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Enhanced Skin Cancer Classification Using a
Deep CNN with Integrated Transformer Layer

Abdul Rahaman Shaik, P. Rajesh Kumar

Abstract—SKin cancer remains a critical public health issue
worldwide, with early detection significantly improving patient
outcomes. This study introduces an enhanced deep learning
approach, combining a custom Convolutional Neural Network
(CNN) with an Integrated Transformer Layer (ITL) to boost
classification accuracy for skin lesions. Our model is trained
and tested on the HAM10000 dataset, comprising 10,015
dermoscopic images of various skin lesion types. Accuracy
improved considerably by fine-tuning hyperparameters and
refining the model using normalization strategies, dropout-
based regularization, data—level augmentation, and techniques
to address class imbalance.. The addition of a transformer
layer facilitates the capture of long-range dependencies,
yielding superior classification performance and achieving an
impressive 97% accuracy. This advanced model demonstrates
strong potential as a diagnostic tool for dermatologists,
supporting timely and precise skin cancer detection.

Index Terms— Neural Network, Hyperparameters,
Transformer Layer, Skin Cancer Classification,

I. INTRODUCTION

kin cancer has emerged as a major global health

concern, with rising incidence rates across the world.
Early and accurate identification of skin lesions is essential
for optimizing treatment outcomes and enhancing patient
prognosis. Dermoscopy, a widely adopted, non-invasive
imaging technique, has proven invaluable in aiding
dermatologists with early-stage skin cancer detection.
However, manual interpretation of dermoscopic images can
be labor-intensive and is prone to observer variability.
Advances in deep learning have shown promise in
automating this process, potentially providing robust and
consistent skin lesion classification.

Even though CNNs are proven choice for image analysis
tasks, their performance can be further improved. In this
study, we propose an advanced classification model that
integrates a deep CNN with a transformer layer, aimed at
enhancing classification accuracy for skin lesions. The
HAMI10000 dataset, with 10,000 dermoscopic images
spanning seven lesion types, provides the core data on
which the model is trained and assessed. To boost our
model’s learning stability and generalization, we employ
techniques such as batch normalization for stable
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training and dropout to reduce overfitting. Additionally, data
augmentation involving rotations, scaling and flipping
enriches the training data, enabling the model to better
capture diverse lesion characteristics. To address the class
imbalance, we apply up sampling and down sampling
strategies, ensuring an equitable representation of all lesion
types.

The inclusion of the transformer layer introduces the
capability to capture long-range dependencies within the
image data, further refining the model’s classification
accuracy. The experimental results highlight the
effectiveness of our enhanced model, which attains superior
accuracy and outperforms our previous CNN-only
architecture. Our model demonstrates significant potential as
a valuable diagnostic aid for dermatologists, contributing to
prompt and accurate skin cancer classification and
ultimately enhancing patient care.

