interact over time [1].

The emergence of flexible parametric survival models,
specifically the spline-based methods, represents a significant
advancement in survival analysis methodology. These mod-
els provide a more flexible way to capture the non-linear
relationships between covariates and the hazard function,
offering enhanced flexibility in adequately fitting complex
data structures [19]. Restricted cubic splines are particularly
effective in modeling the non-linear relationship between
covariates and the hazard function flexibly while controlling
for over-fitting [23]. Unlike polynomials, which tend to
grow without bounds, the restricted cubic splines maintain
a smooth curve by being linear beyond points known as
the knots [20]. This allows the splines to identify intricate
patterns in the data, which makes them particularly useful
for survival analysis when the relationship between the log-
hazard rate and the covariate is non-linear [2]. The restricted
cubic spline model with K knots is denoted by:

f(x) = β0 + β1x+ β2h1(x) + · · ·+ βK+1hK(x) (1)

Where: β1, . . . , βK+1 are coefficients for each spline basis
function, and β0 is the intercept. Each hk(x) represents the
basis function of the spline corresponding to the k-th compo-
nent. The first two terms, one and x, are linear components,
while the remaining terms are non-linear transformations.

For the restricted cubic spline, the basis functions hK(x)
for K = 1, . . . ,K are defined based on the knots k1, . . . , kK .
They include linear components and non-linear components
derived from the positions of the knots. By ensuring that the
spline is linear beyond the boundary knots, this basis function
helps to prevent polynomials from behaving abnormally at
the extreme ends [21].

This flexibility is more important when dealing with
heterogeneous populations, where the relationships between
covariates and outcomes are non-linear [28]. The ability
to allow for varying shapes of the hazard function based
on observed characteristics, the spline-based methods can
capture effectively the nuances of the relationship between
predictors and event timing, which Parametric methods may
inadequately address [20]. Therefore, this capability enables
the fitting of models more accurately to the underlying data,
leading to improved estimation and inference. However, the
implications of model misspecification arising from selecting
an inappropriate model for the underlying effects are pro-
found. Such errors can give biased estimates and compromise
the validity of the inferences that are drawn from the analysis
[3].

Despite advanced modeling techniques in survival analy-
sis, there has been limited comparative analysis evaluating
the robustness and performance of spline-based frailty mod-
els relative to parametric frailty models under conditions of
misspecification. The study conducted a thorough compara-
tive analysis of spline-based and parametric frailty models
for recurring events. By evaluating the impact of model
misspecification on estimation accuracy, the study provides
valuable insights that will guide researchers and practitioners

in selecting appropriate survival analysis methods for their
specific applications, ultimately enhancing the reliability of
results in clinical and epidemiological research [15]

II. MATERIALS AND METHODS

A. Study Design and Data Simulation

To evaluate frailty models under recurrent survival sce-
narios, this study simulated data across 1000 Monte Carlo
iterations, with each dataset consisting of 200 individuals. A
binary covariate x, generated from a Bernoulli distribution
with probability P (x = 1) = 0.5, was used to simulate
heterogeneity in event risk. The covariate effect was fixed
at β = 1.5. Censoring times were drawn from a uniform
distribution U(0, 4), and the actual baseline hazard followed
a Weibull distribution, with scale λ = 1 and shape ρ = 2.
For model misspecification, an exponential baseline (ρ = 1)
was used.

The simulated recurrent event data were generated from
the following theoretical hazard model:

hij(t) = h0(t)vi exp(xijβ),

j = 1, . . . , ni, i = 1, . . . , G (2)

Here, h0(t) is the baseline hazard, vi denotes the shared
frailty term for individual i, and xijβ is the linear predictor.
If the Weibull distribution is assumed for the baseline hazard,
then the survival time T is generated by:

T =

(
− log(u)

λvi exp(xijβ)

)1/ρ

(3)

Where u ∼ U(0, 1), and the frailty term vi is drawn
from one of three distributions with mean one and variance
θ ∈ {0.1, 0.5, 2}: Gamma, Lognormal, or Inverse Gaussian.
For the lognormal frailty, the transformation µ = −θ/2
ensures E(v) = 1. These distributional choices reflect
common assumptions in recurrent event modeling and are
guided by settings in Rodrı́guez-Girondo et al. (2018).

The Weibull-based frailty model then becomes:

hij(t) = λρtρ−1vi exp(xijβ),

j = 1, . . . , ni, i = 1, . . . , G (4)

When ρ = 1, the Weibull model simplifies to an exponen-
tial model, serving as a comparison for model misspecifica-
tion.

Three frailty distributions were evaluated: Gamma, Inverse
Gaussian, and Lognormal. These distributions model unob-
served heterogeneity by allowing the frailty term ui (or vi) to
follow a distribution with unit mean and specified variance.
The general form of the hazard function for individual i is
given by:

hi(t | xi, ui) = h0(t) · exp(xiβ) · ui (5)

where h0(t) is the baseline hazard, xi is the covariate
vector, β the regression coefficient, and ui the individual-
specific frailty term.

To enhance model flexibility and capture non-linear co-
variate effects, restricted cubic splines (RCS) were employed
in modeling the baseline hazard and covariate relationships.
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The simulated datasets thus included survival time, censoring
indicator, covariate, and cluster ID. Models were fitted using
the Gamma and Inverse Gaussian frailty distributions across
three baseline hazard specifications: Weibull, Exponential,
and spline-based. These configurations were designed to
assess robustness and accuracy under both correct and mis-
specified model assumptions.

1) Gamma Frailty Distribution: In the gamma frailty
model, the frailty term ui for individual i follows a gamma
distribution, which introduces unobserved heterogeneity into
the survival analysis. The frailty term ui is modeled as a
gamma–distributed random variable:

ui ∼ Gamma(θ, θ) (6)

Where θ, the shape parameter, is also interpreted as the
inverse of the frailty variance. The Gamma distribution is
parameterized such that:

f(ui) =
uθ−1
i e−ui/θ

Γ(θ)θθ
, ui > 0 (7)

Where Γ(θ) represents the Gamma function, and the mean
of ui is normalized to 1 with a variance of 1/θ.

The survival function for individual i is;

Si(t | ui) = exp(−Hi(t | ui)) (8)

The survival probability Si(t | ui) represents the individ-
ual i’s probability of surviving beyond time t and Hi(t | ui)
the cumulative hazard function.

Where the cumulative hazard for individual i is:

Hi(t | ui) =

∫ t

0

hi(s | xi, ui) ds = Ho(t)·exp(xiβ)·ui (9)

Where Ho(t) is the baseline cumulative hazard function
that represents the risk over time for an average individual
and xiβ is the linear predictor, where xi are the covariates for
individual i and the regression coefficients’ vector is denoted
by β.

