
 

  

Abstract—In the current global economic environment, 

which is more complex and changeable, and with the factors 

influencing the financial system being more diverse, this 

research introduces a novel four-dimensional fractional-order 

hyperchaotic financial system by adding an external 

perturbation term and a new parameter. Firstly, the dynamics 

analysis, such as the Lyapunov exponential spectrum, phase 

diagram, chaotic attractor, and equilibrium stability is 

provided for the new system, then the most suitable parameters 

under the hyperchaotic phenomenon are identified. Secondly, 

the stability analysis of the new fractional-order system is 

conducted by using the dynamic feedback gain control method, 

and the system is dynamically stabilized at its different 

equilibrium points. Then, an adaptive shot synchronization 

controller is synthesized to attain system self-synchronization. 

The controller can adapt to the parameter uncertainties and 

external disturbances of the new system. Finally, numerical 

simulations validate all the theoretical results. 

 
Index Terms—financial system, fractional-Order, external 

Disturbance, dynamic feedback gain, adaptive synchronization. 

 

I. INTRODUCTION 

HAOS theory originated in the early 20th century and 

focuses on exploring the dynamics of nonlinear systems. 

In 1963, meteorologist Edward Noren Lorenz first proposed 

the classical Lorenz system, a three-dimensional model 

composed of three nonlinear ordinary differential equations 

to describe atmospheric heat convection. Lorenz further 

expanded this system by introducing nonlinear terms and 

additional driving forces, forming a hyperchaotic system that 

reveals more complex dynamic behaviors. This advancement 

marks the emergence of four-dimensional chaotic systems, a 

direct outcome of in-depth research on classical chaotic 

systems [1-6]. With the continuous development of fractional 

calculus theory, researchers begin to apply it to the modeling 

and analysis of chaotic systems [7-11] Compared with 

traditional integer-order calculus, fractional calculus 

introduces non-integer orders (e.g., fractional derivatives and 

integrals), endowing fractional-order chaotic systems with 

richer and more complex dynamic characteristics [12-16]. 

These systems not only enrich the content of chaos theory but 
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also open up broad prospects for applications in information 

security, control engineering, image processing, and other 

fields [17-20].  

The international financial landscape is undergoing an 

unprecedented complex evolution, where factors such as 

local disturbances, market speculation, and external shocks 

influence each other through nonlinear transmission. The 

impact of the pandemic in 2020 led to the Dow Jones index 

being "fused" four times in a single month. In 2022, as a 

result of the aggressive interest rate increases by the U.S. 

Federal Reserve, a wave of capital outflows was unleashed 

from emerging markets. The Silicon Valley bank incident in 

2023 exposed the fragile interconnectedness of the financial 

system. These crisis events have confirmed that the modern 

financial system has evolved into a "super network", where 

even minor local disturbances can potentially trigger a 

systemic collapse [21-25].  

In recent years, nonlinear dynamics has made significant 

progress in the field of financial modeling [26-29]. The 

three-dimensional chaotic financial system successfully 

simulated the nonlinear coupling relationship among price 

index, investment demand, and interest rate. However, this 

kind of integer-order model exhibits fundamental flaws when 

describing the modern market dominated by high-frequency 

trading: firstly, it cannot simulate the fractional-order 

memory effect between financial variables, which is 

particularly prominent in the cryptocurrency market; 

secondly, the fixed parameter system struggles to adapt to the 

dynamic shifts in economic cycles, such as abrupt changes in 

nonlinear relationships caused by global supply chain crises 

[30-33]. 

To tackle these challenges, the present study has achieved 

theoretical advancements in three critical aspects: first, the 

introduction of a nonlinear quadratic term to simulate the 

intrinsic endogenous amplification feedback mechanism 

within financial markets; second, the development of an 

innovative adaptive parameter to capture dynamic shifts in 

market behavior under varying economic conditions; third, 

the identification through parameter analysis that this 

parameter can real-time regulate chaotic intensity, with 

appropriate values enabling the system to establish a 

fractional-order hyperchaotic state. Furthermore, 

comprehensive dynamic analysis, stability assessment, and 

synchronization control of the system have been conducted. 

The findings validate the system's efficacy in capturing 

complex financial behaviors and its potential for practical 

economic modeling. 

The main structure of this article is organized as follows: 
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Section II emphasizes the origin of the novel system and 

constructs an improved version of system. Section III 

performs an all-encompassing dynamic analysis studies of 

the improved system utilizing a range of analytical tools, 

including Lyapunov exponents, attractors, phase portraits, 

power spectrum diagrams, and equilibrium point stability. 

