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Abstract—Skin cancer remains a critical public health issue 

worldwide, with early detection significantly improving patient 
outcomes. This study introduces an enhanced deep learning 
approach, combining a custom Convolutional Neural Network 
(CNN) with an Integrated Transformer Layer (ITL) to boost 
classification accuracy for skin lesions. Our model is trained 
and tested on the HAM10000 dataset, comprising 10,015 
dermoscopic images of various skin lesion types. Accuracy 
improved considerably by fine-tuning hyperparameters and 
refining the model using normalization strategies, dropout-
based regularization, data–level augmentation, and techniques 
to address class imbalance.. The addition of a transformer 
layer facilitates the capture of long-range dependencies, 
yielding superior classification performance and achieving an 
impressive 97% accuracy. This advanced model demonstrates 
strong potential as a diagnostic tool for dermatologists, 
supporting timely and precise skin cancer detection. 
 

Index Terms— Neural Network, Hyperparameters, 
Transformer Layer, Skin Cancer Classification,  

I. INTRODUCTION 
kin cancer has emerged as a major global health 
concern, with rising incidence rates across the world. 

Early and accurate identification of skin lesions is essential 
for optimizing treatment outcomes and enhancing patient 
prognosis. Dermoscopy, a widely adopted, non-invasive 
imaging technique, has proven invaluable in aiding 
dermatologists with early-stage skin cancer detection. 
However, manual interpretation of dermoscopic images can 
be labor-intensive and is prone to observer variability. 
Advances in deep learning have shown promise in 
automating this process, potentially providing robust and 
consistent skin lesion classification. 

Even though CNNs are proven choice for image analysis 
tasks, their performance can be further improved. In this 
study, we propose an advanced classification model that 
integrates a deep CNN with a transformer layer, aimed at 
enhancing classification accuracy for skin lesions. The 
HAM10000 dataset, with 10,000 dermoscopic images 
spanning seven lesion types, provides the core data on 
which the model is trained and assessed. To boost our 
model’s learning stability and   generalization,  we   employ  
techniques      such     as   batch     normalization  for   stable  

 
Manuscript received December 11, 2024; revised August 29, 2025.   
Abdul Rahaman Shaik is a PhD student of the ECE 

Department, Andhra University College of Engineering, Andhra 
University, Visakhapatnam, Andhra Pradesh, India (corresponding author: 
phone: +91-9491185747; e-mail: abdulrahman.s@vishnu.edu.in). 

P. Rajesh Kumar is a Professor in the Department of ECE, Andhra 
University College of Engineering, Andhra University, Visakhapatnam, 
Andhra Pradesh, India (e-mail: rajeshauce@gmail.com). 

 

 
training and dropout to reduce overfitting. Additionally, data 
augmentation involving rotations, scaling and flipping 
enriches the training data, enabling the model to better 
capture diverse lesion characteristics. To address the class 
imbalance, we apply up sampling and down sampling 
strategies, ensuring an equitable representation of all lesion 
types. 

The inclusion of the transformer layer introduces the 
capability to capture long-range dependencies within the 
image data, further refining the model’s classification 
accuracy. The experimental results highlight the 
effectiveness of our enhanced model, which attains superior 
accuracy and outperforms our previous CNN-only 
architecture. Our model demonstrates significant potential as 
a valuable diagnostic aid for dermatologists, contributing to 
prompt and accurate skin cancer classification and 
ultimately enhancing patient care. 