The survival function is thus written as:

Si(t | ui) = exp(−uiHo(t) · exp(xiβ)) (10)

To account for the unobserved frailty, we integrate across
the frailty ui distribution to obtain the marginal survival
function. The marginal survival function with covariates,
which adjusts for the unobserved heterogeneity, is:

Si(t | xi) =

∫ ∞

0

Si(t | ui)f(ui) dui (11)

The integral result in the closed-form solution for the
marginal survival function is:

S(t | x) =
(
1 +

Ho(t) · exp(xiβ)

θ

)−θ

(12)

This equation describes the marginal survival probability
for individual i, considering both the observed covariates and
the unobserved frailty effect.

Without covariates i.e., xi = 0, the marginal survival
function simplifies to;

S(t) =

(
1 +

Ho(t)

θ

)−θ

(13)

This represents the population-level survival probability,
where frailty introduces additional variation in survival times.

The marginal cumulative hazard function is the negative
log of the marginal survival function:

Hi(t) = − log(Si(t)) (14)

Which provides the overall risk of experiencing an event
by time t, taking into account both observed and unobserved
risk factors.

2) Inverse Gaussian frailty distribution: The inverse
Gaussian frailty model assumes that the frailty term ui for
individual i follows an inverse Gaussian distribution. This
type of frailty model captures the over-dispersion in the data,
where individuals exhibit varying risk levels that are not
directly explained by observed covariates.

Where the frailty term ui follows an inverse Gaussian
distribution, which is denoted by:

ui ∼ InverseGaussian(µ = 1, λ = 0) (15)

Where µ is the mean and λ is the shape parameter
controlling the variability of the frailty.

The probability density function of the inverse Gaussian
distribution for the frailty term ui is:

f(ui|θ) =

√
θ

2πu3
i

exp

(
−θ(ui − 1)2

2ui

)
, ui > 0 (16)

The marginal survival function is:

Si(t) =

∫ ∞

0

Si(t|ui)f(ui|θ) dui (17)

Where Si(t|ui) is the individual survival function con-
ditional on frailty, and f(ui|θ) is the inverse Gaussian
frailty distribution. These integral captures the population-
level heterogeneity and provide a more accurate estimate of
survival probabilities by averaging over all possible values
of ui.

The marginal survival function without covariates repre-
sents the average survival probability across the distribution
of the frailty parameter ui when no covariate is considered.
It reflects how the overall survival function accounts for the
unobserved heterogeneity among individuals:

S(t) = exp

(
1−

√
1 + 2θH0(t)− 1

θ

)
(18)

The marginal survival function with covariates represents
the average survival probability when covariates are included.
It adjusts the baseline hazard based on the covariate effects,
while still accounting for the distribution of the frailty
parameter ui

S(t|x) = exp

(
1−

√
1 + 2θH0(t) exp(β)− 1

θ

)
(19)

3) Log-normal frailty distribution: The lognormal frailty
distribution assumes that the frailty term ui follows a log-
normal distribution. The frailty term is modeled as ui =
exp(Zi), where Zi follows a normal distribution. This intro-
duces a dependency between the survival times of individuals
with shared frailty, indicating that some individuals may ex-
perience events more frequently due to unmeasured factors.
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The probability density function of ui is given by:

f(ui) =
1√

2πσ2ui

exp

(
− (log ui − µ)2

2σ2

)
, ui > 0 (20)

The marginal survival function S(t) integrates over the dis-
tribution of frailty to account for unobserved heterogeneity.
The survival function for individual i, conditional on frailty
ui is given by:

Si(t|ui) = exp (−uiH0(t) exp(xiβ)) (21)

To get the marginal survival function, we integrate the
conditional survival function over the frailty distribution:

S(t) =

∫ ∞

0

exp (−uiH0(t) exp(xiβ)) ·
1√

2πσ2ui

· exp
(
− (log ui − µ)2

2σ2

)
dui (22)

This reflects the population-level survival probability by
averaging over the unobserved frailty ui.

The marginal survival function without covariates, i.e.,
xi = 0, is denoted by:

S(t) =

∫ ∞

−∞
Si(t|η)f(η|θ) dη (23)

The marginal survival function with covariates is denoted by:

S(t|x) =
∫ ∞

−∞
Si(t|η, β)f(η|θ) dη (24)

Where:
Si(t|η, β) is the survival function that includes the co-

variate effect β for an individual i, at time t, given the
frailty η, and f(η|θ) is the probability density of the frailty
distribution, which is normally distributed with mean −θ/2
and standard deviation of

√
θ.

The survival function Si(t|η, β) is:

Si(t|η, β) =
(
e−λtρeβ

)eη
(25)

Moreover, without covariates, the survival is given by:

Si(t|η) =
(
e−λtρ

)eη
(26)

Where e−λtρ represents the baseline hazard function that is
raised to the power of eη , which indicates the impact of
the frailty on the hazard. eη , the frailty term, modifies the
baseline hazard, capturing unobserved heterogeneity among
individuals.

B. Restricted cubic splines (RCS)

In survival analysis, RCS are applied to model the non-
linear effects of covariates on the hazard function (cumulative
hazard function). For a frailty survival model, the hazard
function for individual i is expressed as:

hi(t|xi, ηi) = ηih0(t) exp(β0 + β1x+ β2h1(x)

+ · · ·+ βK+1hK(x)) (27)

Where: h0(t) represents the baseline hazard function, x is
the covariate of interest. The spline terms h1(x), . . . , hK(x)
allow for non-linear relationships between the covariate x
and the log-hazard function, and ηi is the frailty term specific

to individual i that introduces random effects into the hazard
function, capturing the unobserved heterogeneity that might
affect individual survival times.

The general mathematical formulation of each model is:

hi(t|xi, ηi) = ηih0(t) exp

β1xi +
K+1∑
j=2

βjhj(xi)

 (28)

Where ηi is the frailty term, the spline term hj(xi) allows for
non-linear effects of the covariate x on the hazard function.

C. Baseline hazard distributions

1) Weibull distribution: The Weibull distribution is mainly
used in survival analysis due to its flexibility in model-
ing time-to-event data. It represents increasing, constant, or
decreasing hazard rates depending on its parameters. Two
parameters define it: the scale parameter λ and the shape
parameter ρ, where the hazard changes over time, depending
on ρ.

The probability density function is:

f(t) = ρλρtρ−1 exp(−λtρ) (29)

Where t ≥ 0, ρ > 0. If ρ = 1, when the hazard rate
remains constant, the Weibull distribution transforms into an
exponential distribution. If ρ > 1, over time, the hazard rate
increases, and if ρ < 1, the hazard rate decreases.

The hazard function for recurrent events describes the
instantaneous rate at which subsequent events will occur,
given that K events have already happened up to time t.

The hazard function is given by:

hk(t) = ρλρtρ−1 (30)

The cumulative hazard function is expressed as:

Hk(t) = (λt)ρ (31)

The survival function will therefore be given by:

Sk(t) = exp(−λtρ) (32)

2) Exponential Baseline hazard: The exponential distri-
bution is commonly used in survival models due to its
simplicity and the constant hazard rate over time assumption,
meaning the probability of an event occurring is the same
at any point in time, regardless of how much time has
passed. The probability density function of the exponential
distribution is given by:

f(t;λ) = λe−λt, t ≥ 0 (33)

Where λ is the rate parameter, which determines the constant
rate at which events occur over time.