This section determines the parameters and properties of the 

system across states such as hyperchaos, chaos, periodicity, 

and stable fixed points. In Section IV, a dynamic feedback 

gain control strategy is proposed, and it is proven effective in 

stabilizing the system at multiple equilibrium points. This 

method provides a theoretical basis for solving financial 

instability issues. Section V designs an adaptive 

synchronization controller, which ensures reliable 

self-synchronization of the system even in the presence of 

parameter uncertainties and external disturbances. This 

method holds particular significance for applications related 

to multi-regional financial coordination and market stability. 

Additionally, all content in the text has undergone numerical 

verification and been visualized through graphs. Section VI 

presents a summary and outlook. 

II. DESIGN OF A NEW HYPERCHAOTIC SYSTEM 

A. Preliminaries 

There are a number of recognized methods for defining 

fractional order calculus, of which, the more common are the 

Caputo definition, the Grünwald-Letnikov (G-L) definition, 

the Fourier / Laplace transform definition and the 

Riemann-Liouville (R-L) definition [34-37]. For the purpose 

of analysis, the Caputo fractional derivative will be used, 

which is defined as follows. 

Definition 1 If there is a function ( )w t , whose fractional 

integrals is： 

0
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where 00, ,q t t   ( )  is a gamma function, and defined as: 

1

0
( ) .tt e dt


− − = 

  (2) 

Then for the function ( )w t , the Caputo fractional 

derivative is: 
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where 01 , ,n q n t t−    and *n N . 

Lemma 1 When 0 1,q   0t t , the Caputo fractional 

derivative ( )q

tD w t is integrable, and 0( ) ( ) ( )q q

t tD w t w t w t = − . 

Lemma 2 For the following fractional order system: 
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where 0 1,q  ( )1 2( ) ( ), ( ), , ( ) .
T n

nt t t t =      Let 

( ( )) 0w t = , then the equilibrium points of a system can be 

solved by the above equation. Substituting each equilibrium 

point into the Jacobi matrix, then the eigenvalues of the 

matrix can be calculated, and the stability of an equilibrium 

or system can be determined from the eigenvalues. 

B. New System Model 

Amidst the digital transformation of the global economy 

and the overlapping geopolitical risks, the financial system, 

which is composed of labor (L), capital (M), production (P), 

and inventory (I), faces triple dynamic coupling challenges. 

In previous work [1], we improved the three-dimensional 

classical system into a four-dimensional system by adding 

variables D( )t ： 

2

A( ) A AB C D,

B( ) A B 1,

C( ) A C,

D( ) AB D.

t o

t p

t r

t s t

 = − + + +


= − − +


= − −


= − −

 (5) 

The traditional four-dimensional financial model exhibits 

fundamental limitations: its linear coupling assumption fails 

to capture the nonlinear transmission of production factors in 

the digital economy era, and the fixed parameter system 

cannot account for these nonlinear shifts. To address these 

issues, this study introduces a "dynamic memory-adaptive" 

modeling framework. Initially, it overcomes the three 

constraints inherent in classical models by incorporating a 

nonlinear quadratic term B( )C( )t t  (economically 

interpreted as the multiplier suppression effect of price 

overshoot on investment) to the third equation of system (5), 

thereby reconstructing the variable interaction mechanism. 

Subsequent dynamic analysis reveals that this modification 

elevates the system to three positive Lyapunov exponents. 

Furthermore, a time-varying parameter m  (representing the 

norm of money supply changes) is innovatively designed to 

facilitate self-sensing adjustments to external disturbance 

intensity. To depict the path-dependent characteristics of 

financial variables, Caputo fractional derivatives are 

employed in lieu of traditional integer derivatives. 

Ultimately, this establishes a fractional-order hyperchaotic 

financial system. 

1
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4

2
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B( ) A B 1,

C( ) A C BC,

D( ) AB D.

q
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D t s t

 = − + + +


= − − +


= − − +


= − −

 (6) 

In the financial system constructed above, the investment 

demand is replaced by B( )t , while the price index is denoted 

by C( )t . When the price index ascends due to inflation or the 

increase in market demand, it may cause an increase or 

decrease in investment demand, leading to corresponding 

positive or negative variations. The new parameter m  and 

the nonlinear quadratic term B( )C( )t t  are introduced to 

capture the impacts of external perturbations on the system 

and strive to simulate the changing and complex 

characteristics of the current global economic situation. 

