TAENG International Journal of Applied Mathematics

Fractional-Order Hyperchaos in Financial
Systems: Analysis, Stabilization, and Adaptive
Synchronization under Parameter Uncertainties

Haojie Yu

Abstract—In the current global economic environment,
which is more complex and changeable, and with the factors
influencing the financial system being more diverse, this
research introduces a novel four-dimensional fractional-order
hyperchaotic financial system by adding an external
perturbation term and a new parameter. Firstly, the dynamics
analysis, such as the Lyapunov exponential spectrum, phase
diagram, chaotic attractor, and equilibrium stability is
provided for the new system, then the most suitable parameters
under the hyperchaotic phenomenon are identified. Secondly,
the stability analysis of the new fractional-order system is
conducted by using the dynamic feedback gain control method,
and the system is dynamically stabilized at its different
equilibrium points. Then, an adaptive shot synchronization
controller is synthesized to attain system self-synchronization.
The controller can adapt to the parameter uncertainties and
external disturbances of the new system. Finally, numerical
simulations validate all the theoretical results.

Index Terms—financial system, fractional-Order, external
Disturbance, dynamic feedback gain, adaptive synchronization.

1. INTRODUCTION

HAOS theory originated in the early 20th century and

focuses on exploring the dynamics of nonlinear systems.
In 1963, meteorologist Edward Noren Lorenz first proposed
the classical Lorenz system, a three-dimensional model
composed of three nonlinear ordinary differential equations
to describe atmospheric heat convection. Lorenz further
expanded this system by introducing nonlinear terms and
additional driving forces, forming a hyperchaotic system that
reveals more complex dynamic behaviors. This advancement
marks the emergence of four-dimensional chaotic systems, a
direct outcome of in-depth research on classical chaotic
systems [1-6]. With the continuous development of fractional
calculus theory, researchers begin to apply it to the modeling
and analysis of chaotic systems [7-11] Compared with
traditional integer-order calculus, fractional calculus
introduces non-integer orders (e.g., fractional derivatives and
integrals), endowing fractional-order chaotic systems with
richer and more complex dynamic characteristics [12-16].
These systems not only enrich the content of chaos theory but
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also open up broad prospects for applications in information
security, control engineering, image processing, and other
fields [17-20].

The international financial landscape is undergoing an
unprecedented complex evolution, where factors such as
local disturbances, market speculation, and external shocks
influence each other through nonlinear transmission. The
impact of the pandemic in 2020 led to the Dow Jones index
being "fused" four times in a single month. In 2022, as a
result of the aggressive interest rate increases by the U.S.
Federal Reserve, a wave of capital outflows was unleashed
from emerging markets. The Silicon Valley bank incident in
2023 exposed the fragile interconnectedness of the financial
system. These crisis events have confirmed that the modern
financial system has evolved into a "super network", where
even minor local disturbances can potentially trigger a
systemic collapse [21-25].

In recent years, nonlinear dynamics has made significant
progress in the field of financial modeling [26-29]. The
three-dimensional chaotic financial system successfully
simulated the nonlinear coupling relationship among price
index, investment demand, and interest rate. However, this
kind of integer-order model exhibits fundamental flaws when
describing the modern market dominated by high-frequency
trading: firstly, it cannot simulate the fractional-order
memory effect between financial variables, which is
particularly prominent in the cryptocurrency market;
secondly, the fixed parameter system struggles to adapt to the
dynamic shifts in economic cycles, such as abrupt changes in
nonlinear relationships caused by global supply chain crises
[30-33].

To tackle these challenges, the present study has achieved
theoretical advancements in three critical aspects: first, the
introduction of a nonlinear quadratic term to simulate the
intrinsic endogenous amplification feedback mechanism
within financial markets; second, the development of an
innovative adaptive parameter to capture dynamic shifts in
market behavior under varying economic conditions; third,
the identification through parameter analysis that this
parameter can real-time regulate chaotic intensity, with
appropriate values enabling the system to establish a
fractional-order hyperchaotic state. Furthermore,
comprehensive dynamic analysis, stability assessment, and
synchronization control of the system have been conducted.
The findings validate the system's efficacy in capturing
complex financial behaviors and its potential for practical
economic modeling.