The cumulative distribution function gives the probability
that the event occurs before or at time t:

F (t;λ) = P (T ≤ t) = 1− e−λt (34)

The survival function shows the likelihood that the event has
not occurred by time t, and is given by:

S(t;λ) = P (T > t) = 1− F (t;λ) = e−λt (35)

The hazard rate is given by:

h(t) = λ (36)
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Which shows that the likelihood of the event happening in
the next interval of time is always the same, it is a special
case of the Weibull where ρ = 1. The cumulative hazard
function is the integral of the hazard function over time,
which represents the accumulated hazard by time t:

H(t;λ) =

∫ t

0

h(u;λ) du = λt (37)

The cumulative hazard function grows linearly with time
since the hazard rate is constant.

D. Performance Metrics

1) Bias: Bias is the measure of the difference between
the estimated value and the true value; it provides insights
into how far, on average, the estimated value is from the true
value. Bias can be positive or negative if the estimates are
consistently more than the actual value, and if the estimates
are consistently less than the actual value, respectively.

Bias(β̂) =
1

n

n∑
i=1

(
β̂i − βtrue

βtrue

)
(38)

Bias(θ̂) =
1

n

n∑
i=1

(
θ̂i − θtrue

θtrue

)
(39)

2) Standard Deviation (SD): The standard deviation mea-
sures the variability or spread of the estimates around the
mean value; it tells how much the estimates fluctuate from
the average estimate, indicating how consistently the model
estimates the parameters across simulations, hence reflecting
the precision of the model.

SD(β̂) =

√√√√ 1

n− 1

n∑
i=1

(β̂i − β̄)2 (40)

Where:

β̄ =
1

n

n∑
i=1

β̂i

Similarly, for θ̂:

SD(θ̂) =

√√√√ 1

n− 1

n∑
i=1

(θ̂i − θ̄)2 (41)

Where:

θ̄ =
1

n

n∑
i=1

θ̂i

3) Mean Squared Error (MSE): The MSE combines both
bias and variance. It calculates the mean squared difference
between the estimated and the true parameter, providing a
comprehensive metric of the estimator’s accuracy.

MSE(β̂) =
1

n

n∑
i=1

(β̂i − βtrue)
2 (42)

MSE(θ̂) =
1

n

n∑
i=1

(θ̂i − θtrue)
2 (43)

E. Model Comparison

The Akaike Information Criteria (AIC) and Bayesian
Information Criteria (BIC) are used to compare the perfor-
mance of the models in survival analysis and select the best.
These metrics account for the goodness of fit of the model,
while penalizing for the complexity to avoid overfitting. The
AIC and BIC are denoted by:

AIC = −2 log(L) + 2k (44)

BIC = −2 log(L) + k log(n) (45)

Where:
log(L) is the log-likelihood of the model, k is the number

of parameters in the model, and n is the sample size.

F. Hazard Ratio (HR)

HR is the measure of the relative risk of an event hap-
pening in one group as compared to another over time. It is
the proportion of the hazard rates between these two groups
given by:

HR =
h1(t)

h2(t)
(46)

Where h1(t) represents the treatment group’s hazard rate
and h2(t) is the hazard rate for the control group.

G. Recurrence Probability

The recurrence probability quantifies the likelihood that an
event has occurred by time t. It is given by:

P (Event by time t) = 1− S(t) (47)

where S(t) is the survival function.

H. Software Implementation

R statistical software version 4.4.1. Was used for the
analysis using the packages for survival analysis and frailty
modeling (survival, frailtySurv, frailtypack, splines)

I. Ethical Considerations

The study used simulated data, for which no ethical
approval was needed

J. Limitations

The models and data are based on specific assumptions,
such as distribution types and parameter values, which may
not fully represent real-world data.

III. RESULTS

A. Introduction

Recurrent survival data were simulated, and different
frailty models fitted (Gamma, Lognormal, and inverse Gaus-
sian). Then they assessed the impact of the models on bias,
variance, mean squared error (MSE), baseline estimates, and
survival probabilities. The results also included the effects
of incorporating restricted cubic splines (RCS) to model
the Relationship between the covariate and the hazard more
flexibly.
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B. Parameter Estimates

Using equations 35, 37, and 39, the bias, standard devia-
tion, and the mean squared error (MSE) were calculated for
beta estimates, respectively. Equations 36, 38, and 40 were
used to calculate the theta estimates for the standard models
when the sample size is 200. These parameter estimates are
summarized in TABLE I.

As the accurate frailty model, the Gamma model displays
a relatively small bias for both Beta and Theta estimates,
with a positive bias of 0.063 for Beta and a positive bias of
0.040 for theta. If the true frailty is misspecified by an inverse
Gaussian model, the bias for Beta is 0.181, indicating a more
positive bias. At the same time, we get a slightly negative
bias for theta estimate of -0.019. Misspecifying the frailty by
a lognormal model, the bias increases significantly to 0.217
for the Beta estimates and a somewhat negative bias of -0.028
for theta estimates. The inverse Gaussian model provides the
most accurate estimates for theta, showing the least MSE of
0.001 and a very low standard deviation of 0.016, although
its bias for Beta is higher. The lognormal model exhibits the
highest biases and MSE for both Beta and theta, suggesting
it is the least preferable for accurate estimation. However,
when using an exponential baseline hazard, the estimates of
the Beta are generally smaller than those obtained with a
Weibull baseline hazard.

For Beta estimates, the spline-based Gamma model
showed an almost negligible positive bias of 0.0000207,
indicating that it provides estimates close to the actual beta
value; misspecifying the frailty to an inverse Gaussian model,
the bias increases significantly to a positive bias of 0.1479.
If the frailty model is misspecified to lognormal, the bias
increases slightly to a positive bias of 0.0116, indicating
more accuracy than the inverse Gaussian model. For the theta
estimate, the spline-based lognormal model had the lowest
positive bias of 0.0036 compared to the spline-based Inverse
Gaussian model with a bias of 0.0159. The Gamma spline
model had the highest bias for theta, with a positive bias
of 0.02875. The gamma model with splines had a moderate
SD of 0.1256; the lognormal model had the highest SD of
0.1697, indicating an increased variability in its estimates.
The inverse Gaussian model with splines had the lowest SD
of 0.1128, suggesting more precision than the gamma model.