Additionally, A( )t  and D( )t  respectively denote the interest 

rate and the average profitability of the commodity, and the 

remaining characters , , , , ,o p r s t m  are control parameters. 

By adjusting these control parameters, it is feasible to study 

the dynamic behavior of the system under diverse conditions 
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and provide policymakers with valuable information 

regarding the stability of the economic system and regulatory 

strategies. 

III. QUANTITATIVE ANALYSIS OF SYSTEM (6) 

A. Lyapunov Exponent 

The Lyapunov exponent is a measure of the speed of two 

neighboring trajectories moving away from or towards each 

other at an exponential rate over time in phase space. If the 

Lyapunov exponent of a system is positive, then the system is 

judged to be chaotic. For the purpose of examining the impact 

of parameter m  on the system’s stability, when m  changes, 

and parameters 1.1,  0.2,  1.85,  0.17,  0.2,o p r s t= = = = =  

the Lyapunov exponent diagram is drawn as shown in Fig.1. 

 

 
As is apparent from Fig. 1, the system exhibits distinct 

dynamical states across different ranges of m : it is in a 

hyperchaotic state when m  ranges from -5 to 0.1; in a 

chaotic state when m  is between 0.1 and 1.5; in a weak chaos 

state for m  values from 1.5 to 2.5; in a periodic state as m  

varies from 2.5 to 3.5; and converges to a stable fixed point 

when m  is in the range of 3.5 to 5. Consequently, the state of 

the financial system can be regulated by appropriately 

selecting the value of m . 

Theory 1 (Existence Condition of Hyperchaos): when the 

system parameter satisfies 0.1m  , and fractional 

order (0,1),iq  , the system has at least two positive 

Lyapunov exponents and enters hyper chaos. 

Theory 2 (Scale-Invariant Fractal Properties): The 

calculation formula for Lyapunov dimension is: 

11

1
.

n

L i

in

D n LE
LE =+

= +   (7) 

When 3,LD   it can be confirmed that the system has 

formed a strange attractor with Hausdorff-Besicovitch 

characteristics, indicating sustained hyperchaotic behavior 

across time scales. 

A characterization of the system via Lyapunov exponents 

is presented in what follows. Numerical computations were 

performed using MATLAB, with parameters fixed as 

1.1,  0.2,  1.85,  0.17,  0.2,o p r s t= = = = =  while m  was 

assigned values of 0.1, 1.5, 2.5, and 3.5. To investigate the 

system's chaotic properties, multiple analytical approaches 

were employed, including evaluations of Lyapunov 

exponents and Lyapunov dimensions. Detailed results of 

these computations are summarized in Table 1, whereas Figs. 

2–5 illustrate the time-evolution curves of Lyapunov 

exponents corresponding to each m  value. 

 

 

 

 

 
Fig. 3. Lyapunov exponential diagram with m=1.5. 

 
Fig. 2. Lyapunov exponential diagram with m=0.1. 

TABLE I 

LYAPUNOV INDEX AND SYSTEM CHARACTERISTICS 

m Lyapunov exponents Lyapunov dimensions and Dynamic behavior 

0.1 (0.047229,  0.008012,  0.000901,  1.026344), ( , , , )−    + + + −  3.0547=LD , Hyperchaos 

1.5 (0.010507, 0.024053, 0.445416, 0.464988), ( , , , )− − −    + − − −  
1.437=LD , Chaos 

2.5 (0.013720, 0.575315, 0.787052, 1.110497), ( , , , )− − −    + − − −  1.024=LD , Periodic states 

3.5 -0.007120, -0.186831,  -0.834882, -3.853732( ), ( , , , )   − − − −  0=LD , Stable and immobile point 

 

 
Fig. 1. Lyapunov exponent diagram as m varies. 
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Conclusion 1 When 0.1,m =  three of the Lyapunov 

exponents are positive, and 3.0547=LD  is the fractional 

dimension, indicating that the system (6) exhibits highly 

abundant hyperchaotic behaviors. 

B. Attractors and Phase Diagrams 

Chaotic attractors refer to a distinct class of complex 

geometric entities within phase diagrams. During system 

evolution, trajectories are "attracted" into this finite region, 

where they exhibit non-repetitive behavior and extreme 

sensitivity to initial conditions. Phase diagram is a geometric 

representation that employs the state variables of a chaotic 

system as coordinate axes, visually depicting all feasible 

states and evolutionary trajectories of the system via points or 

curves. It enables the transformation of abstract system 

dynamics into an observable spatial structure. 