II. LITERATURE REVIEW 
Tschandl et al..[1] address the challenges of limited and 

non-diverse dermatoscopic image datasets in automated skin 
lesion diagnosis by releasing the HAM10000 dataset. This 
dataset, consisting of 10,015 images from varied populations 
and sources, was curated with semi-automated workflows 
and neural network assistance to enhance quality and 
diversity. It is available via the ISIC archive for academic 
machine learning research. In [2], which is our previous 
work, we applied machine learning (ML) algorithms on 
HAM10000 image set and explored the accuracy of various 
ML techniques. We observed that Random Forest with 
Pricipal Component Analysis produced the best results with 
92% accuracy. Xu et al. [3] developed a CNN with two-
branch encoder and integrated it with a transformer to 
optimize the process of extracting features from images. The 
CNN branch consists of four layers that capture localized 
features through progressive down sampling, while the 
transformer branch consists four layers of attention 
mechanisms to grasp global context. This approach achieved 
an accuracy of 92.79% on HAM image set. Chao Xin et al. 
[4] introduced Skin-Trans, an enhanced vision transformer 
(ViT) designed for skin cancer classification. Their 
approach involves a three-step process: establishing a ViT 
model to assess Skin-Trans, implementing multi-scale patch 
embeddings via overlapping sliding windows, and applying 
contrastive learning to improve feature distinction. They 
marked an accuracy of 94.3% on HAM image set. Karthik et 
al. [5] combined the Swin Transformer with the Dense 
Group Shuffle Non-Local Attention (DGSNLA) Network. 
The DGSNLA is composed of DenseNet169, Group Shuffle 
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Depth-wise blocks, and an enhanced non-local attention 
block. This fusion of deep features enhances both global and 
local feature representation and resulted in an accuracy of 
94.21%. Zhiwei Qin et al. [6] presented a Generative 
Adversarial Network (GAN) based data augmentation 
method to improve skin lesion classification. They 
developed a modified style-based GAN for generating high-
quality synthetic images, and a transfer learning-based 
classifier is trained on this data. Tested on the HAM image 
set, the method achieved 95.2% accuracy. Mirco Gallazzi et 
al. [7] proposed a framework utilizing the self-attention 
mechanism of Transformer models to capture spatial 
relationships across image regions, bypassing the need for 
handcrafted features or heavy pre-processing. Their 
transformer-based architecture demonstrated strong 
performance in lesion classification. The framework 
achieved an accuracy of 86.37%.  

Chiyu Liu et al. [8] introduced "Reswin," a fusion model 
combining a CNN (3D-ResNet), with a vision transformer 
network (Video Swin Transformer). This hybrid model uses 
a soft voting approach to enhance classification 
performance. Reswin achieved an accuracy of 90.99%. Hao, 
Shengnan, et al. [9] presented a novel fusion model, 
ConvNeXt-ST-AFF, which combines the strengths of CNN 
CNN-based model and a transformer-based model. The 
output from these two models is merged through a special 
fusion method using submodules for improved 
representation, resulting in an accuracy of 92.16%. In [10] a 
new transformer-based model is proposed for diabetic 
retinopathy classification with multiple instance learning. In 
this method high resolution retinal images are segmented 
into 224×224 patches, from which features are extracted 
using Vision Transformer (ViT). Inter-instance features are 
also captured using another custom block, incorporating 
global information into the model. This system marked an 
accuracy of 93.1%. Gou, Quandeng, et al. [11] introduced 
an innovative hierarchical multi-category framework that 
integrates multi-scale CNNs to discern features across 
varying resolutions with the transformer architecture’s 
strength in modeling global dependencies. The model 
leverages the hierarchical structure of the transformer to 
enhance understanding of complex image relationships. This 
integration allows for more effective feature representation 
and improved classification performance with an accuracy 
of 94.63%. Saxena et al. [12] proposed maximum sensitivity 
neural network and experimented with various segmentation 
algorithms like clustering, watershed, and thresholding 
followed by nodule extraction and classification and 
achieved an accuracy of 96%. Oktavian et al. [13] proposed 
a CNN using ResNet-18 with transfer learning from 
ImageNet and weighted loss functions to address 
imbalanced datasets. The Mish activation function was also 
tested, resulting in an accuracy of 88.30%, demonstrating 
improved model performance. Wei Dai et al. [14] 
introduced a model called HierAttn, which utilizes a 
hierarchical attention approach. This model incorporates a 
deep supervision methodology to effectively learn both local 
and global characteristics by leveraging multi-level, multi-
path attention strategies under a unified training loss 
framework. This model is evaluated on the ISIC2019 
dermoscopy dataset and it achieved an accuracy of 96.7%. 

In [15] the authors presented an External Attention 
Transformer (EAT) model that leverages external attention 
mechanisms for efficient and precise breast cancer image 
classification. Achieving a remarkable 99% accuracy on the 
BreakHis dataset, the EAT model demonstrates both high 
performance and computational efficiency. Remya et al. 
[16] inducted a groundbreaking framework that integrates 
channel attention, and ROI (Region Of Interest) techniques 
with a ViT for precise skin condition detection, including 
skin decease. Combining computer vision with patient 
metadata, it achieved an impressive 99% accuracy on a 
comprehensive dermoscopic image dataset.  