II. LITERATURE REVIEW

Tschandl et al..[1] address the challenges of limited and
non-diverse dermatoscopic image datasets in automated skin
lesion diagnosis by releasing the HAM10000 dataset. This
dataset, consisting of 10,015 images from varied populations
and sources, was curated with semi-automated workflows
and neural network assistance to enhance quality and
diversity. It is available via the ISIC archive for academic
machine learning research. In [2], which is our previous
work, we applied machine learning (ML) algorithms on
HAM10000 image set and explored the accuracy of various
ML techniques. We observed that Random Forest with
Pricipal Component Analysis produced the best results with
92% accuracy. Xu et al. [3] developed a CNN with two-
branch encoder and integrated it with a transformer to
optimize the process of extracting features from images. The
CNN branch consists of four layers that capture localized
features through progressive down sampling, while the
transformer branch consists four layers of attention
mechanisms to grasp global context. This approach achieved
an accuracy of 92.79% on HAM image set. Chao Xin et al.
[4] introduced Skin-Trans, an enhanced vision transformer
(ViT) designed for skin cancer classification. Their
approach involves a three-step process: establishing a ViT
model to assess Skin-Trans, implementing multi-scale patch
embeddings via overlapping sliding windows, and applying
contrastive learning to improve feature distinction. They
marked an accuracy of 94.3% on HAM image set. Karthik et
al. [5] combined the Swin Transformer with the Dense
Group Shuffle Non-Local Attention (DGSNLA) Network.
The DGSNLA is composed of DenseNet169, Group Shuffle
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Depth-wise blocks, and an enhanced non-local attention
block. This fusion of deep features enhances both global and
local feature representation and resulted in an accuracy of
94.21%. Zhiwei Qin et al. [6] presented a Generative
Adversarial Network (GAN) based data augmentation
method to improve skin lesion classification. They
developed a modified style-based GAN for generating high-
quality synthetic images, and a transfer learning-based
classifier is trained on this data. Tested on the HAM image
set, the method achieved 95.2% accuracy. Mirco Gallazzi et
al. [7] proposed a framework utilizing the self-attention
mechanism of Transformer models to capture spatial
relationships across image regions, bypassing the need for
handcrafted features or heavy pre-processing. Their
transformer-based  architecture =~ demonstrated  strong
performance in lesion classification. The framework
achieved an accuracy of 86.37%.

Chiyu Liu et al. [8] introduced "Reswin," a fusion model
combining a CNN (3D-ResNet), with a vision transformer
network (Video Swin Transformer). This hybrid model uses
a soft voting approach to enhance classification
performance. Reswin achieved an accuracy of 90.99%. Hao,
Shengnan, et al. [9] presented a novel fusion model,
ConvNeXt-ST-AFF, which combines the strengths of CNN
CNN-based model and a transformer-based model. The
output from these two models is merged through a special
fusion method wusing submodules for improved
representation, resulting in an accuracy of 92.16%. In [10] a
new transformer-based model is proposed for diabetic
retinopathy classification with multiple instance learning. In
this method high resolution retinal images are segmented
into 224x224 patches, from which features are extracted
using Vision Transformer (ViT). Inter-instance features are
also captured using another custom block, incorporating
global information into the model. This system marked an
accuracy of 93.1%. Gou, Quandeng, et al. [11] introduced
an innovative hierarchical multi-category framework that
integrates multi-scale CNNs to discern features across
varying resolutions with the transformer architecture’s
strength in modeling global dependencies. The model
leverages the hierarchical structure of the transformer to
enhance understanding of complex image relationships. This
integration allows for more effective feature representation
and improved classification performance with an accuracy
0f 94.63%. Saxena et al. [12] proposed maximum sensitivity
neural network and experimented with various segmentation
algorithms like clustering, watershed, and thresholding
followed by nodule extraction and -classification and
achieved an accuracy of 96%. Oktavian et al. [13] proposed
a CNN using ResNet-18 with transfer learning from
ImageNet and weighted loss functions to address
imbalanced datasets. The Mish activation function was also
tested, resulting in an accuracy of 88.30%, demonstrating
improved model performance. Wei Dai et al. [14]
introduced a model called HierAttn, which utilizes a
hierarchical attention approach. This model incorporates a
deep supervision methodology to effectively learn both local
and global characteristics by leveraging multi-level, multi-
path attention strategies under a unified training loss
framework. This model is evaluated on the ISIC2019
dermoscopy dataset and it achieved an accuracy of 96.7%.

In [15] the authors presented an External Attention
Transformer (EAT) model that leverages external attention
mechanisms for efficient and precise breast cancer image
classification. Achieving a remarkable 99% accuracy on the
BreakHis dataset, the EAT model demonstrates both high
performance and computational efficiency. Remya et al.
[16] inducted a groundbreaking framework that integrates
channel attention, and ROI (Region Of Interest) techniques
with a ViT for precise skin condition detection, including
skin decease. Combining computer vision with patient
metadata, it achieved an impressive 99% accuracy on a
comprehensive dermoscopic image dataset.