Through chaotic attractors and phase diagram analysis, the 

dynamical behaviors of nonlinear systems, including limit 

loops, periodic motions and chaotic motions, can be visually 

and initially determined. To verify the influence of varying 

parameter values on the system's chaotic properties, we will 

present the attributes of the system under various parameter 

settings. 

In the previous section, we have provided the Lyapunov 

exponent diagrams corresponding to parameter values of 

0.1,1.5, 2.5, 3.5,=    m  these diagrams offer quantitative 

insights into the system’s chaos characteristics. To 

complement this quantitative analysis and more intuitively 

validate the system’s chaotic states, we will further present 

dynamic demonstration diagrams of the system in 

3-dimensional and 2-dimensional planes. Such visualizations 

will not only corroborate the conclusions derived from the 

Lyapunov exponent analysis but also facilitate a more 

comprehensive understanding of how parameter variations 

modulate the system’s transition between periodic and 

chaotic behaviors. 

Fixed fractional order  0.995 ( 1,2,3,4),= =iq i  

parameters 1.1,  0.2,  1.85,  0.17,  0.2,o p r s t= = = = = and 

initial values ( )0.01,1.08,0.06,0.(A( ),B( ),C( ) 01,D( )) .=t t t t  

When 0.1,m =  system (6) is in a hyperchaotic state, and 

its chaotic attractor exhibits a fractal structure. As can be 

observed from Fig. 6 (3D attractor) and Fig. 7 (2D phase 

diagrams), the attractor fills a very wide range in the phase 

space, with more complex folding and stretching of the 

orbits, indicating that the system displays relatively abundant 

chaotic behaviors.  

 

 
When 1.5,m =  the system is in a chaotic state. However, 

it has only one positive Lyapunov exponent. Compared with 

the system at 0.1,m =  its degree of chaos is relatively lower, 

and the complexity and unpredictability of the system are 

 
Fig. 4. Lyapunov exponential diagram with m=2.5. 

 
Fig. 5.  Lyapunov exponential diagram with m=3.5. 

 
Fig. 7.  Phase diagrams with m=0.1. 

 
Fig. 6. 3D attractors with m=0.1. 
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relatively weaker. The corresponding 3D attractor plots and 

2D planar graphs are presented in Figs. 8 and 9, respectively. 

 

 
When 2.5,=m  the system exhibits periodic behaviors. As 

illustrated in Figs. 10 and 11, the system demonstrates a 

relatively low level of chaos and tends toward periodic 

motion—a dynamic feature that carries significant 

implications for real economic systems. 

 

 
When 3.5,=m  as indicated by Table 1, all Lyapunov 

exponents of the system are negative. This implies that any 

infinitesimal initial perturbation of the system will decay 

over time, and the system will eventually converge to a stable 

fixed point or periodic orbit. Figs 12 and 13 confirm that the 

system does not exhibit chaos and is in a completely stable 

and ordered state. 

 

 

 
Fig. 13. Phase diagrams with m=3.5.  

 
Fig. 12. 3D attractors with m=3.5. 

 
Fig. 11. Phase diagrams with m=2.5.  

 
Fig. 10.  3D attractors with m=2.5. 

 
Fig. 9.  Phase diagrams with m=1.5. 

 
Fig. 8. 3D attractors with m=1.5. 
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As evident from Figs. 6–13, the system undergoes 

substantial state transitions with variations in the parameter 

m . The influence of such changes in the chaotic behavior of 

dynamic systems on economic systems essentially manifests 

as a game between uncertainty and adaptability: moderate 

chaos serves as a driver of economic vitality, excessive chaos 

induces disorder, and insufficient chaos results in rigidity.  

C. Initial Conditions and Fractional-Order 

When 0.1,m =  the system exhibits hyperchaotic 

behavior. A well-documented characteristic of hyperchaotic 

systems is their extreme sensitivity to initial conditions: even 

minor disturbances, such as variations in initial values or 

fractional orders, can be rapidly amplified. This amplification 

ultimately causes the system’s evolution trajectory to deviate 

completely from its originally expected path, leading to 

dynamic behaviors that are distinctly different from those 

observed in the initial state. 

To explore the system's dependence on its initial state, the 

fractional order and all other parameters were kept constant 

while the system’s initial value was modified to 

( )1.61,1.58,1.06,0.80 , the corresponding attractors and 

phase portraits are depicted in Figs. 14–15, respectively.  