Vachmanus et al. [17] proposed DeepMetaForge, a deep-
learning framework for skin cancer detection using 
metadata-enriched images. Leveraging BEiT which is a ViT 
pre-trained through images that are masked as its encoding 
backbone, the framework achieved a high accuracy of 
99.3%. Ferdous et al. [18] introduced LCDEiT, a data-
efficient image transformer designed for small datasets. It 
achieved linear computational complexity by leveraging 
external attention and a teacher-student approach. The 
transformer-based student model is applied to MRI brain 
tumour classification and recorded an accuracy of 98.11%. 
Hossain et al. [19] proposed IVX16, a transfer learning-
based model that combines the three top-performing 
architectures with explainable AI for enhanced 
interpretability. Developed to find brain tumours and 
categorize them, IVX16 scored an impressive accuracy of 
96.94%. Lingbo Huang et al. [20] explored transformer-
based foundation models, specifically the VFM (Vision 
Foundation Model) and LFM (Language Foundation Model) 
models, for hyperspectral image (HSI) classification. To 
enhance traditional HSI classification, a spectral-spatial 
VFM-based transformer (SS-VFMT) is proposed, 
integrating spectral-spatial data into the pretrained 
foundation transformer, achieving competitive accuracy. 
Xiaoxiao Li et al. [21] addressed the gap in deep learning 
for disease detection by focusing on clinically meaningful 
features for diagnosing skin lesions rather than relying on 
artifacts. The proposed pipeline is designed to uncover novel 
biomarkers which are not part of current clinical criteria but 
they are valuable to dermatologists. The model achieved an 
accuracy of 85%. Haroon Rashid et al. [22] used GANs to 
generate realistic dermoscopic images for data augmentation 
in skin lesion classification. By enhancing the training set 
with synthetic images, the approach aims to address the 
challenge of limited dataset sizes. The model recorded an 
accuracy of 86.1%. Rahi et al. [23] discussed a model that 
evaluates multiple neural network architectures to identify 
the most effective approach for detecting five primary skin 
diseases. Initially, they built a custom CNN model with 
keras sequential API and achieved approximately 80% 
accuracy. The performance is enhanced by using pre-trained 
models such as VGG11, ResNet50 and DenseNet121. With 
ResNet50 they recorded the highest accuracy at 90% 
highlighting its superior effectiveness. F. Zhao et al. [24] 
introduced a convolution transformer fusion splicing 
network (CTFSN) for hyperspectral image (HSI) 
classification, combining local and global information via 
addition and channel stacking. A residual splicing 
convolution block is proposed for shallow feature 
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preservation, while a convolutional transformer fusion block 
(CTFB) enhances local and global feature capture. A dual-
branch fusion module then merges these features, achieving 
competitive accuracy across diverse datasets. Ali Jamali et 
al. [25] presented PolSARFormer, a Vision Transformer 
(ViT)-based framework that integrates 3-D and 2-D CNNs 
with local window attention (LWA) for effective 
classification of polarimetric synthetic aperture radar 
(PolSAR) data that produced good accuracy. 

III. METHODOLOGY 
In our prior work [2], we developed a Deep CNN 

(DCNN) with three convolutional layers. Each layer is 
followed by batch normalization (BN) and dropout layers 
and the DCNN achieved an accuracy of 96%. The optimizer 
used is Adam with an LR (learning rate) of 0.1 and a DR 
(Dropout Rate) of 0.2. In the present work, we propose a 
methodology to further enhance the accuracy by adding a 
transformer layer to the model. The resulting model is 
termed as a Deep CNN with Transformer layer (DCNNT). 
The addition of a transformer layer aims to capture broader 
contextual dependencies and enhance classification accuracy 
on the HAM10000 dataset. Instead of randomly selecting 
hyperparameters, we adopt a rigorous iterative tuning 
approach, as before, with the transformer layer added to 
further enhance the model’s capability to interpret geometric 
relationships within skin lesion images. Python is used for 
development, with Kaggle facilitating training and testing. 
The integration of the transformer is designed to boost the 
DCNNT's performance, bringing increased robustness and 
precision to skin lesion classification.  