The main structure of this article is organized as follows:
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Section II emphasizes the origin of the novel system and
constructs an improved version of system. Section III
performs an all-encompassing dynamic analysis studies of
the improved system utilizing a range of analytical tools,
including Lyapunov exponents, attractors, phase portraits,
power spectrum diagrams, and equilibrium point stability.
This section determines the parameters and properties of the
system across states such as hyperchaos, chaos, periodicity,
and stable fixed points. In Section 1V, a dynamic feedback
gain control strategy is proposed, and it is proven effective in
stabilizing the system at multiple equilibrium points. This
method provides a theoretical basis for solving financial
instability issues. Section V designs an adaptive
synchronization  controller, which ensures reliable
self-synchronization of the system even in the presence of
parameter uncertainties and external disturbances. This
method holds particular significance for applications related
to multi-regional financial coordination and market stability.
Additionally, all content in the text has undergone numerical
verification and been visualized through graphs. Section VI
presents a summary and outlook.

II. DESIGN OF A NEW HYPERCHAOTIC SYSTEM

A. Preliminaries

There are a number of recognized methods for defining
fractional order calculus, of which, the more common are the
Caputo definition, the Griinwald-Letnikov (G-L) definition,
the Fourier / Laplace transform definition and the
Riemann-Liouville (R-L) definition [34-37]. For the purpose
of analysis, the Caputo fractional derivative will be used,
which is defined as follows.

Definition 1 If there is a function w(z) , whose fractional

integrals is:

T/w(t) = ﬁ j (t—0)" " w(1)du, (1)

where g >0,z >¢,, I'(-) is a gamma function, and defined as:
_ © vl _—t
r(v)= jo e dt, 2)

Then for the function w(¢) , the Caputo fractional

derivative is:

1 [ W0 )

thW(t) = r(n_q) o (t_l)q,nﬂ ]

where n—1<g<n,t>t,and ne N".

Lemma 1 When 0<g <1, t2>¢,, the Caputo fractional
derivative D!w(¢) is integrable, and T? Dw(t) = w(t) — w(t,) .
Lemma 2 For the following fractional order system:

d'p(t) _
o w(g(t)), “4)

where 0 < q< 13 So(t) = (&Ol(t),gOz(t),'--,sOn(l))T eR". Let
w(gp(t)) =0, then the equilibrium points of a system can be

solved by the above equation. Substituting each equilibrium
point into the Jacobi matrix, then the eigenvalues of the

matrix can be calculated, and the stability of an equilibrium
or system can be determined from the eigenvalues.

B. New System Model

Amidst the digital transformation of the global economy
and the overlapping geopolitical risks, the financial system,
which is composed of labor (L), capital (M), production (P),
and inventory (/), faces triple dynamic coupling challenges.
In previous work [1], we improved the three-dimensional
classical system into a four-dimensional system by adding
variables D(¢) :

A(t)=—0A+AB+C+D,
B()=-A’- pB+1,
C(r)=-A-rC,

D(t) = -s AB—¢D.

The traditional four-dimensional financial model exhibits
fundamental limitations: its linear coupling assumption fails
to capture the nonlinear transmission of production factors in
the digital economy era, and the fixed parameter system
cannot account for these nonlinear shifts. To address these
issues, this study introduces a "dynamic memory-adaptive"
modeling framework. Initially, it overcomes the three
constraints inherent in classical models by incorporating a
nonlinear quadratic term B(#)C(f) (economically

interpreted as the multiplier suppression effect of price
overshoot on investment) to the third equation of system (5),
thereby reconstructing the variable interaction mechanism.
Subsequent dynamic analysis reveals that this modification
elevates the system to three positive Lyapunov exponents.
Furthermore, a time-varying parameter m (representing the
norm of money supply changes) is innovatively designed to
facilitate self-sensing adjustments to external disturbance
intensity. To depict the path-dependent characteristics of
financial variables, Caputo fractional derivatives are
employed in lieu of traditional integer derivatives.
Ultimately, this establishes a fractional-order hyperchaotic
financial system.