 

 
To analyze how changes in the fractional order affect the 

system’s trajectory, the system’s parameters and initial 

values were held unchanged, with only the fractional order 

adjusted to 
1 0.75,=q  

2 3 40.80,  0.85,  0.90,= = =q q q  the 

corresponding attractors and phase portraits are illustrated in 

Figs. 16–17. 

 

 
As evident from the aforementioned figures, the system’s 

trajectory has undergone substantial changes—this 

observation indicates that modifications to initial conditions 

exert a significant impact on the economic system. Within an 

economic framework, external shocks such as technological 

breakthroughs or policy pilots can induce notable deviations 

in the economy’s future growth trajectory. In other words, 

economic growth exhibits a "path-dependent" pattern, 

wherein the evolution of the economic system is strongly 

constrained by its initial development conditions and 

historical evolutionary processes. 

D. Power Spectrum Diagrams 

The morphology of the power spectrum can reflect the 

state of a chaotic system (e.g., the transition from order to 

chaos, changes in chaos intensity). By analyzing the 

frequency distribution characteristics of the power spectrum, 

one can distinguish between chaotic, stochastic, and periodic 

systems. 

In Fig. 18, the continuous spectrum of the power spectrum 

has the widest range, with a high proportion of energy in 

high-frequency components, indicating that the system 

 
Fig. 17. Phase diagrams with fractional orders  

 
1 2 3 40.75, 0.80,  0.85,  0.90.= = = =q q q q  

 
Fig. 16. 3D attractors with fractional orders  

 
1 2 3 40.75, 0.80,  0.85,  0.90.= = = =q q q q  

 

 
Fig. 15. Phase diagrams with initial values (1.61,1.58,1.06,0.80). 

 
Fig. 14. 3D attractors with initial values (1.61,1.58,1.06,0.80). 
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exhibits high chaos intensity and is in a hyperchaotic state. 

The continuous spectrum in Fig. 19 is relatively narrow, 

corresponding to a chaotic state of the system. In Fig. 20, the 

fluctuations of state variables form a fixed period, suggesting 

that the system eventually reaches a stable periodic state. In 

Fig. 21, the state variables gradually converge to a stable 

fixed point. 

 

 

 

 
When the initial values are changed, the power spectrum in 

Fig. 22 also undergoes significant changes: chaotic 

characteristics are present in the early stage and eventually 

reaches a stable periodic state. Fig. 23 presents the power 

spectrum after adjusting the fractional order. The figure 

shows that the chaotic intensity of the system is reduced. 

 

 

 
Fig. 23. Power spectrum diagrams with fractional orders  

 
1 2 3 40.75, 0.80,  0.85,  0.90.= = = =q q q q  

 
Fig. 22.  Power spectrum diagrams with initial values (1.61,1.58,1.06,0.80). 

 
Fig. 21.  Power spectrum diagrams with m=3.5. 

 
Fig. 20. Power spectrum diagrams with m=2.5. 

 
Fig. 19. Power spectrum diagrams with m=1.5. 

 
Fig. 18. Power spectrum diagrams with m=0.1.  

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3722-3732

 
______________________________________________________________________________________ 



 

E. Equilibrium and Stability 

By solving the following equation: 

2

0 A AB C D,

0 A B 1,

0 A C BC,

0 AB D.

o

p

r m

s t

= − + + +


= − − +


= − − +
 = − −

  (8) 

There are three points of equilibrium in the system: 

1

2 2 2

2,3

(0,1/ ,0,0 ,

1 (o ( )( 1)) ( 1)
( , , ,

p

pt t s s

p pt pt

    


 =

− + − − −
 =   

）

）,
 

where  satisfies:  

2 2(( )( 1) ) / / ( ( 1) ).t s opt pt p m pr − − + = − − +  

To find the specific equilibrium point value, we present the 

Jacobian matrix of the system at
1 2 3 4( , , , )j     = . 

2 1

1

3 2

2 1

1 1

2 0 0
.

1 0

0

o

p
J

m m r

s s t

 



 

 

− 
 

− − =
 − −
 

− − − 

  (9) 

We will study the equilibrium point stability of the system 

in a hyperchaotic state. When the parameters of the system 

satisfy 0.1,m = 1.1,  0.2,  1.85,  0.17,  0.2,o p r s t= = = = =  

the eigenvalues of Jacobi matrix of the equilibrium point 

1 are −0.8179, −0.2000, 3.4975, 0.2004, which is unstable 

by Lyapunov’s theory. The eigenvalues of 
2,3  are −8.8951, 

−1.7880, 0.1892 1.0252 ,i−  0.1892 1.0252 ,i+  and 
2,3  are 

also instabilities. 