Similarly, the Gamma, inverse Gaussian, and lognormal
SD for theta estimates were 0.0099, 0.0045, and 0.0090,
respectively. For MSE for the Beta estimate, the gamma
model with splines had the very lowest MSE of 0.00091486,
indicating good accuracy in its estimates. The inverse Gaus-
sian had a considerably higher MSE of 0.0333, while the
lognormal model had an MSE of 0.0261, indicating a strong
overall error but less than the inverse Gaussian model. For the
theta estimate, the gamma model with splines had a low MSE
of 0.000000914, indicating exceptional accuracy in theta
estimation. Then, the lognormal model was followed with
an MSE of 0.00008653, which is still very low compared to
the inverse Gaussian model with an MSE of 0.00027. When
the baseline hazard distribution is exponentially distributed,
the bias increases significantly, showing the model’s inability
to capture more variability in the data as compared to the
Weibull distribution. These estimates are summarized in
TABLE II

C. Baseline Hazard Estimates
The baseline estimates were calculated using equation 27

and summarized in TABLE III. At time t=0.3, the gamma
model shows a relative negative bias of -0.270, indicating a
slight underestimation of survival probabilities; the lognor-
mal and inverse Gaussian models both had a negative bias
of -0.779 and -0.687, respectively, indicating a significant
underestimation. As the time increases to t=1, all the biases
for the three models indicate underestimation to a greater
extent. The gamma, inverse Gaussian, and lognormal models
at t=1 had biases of -0.557, -0.815, and -0.862, respectively.
For the SD at t=0.3, the lognormal model showed a lower SD
of 0.0180, indicating that it provides the highest consistency
among the estimates at this time point.

The inverse Gaussian model shows a lower SD of 0.020
than that of the gamma model, with an SD of 0.025.
At time t=1, the lognormal model had the lowest SD of
0.098, indicating the most consistent results at this time
point as compared to the Gamma and inverse Gaussian
models with SDs of 0.175 and 0.107, respectively. For the
MSE at time t=0.3, the gamma model had an MSE of
0.001, indicating excellent accuracy. The inverse Gaussian
and lognormal models had relatively higher MSEs of 0.004
and 0.005, respectively. As the time increases to t=1, the
MSE increases significantly in all the models. The Gamma,
inverse Gaussian, and lognormal models had MSEs of 0.338,
0.674, and 0.752. Misspecifying the Weibull baseline hazard
as an exponential baseline hazard leads to a significant
overestimation of survival probabilities. When the baseline
hazard is an exponential distribution, we have high variability
and a poorer survival probability estimation accuracy than
when the actual baseline hazard is the Weibull distribution.

At time t=0.3, the Gamma, inverse Gaussian, and lognor-
mal models had a relative bias of -0.117, -0.486, and -0.680,
respectively, indicating an underestimation of survival prob-
abilities. At time t=1.0, all models’ relative biases increased
significantly to -0.491, -0.741, and -0.806, respectively, in-
dicating a significant underestimation. For the SD at time
t=0.3, the lognormal model had the lowest SD of 0.017,
indicating the highest consistency among estimates. The
inverse Gaussian and gamma models had an MSE of 0.034
and 0.042, respectively. At time t=1.0, the gamma model had
a significantly higher SD of 0.257, with inverse Gaussian and
lognormal models having an SD of 0.159 and 0.096, respec-
tively. For the MSE at time t=0.3, the gamma model had the
lowest MSE of 0.002, indicating strong accuracy in survival
probability estimation. The inverse Gaussian model had an
MSE of 0.003, and the lognormal had 0.004. At time t=1.0,
the bias increased significantly with MSE of 0.301, 0.571,
and 0.658 for the Gamma, inverse Gaussian, and lognormal
models. From the results, as time increases from t=0.3 to
t=1.0, the survival probability estimates significantly become
less accurate across all the RCS models, with significant
variability and growing error. When the baseline hazard is
exponential, then we have a considerable amount of bias.
See TABLE IV.

Cumulative hazard analysis between the standard and
spline-modelled frailty approaches demonstrates the substan-
tial effects that model structures have on time-based hazard
estimation results. See Figures 1 and 2. Standard models
that employ Gamma or Inverse Gaussian frailty distributions
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TABLE I
PARAMETER ESTIMATES FOR STANDARD MODELS

Model Baseline hazard Bias (Beta) SD (Beta) MSE (Beta) Bias (Theta) SD (Theta) MSE (Theta)
Gamma Weibull 0.063 0.059 0.007 0.040 0.096 0.010

Exponential 0.029 0.008 0.001 0.037 0.019 0.001
Inverse Gaussian Weibull 0.181 0.104 0.043 -0.019 0.016 0.001

Exponential 0.033 0.010 0.001 -0.019 0.003 0.000
Log-normal Weibull 0.217 0.127 0.062 -0.028 0.067 0.005

Exponential 0.032 0.010 0.001 -0.002 0.004 0.000

TABLE II
PARAMETER ESTIMATES FOR SPLINE-BASED MODELS

Model Baseline Hazard Parameter Bias SD MSE
Gamma Weibull Beta 0.0000 0.1256 0.0009

Exponential Beta 1.9425 0.3106 3.8602
Weibull Theta 0.0288 0.0099 0.0000
Exponential Theta 0.0337 0.0036 0.0011

Inverse Gaussian Weibull Beta 0.1479 0.1128 0.0333
Exponential Beta 1.9597 0.2627 3.9027
Weibull Theta 0.0159 0.0045 0.0003
Exponential Theta -0.0383 0.0799 0.0072

Log-normal Weibull Beta 0.0116 0.1697 0.0261
Exponential Beta 1.8472 0.3236 3.5062
Weibull Theta 0.0036 0.0090 0.0001
Exponential Theta -0.0250 0.1311 0.0161

TABLE III
BASELINE HAZARD ESTIMATES FOR STANDARD MODELS

Time Model Baseline Hazard Relative Bias SD MSE
0.3 Gamma Weibull -0.270 0.025 0.001

Exponential 2.975 0.519 1.039
Inverse Gaussian Weibull -0.687 0.020 0.004

Exponential 0.579 0.105 0.040
Log-normal Weibull -0.779 0.018 0.005

Exponential 0.349 0.110 0.022
1.0 Gamma Weibull -0.557 0.175 0.338

Exponential 3.444 2.212 16.262
Inverse Gaussian Weibull -0.815 0.107 0.674

Exponential 0.399 0.354 0.272
Log-normal Weibull -0.862 0.098 0.752

Exponential 0.260 0.369 0.190

TABLE IV
BASELINE ESTIMATES FOR SPLINE-BASED MODELS

Time Model Baseline Hazard Relative Bias SD MSE
0.3 Gamma Weibull -0.117 0.042 0.002

Exponential -0.972 0.008 0.085
Inverse Gaussian Weibull -0.486 0.034 0.003

Exponential -0.978 0.005 0.086
Log-normal Weibull -0.680 0.017 0.004

Exponential -0.972 0.006 0.086
1.0 Gamma Weibull -0.491 0.257 0.301

Exponential -0.929 0.047 0.864
Inverse Gaussian Weibull -0.741 0.159 0.571

Exponential -0.938 0.040 0.881
Log-normal Weibull -0.806 0.096 0.658

Exponential -0.929 0.030 0.903

generate parallel cumulative hazard curves that differ mainly
from Lognormal estimates due to the Lognormal model
showing diminished heterogeneity evaluation. The spline-
based models’ hazard projections vary greatly because rcs-
Gamma exhibits the steepest hazard increase after time 2,
which displays higher sensitivity to time-dependent effects.
The rcs-Log-Normal and rcs-Inverse Gaussian model esti-
mations produce higher cumulative hazard rates than their
standard versions because they understand complex nonlinear
covariate effects and baseline hazard patterns.