D" A(t)=-0A+ AB+C+D,
D% B(t)=-A’- pB+1,
D% C(t)=—A-rC+mBC,
D* D(t) =-s AB—¢D.
In the financial system constructed above, the investment
demand is replaced by B(¢) , while the price index is denoted

(6))

(6)

by C(¢) . When the price index ascends due to inflation or the

increase in market demand, it may cause an increase or
decrease in investment demand, leading to corresponding
positive or negative variations. The new parameter m and
the nonlinear quadratic term B(#)C(¢z) are introduced to

capture the impacts of external perturbations on the system
and strive to simulate the changing and complex
characteristics of the current global economic situation.
Additionally, A(¢) and D(¢) respectively denote the interest

rate and the average profitability of the commodity, and the
remaining characters o, p,7,s,¢t,m are control parameters.

By adjusting these control parameters, it is feasible to study
the dynamic behavior of the system under diverse conditions
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and provide policymakers with valuable information
regarding the stability of the economic system and regulatory
strategies.

III. QUANTITATIVE ANALYSIS OF SYSTEM (6)

A. Lyapunov Exponent

The Lyapunov exponent is a measure of the speed of two
neighboring trajectories moving away from or towards each
other at an exponential rate over time in phase space. If the
Lyapunov exponent of a system is positive, then the system is
judged to be chaotic. For the purpose of examining the impact
of parameter m on the system’s stability, when m changes,
and parameters o=1.1, p=0.2, r=1.85, s =0.17, t =0.2,

the Lyapunov exponent diagram is drawn as shown in Fig.1.

N

LE1 1
LE2

o

Lyapunov Exponents
N

Fig. 1. Lyapunov exponent diagram as m varies.

As is apparent from Fig. 1, the system exhibits distinct
dynamical states across different ranges of m : it is in a
hyperchaotic state when m ranges from -5 to 0.1; in a
chaotic state when m is between 0.1 and 1.5; in a weak chaos
state for m values from 1.5 to 2.5; in a periodic state as m
varies from 2.5 to 3.5; and converges to a stable fixed point
when m is in the range of 3.5 to 5. Consequently, the state of
the financial system can be regulated by appropriately
selecting the value of m .

Theory 1 (Existence Condition of Hyperchaos): when the
system parameter satisfies m <0.1 , and fractional
order ¢, € (0,1), , the system has at least two positive
Lyapunov exponents and enters hyper chaos.

Theory 2 (Scale-Invariant Fractal Properties): The
calculation formula for Lyapunov dimension is:

l n
DL=n+|LE—)2LEi. 7)

a+1] =1

When D, >3, it can be confirmed that the system has

formed a strange attractor with Hausdorff-Besicovitch
characteristics, indicating sustained hyperchaotic behavior
across time scales.

A characterization of the system via Lyapunov exponents
is presented in what follows. Numerical computations were
performed using MATLAB, with parameters fixed as
o=1.1,p=02,r=185,5s=0.17, t=0.2, while m was
assigned values of 0.1, 1.5, 2.5, and 3.5. To investigate the
system's chaotic properties, multiple analytical approaches
were employed, including evaluations of Lyapunov
exponents and Lyapunov dimensions. Detailed results of
these computations are summarized in Table 1, whereas Figs.
2-5 illustrate the time-evolution curves of Lyapunov
exponents corresponding to each 7 value.
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Fig. 2. Lyapunov exponential diagram with m=0.1.
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Fig. 3. Lyapunov exponential diagram with m=1.5.

TABLEI
LYAPUNOV INDEX AND SYSTEM CHARACTERISTICS

m Lyapunov exponents Lyapunov dimensions and Dynamic behavior
0.1 (0.047229, 0.008012, 0.000901, —1.026344), (+,+,+,-) D, =3.0547, Hyperchaos
1.5 (0.010507,-0.024053,-0.445416,-0.464988), (+,—,—,—) D, =1437, Chaos
2.5 (0.013720,-0.575315,-0.787052,~1.110497), (+,-,—,-) D, =1.024 , Periodic states
3.5 (-0.007120, -0.186831, -0.834882, -3.853732), (-,—,—,-) D, =0, Stable and immobile point
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Fig. 5. Lyapunov exponential diagram with m=3.5.