With the advancement of the global economy, new 

challenges have emerged. Firstly, during the transition 

between old and new growth drivers, the stickiness of labor 

costs and the time lag in technological innovation have 

triggered dynamic imbalances between production and 

inventory. Secondly, the interaction between the Federal 

Reserve’s quantitative tightening measures and the 

internationalization of the RMB has caused irregular 

fluctuations in capital liquidity, thereby exacerbating the 

chaotic nature of monetary liquidity. Third, the restructuring 

of the global supply chain has historically reversed the 

correlation coefficient between the price index and 

investment demand—shifting it from a positive to a negative 

correlation. 

Thus, through the dynamic analysis above, the system we 

have constructed can effectively fit the current economic 

landscape and supplement chaotic economic theory. 

IV. CONTROL ANALYSIS OF HYPERCHAOTIC SYSTEM (6)  

In the present section, we propose a dynamic feedback 

gain design, so that the system can automatically converge to 

the appropriate balance according to its initial state. The 

advantage of this method is that it is independent of the initial 

value of the system and can quickly converge to the 

equilibrium point. 

Theorem 1: Consider the following controlled 

fractional-order system: 

( ) .q

tD f x Bu = +   (10) 

Where ( ) : n nf x → is a Lipschitz-continuous vector 

field, n mB   is constant gain matrix, u=Kx is a dynamic 

gain feedback controller with K=k(t)BT, and the feedback 

gain k(t) evolves according to the adaptive law: 
2

( ) , 0.q

tD k t x= −    (11) 

If a matrix B  can be found, and ( )f x satisfies the 

dissipative condition: 
2

( ) , 0. − Tx f x x   (12) 

Then, the closed-loop system achieves asymptotic stability. 

Proof. A Lyapunov function candidate is considered 

herein, which is: 

* 21 1
( ( ) ) ,

2 2

TV x x k t k= + −  (13) 

where *k is the ideal steady-state gain. 

Using the properties of the Caputo fractional derivative: 

*1
( ( ) ) ( ).q T q qD V x D x k t k D k t + −  (14) 

Substituting dynamics: 

( ) ( ) ,q T

tD f x Bk t B x = +  (15) 

and adaptive law: 

 
2

( ) .= −q

tD k t x  (16) 

Get: 
2*( ) ( ) ( ( ) ) .q T T TD V x f x k t x BB x k t k x + − −  (17) 

Under the dissipative condition: 
2

( ) ,Tx f x x −  (18) 

22 2*( ) ( ( ) ) .q TD V x k t B x k t k x − + − −  (19) 

Selecting B  such that
2 2

( 0)TB x x  and 
* ,k   

we obtain: 
2*( ( )) , 0.qD V k k t x V − − +  −    (20) 

By the fractional Lyapunov stability criterion, the system 

is asymptotically stabilized. 

Numerical Verification: The controlled system is defined 

as follows: 

1

2

3

4

1 1

2

2 2

3 3

4 4

A( ) A AB C D (A ),

B( ) A B 1 (B ),

C( ) A C BC (C ),

D( ) AB D (D ).

q

q

q

q

D t o

D t p

D t r m

D t s t

 

 

 

 

 = − + + + − −


= − − + − −


= − − + − −


= − − − −

 (21) 

Where
1 2 3 4, , , ,     represents the feedback control 

coefficient of the controlled system (21) and indicates the 

control strength, and 1 2 3 4( , , , )     represents an arbitrary set 

of equilibrium points of the system. The system can be 

stabilized at an arbitrary equilibrium point or period by 

appropriately selecting the feedback factor. 

The eigenvalues are obtained by solving the Jacobian 

matrix of the controlled system (21): 

1

2

3

4

B A 1 1

2A 0 0
.

1 C B 0

B A 0

o

p
J

m m r

s s t









− − 
 

− − − =
 − − −
 

− − − − 

 (22) 

In order to find its characteristic equation, let 0,J I− =  

and get a quadratic equation as: 
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4 3 2

3 2 1 0 0.       + + + + =  (23) 

When parameters 1.1,  0.2,  1.85, 0.1,= = = =o p r m  

0.17,  0.2,= =s t assuming the positive feedback gain 

coefficient ( )1 2 3 4 3.5,  1.2,  ( , 1.2,  1.) .2, ,    =  

Regarding the equilibrium 1 , the characteristic equation 

takes the form: 
4 3 24.4000 7.5775 7.1810 3.4335 0.+ + + + =     (24) 

The eigenvalues are −1.9022, −1.4000, 0.5489 0.9940 ,i− +  

0.5489 0.9940 ,i− −  the eigenvalues all have negative real 

parts. 

