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I(VI)-total Colorings on the Disjoint Union of
16-Cycles Vertex-distinguished by Multisets

Chen WANG, Xiang’en CHEN

Abstract—In the paper, the I-total colorings and VI-total
colorings of mC'1s which are vertex-distinguished by multisets
are researched by use of the method of distributing color sets
in advance in order to construct colorings. The optimal I-total
colorings and VI-total colorings of mCis which are vertex-
distinguished by multisets are constructed by means of the
matrix whose entries are multiple subsets containing 3 elements
(at least two elements are different) or empty subsets of the
set composed of all colors available. Thereby we obtain I-total
chromatic numbers and VI-total chromatic numbers of mC's
which are vertex-distinguished by multisets.

Index Terms—cycle; disjoint union; I-total coloring; VI-total
coloring; color set; vertex-distinguished

I. INTRODUCTION AND BASIC CONCEPTS

ANY results of point-distinguishing general edge
colorings are given in [1-6].

The general edge coloring of a graph which is vertex-
distinguished by multiple sets was proposed by M. Aigner
et al. in [7], the related results were given in [8-12].

Xiang’en Chen and Zepeng Li proposed vertex-
distinguishing I-total coloring and vertex-distinguishing VI-
total coloring of a graph in [13].

Let m(C), denote the vertex-disjoint union of m cycle C,,
of order n.

In [14-16], the I-total colorings and VI-total colorings
of mC,, (3 < n < 12) which are vertex-distinguished by
multisets are researched. We will study the optimal I-total
colorings and optimal VI-total colorings of mC1¢ which are
vertex-distinguished by multisets in detail in this paper.

A general total coloring such that any two adjacent vertices
receive different colors and any two adjacent edges receive
different colors is called an I-total coloring of G.

A general total coloring such that any two adjacent edges
are colored with different colors is called a VI-total coloring
of G.

An I-total coloring in which [ colors are available is called
[-I-total coloring (of G).

A VI-total coloring in which [ colors are available is called
[-VI-total coloring (of G).

Let f be the I-total coloring (resp. VI-total coloring) of a
graph G. A multiple color set of any vertex y of G under f
is a multiple set of the colors of the vertex y under f and
the colors of all edges incident with y. A multiple color set
of y under f is denoted by C(y) (or simply C(y) if no
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confusion arises). In this paper, the multiple color set of any
vertex y of GG under f is also called the color set of y (under
).

Let f be an I-total coloring (resp. a VI-total coloring) of a
graph G, if any two distinct vertices have distinct color sets,
then f is called an I-total coloring of G which is vertex-
distinguished by multisets (resp. a VI-total coloring of G
which is vertex-distinguished by multisets).

The minimum number of colors required in an I-total
coloring (resp. a VI-total coloring) of G which is vertex-
distinguished by multisets is called the I-total (resp. VI-total)
chromatic number of G which is vertex-distinguished by
multisets. This number is denoted by \i,(G) (resp. X24(G)),
ie.,

¥'+(G) =min{l|G has an [-I-total coloring which is
vertex-distinguished by multisets};

XY%(G) =min{l|G has an [-VI-total coloring which is
vertex-distinguished by multisets}.

Let 9 and A denote the minimum degree and the maxi-
mum degree of G, respectively. Whereas n;(G) denotes the
number of vertices of G with degree i, 06 <i < A. Let

(G) =min{l]i(}) + (,1,) = ni(G),6 <i < A},
Proposition 119 {7 (G) > %(G) > {(Q).

II. PRELIMINARIES

For any integer [ > 3, the (I — 1) x | matrix A; is
constructed, and the elements of the matrix A; are 3-subsets
(multiple sets, at least two elements are different) containing [
or empty subsets of the set {1,2,- -, 1}, where the [ elements
in the i-th row of A; are {I,1,4},{l,4,i},{l,¢,i+1}, {l,4,i+
2}, - {la, 0 =13, 0,0,---,0,i=1,2,---, 1 — 1.

Note that there are ¢ — 1 empty subsets in the ¢-th row of
A,i=1,2,--- 01— 1.

The entries of A; are arranged in the following form:

1,1, {1,1,2} e
{1,2,2} {1,2,3} S {a,
) {1,3,4}

(0,0 —2y {l,l—21-2} {l,l—21—1}
-1y {Ll—1.1-1} )

ss
ss

If 16 elements (non-empty sets) of the matrix A; are
exactly the (multiple) color sets of all vertices of Cj¢ under
an I-total coloring of C1¢ which is vertex-distinguished by
multisets, then we say that these 16 elements form a good
group (about C1g).

Let f be an k-I-total coloring of mC1¢ which is vertex-
distinguished by multisets. If all 3-subsets (of {1,2,---,k})
in which at least two colors are different are the color sets
of vertices of mC1g under f, then 3-subsets are said to be
used up under f.

We will introduce 11 types of good groups firstly and then
give 4 lemmas.
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Good group of type L.

Let ! > 5,4 = 1(mod 4),i < [ — 6. The 16 elements
(not empty sets) in A;[i, i+ 1,4+ 2,4+ 3|1,2,3,4] form a
good group about Cs (because the 16 elements are color
sets of all 16 vertices of Cis under the I-total coloring
in Fig. 1 which is vertex-distinguished by multisets). The
good group composed of 16 elements (not empty sets) in
Aili,i+ 1,0+ 2,0+ 3|1,2,3,4] is called a good group of
type I, and the coloring in Fig. 1 is called a coloring of type

l@) i @ l @m@ l @Hzgl)
&)

i+3 i+3

v o
i+2@ l @iH@ l @ i @

Fig. 1: A coloring of type I

Good group of type II

Let ! > 5, i and j be positive integers, i = 1 (mod 4) ,j =
1(mod 4), j > 5, i+ j <1 —5. Then the 16 elements (not
empty sets) in A;[i,i+ 1,i+2,i+3 |5,5+1,5+2,5+ 3]
form a good group about Cis (because the 16 elements
are color sets of all 16 vertices of Cjg under the I-
total coloring in Fig. 2 which is vertex-distinguished by
multisets). The good group composed of 16 elements in
Ali, i+ 1,0+ 2,44 3|4,7 + 1,5 + 2,7 + 3] is called a good
group of type II, and the coloring in Fig. 2 is called a coloring
of type II.

ilili+1

+3 +1

i+3 l i+2 l i+2

Fig. 2: A coloring of type II

An element (actually a subset) in A; is said to be active
if it is not an empty set and is not an element of any good
group of type I or 1L

Let the number of active elements in column j of A; be
tj,j=1,2,---,1. Let

Ti=(t1,t2,t3, -~ ti—1,t1)
T, is called the active sequence of A;.