Conclusion 1 When m=0.1, three of the Lyapunov
exponents are positive, and D, =3.0547 is the fractional

dimension, indicating that the system (6) exhibits highly
abundant hyperchaotic behaviors.

B. Attractors and Phase Diagrams

Chaotic attractors refer to a distinct class of complex
geometric entities within phase diagrams. During system
evolution, trajectories are "attracted" into this finite region,
where they exhibit non-repetitive behavior and extreme
sensitivity to initial conditions. Phase diagram is a geometric
representation that employs the state variables of a chaotic
system as coordinate axes, visually depicting all feasible
states and evolutionary trajectories of the system via points or
curves. It enables the transformation of abstract system
dynamics into an observable spatial structure.

Through chaotic attractors and phase diagram analysis, the
dynamical behaviors of nonlinear systems, including limit
loops, periodic motions and chaotic motions, can be visually
and initially determined. To verify the influence of varying
parameter values on the system's chaotic properties, we will
present the attributes of the system under various parameter
settings.

In the previous section, we have provided the Lyapunov
exponent diagrams corresponding to parameter values of
m=0.1,1.5,2.5,3.5, these diagrams offer quantitative
insights chaos characteristics. To

into the system’s

complement this quantitative analysis and more intuitively
validate the system’s chaotic states, we will further present
dynamic demonstration diagrams of the system in
3-dimensional and 2-dimensional planes. Such visualizations
will not only corroborate the conclusions derived from the
Lyapunov exponent analysis but also facilitate a more
comprehensive understanding of how parameter variations
modulate the system’s transition between periodic and
chaotic behaviors.

Fixed fractional g, = 0.995 (i=1,2,3,4),

parameters o=1.1, p=0.2, r=1.85, s=0.17, t =0.2, and
initial values (A(¢), B(#), C(r),D(r)) = (0.01,1.08,0.06,0.01).
When m = 0.1, system (6) is in a hyperchaotic state, and

order

its chaotic attractor exhibits a fractal structure. As can be
observed from Fig. 6 (3D attractor) and Fig. 7 (2D phase
diagrams), the attractor fills a very wide range in the phase
space, with more complex folding and stretching of the
orbits, indicating that the system displays relatively abundant
chaotic behaviors.

Fig. 7. Phase diagrams with m=0.1.

When m =1.5, the system is in a chaotic state. However,

it has only one positive Lyapunov exponent. Compared with
the system at m = 0.1, its degree of chaos is relatively lower,

and the complexity and unpredictability of the system are
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relatively weaker. The corresponding 3D attractor plots and 5 1 5
2D planar graphs are presented in Figs. 8 and 9, respectively.
00 0o
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-2 0 2 -2 0 2
A B
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Qo @mo
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5 0 5 -0.5 0 0.5
C D

Fig. 11. Phase diagrams with m=2.5.
Fig. 8. 3D attractors with m=1.5.
10

When m =3.5, as indicated by Table 1, all Lyapunov

exponents of the system are negative. This implies that any
infinitesimal initial perturbation of the system will decay
over time, and the system will eventually converge to a stable
© fixed point or periodic orbit. Figs 12 and 13 confirm that the
system does not exhibit chaos and is in a completely stable
and ordered state.
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Fig. 9. Phase diagrams with m=1.5. . 0.04
When m = 2.5, the system exhibits periodic behaviors. As < 9 <0
illustrated in Figs. 10 and 11, the system demonstrates a
relatively low level of chaos and tends toward periodic 0.06 0 1
motion—a dynamic feature that carries significant C 0 OD X 1100 5 D B
implications for real economic systems i i %
Fig. 12. 3D attractors with m=3.5.
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Fig. 10. 3D attractors with m=2.5. x10

Fig. 13. Phase diagrams with m=3.5.
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As evident from Figs. 6-13, the system undergoes
substantial state transitions with variations in the parameter
m . The influence of such changes in the chaotic behavior of
dynamic systems on economic systems essentially manifests
as a game between uncertainty and adaptability: moderate
chaos serves as a driver of economic vitality, excessive chaos
induces disorder, and insufficient chaos results in rigidity.