A. Data Set 
The HAM10000 is a repository of dermatoscopic skin 

lesion images, and it is widely recognized as a valuable 
resource in dermatology research. Comprising a total of 
10,015 images collected from various clinical settings and 
hospitals, this dataset was created to advance the field of 
skin cancer classification, particularly in identifying 
melanoma. Its primary objective is to support and accelerate 
research efforts by providing a diverse and comprehensive 
collection of skin lesion images. Fig. 1. illustrates sample 
images from this dataset, highlighting its variety and clinical 

relevance.   
 

B. Data Balancing  
The seven classes of skin cancer images have an 

unbalanced distribution, which is shown in Fig. 2, along 
with counts and class abbreviations for each category. We 
can observe the imbalance in the dataset. Imbalanced 
datasets often lead to a model which overly favours the 
majority class and undermines its ability to accurately 
predict minority classes. Class imbalance may also lead to 
overfitting, where the model becomes excessively tailored to 
the dominant class, resulting in poor generalization on new, 
unseen data. 

Balanced datasets, on the other hand, help maintain 
equitable decision boundaries, enabling the model to learn 
meaningful patterns from both majority and minority 
classes. This improves predictive accuracy and robustness 
across all categories. Fair evaluation is another critical 
outcome, as balanced data allows for reliable assessment 
using various performance metrics. Such metrics provide 
deeper insights into the model’s capability to handle diverse 
scenarios effectively, fostering better performance 
interpretation and application across varied real-world 
contexts. 

To maintain equilibrium, classes with fewer images are 
augmented with additional samples, while classes with a 
larger number of images are reduced through 
downsampling. A sample size of 2800 is selected based on 
iterations done with different sample sizes. Classes 1 to 7, 
whose count is less than 2800, are oversampled and class 0 
with more than 2800 images is downsampled to 2800. The 
balanced data distribution is shown in the Fig. 3. 

 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Unbalanced Data distribution  
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          Fig. 1. Image samples from the Data set for each class 
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        Fig. 3.  Balanced Data distribution  
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C. Filtering and Resizing 
Before being fed into the DCNNT, the images undergo 

2D bilateral filtering, which is a nonlinear image processing 
technique widely utilized for tasks such as noise 
suppression, edge retention, and visual enhancement. This 
method effectively smoothens the image while safeguarding 
critical edges and fine details. The term "bilateral" refers to 
the filter's dual consideration of both spatial closeness and 
differences in pixel intensity during the processing. 

Incorporating 2D bilateral filtering as a preprocessing step 
enhances the data quality and reliability of the images that 
are fed into the DCNNT model. After filtering, the images 
are resized. The original size of the images in the data set is 
600X450, but this size is too big and requires more memory 
and demands more processing time, and hence the images 
are resized to 75X75. Fig. 4. illustrates the original and 
resized images. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D.  Data Augmentation 
Data augmentation is implemented dynamically during 

training to enhance dataset diversity, improve model 
robustness and prevent overfitting. By generating a variety 
of transformations on the fly, this approach effectively 
simulates a larger dataset and helps the model generalize 
better across unseen data. Additionally, data augmentation 
plays a vital function in addressing class imbalance by 
exposing the model to varied representations of less-
represented classes during training. The code snippet used to 
generate augmented images is given below. 

 
Code snippet to generate augmented images: 
transform = transforms.Compose([ 
    transforms.RandomRotation(30),         
    transforms.RandomHorizontalFlip(),    
    transforms.RandomVerticalFlip(),      
    transforms.ToTensor(),                 
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 
0.5])   
]) 
image = Image.open('path_to_image.jpg') # Replace with 
the actual image path 
augmented_image = transform(image) 
from torchvision.datasets import ImageFolder 
from torch.utils.data import DataLoader 
dataset=ImageFolder(root='path_to_dataset', 
transform=transform) 
dataloader=DataLoader(dataset,batch_size=32,shuffle=True, 
num_workers=4) 
 

As a result of data augmentation, the training process is 
enriched with diverse samples, reducing the likelihood of 
the model overfitting to specific patterns or noise in the data. 
This method not only improves the generalization 
capabilities of the model but also ensures it can handle 
variations in real-world scenarios in a better way. Fig. 5. 
presents examples of original images alongside their 
augmented counterparts, showcasing the range of 
transformations applied to enhance the dataset's variability. 