Since each item in 7} is in {0,1,2,3,4,5}, the comma
between two successive items in 77 is omitted when actually
writing, and a space is added between the 4s-th item and
the (4s + 1)-th item, where s > 1,4s + 1 < [. For example
Tho = (5543 6543 6543 6543 6543 21).

When writing 77, a line segment is drawn under a sequence
of 32 consecutive items such as “5432 5432 5432 5432 5432
5432 5432 5432 or “6543 6543 6543 6543 6543 6543 6543

6543 or “3210 3210 3210 3210 3210 3210 3210 3210” or
“4321 4321 4321 4321 4321 4321 4321 4321”. For example,
T390+ 5=(4432 5432 5432 5432 5432 5432 5432 5432 5432

- 5432 5432 5432 5432 5432 5432 5432 5432 1). There
are t line segments which are drawn under specific sequence

T32¢45.

Good group of type III.

There are 56 active elements in the 16 columns of A;
corresponding to the subsequence (5432 5432 5432 5432)
(this subsequence is constructed by the former 16 terms or
the back 16 terms in one 32-term subsequence under which a
line segment is drawn, and the first term of this subsequence
is corresponded to the j-th column of A;, 7 = 5 (mod 16)).
The 48 elements among these 56 active elements can be
divided into three good groups about Cig (because the 48
elements are the color sets of all 48 vertices of 3C g under
its I-total coloring in Fig. 3 which is vertex-distinguished by
multisets). These three good groups are all called the good
groups of type III, and three colorings in Fig. 3 (a), (b), (¢)
are all called the colorings of type III.

@’jl l @l—j—z@ l l—l
(2
-1 151

o
00! @0 @@
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Fig. 3: Colorings of type III

Good group of type IV.
For each 32-term subsequence (5432 5432 5432 5432 5432
5432 5432 5432) under which a line segment is drawn (the
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first term of this subsequence is corresponded to the j-th
column of A4;, j = 5(mod 32), s = j + 16), there are
exactly 16 active elements which are in the columns (from
j-th to (s + 15)-th column) of A; corresponding to this
subsequence and which are not in any good group of type
III. These 16 active elements can form a good group about
C16 (because the 16 elements are the color sets of all 16
vertices of C¢ under the I-total coloring in Fig. 4 which is
vertex-distinguished by multisets). This good group is called
a good group of type IV, and the coloring in Fig. 4 is called
a coloring of type IV.

@0 @0 @G
@ @

1-j-15 1-s-14

@ o
@@ OO @O

Fig. 4: A coloring of type IV

Good group of type V.

For each subsequence (6543) of four successive terms in
T; (the first term of this subsequence is corresponded to the
i-th column of A;, i = 5(mod 4), i > 5), there are 16
active elements of A; which are in the columns (from i-th to
(i + 3)-th column ) corresponding to this subsequence and
which can form a good group about C'¢ (because the 16
elements are the color sets of all 16 vertices of Cg under
the I-total coloring in Fig. 5 which is vertex-distinguished by
multisets). Such a good group is called a good group of type
V, and the coloring in Fig. 5 is called a coloring of type V.

i@l@z‘l@m
S (2
-1 i+1
© @
@m@ l @i+2@ l i+2@
Fig. 5: A coloring of type V
@ i @ l @i+4@ l @i+8@
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Fig. 6: A coloring of type VI

Good group of type VL

For each subsequence (6543 6543 6543 6543 6543 6543
6543 6543) of T; under which a line segment is drawn (the
first term of this subsequence is corresponded to the i-th
column of A;, i = 5 (mod 32), i > 5), the corresponding 32
columns (from é-th to (¢ +31)-th column ) of A; correspond
eight good groups of type V, and another 16 active elements
correspond to this subsequence are not in any good groups
of type V. These 16 active elements can form a good group
about (1 (because the 16 elements are color sets of all 16
vertices of C'¢ under the I-total coloring in Fig. 6 which is
vertex-distinguished by multisets). This good group is called
a good group of type VI, and the coloring in Fig. 6 is called
a coloring of type VL

Good group of type VIL

For each subsequence of the four successive terms (5543)
in 77 under which a line segment is not drawn, the 16 active
elements (not including {I,! — 2,1 — 1}) at the intersection
of the first four columns and the reciprocal first to fourth
rows in A; can form a good group about Ci4 (because the
16 elements are color sets of all 16 vertices of Cig under
the I-total coloring in Fig. 7 which is vertex-distinguished by
multisets). This good group is called a good group of type
VII, and the coloring in Fig. 7 is called a coloring of type

@1-5@ l l-4@ l @1-3@

@ @

-3 -2

" o
B B0 0"

Fig. 7: A coloring of type VII

Good group of type VIII.

For each 32-term subsequence (3210 3210 3210 3210 3210
3210 3210 3210) under which a line segment is drawn (the
first term of this subsequence is corresponded to the j-th
column of A;, 7 = 5(mod 32), j > 5), there are 48 active
elements in 32 columns of A; (from j-th to (j + 31)-th
column ), which can be divided into three good groups about
C1s (because the 48 elements are the color sets of all 48
vertices of 3C¢ under its I-total coloring in Fig. 8 which
is vertex-distinguished by multisets), and these three good
groups are called the good groups of type VIII. The colorings
in Fig. 8(a), (b), (c) are called the colorings of type VIIIL.

Good group of type IX.

For each subsequence (4321 4321) of the eight successive
terms in 7; under which a line segment is drawn (the first
term of this subsequence is corresponded to the j-th column
of A;, j = 5(mod 8), j > 5), there are 16 active elements
in 8 columns of A; (from j-th to (j + 7)-th column), which
can form a good group about C'4 (because the 16 elements
are the color sets of all 16 vertices of Cg under the I-total
coloring in Fig. 9 which is vertex-distinguished by multisets).
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Fig. 8: Colorings of type VIII

This good group is called a good group of type IX, and the
coloring in Fig. 9 is called a coloring of type IX.
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Fig. 9: A coloring of type IX

Good group of type X.