D. Survival Probability Estimates

Using equations 10, 15, and 20, the survival probability
estimates were calculated without covariates, x=0. Equations
9, 16, and 21 were used to calculate the survival proba-
bility estimates when covariates were included, x=1. See
TABLE V. The gamma frailties model with x=0 shows a
relative bias of 0.013, indicating a negligible bias when the
covariate is not included. When the covariate is included,
x=1, the relative bias increases to 0.097, suggesting a more
substantial covariate influence on the survival probability
estimate. The inverse Gaussian model had a relative bias of
0.050 for x=0, slightly higher than the gamma model’s bias

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3630-3649

 
______________________________________________________________________________________ 



Fig. 1. Cumulative hazard functions for spline-modeled frailty models.

at this level. With x=1, the relative bias increases to 0.195,
indicating a more pronounced impact of the covariate on
estimates. In both models, incorporating a covariate tends to
increase the relative bias. For SD, the gamma frailty model
has an SD of 0.022 for x=0, indicating low variability in
its survival probability estimates without the covariate; with
the covariate, the SD increases to 0.047, indicating greater
variability in the estimates due to the additional complexity
introduced by the covariate. For the inverse Gaussian model,
the SD is 0.019 for x=0, showing slightly less variability in
estimates than the gamma model at the same covariate level.
The SD increases to 0.042 when including the covariate,
indicating increased variability. The gamma frailty model
yielded an MSE of 0.001 for x=0, indicating excellent accu-
racy in estimating survival probabilities without the covariate.
However, when x=1, the MSE rises to 0.008, indicating an in-
crease in error when the covariate is considered. The inverse
Gaussian model had an MSE of 0.002 for x=0, indicating
good accuracy. Still, the error increases significantly to 0.024
with the addition of the covariate, x=1, marking the most

substantial increase in error.
For the spline models. Including covariate (x = 1) in the

Gamma and Inverse Gaussian frailty models caused their
relative bias to increase from 0.162 to 0.616 and from 0.394
to 1.181, respectively, under the Weibull baseline. The effects
of the covariate produce a significant upward shift in survival
probability forecasts. The Exponential baseline produces two
models that present a negative bias that reduces survival
probability estimates. Implementing the Gamma-Exponential
model produces reduced variability (SD = 0.028) and lower
MSE (0.039) while including the covariate, which indicates
more accurate predictions despite the significant bias.

When adding the covariate to the Weibull-based models,
the standard deviation and Mean Squared Error generally
rise, which produces more complicated and erroneous pre-
diction estimates. The exponential models demonstrate a
decrease in MSE and SD values when using covariates,
while the Inverse Gaussian model shows the most substan-
tial decrease from 0.048 to 0.022 in MSE as shown in
TABLE VI. Two factors suggest that Exponential models
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Fig. 2. Cumulative hazard functions for standard frailty models.

TABLE V
SURVIVAL PROBABILITY ESTIMATES FOR STANDARD MODELS

Method Baseline Rel. Bias SD MSE
Gamma, x = 0 Weibull 0.013 0.022 0.001
Gamma, x = 0 Exponential -0.402 0.097 0.115
Gamma, x = 1 Weibull 0.097 0.047 0.008
Gamma, x = 1 Exponential -0.515 0.073 0.084
Inverse Gaussian, x = 0 Weibull 0.050 0.019 0.002
Inverse Gaussian, x = 0 Exponential -0.017 0.050 0.021
Inverse Gaussian, x = 1 Weibull 0.195 0.042 0.024
Inverse Gaussian, x = 1 Exponential -0.250 0.062 0.022

maintain stronger performance stability alongside covari-
ate application despite exhibiting bias. The Gamma model
demonstrates superior consistency with lower error variabil-
ity than the Inverse Gaussian model, particularly under the
Weibull hazard condition. The results indicate that survival
probability estimation depends on frailty distribution and
baseline hazard rate while influencing model robustness
levels.

The standard frailty models demonstrate different survival
impact when compared to spline-based models. See Figures 3
and 4. According to standard models, the covariate produces

a minor adjustment in the survival distribution curve, demon-
strating proportional hazard effects with homogeneous risk
patterns. The spline-based models demonstrate a greater dis-
tributional shift coupled with distribution flattening because
they reveal more substantial and possibly nonlinear changes
to the hazard function. The variable generates nonuniform
hazard effects across its measurement scale because it in-
fluences survival changes based on the observation value
within the range. This effect effectively restricts the cubic
spline model. The superior ability of spline-based models
lies in their capacity to depict covariate effects with increased
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TABLE VI
SURVIVAL PROBABILITY ESTIMATES FOR SPLINE MODELS

Method Baseline Rel. Bias SD MSE
Gamma, x = 0 Weibull 0.162 0.087 0.017
Gamma, x = 0 Exponential -0.643 0.058 0.156
Gamma, x = 1 Weibull 0.616 0.105 0.042
Gamma, x = 1 Exponential -0.672 0.028 0.039
Inv. Gaussian, x = 0 Weibull 0.394 0.068 0.062
Inv. Gaussian, x = 0 Exponential -0.346 0.064 0.048
Inv. Gaussian, x = 1 Weibull 1.181 0.097 0.128
Inv. Gaussian, x = 1 Exponential -0.489 0.042 0.022

accuracy because they accommodate nonlinear effects when
standard assumptions do not apply.

E. Hazard Ratios

Equation 43 was used to calculate the hazard ratios, see
TABLE VII. To facilitate the interpretation of hazard ratios,
we compute the percentage increase using the formula:

Percent Increase = (HR− 1)× 100 (48)

A one-unit increase in the covariate (beta estimate) for the
Gamma frailty model leads to a 241.5825% increase in the
hazard, which shows a strong positive effect of the covariate
in the Gamma Model. Similarly, for the Inverse Gaussian
and lognormal frailty models, a unit increase in the covariate
corresponds to a 190.6704% and 229.3545% increase in the
hazard, respectively. The theta estimate relates to the frailty
effect in the models. For the Gamma frailty model, the
impact of the frailty results in a 176.7657% increase in the
hazard. Similarly, for the Inverse Gaussian and Lognormal
frailty models, the frailty effect leads to a 179.8207% and
184.3274% increase in the risk, respectively.