E. DCNNT Architecture 
The proposed DCNNT architecture builds upon the earlier 

DCNN design by integrating a Transformer layer after the 
convolutional stages, enhancing its capacity to encode wider 
contextual dependencies and intricate geometrical 
relationships in the data. This hybrid approach leverages the 
convolutional layers' feature extraction capabilities and the 
transformer layer's strength in learning global context. The 
architecture consists of four convolutional stages followed 
by a transformer layer and dense layers. 

 
Convolution Layers: 

The initial four stages of the model extract hierarchical 
features from the input images using convolution layers 
(Conv2D). The first stage uses 256 filters of size 3×3, 
activated by the ReLU function. These filters detect basic 
patterns such as edges and textures. Subsequent stages 
progressively reduce the number of filters to 128, 64, and 
32, focusing on deeper feature representations with 
improved efficiency in computation. 

 
Max-Pooling Layers: 

Each stage incorporates a Max-Pooling layer with a 2×2 
kernel to down sample the spatial dimensions. This 
operation outputs the single greatest value from the region 
from non-overlapping windows, reducing spatial size and 
introducing translational invariance. 
 
Batch Normalization and Dropout Layers: 

Batch normalization (BN) is a technique designed to 
improve the stability and efficiency of training deep neural 
networks. During training, the distribution of activations 
within the network can shift, a phenomenon known as 
internal covariate shift. This shift can slow down training 
and make the optimization process more challenging. BN 

 
            Fig. 4. Original and resized Images 
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addresses this by normalizing the activations within a layer, 
ensuring they have a consistent mean and variance. 

This normalization process happens independently for 
each feature in a mini-batch. By normalizing the data, BN 
allows the network to converge faster and reduces 
sensitivity to initialization, enabling the use of higher 
learning rates. Additionally, BN introduces two learnable 
parameters, a scaling parameter (γ) and an offset (β). The 
network can adjust or even revert the normalization through 
these parameters whenever it improves performance. These 
parameters enhance the model's flexibility, ensuring that 
normalization does not limit its ability to learn complex 
patterns. Batch normalization also acts as a form of 
regularization, helping to reduce overfitting in some cases 
by adding controlled randomness to the training phase. 

Dropout is another regularization technique that helps 
prevent overfitting by introducing randomness into the 
training process. During training, dropout randomly "drops" 
or nullifies a fraction of neurons in a layer by setting their 
outputs to zero. This prevents the network from becoming 
overly reliant on specific neurons and forces it to learn more 
robust and generalizable features. 

The dropout rate determines the proportion of neurons to 
drop and is typically set between 0.2 and 0.5, depending on 
the level of detail in the model and the richness of the 
dataset. In essence, dropout creates an ensemble-like effect, 
as each forward pass effectively trains a slightly different 
subset of the network. During inference, dropout is turned 
off, and the outputs of all neurons are scaled to account for 
the absence of dropout, ensuring consistent predictions. 
 
Transformer Layer: 

The core enhancement of the DCNNT architecture is the 
integration of a transformer layer after flattening the output 
from the convolutional stages. This layer processes the 
feature vectors using self-attention and feed-forward 
mechanisms to model global dependencies. 

 
Multi-Head Self-Attention: 

The first step in the Transformer layer involves 
multi-head attention, responsible for generating attention 
scores to identify relationships between different feature 
vectors. The attention mechanism is expressed as: 

 
���������(�, �, �) = �������(���/���)�                 (1) 
 

 Q (Query), K (Key), and V (Value) are matrices 
derived from the input. 

 dk is the dimensionality of the keys. 
 softmax is applied row-wise to normalize the 

scores. 

Multi-head attention computes multiple such attention 
mechanisms in parallel to capture diverse patterns. 
 
Feed-Forward Network (FFN): 

After attention, a feed-forward network (FFN) applies 
two linear transformations with a ReLU activation in 
between: 

 
���(�) = ����(��1 + �1)�2 + �2          (2) 
 

where W1, W2 and b1, b2 are learnable parameters. This 
layer processes the output from attention, enriching the 
representation further. Layer normalization is applied to 
stabilize training. Residual connections are added around the 
self-attention and FFN sub-layers to prevent vanishing 
gradients and allow better gradient flow.  
 