For each 32-term subsequence (4321 4321 4321 4321 4321
4321 4321 4321) under which a line segment is drawn (the
first term of this subsequence is corresponded to the j-th
column of A;, j = 5 (mod 32)), there are 16 active elements
in 32 columns of A; (from j-th to (j + 31)-th column) are
not in any good group of type IX. These 16 active elements
can form a good group about C'14 (because the 16 elements
are the color sets of all 16 vertices of Cig under the I-
total coloring in Fig. 10 which is vertex-distinguished by

multisets), which is called a good group of type X, and the
coloring in Fig. 10 is called a coloring of type X.

@0 @0 @@
@
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Fig. 10: A coloring of type X

Good group of type XI.

Consider subsequence (33 4321) of 7; under each term
of which a line segment is not drawn. The first and second
term of 7; are 3 and the penultimate first to fourth term of
Ty are 1, 2, 3, 4 respectively. There are 6 active elements in
first two columns of A; and there are 10 active elements in
the penultimate first to fourth column of 7;. These 16 active
elements can form a good group about C1¢ (because the 16
elements are the color sets of all 16 vertices of Cg under
the I-total coloring in Fig. 11 which is vertex-distinguished
by multisets), which is called a good group of type XI, and
the coloring in Fig. 10 is called a coloring of type XI.
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Fig. 11: A coloring of type XI

By the above 11 types of good groups and 11 types of
colorings, we can obtain the following 4 lemmas easily and
omit their proofs.

Lemma 1. Let [ > 5 and [ = 1 (mod 4).

(1) When [ = 5 (mod 32), (é) — 14 elements (each of
which is not the empty subset) in A; can be divided into
+((5)—14) good groups about C'6, and another 14 elements
(not the empty subset) that are not in these good groups are
{LL1—=4}, {l,l—4,1—-4}, {l,1—-4,1-3}, {I,1 — 4,1 -2},
{L,,1-3}, {l,1-3,1-3}, {I,1-3,1—2}, {l,1—3,l—1},
{Ll=2}, {1, —2,1—-2}, {I,l —2,1—1}, {l,l,1 — 1},
{L,I-1,1—1}, {i,1,1 —1}.

(2) When ! = 9 (mod 32), we have that (1) —12 elements
(each of which is not the empty subset) in A; can be divided
into %((é) — 12) good groups, and another 12 elements
(not the empty subset) that are not in these good groups are
{,1,1-5}, {1,1,1—4}, {1,1,1-3}, {i,1,1—2}, {I,1,1—1},
{l,2,1—4}, {1,2,1-3}{1,2,1—2}, {1,2,1-1}, {I,3,1-3},
{1,3,1 -2}, {1,3,1l — 1}.

(3) When | = 13 (mod 32), (1) — 10 elements (each of
which is not the empty subset) in A; can be divided into
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L((%) — 10) good groups, and another 10 elements (not the
empty subset) that are not in these good groups are {I,1,] —
4}, {l,1-4,1-4}, {l,1-4,1-3}, {,1,1-3}, {I,1-3,1-3},
{L,1=3,1—2} {I,l,1 =2}, {I,1 —2,1 -2}, {L,1,] — 1},
{L,l-1,1-1}.

(4) When [ = 17 (mod 32), (é) — 8 elements (each of
which is not the empty subset) in A; can be divided into
L((%) — 8) good groups, and another 8 elements (not the
empty subset) that are not in these good groups are {l,1,] —
43}, {i,1—-4,1—4}, {I,1-4,1-3}, {l,1—-4,1-2}, {I,1,1-3},
{L,1-3,1-3} {l,l—-3,1—2}, {l,l—3,1—1}.

(5) When [ = 21 (mod 32), (}) — 6 elements (each of
which is not the empty subset) in A; can be divided into
%((é) — 6) good groups, and another 6 elements (not the
empty subset) that are not in these good groups are {I,1,] —
43, {1 —4,1—4} {1,1,1-3} {1,1-3,1—3}, {I,1,1 -2},
{l,1—-2,1—2}.

(6) When [ = 25 (mod 32), (é) — 4 elements (each of
which is not the empty subset) in A; can be divided into
L((%) — 4) good groups, and another 4 elements (not the
empty subset) that are not in these good groups are {l,1,] —
4, {1 —4,1—4}, {,1,1 -3}, {I,1 - 3,1 —3}.

(7) When | = 29 (mod 32), (1) — 2 elements (each of
which is not the empty subset) in A; can be divided into
%((é) — 2) good groups, and another 2 elements (not the
empty subset) that are not in these good groups are {I,1,]—
2} {,1,1—1}.

(8) When [ = 1 (mod 32), all elements (each of which is
not the empty subset) in A; can be divided into %6 (é) good
groups, all elements (each of which is not the empty subset)
in A; are in these good groups.

Lemma 2. Let [ > 6 and [ = 2 (mod 4).

(1) When [ = 6 (mod 32), (é) — 4 elements (each of
which is not the empty subset) in A; can be divided into
%((é) —4) good groups, and another 4 elements (not the
empty subset) that are not in these good groups are {I,! —
2,1 —1}4 {,1,1—-2}, {I,1,1 — 1}, {1,2,1 — 1}

(2) When [ = 10 (mod 32), (é) — 6 elements (each of
which is not the empty subset) in A; can be divided into
+((}) — 6) good groups, and another 6 elements (not the
empty subset) that are not in these good groups are {l,] —
2,1—-1} {0, 1,1-2}, {l,1,1 -1}, {I,2,1 -1}, {I,5,1 — 2},
{l,5,1 —1}.

(3) When | = 14 (mod 32), (1) — 8 elements (each of
which is not the empty subset) in A; can be divided into
%((é) — 8) good groups, and another 8 elements (not the
empty subset) that are not in these good groups are {I,] —
2,0 —1}{l, 1,0 =2}, {l,1,1 -1}, {l,2,0l -1}, {I,5,1 — 2},
{1,5,1 -1}, {1,9,1 -2}, {1,9,1 —1}.

(4) When [ = 18 (mod 32), (é) — 10 elements (each of
which is not the empty subset) in A; can be divided into
L((%) — 10) good groups, and another 10 elements (not the
empty subset) that are not in these good groups are {l,] —
2,1-1} {,1,1-2}, {l,1,1 -1}, {I,2,1 -1}, {I,5,1 — 2},
{1,5,1—-1}, {1,9,1—2}, {1,9,1—1}, {1,13,1—2}, {I,13,1—
1}.