TABLE VII
HAZARD RATIOS FOR THE STANDARD MODELS

Method Baseline Beta Theta
Gamma Weibull 3.4158 2.7677
Gamma Exponential 2.7868 2.9241
Inverse Gaussian Weibull 2.9067 2.7982
Inverse Gaussian Exponential 2.7932 2.7954
Lognormal Weibull 3.2935 2.8433
Lognormal Exponential 2.7914 2.8438

For the spline-based models, see TABLE VIII. A unit
increase in the covariate results in the hazard increasing by
2.565, 2.6195, and 2.323993 times for the Gamma, Inverse
Gaussian, and Lognormal frailty models, respectively. For
the theta estimate, the hazard increases by 2.804, 2.759,
and 2.76 times due to the frailty effect in the Models,
respectively. The standard models showed a higher hazard
ratio for both Beta and theta estimates, which reflects a
strong association between the covariate and the risk of re-
current events; however, the spline-based models moderated
the Relationship, suggesting a more nuanced effect of the
covariates. The frailty effect was consistent across all the
models; this indicates a significant unobserved heterogeneity
that influences the hazard.

F. Recurrence Rates

In the Gamma frailty model, the predicted recurrence
rate at time t=0.3 is approximately 1.87% as shown in TA-
BLE IX. This indicates that, based on the predictions of the

TABLE VIII
HAZARD RATIOS FOR THE SPLINE MODELS

Model Baseline Beta Theta
Gamma Weibull 2.5653 2.8036
Gamma Exponential 17.3504 2.7980
Inverse Gaussian Weibull 2.6195 2.7586
Inverse Gaussian Exponential 17.2370 2.7561
Log-normal Weibull 2.3240 2.7601
Log-normal Exponential 16.2305 2.7629

model, 1.87% of the individuals are expected to experience
a recurrence of the event. For the inverse Gaussian and
Lognormal frailty models, the models predict a recurrence
rate of 2.81% and 1.185%, respectively. These suggest that
individuals modeled by using the Inverse Gaussian model
have a higher probability of recurrence compared to the log-
normal and Gamma models. Using a lognormal distribution,
the individuals are least likely to experience the recurrence.
The log normal model suggested a conservative estimate of
recurrence rates, which indicates that it may be less suited
for detecting early or frequent recurrences, unlike the inverse
Gaussian model, which appeared to predict higher recurrence
rates at both time points, which indicates its sensitivity to
early recurrence risks.

For the spline-based models, the recurrence rate predicted
by the Gamma, Inverse Gaussian, and Lognormal frailty
models at time t=0.3 is 6.211%, 3.942%, and 5.197%,
respectively as illustrated in TABLE X. These recurrence
rates are consistently higher than in their respective stan-
dard models, which indicates that the more flexible models
allow for capturing increased risk of recurrence. Similarly,
at time t=1.0, the recurrence rate increased when splines
were incorporated into the models from 11.12% to 29.003%,
from 12.995% to 17.075%, from 6.59% to 20.3312% for the
Gamma, Inverse Gaussian, and Lognormal frailty models, re-
spectively. The spline-based models indicate that recurrence
risks are under-estimated by the standard models, especially
as time progresses.

G. Application to Malaria Data

In this section, the models used in the simulations were fit-
ted to a recurrent malaria dataset to determine how effective
the models’ performance could be. This was done by exam-
ining the AIC and BIC values to assess their performance and
survival curves. The objective was to determine which model
predicted recurrent malaria more accurately by looking at its
predictive and statistical ability. The dataset consisted of 300
individuals who had experienced up to 5 events within a 2-
year follow-up period. The table below shows the number of
recurrent episodes. 44% of the individuals received up to 5
recurrent episodes of malaria, as shown in TABLE XI.
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Fig. 3. Standard models distributions.

Log-likelihood, AIC, and BIC were assessed to exam-
ine how well the model performed. The standard models,
Gamma, inverse Gaussian, and Lognormal distribution, had
AIC values of 22932.64, 22977.98, 22953.38, respectively,
as shown in TABLE XII. However, the spline-based models
had a relatively lower AIC value of 22926.46, 22966.97, and
22944.70 for the spline gamma, spline inverse Gaussian, and
spline lognormal. This shows that the spline-based models
fitted the data well and had better predictive power than
their standard counterparts, which is in line with a study by
[22], [8]. For BIC values that penalize for complexity and
overfitting, we had the spline models still having relatively
low BIC values compared to their standard counterparts. This
could be because the standard models cannot adequately
represent the nonlinear patterns in hazard rates and the
variations in frailty among individuals. When measuring the
observed recurrence times, the spline models were the most
robust and fitted the data well, as their performance was
better than the Standard models. The findings are consistent
with other studies highlighting how spline-based models

react to complicated survival data distributions [25], [5].
Comparison to Kaplan-Meier Survival Estimates: Using

Kaplan-Meier as a benchmark and plotting the survival
probabilities of the standard and spline models for 2-year
follow-up, all the models indicated a sharp drop in survival
probability within the first 0.5 years as shown in Figure 5,
revealing a higher initial recurrence rate of malaria episodes
after the initial episode. For the standard models, the gamma
and inverse Gaussian models mimic the Kaplan-Meier curve
at the start, which indicates that they seem more able to
predict the early risk of recurrence. The lognormal model
indicates that the risk declines gradually, implying that it can
manage situations where the disease takes longer to recur.

Cumulative Hazard Curves

However, all parametric models are not the same as
the Kaplan-Meier curve for the follow-up period, which
points to certain limitations in standard models. Spline-based
techniques and other flexible techniques are therefore better
suited to managing the nonlinear models. After only 0.5 years
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Fig. 4. Spline-based Models Distributions.

of follow-up, Spline Gamma and Spline Inverse Gaussian
models have curves almost identical to the Kaplan-Meier
curve as shown in Figure 6. This method foresees a longer
survival period for some patients, and at the start, it yields
results that differ from those produced by Kaplan-Meier. The
addition of restricted cubic splines makes the model fit the
data better and gives a more realistic estimate of the hazard
function’s initial shape.

Two-Year Recurrence Projections

Figure 7 gives the cumulative hazard for standard and
spline-based frailty models over two years. Unlike the or-
dinary models, Spline Gamma and Inverse Gaussian mod-
els demonstrate a more gradual increase in the risk of
recurrent malaria with time because they are more flexible
for capturing these changes. Standard Inverse Gaussian and
Standard Lognormal models instead predict more rapid and
irregular hazard growth after one year, which might lead to
an exaggerated risk calculation. Of special note, the Standard
Gamma model has the steepest early increase in hazard,
possibly because it is not as flexible in handling nonlinear

trends in the data. Still, the Spline Lognormal model gives
the lowest cumulative hazard over time, which points to
better handling of delayed or scattered events throughout
the follow-up period. This research shows that spline-based
frailty models are best suited for dealing with changes in
hazard through time, and help provide better estimates of
malaria risk for intervention policies.