Vachmanus et al. [17] proposed DeepMetaForge, a deep-
learning framework for skin cancer detection using
metadata-enriched images. Leveraging BEIiT which is a ViT
pre-trained through images that are masked as its encoding
backbone, the framework achieved a high accuracy of
99.3%. Ferdous et al. [18] introduced LCDEiT, a data-
efficient image transformer designed for small datasets. It
achieved linear computational complexity by leveraging
external attention and a teacher-student approach. The
transformer-based student model is applied to MRI brain
tumour classification and recorded an accuracy of 98.11%.
Hossain et al. [19] proposed IVX16, a transfer learning-
based model that combines the three top-performing
architectures  with  explainable Al for enhanced
interpretability. Developed to find brain tumours and
categorize them, IVX16 scored an impressive accuracy of
96.94%. Lingbo Huang et al. [20] explored transformer-
based foundation models, specifically the VFM (Vision
Foundation Model) and LFM (Language Foundation Model)
models, for hyperspectral image (HSI) classification. To
enhance traditional HSI classification, a spectral-spatial
VFM-based transformer (SS-VFMT) is proposed,
integrating spectral-spatial data into the pretrained
foundation transformer, achieving competitive accuracy.
Xiaoxiao Li et al. [21] addressed the gap in deep learning
for disease detection by focusing on clinically meaningful
features for diagnosing skin lesions rather than relying on
artifacts. The proposed pipeline is designed to uncover novel
biomarkers which are not part of current clinical criteria but
they are valuable to dermatologists. The model achieved an
accuracy of 85%. Haroon Rashid et al. [22] used GANSs to
generate realistic dermoscopic images for data augmentation
in skin lesion classification. By enhancing the training set
with synthetic images, the approach aims to address the
challenge of limited dataset sizes. The model recorded an
accuracy of 86.1%. Rahi et al. [23] discussed a model that
evaluates multiple neural network architectures to identify
the most effective approach for detecting five primary skin
diseases. Initially, they built a custom CNN model with
keras sequential APl and achieved approximately 80%
accuracy. The performance is enhanced by using pre-trained
models such as VGG11, ResNet50 and DenseNet121. With
ResNet50 they recorded the highest accuracy at 90%
highlighting its superior effectiveness. F. Zhao et al. [24]
introduced a convolution transformer fusion splicing
network (CTFSN) for hyperspectral image (HSI)
classification, combining local and global information via
addition and channel stacking. A residual splicing
convolution block is proposed for shallow feature
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preservation, while a convolutional transformer fusion block
(CTFB) enhances local and global feature capture. A dual-
branch fusion module then merges these features, achieving
competitive accuracy across diverse datasets. Ali Jamali et
al. [25] presented PolSARFormer, a Vision Transformer
(ViT)-based framework that integrates 3-D and 2-D CNNs
with local window attention (LWA) for effective
classification of polarimetric synthetic aperture radar
(PoISAR) data that produced good accuracy.

III. METHODOLOGY

In our prior work [2], we developed a Deep CNN
(DCNN) with three convolutional layers. Each layer is
followed by batch normalization (BN) and dropout layers
and the DCNN achieved an accuracy of 96%. The optimizer
used is Adam with an LR (learning rate) of 0.1 and a DR
(Dropout Rate) of 0.2. In the present work, we propose a
methodology to further enhance the accuracy by adding a
transformer layer to the model. The resulting model is
termed as a Deep CNN with Transformer layer (DCNNT).
The addition of a transformer layer aims to capture broader
contextual dependencies and enhance classification accuracy
on the HAM10000 dataset. Instead of randomly selecting
hyperparameters, we adopt a rigorous iterative tuning
approach, as before, with the transformer layer added to
further enhance the model’s capability to interpret geometric
relationships within skin lesion images. Python is used for
development, with Kaggle facilitating training and testing.
The integration of the transformer is designed to boost the
DCNNT's performance, bringing increased robustness and
precision to skin lesion classification.