�′ = ���������(� + ���������(�))          (3) 
 
� = ���������(�′ + ���(�′))                                      (4) 
 
Dense (Fully-Connected) Layers and SoftMax: 

The output of the Transformer layer is averaged along the 
sequence dimension, reducing it to a single vector. Next, it 
is processed by two dense layers, the first consisting of 64 
units and the second yielding 7 outputs. A SoftMax 
activation generates probabilities for each class, enabling 
multi-class classification. 

The DCNNT architecture combines the strengths of 
convolutional and Transformer-based processing, offering 
enhanced feature extraction and robust contextual 
modelling, critical for tasks like skin lesion classification. 

 
Key Aspects of the Proposed Architecture: 
Input Layer 
➔ Input Image: 75×75×3 

First Convolutional Block 
➔ Conv2d (3→256), BatchNorm2d, ReLU 
➔ MaxPool2d (2×2), Dropout (0.2) 
➔ Output: 37×37×256 

Second Convolutional Block 
➔ Conv2d (256→128), BatchNorm2d, ReLU 
➔ MaxPool2d (2×2), Dropout (0.2) 
➔ Output: 18×18×128 

Third Convolutional Block 
➔ Conv2d (128→64), BatchNorm2d, ReLU 
➔ MaxPool2d (2×2), Dropout (0.2) 
➔ Output: 9×9×64 

Fourth Convolutional Block 
➔ Conv2d (64→32), BatchNorm2d, ReLU 
➔ MaxPool2d (2×2), Dropout (0.2) 
➔ Output: 4×4×32 

Flattening 
➔ Flatten 4×4×32 → 512 
➔ Shape: (batch_size, 512) 

Reshaping for Transformer 
➔ Reshape (batch_size, 16, 32) 
➔ 16 = 4×4 patches, 32 = embed_dim (channels) 

Transformer Encoder Block 
➔ Multi-Head Attention (input: 16×32) 
➔ Layer Norm 
➔ Feed-Forward (ff_dim=64) 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3733-3742

 
______________________________________________________________________________________ 



 

➔ Layer Norm 
➔ Output: (batch_size, 16, 32) 

Global Pooling 
➔ Mean Pool over sequence 
➔ Output: (batch_size, 32) 

Fully Connected (FC) Layers 
➔ Linear (32 → 64), ReLU 
➔ Linear (64 → 7) 
➔ Output: (batch_size, 7) 

Output 
➔ Final classification scores (7 classes) 
 
Fig 6. Shows the functional flow chart of the system 

F. Tuning Hyper Parameters of DCNNT 
Optimizers play a crucial role in training deep learning 

models like DCNNT. Choosing the appropriate optimizer is 
essential to balance training efficiency, generalization ability 
and robustness across different datasets and architectures. 

Stochastic Gradient Descent (SGD) is a widely used 
optimizer for its ability to handle large datasets efficiently. 
By updating parameters using random subsets of data it 
reduces memory requirements and accelerates training. 
However, the inherent noise in its updates can lead to 
instability and slower convergence. Despite these 
challenges, SGD remains a popular choice for tasks where 
gradients are relatively well-behaved, and its performance 
can be enhanced through techniques such as momentum or 
learning rate scheduling. Variants like SGD with Nesterov 
momentum further improve convergence by anticipating 
future parameter updates. Careful tuning of hyperparameters 
such as learning rate and batch size is critical to achieving 
optimal performance, and in many deep learning 
applications, SGD continues to outperform more complex 
optimizers when properly configured. 

Adagrad, adapts each parameter’s learning rate using the 
past sum of squared gradients. This approach allows it to 
perform particularly well on sparse data and datasets with 
widely varying feature scales, making it effective in high-
dimensional input spaces. However, its adaptive learning 
rates decay over time, which can cause the optimization 
process to stall, especially in deep networks. This 
diminishing learning rate can prevent models from escaping 
flat regions in the loss landscape, slowing convergence and 
limiting Adagrad’s applicability to more complex 
architectures. To address this limitation, variants such as 
Adadelta and RMSProp have been developed to maintain a 
more stable learning rate. Nevertheless, Adagrad remains a 
valuable choice in scenarios where rapid early-stage 
learning is prioritized over long-term convergence 
behaviour. 