(5) When [ = 22 (mod 32), (1) — 12 elements (each of
which is not the empty subset) in A; can be divided into
%((é) —12) good groups, and another 12 elements (not the
empty subset) that are not in these good groups are {I,] —
2,1—-1} {1, 1,1-2}, {,1,1 -1}, {I,2,1 -1}, {I,5,1 — 2},

{1,5,1—1},{1,9,1—2}, {1,9,1—1}, {1,13,1 -2}, {1,13,1—
1 {170 —2}, {i,17,1 — 1}

(6) When | = 26 (mod 32), (1) — 14 elements (each of
which is not the empty subset) in A; can be divided into
%((é) —14) good groups, and another 14 elements (not the
empty subset) that are not in these good groups are {I,] —
2,0 —1}{l, 1,0 —2}, {l,1,1 -1}, {l,2,0l -1}, {I,5,1 — 2},
{1,5,1—1},{1,9,1—2}, {1,9,1 -1}, {1,13,1—2}, {1,13,1—
14 {170 =2}, {l,17,1 — 1}, {1,21,1 — 2}, {I,21,]1 — 1}.

(7) When [ = 30 (mod 32), all elements (each of which
is not the empty subset) in A; can be divided into - (%)
good groups, all elements (each of which is not the empty
subset) in A; are in these good groups.

(8) When | = 2(mod 32), (}) — 2 elements (each of
which is not the empty subset) in A; can be divided into
L((%) —2) good groups, and another 2 elements (not the
empty subset) that are not in these good groups are {/,2,]—
1h {1 —2,1—1}.

Lemma 3. Let [ > 7 and | = 3 (mod 4).

(1) When [ = 7 (mod 32), (é) — 11 elements (each of
which is not the empty subset) in A; can be divided into
L((%) = 11) good groups, and another 11 elements (not the
empty subset) that are not in these good groups are {I,1,] —
L A{LI-1,1-1} {1, 1-2}, {l,1-2,1-2}, {l,1-2,1—-1},
{,1,1-3}, {1,1,1—2}, {1, 1,1-1}, {1,2,1—2}, {I,2,1—1},
{1,3,1 —1}.

(2) When [ = 11 (mod 32), (é) — 1 elements (each of
which is not the empty subset) in A; can be divided into
L((%) = 1) good groups, and another one element (not the
empty subset) that are not in these good groups are {I,1,]—
1}.

(3) When | = 15(mod 32), (1) — 7 elements (each of
which is not the empty subset) in A; can be divided into
L((%) = 7) good groups, and another 7 elements (not the
empty subset) that are not in these good groups are {I,1,] —
1L A{LI=-1,1-1} {1, 1-2},{l,1-2,1-2}, {l,1-2,1—-1},
{,,1,1 -3}, {I,1,1 — 2}.

(4) When [ = 19 (mod 32), (é) — 13 elements (each of
which is not the empty subset) in A; can be divided into
+((5) —13) good groups, and another 13 elements (not the
empty subset) that are not in these good groups are {l,1,1 —
1L {L1-1,1-1}, {i, 1, 1=2}, {l,1-2,1—-2}, {l,1—2,1—1},
{,1,1-3}, {I,1,1—-2}, {I,1,1—1}, {I,2,1—-2}, {1,2,1—1},
{1,3,1 =1}, {i,5,1 — 3}, {l,5,1 — 2}.

(5) When [ = 23 (mod 32), (é) — 3 elements (each of
which is not the empty subset) in A; can be divided into
%((é) — 3) good groups, and another 3 elements (not the
empty subset) that are not in these good groups are {l,1,] —
2y, {1 —2,1 =2} {l,1 — 2,1 —1}.

(6) When [ = 27 (mod 32), (é) — 9 elements (each of
which is not the empty subset) in A; can be divided into
L((%) —9) good groups, and another 9 elements (not the
empty subset) that are not in these good groups are {l,1,1 —
1L {L1=-1,1-1}, {i, 1, 1-2}, {l,1-2,1—-2}, {l,1—2,1—1},
{1,1,1 =3}, {i,1,1—2}, {1, 1,1 — 1}, {1,3,1 — 1}.

(7) When | = 31 (mod 32), (1) — 15 elements (each of
which is not the empty subset) in A; can be divided into
%((é) — 15) good groups, andanother 15 elements (not the
empty subset) that are not in these good groups are {I,1,] —
1h{L1-1,1—-1}, {1, 1, 1—2}, {l,1—2,1—2}, {l,1—2,1—1},
{1,1,1-3}, {1,1,1-2}, {},1,1-1}, {1,2,1—2}, {I,2,1—1},
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{1,3,1-1}, {I,5,1-3}, {I,5,1—2}, {I,5,1—1}, {1, 7,1—1}.
(8) When | = 3(mod 32), (}) — 5 elements (each of
which is not the empty subset) in A; can be divided into
L((%) — 5) good groups, and another 5 elements (not the
empty subset) that are not in these good groups are {I,1,] —
L A{LI=1,1-1} {1, 1-2}, {l,1-2,1-2}, {l,1—2,1—1}.

Lemma 4. Let [ > 8 and | = 0 (mod 4).

(1) When | = 8(mod 32), (}) — 3 elements (each of
which is not the empty subset) in A; can be divided into
L((}) = 3) good groups, and another 3 elements (not the
empty subset) that are not in these good groups are {I,] —
3 0—2h {1 -3l -1}, {l,1 —2,1—1}.

(2) When [ = 12 (mod 32), (é) — 13 elements (each of
which is not the empty subset) in A; can be divided into
%((é) —13) good groups, and another 13 elements (not the
empty subset) that are not in these good groups are {I,] —
3,0 =2}, {I,1 —3,1 =1}, {l,1 —2,1 =1}, {I,5,1 — 4},
{1,5,1-3}, {I,5,1—2},{l,5,1-1}, {i,6,1—3}, {l,6,1—2},
{l,6,1 —1}, {i,7,1—2}, {1,7,1 — 1}, {1,8,1 — 1}.

(3) When | = 16 (mod 32), (é) — 7 elements (each of
which is not the empty subset) in A; can be divided into
%((é) — 7) good groups, and another 7 elements (not the
empty subset) that are not in these good groups are {I,! —
3,0 —2}, {I,1 — 3,1 —1}, {,1 —2,1 — 1}, {I,5,1 — 4},
{1,5,1 -3}, {I,5,1 — 2}, {I,5,l —1}.