A. Data Set

The HAM10000 is a repository of dermatoscopic skin
lesion images, and it is widely recognized as a valuable
resource in dermatology research. Comprising a total of
10,015 images collected from various clinical settings and
hospitals, this dataset was created to advance the field of
skin cancer classification, particularly in identifying
melanoma. Its primary objective is to support and accelerate
research efforts by providing a diverse and comprehensive
collection of skin lesion images. Fig. 1. illustrates sample
images from this dataset, highlighting its variety and clinical

—

Fig. 1. Image samples from the Data set for each class
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Fig. 2. Unbalanced Data distribution

B. Data Balancing

The seven classes of skin cancer images have an
unbalanced distribution, which is shown in Fig. 2, along
with counts and class abbreviations for each category. We
can observe the imbalance in the dataset. Imbalanced
datasets often lead to a model which overly favours the
majority class and undermines its ability to accurately
predict minority classes. Class imbalance may also lead to
overfitting, where the model becomes excessively tailored to
the dominant class, resulting in poor generalization on new,
unseen data.

Balanced datasets, on the other hand, help maintain
equitable decision boundaries, enabling the model to learn
meaningful patterns from both majority and minority
classes. This improves predictive accuracy and robustness
across all categories. Fair evaluation is another critical
outcome, as balanced data allows for reliable assessment
using various performance metrics. Such metrics provide
deeper insights into the model’s capability to handle diverse
scenarios  effectively, fostering better performance
interpretation and application across varied real-world
contexts.

To maintain equilibrium, classes with fewer images are
augmented with additional samples, while classes with a
larger number of images are reduced through
downsampling. A sample size of 2800 is selected based on
iterations done with different sample sizes. Classes 1 to 7,
whose count is less than 2800, are oversampled and class 0
with more than 2800 images is downsampled to 2800. The
balanced data distribution is shown in the Fig. 3.
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Fig. 3. Balanced Data distribution
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C. Filtering and Resizing

Before being fed into the DCNNT, the images undergo
2D bilateral filtering, which is a nonlinear image processing
technique widely utilized for tasks such as noise
suppression, edge retention, and visual enhancement. This
method effectively smoothens the image while safeguarding
critical edges and fine details. The term "bilateral" refers to
the filter's dual consideration of both spatial closeness and
differences in pixel intensity during the processing.

Incorporating 2D bilateral filtering as a preprocessing step
enhances the data quality and reliability of the images that
are fed into the DCNNT model. After filtering, the images
are resized. The original size of the images in the data set is
600X450, but this size is too big and requires more memory
and demands more processing time, and hence the images
are resized to 75X75. Fig. 4. illustrates the original and
resized images.
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D. Data Augmentation

Data augmentation is implemented dynamically during
training to enhance dataset diversity, improve model
robustness and prevent overfitting. By generating a variety
of transformations on the fly, this approach effectively
simulates a larger dataset and helps the model generalize
better across unseen data. Additionally, data augmentation
plays a vital function in addressing class imbalance by
exposing the model to varied representations of less-
represented classes during training. The code snippet used to
generate augmented images is given below.

Code snippet to generate augmented images:
transform = transforms.Compose([
transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5,
0.5)
D
image = Image.open('path _to _image.jpg') # Replace with
the actual image path
augmented image = transform(image)
from torchvision.datasets import ImageFolder
from torch.utils.data import Datal.oader
dataset=ImageFolder(root='path_to_dataset',
transform=transform)
dataloader=Dataloader(dataset,batch _size=32,shuffle=True,
num_workers=4)

Vertical flip

|

Horizontal flip

Random Rotation ‘

Fig. 5. Original images and their augmented counterparts

As a result of data augmentation, the training process is
enriched with diverse samples, reducing the likelihood of
the model overfitting to specific patterns or noise in the data.
This method not only improves the generalization
capabilities of the model but also ensures it can handle
variations in real-world scenarios in a better way. Fig. 5.
presents examples of original images alongside their
augmented counterparts, showcasing the range of
transformations applied to enhance the dataset's variability.