C. Initial Conditions and Fractional-Order

When m=0.1, the exhibits
behavior. A well-documented characteristic of hyperchaotic
systems is their extreme sensitivity to initial conditions: even
minor disturbances, such as variations in initial values or
fractional orders, can be rapidly amplified. This amplification
ultimately causes the system’s evolution trajectory to deviate
completely from its originally expected path, leading to
dynamic behaviors that are distinctly different from those
observed in the initial state.

To explore the system's dependence on its initial state, the
fractional order and all other parameters were kept constant
while the system’s initial value was modified to
(1.61,1.58,1.06,0.80) , the corresponding attractors and

system hyperchaotic

phase portraits are depicted in Figs 14-15, respectively.
g/

0

1 1
) % ,
2 A 2

A C 41 -05 D 1
Fig. 15. Phase diagrams with initial values (1.61,1.58,1.06,0.80).

To analyze how changes in the fractional order affect the
system’s trajectory, the system’s parameters and initial
values were held unchanged, with only the fractional order

adjusted to g, =0.75, ¢, =0.80, g, =0.85, g, =0.90, the

corresponding attractors and phase portraits are illustrated in
Figs. 16-17.
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Fig. 16. 3D attractors with fractional orders
q,=0.75,q, =0.80, g, =0.85, g, =0.90.

1

-05 0 05 1
C

Fig. 17. Phase diagrams with fractional orders
q,=0.75,g, =0.80, g, =0.85, g, =0.90.

As evident from the aforementioned figures, the system’s
trajectory has undergone substantial changes—this
observation indicates that modifications to initial conditions
exert a significant impact on the economic system. Within an
economic framework, external shocks such as technological
breakthroughs or policy pilots can induce notable deviations
in the economy’s future growth trajectory. In other words,
economic growth exhibits a "path-dependent" pattern,
wherein the evolution of the economic system is strongly
constrained by its initial development conditions and
historical evolutionary processes.

D.Power Spectrum Diagrams

The morphology of the power spectrum can reflect the
state of a chaotic system (e.g., the transition from order to
chaos, changes in chaos intensity). By analyzing the
frequency distribution characteristics of the power spectrum,
one can distinguish between chaotic, stochastic, and periodic
systems.

In Fig. 18, the continuous spectrum of the power spectrum
has the widest range, with a high proportion of energy in
high-frequency components, indicating that the system
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exhibits high chaos intensity and is in a hyperchaotic state.
The continuous spectrum in Fig. 19 is relatively narrow,
corresponding to a chaotic state of the system. In Fig. 20, the
fluctuations of state variables form a fixed period, suggesting
that the system eventually reaches a stable periodic state. In
Fig. 21, the state variables gradually converge to a stable

fixed point.
2
< 0f
-2 . . . s l
0 200 400 t 600 800 1000
3 g : : : : “
2 |
0 . s ‘ .
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Fig. 18. Power spectrum diagrams with m=0.1.
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g. 19. Power spectrum diagrams with m=1.5.

|
* S
= o) WMMMMWWWMWMWWMWMMMMMMMWMWWWWWWM
S T
0

Fig. 20. Power spectrum diagrams with m=2.5.
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Fig. 21. Power spectrum diagrams with m=3.5.

When the initial values are changed, the power spectrum in
Fig. 22 also undergoes significant changes: chaotic
characteristics are present in the early stage and eventually
reaches a stable periodic state. Fig. 23 presents the power
spectrum after adjusting the fractional order. The figure
shows that the chaotic intensity of the system is reduced.

0

2
1
< 9] ﬂ
0 200 400 t 600 800 1000
- 8 F l
0 200 400 t 600 800 1000
1 : . : ‘
05 i
o o !E
0 200 400 t 600 800 1000
Mﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂ
400 600 1000

Fig. 22. Power spectrum diagrams with initial values (1.61,1.58,1.06,0.80).
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Fig. 23. Power spectrum diagrams with fractional orders
4, =0.75,q, =0.80, g, =0.85, ¢, =0.90.
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E. Equilibrium and Stability

By solving the following equation:
0=—-0A+AB+C+D,

0=-A’— pB+1,

P ®)
0=—-A-rC+mBC,
0=-sAB-¢D.