(4) When [ = 20 (mod 32), (é) — 1 elements (each of
which is not the empty subset) in A; can be divided into
L((%) = 1) good groups, and another one element (not the
empty subset) that are not in these good groups are {I,] —
2,1 —1}.

(5) When | = 24 (mod 32), (1) — 11 elements (each of
which is not the empty subset) in A; can be divided into
%((é) —11) good groups, and another 11 elements (not the
empty subset) that are not in these good groups are {I,! —
3,0—2}, {1,1-3,1-1}, {I,1—2,1—1}, {1,5,1—4}, {I,5,1—
3}, {l,5,1 — 2}, {l,5,1 — 1}, {1,13,1 — 4}, {I,13,1 — 3},
{1,13,1 -2}, {1,13,1 — 1}.

(6) When | = 28 (mod 32), (1) — 5 elements (each of
which is not the empty subset) in A; can be divided into
L((}) = 5) good groups, and another 5 elements (not the
empty subset) that are not in these good groups are {I,1,] —
3L {L,1-3,1-3}{l,1-3,1—-2}, {l,l -3l -1}, {l,l -
2,1 —1}.

(7) When [ = 0(mod 32), (é) — 15 elements (each of
which is not the empty subset) in A; can be divided into
L((%) — 15) good groups, and another 15 elements (not the
empty subset) that are not in these good groups are {I,] —
3,0 =2}, {I,1 —3,1 =1}, {l,l —2,1 =1}, {I,5,1 — 4},
{1,5,1-3}, {1,5,1—2}, {1,5,1—1}, {1,13,1—4}, {I,13,1—
3}, {1,131 —2}, {1,13,1 — 1}, {l,21,1 — 4}, {i,21,1 — 3},
{l,21,1 — 2}, {1,21,1 — 1}.

(8) When | = 4(mod 32), (é) — 9 elements (each of
which is not the empty subset) in A; can be divided into
L((%) —9) good groups, and another 9 elements (not the
empty subset) that are not in these good groups are {l,1,1 —
34, {l,1-3,1-3},{l,1-3,1-2}, {I,1-3,1-1}, {I,1,1—2},
{Ll=2,1-2} {i,1—2,1—1}, {l,l,1—1}, {l,1 - 1,1 —1}.

III. MAIN RESULTS

Theorem 1. If 2(" )+ ('3") < 16m < 2(}) + (). m > 1,

[ > 4, then )Zf,t(mClg) =1

Proof. Obviously, \%,(mCig) > 5 (mCig)=l. Therefore,
it suffices to give the [-I-total coloring of mCig which is
vertex-distinguished by multisets when Q(lgl) + (lgl) <
16m < 2(3) + (3.

We will abbreviate “ [-I-total coloring of mC1g which is
vertex-distinguished by multisets” to *“ [-coloring of mC1g”
in the following.

For each [ > 4, only the I-coloring of [&[2() + (})]]
C16 is given below. Then the [-coloring of mCig can be

obtained immediately by restriction when 2(l;1) + (lgl) <

t6m < 2(2) + (1) and m # [:[2(2) + () -

When m = 1,1 = 4, sixteen 3-subsets {1, 1,2}, {2,2,1},
{1,4,4}, {4,3,1}, {1,1,4}, {4,3,3}, {3,1,1}, {3,3,1},
{2,3,4}, {1,2,3}, {3,3,2}, {2,2,3}, {3,4,4}, {4,4,2},
{4,2,2}, {4,2, 1} are the color sets of vertices of C}¢ under
4-coloring depicted in Fig. 12, and there is no remaining
3-subset.

1@2@1@4@1@4@3
® ®)

2 2

© S
ONONOMONMONO
Fig. 12: A coloring of Ci¢

We execute the following 32 procedures recursively when
l increases from 5.

In every procedure, we will construct colorings on the
basis of the constructed (I — 1)-coloring of the graph
l12('50) + (591 Cue

Procedure 1 [ = 5(mod 32).

Based on the conclusion of the Lemma 1 (1), we can ob-
tain the colorings of cycles from the {| & [2('5") + (‘3")]) +
1}-th Ci6 to the £[2(1) + (&) — 14]th Cyg. There are
fourteen 3-subsets that are not the color sets of any vertices.
These fourteen 3-subsets are {I,1,1 — 4}, {l,1 — 4,1 — 4},
{L,I—4,1-3}, {l,1—4,1—-2}, {l,1,1 -3}, {I,1—3,1 -3},
{L,1-3,1-2}, {l,1-3,1—-1}, {l,l,1 -2}, {l,l —2,1 -2},
{Liil—=2,1—1} {i,1,1—1},{l,1—1,1—1}, {l,1,l—1}, and
also say that these fourteen 3-subsets remain.

@1-5@1-11-5@1-1@1-4
@ ©)

l -4

7 2
@1-2@1-1 @Z—Z@l-l @1-3@

Fig. 13: A new coloring of C¢ appears in Procedure 2

Procedure 2 | = 6(mod 32).
Based on the conclusion of the Lemma 2 (1), we can

obtain the colorings of cycles from the {L%P(lgl) +
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(lgl)” + 1}-th (16 to the %[2(%) + (é) — 18]-th (16 and
four 3-subsets remain. A new good group for C¢ is formed
by combining two 3-subsets of the four 3-subsets above
and fourteen 3-subsets which remain in Procedure 1 (this
good group is constituted from the color sets of all vertices
in C16 under the coloring depicted in Fig. 13), and the
1—16[2(5) + (4) — 2]-th C16 is colored properly. Consequently,
{l,1,1 =1}, {i,1,1 — 2} remain.
Procedure 3 | = 7(mod 32).

Based on the conclusion of the Lemma 3 (1), we can ob-
tain the colorings of cycles from the {| {5 [2 (lgl) + (lgl)” +
1}-th Cy6 to the %6[2(5) + (é) — 13]-th C4y6. Consequently,
{LLU=1} {1 = 1,0 — 1}, {l,1,0 — 2}, {I,1 — 2,1 — 2},
(.0 — 20— 1}, {,1,0 — 3}, {L,1,1 — 2}, {,1,1 — 1},
{,2,1 — 2}, {I,2,1 — 1}, {1,3,1 — 1}, {l — 1,1, — 2},
{l—1,1,1 — 3} remain.

Procedure 4 | = 8(mod 32).