For equilibrium
2,3 , the characteristic equation takes the 

form: 
4 3 216.2683 76.5644 134.2870 76.6307 0.+ + + + =     (25) 

The eigenvalues are −9.7402, −1.1793, −1.9807, −3.3681, 

and the eigenvalues are all negative. 

Due to all eigenvalues of the Jacobi matrix being either 

negative or having negative real parts, the system exhibits 

asymptotic stability in the vicinity of this equilibrium point. 

To provide a more intuitive demonstration of the designed 

controller’s effectiveness, Figs. 24 and 25 illustrate the 

response time curves of the controlled system described by 

system (21). 

 

 
It is well known that chaotic systems operate in an intricate 

and variable manner. In financial markets, stabilizing or 

controlling the system by identifying and exploiting 

equilibrium points is critical to maintaining market stability 

and effectively managing risk, which helps to mitigate 

market volatility and uncertainty. An in-depth analysis of 

these equilibrium points enables investors and policy makers 

to more accurately predict market trends and demand 

movements, and thus adjust or optimize their investment 

strategies to achieve their stated objectives. In addition, since 

the equilibrium points in a financial chaotic system are not 

unique, and with the change of initial conditions or related 

parameters, the equilibrium points will change accordingly. 

Therefore, in practice, we must closely integrate with the 

current market environment and data characteristics to 

conduct more detailed and in-depth research and analysis. 

V. SYNCHRONIZATION ANALYSIS OF THE HYPERCHAOTIC 

SYSTEM (6) 

Taking system (6) as the driving system, the response 

system is specified as follows: 

1

2

3

4

1 1 1 1 1 1 1 1

2

1 1 1 1 2

1 1 1 1 1 1 1 3

1 1 1 1 1 1 4

A ( ) A A B C D ,

B ( ) A B 1 ,

C ( ) A C B C ,

D ( ) A B D .

q

q

q

q

D t o

D t p

D t r m

D t s t









 = − + + + +


= − − + +


= − − + +


= − − +

 (26) 

Where, 
1 1 1 1 1 1, , , , ,o p r m s t  is the estimated value of 

unknown parameters , , , , ,o p r m s t in the drive system (6), 

1 2 3 4, , ,     is the adaptive controller to be designed. 

The parameter estimation error is: 

1 1 1 1 1 1, , , , , .= − = − = − = − = − = −o o o p p p r r r s s s m m m t t t

 (27) 

And the synchronization error is: 

1 1

2 1

3 1

3 1

( ) A ( ) A( ),

( ) B ( ) B( ),

( ) C ( ) C( ),

( ) D ( ) D( ).

= −


= −


= −
 = −

e t t t

e t t t

e t t t

e t t t

 (28) 

So, the error system is： 

1

2

3

4

1 1 1 3 4 1 1 1

2 2

2 1 2 1 2

3 1 1 3 1 1 1 1 3

4 1 4 1 1 1 1 4

( ) A A B A B ,

( ) B (A A ) ,

( ) C B C (B C BC) ,

( ) D A B (A B A B) .









 = − − + + + − +


= − − − − +


= − − − + + − +


= − − − − − +

q

q

q

q

D e t o oe e e

D e t p pe

D e t e r re m m

D e t t te s s

 (29) 

Theorem 2. When the adaptive control rate is: 

1 1 1 3 4 1 1

2 2

2 1 2 2

3 1 1 1 3 3

4 1 1 4 4

AB A B ,

(A A ) ,

(B C BC) ,

(A B AB) .

 

 

 

 

= − − − −


= − −


= − − −
 = − −

e e e

e

e m e

s e

 (30) 

The derivation of parameter estimation error is: 

1 1

1 2

1 3

1 1 3

1 1 4

1 4

A ,

B ,

C ,

B C ,

A B ,

D .

 =


=
 =


= −
 =


=

q

q

q

q

q

q

D o e

D p e

D r e

D m e

D s e

D t e

  (31)  
Fig. 25. The curve of response time at equilibrium

2,3 . 