There are three points of equilibrium in the system:
Y, =(0,1/ p,0,0,
_ 2 _ 2 _ 2 _
SIS S CY /o Gt (el VI (et 1
p pt pt
where ¢ satisfies:
((t=5)C” =D +opt)/ pt=—p/(m(* =1)+ pr).
To find the specific equilibrium point value, we present the
Jacobian matrix of the system at Y, =(4,,4,,4;,4,) -

$,—0 @ 1 1

|2 0 0 ©9)
-1 mg, mg,—r O
—s¢,  —s¢, 0 —t

We will study the equilibrium point stability of the system
in a hyperchaotic state. When the parameters of the system
satisfy m=0.1,0=1.1, p=0.2, r=1.85, s =0.17, t =0.2,
the eigenvalues of Jacobi matrix of the equilibrium point
Y, are —0.8179, —0.2000, 3.4975, 0.2004, which is unstable

by Lyapunov’s theory. The eigenvalues of Y, ; are —8.8951,
—1.7880, 0.1892-1.0252i, 0.1892+1.0252i, and Y, are

also instabilities.

With the advancement of the global economy, new
challenges have emerged. Firstly, during the transition
between old and new growth drivers, the stickiness of labor
costs and the time lag in technological innovation have
triggered dynamic imbalances between production and
inventory. Secondly, the interaction between the Federal
Reserve’s quantitative tightening measures and the
internationalization of the RMB has caused irregular
fluctuations in capital liquidity, thereby exacerbating the
chaotic nature of monetary liquidity. Third, the restructuring
of the global supply chain has historically reversed the
correlation coefficient between the price index and
investment demand—shifting it from a positive to a negative
correlation.

Thus, through the dynamic analysis above, the system we
have constructed can effectively fit the current economic
landscape and supplement chaotic economic theory.

IV. CONTROL ANALYSIS OF HYPERCHAOTIC SYSTEM (6)

In the present section, we propose a dynamic feedback
gain design, so that the system can automatically converge to
the appropriate balance according to its initial state. The
advantage of this method is that it is independent of the initial
value of the system and can quickly converge to the
equilibrium point.

Theorem 1: Consider the
fractional-order system:

D!X = f(x)+ Bu. (10)

Where f(x):R" - R"is a Lipschitz-continuous vector

following controlled

field, B € R™™ is constant gain matrix, u=Kx is a dynamic
gain feedback controller with K=k(z)B”, and the feedback
gain k(#) evolves according to the adaptive law:
Dek(t) = x|, > 0. (11)
If a matrix B can be found, and f(x) satisfies the
dissipative condition:
X () <=X|x" x> 0. (12)

Then, the closed-loop system achieves asymptotic stability.
Proof. A Lyapunov function candidate is considered
herein, which is:

1, 1 .
V==x"x+—(k@t)-k"),
SX X 25(() )

(13)

where k" is the ideal steady-state gain.
Using the properties of the Caputo fractional derivative:

DV <x"Dix+ % (k(t)—k")Dk(2). (14)
Substituting dynamics:
DX = f(x)+ Bk(t)B" x, (15)
and adaptive law:
DIk(t) = x| (16)
Get:
DV <X f(x)+k()x" BB x —(k()—k)|*. (A7)
Under the dissipative condition:
X7 f () <X (18)
DV <A +k @B - k@)~ (19

Selecting B such that "BT)C”2 < C"x"z (€ > 0) and k> X,
we obtain:
DV <~(X—k + tk(®)|x| <-aV,a>0.  (20)

By the fractional Lyapunov stability criterion, the system
is asymptotically stabilized.

Numerical Verification: The controlled system is defined
as follows:

D" A(t) =—0 A+ AB+C+D—-«,(A-¢),
D" B(t)=-A’— pB+1-k,(B-¢,),
D* C(t) =—A-rC+ mBC-k,(C-¢,),
D% D(t) = —s AB—tD—k,(D—-¢,).
Where «,x,,x,,x,, the feedback control

coefficient of the controlled system (21) and indicates the
control strength, and (4,,4,,¢,,¢,) represents an arbitrary set

ey

represents

of equilibrium points of the system. The system can be
stabilized at an arbitrary equilibrium point or period by
appropriately selecting the feedback factor.