Based on the conclusion of the Lemma 4 (1), we can
obtain the colorings of cycles from the {[{5[2 (151) +
(*35]) + 1}-th Cie to the £[2(2) + (L) — 16]-th Cy6 and
three 3-subsets remain. A new good group for C1¢ is formed
by combining these three 3-subsets and thirteen 3-subsets
which remain in Procedure 3 (this good group is constituted
from the color sets of all vertices in Cg under the coloring
depicted in Fig. 14), and the =[2(}) + (})]-th Ci5 is colored
properly. Consequently, all 3-subsets in {1,2, - - -, [} are used

@1-2@1-1@1-3@5-1@1-3@
@ ©)

-3 1

I
@1-2@1-1@ 2 @1-21 @

Fig. 14: A new coloring of Cig appears in Procedure 4

Procedure 5 | = 9(mod 32).

Based on the conclusion of the Lemma 1 (2), we can
obtain the colorings of cycles from the {[{5[2 (lgl) +

(*3D)]) +1}-th C6 to the =[2(1) + () —12)-th C16. Finally,
{I,1,1-5}, {1, 1,14}, {I,1,1-3}, {{,1,1-2}, {I, 1,11},
{1,2,1-4}, {1,2,1-3}, {1,2,1-2}, {1,2,1-1}, {I,3,1-3},

{1,3,1 -2}, {I,3,] — 1} remain.
1 @1-11 @l—l@l—z@
2

o

l I-1

S o
O @O @B

Fig. 15: A new coloring of Ci4 appears in Procedure 6

Procedure 6 | = 10(mod 32).

Based on the conclusion of the Lemma 2 (2), we can
obtain the colorings of cycles from the {|[2('3') +
(lgl)” +1}-th Cy6 to the 1—16[2(5) + (é) —18]-th C16 and six
3-subsets remain. A new good group for Ci¢ is formed by
combining four 3-subsets among these six 3-subsets above
and twelve 3-subsets which remain in Procedure 5 (this
good group is constituted from the color sets of all vertices
in C16 under the coloring depicted in Fig. 15), and the
%[2(%) + (é) — 2]-th Cy¢ is colored properly. Consequently,
{1,1,1 =1}, {I,1,1 — 2} remain.

Procedure 7 [ = 11(mod 32).

Based on the conclusion of the Lemma 3 (2), we can ob-
tain the colorings of cycles from the {| & [2('3") + (‘3)]) +
1}-th Ci6 to the -[2(2)+(4) —3]-th Ci. Finally, {1, 1,11},
{{-1,1,1-2}, {{-1,1,l — 3} remain.

Procedure 8 | = 12(mod 32).

Based on the conclusion of the Lemma 4 (2), we can ob-
tain the colorings of cycles from the {| £ [2('5") + (‘31)]) +
1}-th Cy to the =[2(1) + (L) — 16]-th C1s and thirteen
3-subsets remain. A new good group for Cjg is formed
by combining these thirteen 3-subsets and three 3-subsets
which remain in Procedure 7 (this good group is constituted
from the color sets of all vertices in C1g under the coloring
depicted in Fig. 16), and the =[2(4) + (})]-th Cye is colored
properly. Consequently, all 3-subsets in {1,2, - -, [} are used

H@ls@ l @l-l l 5 @j
©)

-2 5

= @
@@ @ ®'©

Fig. 16: A new coloring of Cig appears in Procedure 8

Procedure 9 [ = 13(mod 32).

Based on the conclusion of the Lemma 1 (3), we can

obtain the colorings of cycles from the { Li[Q(lgl) +

16
(*3H)]) 4+ 1}-th Ci6 to the & [2(3) + (5) —10]-th C16. Finally,
{LLT =4} {1 —4,1—4}, {I,1 — 4,1 =3}, {I,1,1 — 3},
{L,1-3,1-3}, {I,1-3,1—2}, {l,[,1 -2}, {l,l—2,1—2},
{l,,l -1}, {I,1 — 1,1 — 1} remain.

Procedure 10 [ = 14(mod 32).

Based on the conclusion of the Lemma 2 (3), we can
obtain the colorings of cycles from the {L%B(lgl) +
(lgl)” + 1}-th 016 to the %[2(%) + (é) — ].8]-th C16
and eight 3-subsets remain. A new good group for Cig is
formed by combining six 3-subsets of the eight 3-subsets
above and ten 3-subsets which remain in Procedure 9 (this
good group is constituted from the color sets of all vertices
in C16 under the coloring depicted in Fig. 17), and the
£12(5) + (%) — 2)-th Cy¢ is colored properly. Consequently,
{1,1,1 -1}, {I,1,1 — 2} remain.
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?1-5@1-1@1-4@1-1@1-4
© D

l -3

; 0
@ l @5 @ ! @1-1@1-2@

Fig. 17: A new coloring of C}¢ appears in Procedure 10

Procedure 11 [ = 15(mod 32).

Based on the conclusion of the Lemma 3 (3), we can ob-
tain the colorings of cycles from the {| = [2('3") + (‘3")]] +
1}-th Cyg to the 15[2(2) +(4) —9]-th Ci. Finally, {I,1,1—1},
{Li=1,1=1} {,l,1=2}, {l,l—2,1—2}, {l,] —2,1 -1},
{L,1L,l1 -3} {L, 1,1 -2}, {I-1,1,1—2}, {l—-1,1,1 — 3}
remain.

Procedure 12 [ = 16(mod 32).

Based on the conclusion of the Lemma 4 (3), we can ob-
tain the colorings of cycles from the {| & [2(5") + (‘3")]) +
1}-th Ci6 to the %[2(5) + (é) — 16]-th C46 and seven 3-
subsets remain. A new good group for Cjg is formed by
combining these seven 3-subsets and nine 3-subsets which
remain in Procedure 11 (this good group is constituted from
the color sets of all vertices in Ci4 under the coloring
depicted in Fig. 18), and the -=[2(}) + (})]-th Ci5 is colored
properly. Consequently, all 3-subsets in {1,2, - - -, [} are used

@1-2@1-1@1-3@1-1@1-2
) ©

-2 l-1

Y o
@1-4@1-1 @zs@z-a @1-1

Fig. 18: A new coloring of C46 appears in Procedure 12

Procedure 13 [ = 17(mod 32).

Based on the conclusion of the Lemma 1 (4), we can ob-
tain the colorings of cycles from the {| & [2('3") + (‘3")]] +
1}-th C1g to the 7[2(2) +(3) —8]-th Ci. Finally, {I,1,1—4},
{L,i—4,1—-4}, {l,1—-4,1-3}, {l,1—4,1-2}, {I,1,1 -3},

{l,1 =3,1-3}, {I,1 —3,1—2}, {I,l —3,] — 1} remain.