E. DCNNT Architecture

The proposed DCNNT architecture builds upon the earlier
DCNN design by integrating a Transformer layer after the
convolutional stages, enhancing its capacity to encode wider
contextual dependencies and intricate = geometrical
relationships in the data. This hybrid approach leverages the
convolutional layers' feature extraction capabilities and the
transformer layer's strength in learning global context. The
architecture consists of four convolutional stages followed
by a transformer layer and dense layers.

Convolution Layers:

The initial four stages of the model extract hierarchical
features from the input images using convolution layers
(Conv2D). The first stage uses 256 filters of size 3x3,
activated by the ReLU function. These filters detect basic
patterns such as edges and textures. Subsequent stages
progressively reduce the number of filters to 128, 64, and
32, focusing on deeper feature representations with
improved efficiency in computation.

Max-Pooling Layers:

Each stage incorporates a Max-Pooling layer with a 2x2
kernel to down sample the spatial dimensions. This
operation outputs the single greatest value from the region
from non-overlapping windows, reducing spatial size and
introducing translational invariance.

Batch Normalization and Dropout Layers.

Batch normalization (BN) is a technique designed to
improve the stability and efficiency of training deep neural
networks. During training, the distribution of activations
within the network can shift, a phenomenon known as
internal covariate shift. This shift can slow down training
and make the optimization process more challenging. BN
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addresses this by normalizing the activations within a layer,
ensuring they have a consistent mean and variance.

This normalization process happens independently for
each feature in a mini-batch. By normalizing the data, BN
allows the network to converge faster and reduces
sensitivity to initialization, enabling the use of higher
learning rates. Additionally, BN introduces two learnable
parameters, a scaling parameter (y) and an offset (). The
network can adjust or even revert the normalization through
these parameters whenever it improves performance. These
parameters enhance the model's flexibility, ensuring that
normalization does not limit its ability to learn complex
patterns. Batch normalization also acts as a form of
regularization, helping to reduce overfitting in some cases
by adding controlled randomness to the training phase.

Dropout is another regularization technique that helps
prevent overfitting by introducing randomness into the
training process. During training, dropout randomly "drops"
or nullifies a fraction of neurons in a layer by setting their
outputs to zero. This prevents the network from becoming
overly reliant on specific neurons and forces it to learn more
robust and generalizable features.

The dropout rate determines the proportion of neurons to
drop and is typically set between 0.2 and 0.5, depending on
the level of detail in the model and the richness of the
dataset. In essence, dropout creates an ensemble-like effect,
as each forward pass effectively trains a slightly different
subset of the network. During inference, dropout is turned
off, and the outputs of all neurons are scaled to account for
the absence of dropout, ensuring consistent predictions.

Transformer Layer:

The core enhancement of the DCNNT architecture is the
integration of a transformer layer after flattening the output
from the convolutional stages. This layer processes the
feature vectors using self-attention and feed-forward
mechanisms to model global dependencies.

Multi-Head Self-Attention:

The first step in the Transformer layer involves
multi-head attention, responsible for generating attention
scores to identify relationships between different feature
vectors. The attention mechanism is expressed as:

Attention(Q,K,V) = softmax(QK" /\[d,)V (1)

e Q (Query), K (Key), and V (Value) are matrices
derived from the input.

e dy is the dimensionality of the keys.

e softmax is applied row-wise to normalize the
scores.

Multi-head attention computes multiple such attention
mechanisms in parallel to capture diverse patterns.