Distribution of Predicted Recurrences

The graph in Figure 8 shows how many malaria cases
can be expected for people over two years. There is a sharp
increase in the curve within the first 0.5 years, meaning there
is an initial high risk of a recurrence, but the curve levels off
as time lapses, revealing that the risk of another recurrence
reduces as years go by. Such irregular patterns show the
need for flexible models, such as spline-based frailty models,
that deal with changing hazard rates. These recent analyses
demonstrate the usefulness of using joint frailty approaches
and recurrent event models: they allow for more precise and
accurate estimations of the risk of being affected by malaria.
It is observed clinically that, because of intense spread, early
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TABLE IX
PREDICTING RECURRENCE USING STANDARD MODELS

Time Model Baseline Recurrence Rate
0.3 Gamma Weibull 0.0187
0.3 Gamma Exponential 1.1018
0.3 Inverse Gaussian Weibull 0.0281
0.3 Inverse Gaussian Exponential 0.4270
0.3 Log-normal Weibull 0.0118
0.3 Log-normal Exponential 0.3711
1.0 Gamma Weibull 0.1111
1.0 Gamma Exponential 4.4430
1.0 Inverse Gaussian Weibull 0.1299
1.0 Inverse Gaussian Exponential 1.2596
1.0 Log-normal Weibull 0.0659
1.0 Log-normal Exponential 1.1594

Fig. 5. Comparison of survival probabilities over a 2-year follow-up period using Kaplan-Meier estimates and standard/spline frailty models

reinfections are more common and then tend to decrease as
immunity rises or specific measures are enforced.

Risk Score Predictive Accuracy

Predicting the recurrence rate for the next 2 years, we can
see how much malaria is likely to recur again in the next
two years using standard frailty and spline-based models,
and these are shown along with the Kaplan-Meier estimate
in Figure 9. The Kaplan–Meier estimate illustrates a sharp
early rise up to 0.5 years, then levels out close to 1.0 in the

second year, indicating that most cases of recurrence happen
in the beginning. Spline Gamma and Standard Gamma fit
the steep rise at the beginning, and Spline Lognormal and
Spline Inverse Gaussian go slowly, missing the initial risks
but converging afterward. So, even though splines allow for
more flexibility, they could smooth the short-term rise in
the recurrence rate. Even so, spline-based models balance
the accuracy of short-term and long-term predictions, unlike
the extreme change seen early on in the Standard Inverse
Gaussian and Standard Lognormal modes. The results found
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Fig. 6. Cumulative hazard curves comparing spline-based frailty models to Kaplan-Meier estimates, illustrating improved fit with restricted cubic splines

TABLE X
RECURRENCE RATES FOR SPLINE-BASED MODELS

Time Model Baseline Recurrence Rate
0.3 Gamma Weibull 0.0621
0.3 Gamma Exponential 0.0088
0.3 Inverse Gaussian Weibull 0.0394
0.3 Inverse Gaussian Exponential 0.0070
0.3 Log-normal Weibull 0.0520
0.3 Log-normal Exponential 0.0058
1.0 Gamma Weibull 0.2900
1.0 Gamma Exponential 0.0986
1.0 Inverse Gaussian Weibull 0.1708
1.0 Inverse Gaussian Exponential 0.0825
1.0 Log-normal Weibull 0.2033
1.0 Log-normal Exponential 0.0642

TABLE XI
DISTRIBUTION OF MALARIA EPISODES PER INDIVIDUAL

Episodes Frequency Percentage
0 68 22.7%
1 34 11.3%
2 30 10.0%
3 23 7.7%
4 13 4.3%
5 132 44.0%

here are in line with those of [24], [18], who concluded that
using flexible and joint models improves the risk estimation
for recurrent malaria, and [22], [8], who highlighted that
spline-based models well represent non-constant, flexible
risks over time.

Risk Prediction Insights and Policy Implications

The histograms in Figure 10 show the estimated number
of repeated malaria episodes based on a frailty model.
Spline methods (top-row models) generally lead to more
compact distributions that stand out, implying better pre-
dictions and less variation. Notably, both Spline Gamma
and Spline Lognormal have narrow distributions that tilt to
the right, representing a tendency to overpredict the number
of extreme values slightly. At the same time, the standard
models (bottom row) tend to produce distributions that are
broader and widely dispersed. By way of example, Standard
Gamma and Standard Inverse Gaussian have wider tails
and less steep peaks, implying that these distributions show
more variability and react to different individual risks. Such
differences prove the benefit of spline modeling since it
helps control overfitting and provides stable estimates of the
model’s parameters. It appears from these histograms that
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TABLE XII
MODEL PERFORMANCE COMPARISON

Model AIC BIC Log-Likelihood
Standard Gamma 22932.64 22943.37 -11464.32
Spline Gamma 22926.46 22947.94 -11459.23
Standard Inverse Gaussian 22977.98 22988.72 -11486.99
Spline Inverse Gaussian 22966.97 22988.45 -11479.49
Standard Log-Normal 22953.38 22964.12 -11474.69
Spline Log-Normal 22944.70 22966.18 -11468.35

Fig. 7. Cumulative hazard functions for standard and spline-based frailty models over a 2-year follow-up period

spline-based frailty models are better suited for forecasting
recurrent malaria by avoiding unexpected results and placing
most of the probability in likely ranges.

Figure 11 compares each individual’s risk score to the
number of predicted recurrent events when Standard Gamma
frailty is used. The fact that blue points lie very close to the
red line implies an almost perfect linear link between risk
score and event count according to Gamma’s multiplicative
formula. The fact that the points are gathered close to the
red line proves that predictions are accurate and steady. Even
though most estimates are close to the line, those at both ends
may reveal that very low or high-risk people are wrongly
assessed. An R2 close to 0.997 is a good sign, but these
edge pairs point to improved results when using a nonlinear
model.

The graph in Figure 12 illustrates the correlation between

risk scores and the expected number of recurrent malaria
cases computed using the Spline Lognormal frailty model.
Rather than a straight pattern, this plot initially sees an
increase in events, but then the events seem to stay the same
or decrease for higher scores in risk. It is clear from the trend
line that the data has a curved pattern, which means it is not
following a completely straight line. This demonstrates why
spline modeling is beneficial since it supports the interaction
of risk and event prediction. The Standard Gamma model
gives more clustered prediction ranges in Survival Rate
curves, whereas the spread of points in the Lognormal model
seems more spread out across risk levels. In general, this
type of modeling achieves more flexibility and can address
how changes in risk can occur and stabilize in specific
populations.
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Fig. 8. Predicted recurrence probability over a 2-year follow-up for standard and spline-based frailty models

IV. DISCUSSION

The results of this study provide important insights into
the relative performance of frailty models in recurrent event
survival analysis and emphasize the value of incorporating
restricted cubic splines (RCS). Consistent with previous
research, this study shows that the model.

Misspecification—particularly incorrect assumptions
about the baseline hazard—can lead to significant inferential
errors. As [10] reported, and as seen here, using an
exponential rather than a Weibull baseline increases bias
considerably. For example, the spline-based Gamma model’s
covariate effect bias spiked from 0.00207% to 194.254%
under exponential misspecification, reaffirming the necessity
of appropriate baseline specification.

The Gamma distribution emerged as the most reliable
among the standard frailty models, with the lowest bias
and mean squared error (MSE) in both the covariate and
frailty variance estimates. This aligns with [4], who identi-
fied the Gamma model as particularly effective in handling
unobserved heterogeneity due to its mathematical tractability
and flexibility. Conversely, while the Inverse Gaussian model
showed promise in estimating frailty variance—reporting the
lowest MSE (0.001)—its performance on covariate effects

was weaker, showing higher bias and MSE. These results
reflect findings by [1], [6], who caution against using Inverse
Gaussian models in covariate-driven survival scenarios.