Procedure 14 | = 18(mod 32).

Based on the conclusion of the Lemma 2 (4), we can
obtain the colorings of cycles from the {L%B(Igl) +
(*39)]) +1}-th Cyg to the = [2(1) + (£) —18]-th C1 and ten
3-subsets remain. A new good group for Ci¢ is formed by
combining eight 3-subsets among the ten 3-subsets above
and eight 3-subsets which remain in Procedure 13 (this
good group is constituted from the color sets of all vertices
in C16 under the coloring depicted in Fig. 19), and the
£12(5) + (4) — 2)-th Cyg is colored properly. Consequently,
{1,1,1 -1}, {lI,1,1 — 2} remain.

?Z-S@l-l@l-4l-ll-5@
@ ©)

13 -4

I 7
@9@1@5 @l-l@l@

Fig. 19: A new coloring of C}¢ appears in Procedure 14

Procedure 15 [ = 19(mod 32).

Based on the conclusion of the Lemma 3 (4), we can
obtain the colorings of cycles from the {L%[Q(lgl) +
(*35)])+1}-th C6 to the & [2(3) + (5) —15]-th Cye. Finally,
{L,L=1}, {L,l=1,1—1}, {i,1,1= 2}, {I,1 — 2,1 — 2},
{l,l — 2,1 — 1}, {l,1,1 — 3}, {I,1,1 — 2}, {I,1,1 — 1},
{,2,1-2}, {1,2,1—-1}, {1,3,1—1}, {I,5,1—-3}, {1, 5,1 -2},
{1-1,1,1-2}, {I —1,1,1 — 3} remain.

Procedure 16 | = 20(mod 32).

Based on the conclusion of the Lemma 4 (4), we can
obtain the colorings of cycles from the {|[2('3") +
("39]1) + 1}-th Cie to the 5[2(2) + (4) — 16]-th Cyg and
one 3-subset remain. A new good group for Ci4 is formed
by combining this one 3-subset and fifteen 3-subsets which
remain in Procedure 15 (this good group is constituted from
the color sets of all vertices in Cjg under the coloring
depicted in Fig. 20), and the [2(}) + (})]-th C16 is colored
properly. Consequently, all 3-subsets in {1,2,---, 1} are used

?1-2@1-1@1-3@1-1@1-2
@ ©

-2 I-1

v o
@1-2@2 @1-15 @l—l

Fig. 20: A new coloring of C}¢ appears in Procedure 16

Procedure 17 [ = 21(mod 32).

Based on the conclusion of the Lemma 1 (5), we can ob-
tain the colorings of cycles from the {| £ [2(5") + (‘3")]] +
1}-th C1g to the 2[2(3) + (3) —6]-th Ch6. Finally, {I,1,1—4},
{L,l—4,1—4}, {l,1,1 =3}, {I,1 —3,1 -3}, {l,1,1 — 2},
{l,1 — 2,1 — 2} remain.

Procedure 18 | = 22(mod 32).

Based on the conclusion of the Lemma 2 (5), we can ob-
tain the colorings of cycles from the {| {-[2 (151) + (lgl)]J +
1}-th Cy¢ to the %[2(5) + (é) — 18]-th C16 and twelve
3-subsets remain. A new good group for Cig is formed
by combining ten 3-subsets among the twelve 3-subsets
above and six 3-subsets which remain in Procedure 17 ( this
good group is constituted from the color sets of all vertices
in C16 under the coloring depicted in Fig. 21), and the
£12(5) + (%) — 2)-th Cy¢ is colored properly. Consequently,
{1,1,1 -1}, {I,1,1 — 2} remain.
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?1-5@1-11-4@1-1@1-1@
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Fig. 21: A new coloring of C}¢ appears in Procedure 18

Procedure 19 [ = 23(mod 32).

Based on the conclusion of the Lemma 3 (5), we can ob-

tain the colorings of cycles from the {| & [2('5") + (‘3")]] +

1}-th Oy to the 1=[2(4) + (%) —5]-th Ci. Finally, {I,1,1—2},
{l,1=2,1-2}, {{I,1-2,1-1}, {1-1,1,1-2}, {I-1,1,1-3}

remain.
Procedure 20 [ = 24(mod 32).

Based on the conclusion of the Lemma 4 (5), we can ob-
tain the colorings of cycles from the {| & [2('5") + (‘31)]) +
1}-th Ci6 to the 1=[2(3) + (1) — 16]-th C46 and eleven 3-
subsets remain. A new good group for Cjg is formed by
combining these eleven 3-subsets and five 3-subsets which
remain in Procedure 19 (this good group is constituted from
the color sets of all vertices in Cj¢ under the coloring
depicted in Fig. 22), and the 7= [2(;) + (;)]—th Cyg is colored
properly. Consequently, all 3-subsets in {1,2,-- -, [} are used

up.

91-3@1-1@1-2@1-1@1-3@
@ @

13 -4

0
clCHCHCTCHE

Fig. 22: A new coloring of C}¢ appears in Procedure 20

Procedure 21 [ = 25(mod 32).

Based on the conclusion of the Lemma 1 (6), we can ob-
tain the colorings of cycles from the {| & [2('5") + (‘3")]] +
1}-th Ci6 to the =[2(1)+ (L) —4]-th C6. Finally, {1,1,1—4},
{L,l—4,1—4}, {i,1,1 -3}, {l,l — 3,1 — 3} remain.

Procedure 22 | = 26(mod 32).

Based on the conclusion of the Lemma 2 (6), we can
obtain the colorings of cycles from the {L%B(Igl) +
(*35)]) +1}-th Cy6 to the £ [2(1) + (4) — 18]-th Cy6. A new
good group for C¢ is formed by combining twelve 3-subsets
among the fourteen 3-subsets above and four 3-subsets which
remain in Procedure 21 (this good group is constituted from
the color sets of all vertices in Cjg under the coloring
depicted in Fig. 23), and the %6[2(%) + (é) — 2]-th Cy6
is colored properly. Consequently, {I,1,1 — 1}, {l,1,1 — 2}
remain.

?1-5@1-11-4@1-1@1-2@
@ ()

13 l

P Y
@21@ 1@17@1 @9 @

Fig. 23: A new coloring of C}¢ appears in Procedure 22

Procedure 23 [ = 27(mod 32).