Feed-Forward Network (FFN):

After attention, a feed-forward network (FFN) applies
two linear transformations with a ReLU activation in
between:

FFN(x) = ReLU(xW1 + b1)W2 + b2 ©)

where W1, W2 and bl, b2 are learnable parameters. This
layer processes the output from attention, enriching the
representation further. Layer normalization is applied to
stabilize training. Residual connections are added around the
self-attention and FFN sub-layers to prevent vanishing
gradients and allow better gradient flow.

x' = LayerNorm(x + Attention(x)) 3)
y = LayerNorm(x' + FFN(x")) 4

Dense (Fully-Connected) Layers and SoftMax:

The output of the Transformer layer is averaged along the
sequence dimension, reducing it to a single vector. Next, it
is processed by two dense layers, the first consisting of 64
units and the second yielding 7 outputs. A SoftMax
activation generates probabilities for each class, enabling
multi-class classification.

The DCNNT architecture combines the strengths of
convolutional and Transformer-based processing, offering
enhanced feature extraction and robust contextual
modelling, critical for tasks like skin lesion classification.

Key Aspects of the Proposed Architecture:
Input Layer

=> Input Image: 75x75%3

First Convolutional Block

= Conv2d (3—256), BatchNorm2d, ReLU
= MaxPool2d (2x2), Dropout (0.2)

=> Output: 37x37%256

Second Convolutional Block

= Conv2d (256—128), BatchNorm2d, ReLU
= MaxPool2d (2x2), Dropout (0.2)

=> Output: 18x18x128

Third Convolutional Block

= Conv2d (128—64), BatchNorm2d, ReLU
= MaxPool2d (2x2), Dropout (0.2)

=> Output: 9x9x64

Fourth Convolutional Block

- Conv2d (64—32), BatchNorm2d, ReLU
= MaxPool2d (2x2), Dropout (0.2)

=> Output: 4x4x32

Flattening
=> Flatten 4x4x32 — 512
=> Shape: (batch_size, 512)

Reshaping for Transformer
-> Reshape (batch_size, 16, 32)
=> 16 = 4x4 patches, 32 = embed_dim (channels)

Transformer Encoder Block

= Multi-Head Attention (input: 16x32)
=> Layer Norm

=> Feed-Forward (ff dim=64)
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=> Layer Norm
=> Output: (batch_size, 16, 32)

Global Pooling
= Mean Pool over sequence
=> Output: (batch_size, 32)

Fully Connected (FC) Layers
=> Linear (32 — 64), ReLU

=> Linear (64 — 7)

=> Output: (batch_size, 7)

Output
=> Final classification scores (7 classes)

Fig 6. Shows the functional flow chart of the system

Input Image
75x75x3

¥

o
First Convolutional Block
L 37x37x256
) I
Second Convolutional Block
L 18x18x128
_ l
Third Convolutional Block
9x9x64
\
) !
Fourth Convolutional Block
4x4x32
\\
( l .
Flattening
512
\
- I
Reshaping for the transformer
Transformer Layer
S batch_size, 16,32
) I
Global Pooling
L batch_size, 32,2
) I
Fully Connected Layers
L batch_size, 7

Fig 6. Functional flow chart of DCNNT

F. Tuning Hyper Parameters of DCNNT

Optimizers play a crucial role in training deep learning
models like DCNNT. Choosing the appropriate optimizer is
essential to balance training efficiency, generalization ability
and robustness across different datasets and architectures.

Stochastic Gradient Descent (SGD) is a widely used
optimizer for its ability to handle large datasets efficiently.
By updating parameters using random subsets of data it
reduces memory requirements and accelerates training.
However, the inherent noise in its updates can lead to
instability and slower convergence. Despite these
challenges, SGD remains a popular choice for tasks where
gradients are relatively well-behaved, and its performance
can be enhanced through techniques such as momentum or
learning rate scheduling. Variants like SGD with Nesterov
momentum further improve convergence by anticipating
future parameter updates. Careful tuning of hyperparameters
such as learning rate and batch size is critical to achieving
optimal performance, and in many deep learning
applications, SGD continues to outperform more complex
optimizers when properly configured.