 
Fig. 24. The curve of response time at equilibrium

1 . 
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Then, drive system (6) and the response system (26) reach 

a state of synchronization. 

Proof. Substitute (31) into (30), then, the error system is: 

1

2

3

4

1 1 1 1 1

2 1 2 2 2

3 1 3 1 1 3 3

4 1 4 1 1 4 4

( ) A ,

( ) B ,

( ) C B C ,

( ) D A B .









 = − − −


= − − −


= − − + −


= − − − −

q

q

q

q

D e t o oe e

D e t p pe e

D e t r re m e

D e t t te s e

 (32) 

Take the Lyapunov function as follow: 
2 2 2 2 2 2 2 2 2 2

1 2 3 4 .
2

+ + + + + + + + +
=

e e e e o p r m s t
V  (33) 

Take the derivative of function (33): 

1 1 2 2 3 3 4 4= + + +q q q q q

tD V e D e e D e e D e e D e

.

          + + + +

          + +

q q q q

q q

oD o pD p rD r mD m

sD s tD t
 (34) 

Substitute (32), (33) into (34), then get the follow: 

1 1 1 1 1 2 1 2 2 2

3 1 1 1 3 3 3 4 1

1 1 4 4 4 1 1 1 2

1 3 1 1 3 1 1 4 1 4

2 2 2

1 2 3

( A ) ( B )

( C B C ) ( D

A B ) A B

C B C A B D

 





 = − − − + − − −

           + − + − − + −

           − − − + +

           + − + +

        = − − − −

q

tD V e o oe e e p pe e

e r m re e e t

s te e o e p e

r e m e s e t e

oe pe re t 2 2

4 1 1

2 2 2

2 2 3 3 4 4



  

−

           − − −  

         

e e

e e e

 (35) 

Drawing on Lyapunov’s stability criterion, the error 

system (29) demonstrates asymptotic stability characteristics. 

Consequently, the drive system (6) and the response system 

(26) achieve synchronization. 

Numerical Simulation: When system’s parameters 

1.1,  0.2,  1.85,= = =o p r  0.1,  0.17,  0.2,= = =m s t  and 

the fractional order derivative is assigned a specific value of 

 0.995,q =  the initial values of the error system 

is ( )2,2,2,2 , and the adaptive control factor 

is 1.5, =i 1,  2,  3,  4.i = The time response curve of error 

system (29) is given as Fig. 26, and the time response curve 

of predicted parameters are shown in Fig. 27 

 
Against the backdrop of surging complexity and escalating 

uncertainties in global financial markets, the research on 

adaptive synchronization of hyperchaotic financial systems 

with four-dimensional fractional-order under unknown 

parameter conditions offers innovative solutions for financial 

risk prediction, information security, and macroeconomic 

policy regulation. By bridging fractional-order dynamics 

with adaptive control, the research paves the way for 

data-driven, intelligent solutions to address emerging 

challenges in complex financial ecosystems. 

VI. CONCLUSIONS 

In light of the current intricate and evolving international 

and domestic economic environment, as well as the frequent 

emergence of market risk potential, the present paper 

develops a fractional-order hyperchaotic financial system 

with four dimensions, which includes new parameters and a 

quadratic term standing for external perturbations. In this 

paper, the selection of the new parameters is achieved 

through Lyapunov exponential spectrum analysis. Moreover, 

the dynamics analysis of chaotic attractor, phase diagram, 

influence of initial value, and equilibrium point is presented, 

providing a theoretical foundation to support studies on 

controlling and synchronizing the hyper chaotic system. 

Subsequently, the dynamic feedback gain controller designed 

in this paper can rapidly facilitate the transition from a 

chaotic state to a stable equilibrium point. Regarding chaotic 

synchronization, the adaptive parameter synchronization 

method proposed herein can not only assess the 

synchronization performance of the newly constructed 

chaotic financial system but also estimate the parameter 

estimates. In the context of the practical application of 

financial systems, it can offer a theoretical and scientific 

basis for the formulation of financial market control and 

synchronization strategies in the current global setting. 

Additionally, all the conclusions of this paper not only 

provide theoretical data and proofs, but also give furnish 

intuitive results by numerical simulation software. This study 

focuses primarily on theoretical analysis and numerical 

simulations. Considering the increasing complexity of 

current financial markets, future research could further 

promote the translation of these findings into practical 

applications in the financial industry. 

 
Fig. 27. The time response curve of the predicted parameters. 

 
Fig. 26. The time response curve of the error system (6). 
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