The eigenvalues are obtained by solving the Jacobian
matrix of the controlled system (21):

B-o-x A 1 1
2A -p-«k 0
J= P . (22)
-1 mC  mB-r—xk, 0
-sB -sA 0 —t—K,

In order to find its characteristic equation, let |J - 11| =0,

and get a quadratic equation as:
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AMHEXL+EL +EA+E =0. (23)

When o=1.1,p=02,r=185m=0.1,

s=0.17, t=0.2, assuming the positive feedback gain
coefficient («,,x,,x;,x,)=(3.5, 1.2, 1.2, 1.2).

parameters

Regarding the equilibrium Y, , the characteristic equation
takes the form:
A +4.40004° +7.57754° +7.18104+3.4335=0. (24)
The eigenvalues are —1.9022, —1.4000, —0.5489 + 0.9940i,
—0.5489-0.9940i, the eigenvalues all have negative real

parts.

For equilibrium Y, ,, the characteristic equation takes the

2,32
form:
A1 +16.26831° +76.56444° +134.28701 +76.6307 = 0. (25)

The eigenvalues are —9.7402, —1.1793, —1.9807, —3.3681,
and the eigenvalues are all negative.

Due to all eigenvalues of the Jacobi matrix being either
negative or having negative real parts, the system exhibits
asymptotic stability in the vicinity of this equilibrium point.
To provide a more intuitive demonstration of the designed
controller’s effectiveness, Figs. 24 and 25 illustrate the
response time curves of the controlled system described by

system (21).
5
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Fig. 24. The curve of response time at equilibrium Y| .
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Fig. 25. The curve of response time at equilibrium Y, , .

It is well known that chaotic systems operate in an intricate
and variable manner. In financial markets, stabilizing or

controlling the system by identifying and exploiting
equilibrium points is critical to maintaining market stability
and effectively managing risk, which helps to mitigate
market volatility and uncertainty. An in-depth analysis of
these equilibrium points enables investors and policy makers
to more accurately predict market trends and demand
movements, and thus adjust or optimize their investment
strategies to achieve their stated objectives. In addition, since
the equilibrium points in a financial chaotic system are not
unique, and with the change of initial conditions or related
parameters, the equilibrium points will change accordingly.
Therefore, in practice, we must closely integrate with the
current market environment and data characteristics to
conduct more detailed and in-depth research and analysis.

V.SYNCHRONIZATION ANALYSIS OF THE HYPERCHAOTIC
SYSTEM (6)

Taking system (6) as the driving system, the response
system is specified as follows:

D" A (t)=—-0,A,+AB+C,+D,+v,
D" B,(t)=-A-p B,+1+v,,
D*C,(t)=—A,—rC,+m, B,C,+uv,,
D% D, (t) = —s, A,B,~1, D, +u,.

(26)

Where, is the estimated value of

unknown parameters o, p,r,m,s,t in the drive system (6),

Ol’pl’rl’ml’sl’tl

v,,0,,0;,0, 1s the adaptive controller to be designed.

The parameter estimation error is:
0=0,-0,p=p,—p,F=1—r,S=8—8s,m=m —m,t =t —1.

27
And the synchronization error is:
(1) =A()-AQ),
e, (t)=B,(1)-B(?),
,()=B,()-B(®) 28)

e;(1)=C, () -C(),

e,(t)=D, () -D(?).
So, the error system is:
D¢ (t)=—0A,—oe +e, +e,+A B-AB+uy,
D%e,(t)=—-pB,— pe, — (A~ A*)+v,,
D%e,(t)=—-e —7C,—re, +mB, C,+m(B,C,—BC) +uv,,
D%e,(t)=-tD,—te,—5 A, B,—s(A, B.—AB)+v,.