Adagrad, adapts each parameter’s learning rate using the
past sum of squared gradients. This approach allows it to
perform particularly well on sparse data and datasets with
widely varying feature scales, making it effective in high-
dimensional input spaces. However, its adaptive learning
rates decay over time, which can cause the optimization
process to stall, especially in deep networks. This
diminishing learning rate can prevent models from escaping
flat regions in the loss landscape, slowing convergence and
limiting Adagrad’s applicability to more complex
architectures. To address this limitation, variants such as
Adadelta and RMSProp have been developed to maintain a
more stable learning rate. Nevertheless, Adagrad remains a
valuable choice in scenarios where rapid early-stage
learning is prioritized over long-term convergence
behaviour.

Adam stands out as one of the most effective optimizers
for deep networks due to its ability to combine the
advantages of both RMSProp and momentum. By
maintaining running averages of both the first moment
(mean) and second moment (variance) of gradients, Adam
provides adaptive learning rates and stable updates. Bias
correction ensures these averages are accurate, even in the
initial training stages. This makes Adam highly versatile and
efficient for a wide range of tasks, particularly in deep
architectures like DCNNT, where stability and convergence
are critical. Furthermore, Adam's ability to handle sparse
gradients and varying learning rates across parameters
makes it a preferred choice for many NLP and computer
vision applications. With minimal tuning, Adam often
delivers competitive performance, making it a strong default
optimizer in many deep learning frameworks.

For hyperparameter tuning, several LRs (0.1, 0.01, 0.001,
and 0.0001) and DRs (0.2 and 0.3) were tested to find the
optimal configuration. SGD and Adagrad provided decent
results but fell short in terms of stability and accuracy,
particularly on the DCNNT model. The best performance
was achieved using Adam with an LR of 0.001 and a DR of
0.2, which effectively balanced overfitting prevention and
convergence speed and resulted in an accuracy of 97%. This
result is obtained with a train-test split of 80:20.
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Fig. 8. C-Matrix and C-Report of the model without the transformer layer (DCNN)
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TABLE I-IMPACT OF HYPER-PARAMETER TUNING ON THE PERFORMANCE OF DCNNT

Optimizer LR DR Accuracy Precision Recall
Adam 0.01 0.3 0.65 0.68 0.65
0.01 0.2 0.96 0.96 0.96
0.001 0.3 0.94 0.94 0.94
0.001 0.2 0.97 0.97 0.97
0.0001 0.3 0.90 0.90 0.90
0.0001 0.2 0.94 0.94 0.94
SGD 0.01 0.3 0.88 0.88 0.88
0.01 0.2 0.94 0.94 0.94
0.001 0.3 0.63 0.70 0.63
0.001 0.2 0.78 0.79 0.78
0.0001 0.3 0.29 0.33 0.29
0.0001 0.2 0.43 0.46 0.42
Adagrad 0.01 0.3 0.88 0.88 0.88
0.01 0.2 0.92 0.92 0.92
0.001 0.3 0.61 0.67 0.62
0.001 0.2 0.78 0.78 0.78
0.0001 0.3 0.45 0.40 0.45
0.0001 0.2 0.37 0.42 0.37

F-1 Score

0.65
0.96
0.94
0.97
0.90
0.94
0.88
0.94
0.63
0.77
0.28
0.39
0.87
0.92
0.61
0.77
0.41
0.34

AUC (%) Sensitivity (%) Specificity (%)
0.80 0.65 0.92
0.98 0.96 0.99
0.96 0.94 0.99
0.98 0.97 0.99
0.94 0.90 0.98
0.97 0.94 0.99
0.93 0.88 0.98
0.96 0.94 0.99
0.79 0.63 0.92
0.87 0.78 0.96
0.59 0.29 0.74
0.67 0.42 0.83
0.93 0.88 0.98
0.96 0.92 0.99
0.78 0.62 091
0.87 0.78 0.96
0.68 0.45 0.83
0.63 0.37 0.82

IV. RESULTS AND DISCUSSION

The block diagram of the DCNNT is shown in Fig. 7.
Various performance metrics are observed by exploring the
Confusion Matrix (C-Matrix), Classification Report (C-
Report) of DCNNT.