The Lognormal model demonstrated the poorest perfor-
mance overall, with the highest bias and MSE across most
measures. This is consistent with [4], who noted its limited
capacity to capture complex heterogeneity. The limitations
of the Lognormal model became even more evident when
examining long-term survival probability and baseline hazard
accuracy, particularly at later time points such as t = 1.0,
where bias and MSE increased considerably.

A key advancement shown in this study is the integration
of RCS, which significantly improved model fit and accuracy.
Particularly for the Gamma frailty model, including RCS-
reduced bias and MSE (e.g., 0.0000207 and 0.0009, respec-
tively) and enhanced prediction of recurrence rates—from
1.87% to 6.211%. These improvements align with the work
of [23], [20], who advocated for the use of flexible parametric
models in capturing non-linear dynamics in epidemiological
data.

However, the benefit of RCS was not uniform across
all distributions. Despite improvements, the Lognormal and
Inverse Gaussian models exhibited considerable bias and
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Fig. 9. Predicted recurrence probability over time using standard and spline-based frailty models, compared with the Kaplan-Meier estimate

Fig. 10. Histogram of predicted recurrent malaria events by model type: spline-based (top row) vs. standard (bottom row)
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Fig. 11. Relationship between individual risk scores and predicted recurrent events using the Standard Gamma frailty model

Fig. 12. Relationship between individual risk scores and predicted recurrent events using the Spline Lognormal frailty model

error in long-term baseline hazard estimation. This supports
observations by [6], who emphasized the deteriorating per-
formance of parametric frailty models over more extended
follow-up periods, especially when assumptions are violated.

When covariates were included, all models showed in-
creased bias and MSE, but the Inverse Gaussian model
appeared to be the most sensitive. This further supports [10],
who warned that including covariates can amplify the adverse
effects of model misspecification.

Overall, the Gamma frailty model—especially when en-
hanced with RCS—offers the most balanced and accurate
performance across key metrics, including bias, standard

deviation, and MSE. This supports the position of [4], who
recommends the Gamma model in situations where the
underlying frailty structure is uncertain. While the Inverse
Gaussian model may still be helpful when the primary goal
is a precise estimation of frailty variance, its broader utility
appears limited by its vulnerability to covariate influence and
long-term estimation error.

The evidence also strongly supports the adoption of RCS
in survival analysis frameworks, particularly for datasets with
suspected non-linear covariate effects. This echoes findings
by [23], [20], who champion RCS for their capacity to reveal
hidden structures in survival data. However, researchers
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should remain cautious when applying RCS in combination
with Lognormal or Inverse Gaussian frailty models for long-
term projections.

These findings underscore the importance of careful model
selection in recurrent survival analysis. As [1] suggests,
robust modeling directly informs clinical decision-making,
especially for recurrent diseases such as malaria. Future
studies should explore these findings across diverse clinical
settings, larger samples, and under competing risks to ensure
the generalizability and practical utility of the models tested,
as recommended by [4].

V. CONCLUSION

These results provide insights into the performance of
frailty models and the effects of the restricted cubic splines in
the recurrent survival analysis. The models were evaluated
based on the bias, standard deviation, mean squared error,
survival probabilities, and baseline hazard estimates. The
results show that misspecifying the baseline hazard can lead
to significant biases and skewed estimates, especially when
the actual baseline hazard function is not linear. The gamma
frailty model was the most reliable, exhibiting low bias and
MSE for the covariate effect (Beta) and the frailty variance
(theta) estimates. The inverse Gaussian model performed
well for theta estimates but had higher bias and mean square
error for beta estimates, which indicated a lesser accuracy in
estimating the covariate effects. The lognormal model had
the highest bias and mean square error for beta and theta
estimates, therefore becoming the least suitable for parameter
estimation. Incorporating the restricted cubic splines into
the models to capture the non-linear relationship between
covariates and the baseline hazard significantly improved the
model’s accuracy, reducing the bias and MSE, particularly
for the gamma frailty model.

For the baseline hazard estimates, the models showed an
increased bias and MSE as time progressed from t=0.3 to
t=1.0, reflecting a reduced accuracy of survival probability
estimates over time. With and without splines, the gamma
frailty model outperformed the inverse Gaussian and Log-
normal frailty models in estimating the baseline hazard,
especially at earlier time points. When the covariates were
excluded from the models, the Inverse Gaussian and gamma
frailty models showed a low relative bias, SD, and MSE,
exhibiting reliable survival probability estimates. However,
when the covariates were included, the relative bias and
MSE increased in all the frailty models. This indicates that
including the covariates introduces more error and variability
in the estimates. The inverse Gaussian model showed the
highest increase in MSE, suggesting it was more sensitive to
the covariate effects than the Gamma model.

The gamma frailty model is the most preferred choice
when the accurate frailty distribution is unknown, as it
generally performs better in terms of bias, SD, and MSE. The
model consistently provides accurate and reliable estimates
for the frailty variance and the covariate effect, especially
when restricted cubic splines are incorporated. The inverse
Gaussian frailty model can be helpful when precise estima-
tion of frailty variance is the primary focus, but it is less
accurate for survival probabilities and covariate effects.

The restricted cubic splines enhanced the model’s flex-
ibility and reduced bias incredibly when estimating non-

linear relationships between the hazards and the covariates.
The increasing bias and MSE over time in all the frailty
models suggested that predictions of long-term survival
probabilities become less reliable. The flexibility provided
by the restricted cubic splines allowed for better model-
ing of non-linear relationships, enhancing the recurrence
rate predictions. The spline-based Gamma frailty model
was the most sensitive to predicting recurrence across both
time points, becoming more valuable for high-risk groups.
Incorporating RCS significantly improved the accuracy of
the frailty models, particularly the Gamma frailty model,
reducing bias and MSE and better capturing the non-linear
relationships between the covariates and the baseline hazard
over the standard models.

Practitioners and researchers should consider incorporating
the restricted cubic splines into survival analysis models to
improve the accuracy of capturing the non-linear relation-
ships between covariates and hazard functions. However,
caution should be taken when interpreting long-term survival
estimates because predictions for extended follow-up periods
might be less reliable, especially for lognormal and inverse
Gaussian models.

These results emphasize the importance of suitable model
selection in survival analysis and recurrence prediction in
clinical decision-making. Accurate and correct modeling can
inform patient management strategies by better understand-
ing the likelihood of event recurrences. Therefore, the study
underscored the importance of selecting appropriate frailty
models and using flexible methods that incorporate RCS to
improve the accuracy of survival estimates in recurrent event
analysis. Further research into model performance across
different datasets with different sample sizes and clinical
scenarios is necessary to validate these findings further and
refine methodologies in recurrent survival analysis.
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