29
Theorem 2. When the adaptive control rate is: 2
v, =AB-AB -e,—¢,—ke,
v, =(A-A")-kKe,, (30)
v, =¢ —m(B,C,—BC)-x,e,,
v, =s(AB,-AB)-k,e,.
The derivation of parameter estimation error is:
Dio=A e,
D'p=Be,,
D7 =C, e, 31)
D'm=-B,C, e,
D's=A B, e,
Di =Dye,
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Then, drive system (6) and the response system (26) reach
a state of synchronization.
Proof. Substitute (31) into (30), then, the error system is:

D¢ (t)=—0A,—oe — ke,

quez(t) =-pB,—pe, —k,e,,

(32)
D%e,(t)=—-FC,—re, +mB, C,— ke,
D%e,(t)=—1t D,—te, —5 A, B,— k,e,.
Take the Lyapunov function as follow:
V=elz+€zz+6’32+€42+52+I32+72+”~12+52+52_ (33)
2
Take the derivative of function (33):
D'V =eDe +e,De, +e,De, +e,De,
+oD + pD* p+rD'F +mDm
. (34)
+5D5 +tD%.
Substitute (32), (33) into (34), then get the follow:
DIV =e(-0A,—oe —K€)+e,(-pB,— pe, —K,e,)
+e,(-7FC,+mB, C,—re, —k,e;) +e,(— D,
—-SA B —te,—x,e,)+0A e +pBe,
+7C,e,—mB,C e, +5A, B, e, +1 D, e, (35)

=—oe] — pe; —re; —te; — kel
- K6, —K,e; —K,e;
<0.

Drawing on Lyapunov’s stability criterion, the error
system (29) demonstrates asymptotic stability characteristics.
Consequently, the drive system (6) and the response system
(26) achieve synchronization.

Numerical Simulation: When system’s parameters
o=1.1p=02r=185 m=0.1,s=0.17, t=0.2, and
the fractional order derivative is assigned a specific value of
g = 0995, the initial values of the error system

is (2,2,2,2), adaptive

isx, =1.5,i=1, 2, 3, 4. The time response curve of error

and the control  factor

system (29) is given as Fig. 26, and the time response curve
of predicted parameters are shown in Fig. 27

%
!

Fig. 26. The time response curve of the error system (6).

| | - [—o,
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g s, ()
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S t, (1)
30 40

t/s

Fig. 27. The time response curve of the predicted parameters.

Against the backdrop of surging complexity and escalating
uncertainties in global financial markets, the research on
adaptive synchronization of hyperchaotic financial systems
with four-dimensional fractional-order under unknown
parameter conditions offers innovative solutions for financial
risk prediction, information security, and macroeconomic
policy regulation. By bridging fractional-order dynamics
with adaptive control, the research paves the way for
data-driven, intelligent solutions to address emerging
challenges in complex financial ecosystems.

VI. CONCLUSIONS

In light of the current intricate and evolving international
and domestic economic environment, as well as the frequent
emergence of market risk potential, the present paper
develops a fractional-order hyperchaotic financial system
with four dimensions, which includes new parameters and a
quadratic term standing for external perturbations. In this
paper, the selection of the new parameters is achieved
through Lyapunov exponential spectrum analysis. Moreover,
the dynamics analysis of chaotic attractor, phase diagram,
influence of initial value, and equilibrium point is presented,
providing a theoretical foundation to support studies on
controlling and synchronizing the hyper chaotic system.
Subsequently, the dynamic feedback gain controller designed
in this paper can rapidly facilitate the transition from a
chaotic state to a stable equilibrium point. Regarding chaotic
synchronization, the adaptive parameter synchronization
method proposed herein can not only assess the
synchronization performance of the newly constructed
chaotic financial system but also estimate the parameter
estimates. In the context of the practical application of
financial systems, it can offer a theoretical and scientific
basis for the formulation of financial market control and
synchronization strategies in the current global setting.
Additionally, all the conclusions of this paper not only
provide theoretical data and proofs, but also give furnish
intuitive results by numerical simulation software. This study
focuses primarily on theoretical analysis and numerical
simulations. Considering the increasing complexity of
current financial markets, future research could further
promote the translation of these findings into practical
applications in the financial industry.
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