A C-Matrix is a compact table that provides a clear
overview of a classification model's performance. It serves
as a valuable resource for evaluating the accuracy of
predictions and identifying areas where the model may be
misclassifying data.

A classification report is a concise report that highlights
the performance of a classification model by providing key
metrics such as precision, recall and F1-score. It helps assess
the model's effectiveness across different classes. Fig. 8
shows the C-Matrix and C-Report of the model without a
transformer layer (DCNN) and Fig. 9 shows the C-Matrix
and C-Report of the model with an integrated transformer
layer (DCNNT). We can observe that the integration of the
transformer layer has improved all the performance metrics.
The impact of hyperparameter tuning is shown in Table I.
We can observe that DCNNT produced the best results.
when the optimizer is Adam with an LR of 0.001 and a DR
of 0.2.

TABLE Il COMPARISON OF METRICS BETWEEN DCNN AND DCNNT

Performance
Metric DCNN DCNNT
Accuracy 0.96 0.97
Precision 0.96 0.97
F-score 0.96 0.97
Recall 0.96 0.97
Sensitivity 0.96 0.97
Specificity 0.99 0.99

A comparison of metrics without (DCNN) and with a
transformer layer (DCNNT) is shown in Table II. We can
observe that almost all metrics, including accuracy, were
improved in DCNNT compared to DCNN.

ROC Curves for Multi-Class Classification
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Fig. 10. ROC Curves

An ROC curve is a graphical representation that
illustrates the trade-off between the true positive rate
(sensitivity) and the false positive rate (specificity) across
different thresholds. It provides insights into a model's
ability to distinguish between classes, making it particularly
useful for binary classification tasks. The area under the
curve (AUC) serves as a single metric to summarize overall
performance, where a higher AUC indicates better
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discrimination capability. Fig. 10 shows the ROC curve and
Fig. 11 shows the training and testing accuracy curves.
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Fig. 11. Training and Testing Accuracy Curves

TABLE III COMPARISON OF PROPOSED MODEL WITH EXISTING

MODELS
Existing Model
S.No. (Validated on HAM10000) Accuracy
1 Xu, Zhijian. et al. [3] 92.79%
2 Xin C. et al. [4] 94.30%
3 Karthik, R. et al. [5] 94.21%
4 Qin, Zhiwei. et al. [6] 95.20%
5 X. Li. etal. [21] 85.00%
6 Rashid. et al. [22] 86.10%
7 Rahi. et. al. [23] 89.00%
8 Our Proposed DCNNT 97.00%

The consolidated results of the proposed DCNNT model
are compared with some of the state-of-the-art models in
Table III. We can observe that the proposed DCNNT
achieved an accuracy of 97% when Adam is used as an
optimizer with LR=0.001 and DR=0.2. The results obtained
with our proposed DCNNT model are compared with the
existing state-of-the-art models and are presented in Table
II.

V. CONCLUSION AND FUTURE WORK

It is evident from the findings that the proposed DCNNT
model yields strong and encouraging results, and achieved a
promising accuracy of 97% and has outperformed several
well-established models.

There is potential to further improve the accuracy by
using an ensemble of transfer modelling techniques and our
DCNNT. In our future work, we will integrate the DCNNT
with models like DenseNet121, INCEPTIONV3 and form
an ensemble model that may have the potential of achieving
much higher accuracy.
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