Based on the conclusion of the Lemma 3 (6), we can
obtain the colorings of cycles from the {L%[Q(lgl) +
("5H)]) +1}-th Oy to the £ [2(4) + (1) —11]-th Cyg. Finally,
{L,L=1}, {L,l=1,1—1}, {i,1,1= 2}, {I,1 — 2,1 — 2},
{l,l — 2,1 — 1}, {I,1,1 — 3}, {I,1,1 — 2}, {I,1,1 — 1},
{,3,l -1}, {{ - 1,1,1 =2}, {{ — 1,1,] — 3} remain.

Procedure 24 | = 28(mod 32).

Based on the conclusion of the Lemma 4 (6), we can ob-
tain the colorings of cycles from the {| [2 (151) + (151)” +
1}-th Cy6 to the %[2 (é) + (é) —16]-th C¢ and five 3-subsets
remain. A new good group for C¢ is formed by combining
these five 3-subsets and eleven 3-subsets which remain in
Procedure 23 (this good group is constituted from the color
sets of all vertices in Cj¢ under the coloring depicted in
Fig. 24), and the %[2 (é) + (é)]-th C16 is colored properly.
Consequently, all 3-subsets in {1,2,---,1} are used up.

?1-2@1-1@ L3@l-1@1-1<?4
® &

-2 1

o 0
ONONCEONODILC)

Fig. 24: A new coloring of C}¢ appears in Procedure 24

Procedure 25 [ = 29(mod 32).

Based on the conclusion of the Lemma 1 (7), we can ob-
tain the colorings of cycles from the {| & [2('5") + (‘3")]] +
1}-th C1g to the £[2(4)+(}) —2)-th Ci6. Finally, {1,1,1—1},
{l,1,1 — 2} remain.

Procedure 26 | = 30(mod 32).

Based on the conclusion of the Lemma 2 (7), we can
obtain the colorings of cycles from the {L%[Z(lgl) +
("53] +1}-th Oy to the £ [2(1) + (1) —2)-th Ci6. Finally,
{1-1,1,1—-3}, {{—1,1,1 — 2} remain.

Procedure 27 [ = 31(mod 32).

Based on the conclusion of the Lemma 3 (7), we can ob-
tain the colorings of cycles from the {| = [2('3") + (‘3")]] +
1}-th Ci6 to the =[2(4) + (1) — 17]-th Ci6 and fifteen 3-
subsets remain. A new good group for Cig is formed by
combining fourteen 3-subsets of the fifteen 3-subsets above
and two 3-subsets which remain in Procedure 26 (this good
group is constituted from the color sets of all vertices in

C16 under the coloring depicted in Fig. in Fig. 25), and the
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é) —1]-th Cy¢ is colored properly. Consequently,
emains.

(
) 4y _1}
@1 @1-1@ l@m@l-z@

® ®

l 1

S o
@O0 @ 0@

Fig. 25: A new coloring of C1¢ appears in Procedure 27

Procedure 28 [ = 0(mod 32).

Based on the conclusion of the Lemma 4 (7), we can
obtain the colorings of cycles from the {|{[2 (lgl) +
(*35]1) + 1}-th Cig to the 5[2(2) + (4) — 16]-th Cyg and
fifteen 3-subsets remain. A new good group for C¢ is formed
by combining the fifteen 3-subsets and one 3-subset which
remain in Procedure 27 (this good group is constituted from
the color sets of all vertices in Cjg under the coloring
depicted in Fig. 26), and the - [2 (é) + (é)]-th (6 is colored
properly. Consequently, all 3-subsets in {1, 2, - -, [} are used

g)l-z@ l @1-3@ l @ l @
@

21 l

I %
cLlcHCEEHarE

Fig. 26: A new coloring of C1¢ appears in Procedure 28

Procedure 29 [ = 1(mod 32).

Based on the conclusion of the Lemma 1 (8), we can ob-
tain the colorings of cycles from the {| £ [2(5") + (‘3")]) +
1}-th Oy to the -=[2(L) + (1)]-th Ci6. Finally, all 3-subsets
in {1,2,---,1} are used up.

Procedure 30 [ = 2(mod 32).

Based on the conclusion of the Lemma 2 (8), we can ob-

1

tain the colorings of cycles from the {| & (2(*;") + (‘3")]] +

1}-th Ci6 to the 15[2(4)+(4) —2]-th Ci. Finally, {1,2,1-1},
{l,1 —2,1—1} remain.

Procedure 31 [ = 3(mod 32).

Based on the conclusion of the Lemma 3 (8), we can ob-
tain the colorings of cycles from the {| = [2('3") + (‘3)]) +
1}-th Cyg to the [2(2) + (4) —7)-th Ci. Finally, {I,1,1—1},
{Li=1,1-1} {,l,1 =2}, {l,i—2,1—-2}, {l,]—2,1 -1},
{{-1,2,1—-2}, {{ - 1,1 — 3,1 — 2} remain.

Procedure 32 [ = 4(mod 32).

Based on the conclusion of the Lemma 4 (8), we can ob-
tain the colorings of cycles from the {| {5 (2 (lgl) + (lgl)” +

1}-th Cy6 to the £5[2 (é) + (é) —16]-th C'y6 and nine 3-subsets

remain. A new good group for Cj¢ is formed by combining
these nine 3-subsets and seven 3-subsets which remain in

Procedure 31 (this good group is constituted from the color
sets of all vertices in Cj¢ under the coloring depicted in

Fig. 27), and the %[2 (é) + (:l,))]-th C16 is colored properly.

Consequently, all 3-subsets in {1,2,---,1} are used up.

@1-2@1-1@1-3@1-1@1-23
@) (2

l l

0 @
@1-1@ l@z-z@ 1®1-3@

Fig. 27: A new coloring of Ci¢ appears in Procedure 32

The proof of Theorem 1 is completed.

Note that ((mCyg) = | when 2(l51) + (lgl) < 16m
< Q(é) + (é), where m > 1, | > 4. Thus by means of
Proposition 1 in Section I, from Theorem 1 in Section III,
we may obtain the following theorem.

Theorem 2. 1f 2(", )+ (') < 16m <2(3)+(3). m > 1,
[ >4, then xUi(mChg) = .

Remark: The discussions on the I(VI)-total chromatic
numbers of mC,, (13 < n < 15) which are vertex-
distinguished by multisets are very long, so we will state
these results and their proofs in another paper.
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