Adam stands out as one of the most effective optimizers 
for deep networks due to its ability to combine the 
advantages of both RMSProp and momentum. By 
maintaining running averages of both the first moment 
(mean) and second moment (variance) of gradients, Adam 
provides adaptive learning rates and stable updates. Bias 
correction ensures these averages are accurate, even in the 
initial training stages. This makes Adam highly versatile and 
efficient for a wide range of tasks, particularly in deep 
architectures like DCNNT, where stability and convergence 
are critical. Furthermore, Adam's ability to handle sparse 
gradients and varying learning rates across parameters 
makes it a preferred choice for many NLP and computer 
vision applications. With minimal tuning, Adam often 
delivers competitive performance, making it a strong default 
optimizer in many deep learning frameworks. 

For hyperparameter tuning, several LRs (0.1, 0.01, 0.001, 
and 0.0001) and DRs (0.2 and 0.3) were tested to find the 
optimal configuration. SGD and Adagrad provided decent 
results but fell short in terms of stability and accuracy, 
particularly on the DCNNT model. The best performance 
was achieved using Adam with an LR of 0.001 and a DR of 
0.2, which effectively balanced overfitting prevention and 
convergence speed and resulted in an accuracy of 97%. This 
result is obtained with a train-test split of 80:20. 

 
 

 
 

Fig 6. Functional flow chart of DCNNT 
 
 

Input Image 
75x75x3

First Convolutional Block
37x37x256

Second Convolutional Block
18x18x128

Third Convolutional Block
9x9x64

Fourth Convolutional Block
4x4x32

Flattening
512

Reshaping for the transformer
Transformer Layer
batch_size, 16,32

Global Pooling
batch_size, 32,2

Fully Connected Layers
batch_size, 7

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3733-3742

 
______________________________________________________________________________________ 



 

 
 
 
 
 
 

 

 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8. C-Matrix and C
 

Fig. 9. C-Matrix and C
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. Block Diagram of DCNNT 
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Matrix and C-Report of the model after adding the transformer layer (DCNNT)
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IV. RESULTS AND DISCUSSION

The block diagram of the DCNNT is shown in Fig. 7. 
Various performance metrics are observed by exploring the 
Confusion Matrix (C-Matrix), Classification Report (C
Report) of DCNNT. 

A C-Matrix is a compact table that provides a clear 
overview of a classification model's performance. It serves 
as a valuable resource for evaluating the accuracy of 
predictions and identifying areas where the model may be 
misclassifying data. 
  A classification report is a concise report that highlights 
the performance of a classification model by providing key 
metrics such as precision, recall and F1-score. It helps assess 
the model's effectiveness across different classes. Fig. 8 
shows the C-Matrix and C-Report of the model without a 
transformer layer (DCNN) and Fig. 9 shows th
and C-Report of the model with an integrated transformer 
layer (DCNNT). We can observe that the integration of the 
transformer layer has improved all the performance metrics. 
The impact of hyperparameter tuning is shown in Table I. 
We can observe that DCNNT produced the best results. 
when the optimizer is Adam with an LR of 0.001 and a DR 
of 0.2. 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I-IMPACT OF HYPER

Optimizer LR DR Accuracy 

Adam 0.01 0.3 0.65 

0.01 0.2 0.96 

0.001 0.3 0.94 

0.001 0.2 0.97 

0.0001 0.3 0.90 

0.0001 0.2 0.94 

SGD 0.01 0.3 0.88 

0.01 0.2 0.94 

0.001 0.3 0.63 

0.001 0.2 0.78 

0.0001 0.3 0.29 

0.0001 0.2 0.43 

Adagrad 0.01 0.3 0.88 

0.01 0.2 0.92 

0.001 0.3 0.61 

0.001 0.2 0.78 

0.0001 0.3 0.45 

0.0001 0.2 0.37 

 

TABLE II COMPARISON OF METRICS BETWEEN DCNN
Performance 

Metric 
 

DCNN 
 

Accuracy 0.96 
Precision 0.96 
F-score 0.96 
Recall 0.96 

Sensitivity 0.96 
Specificity 0.99 

 

ISCUSSION 
The block diagram of the DCNNT is shown in Fig. 7. 
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of the model with an integrated transformer 
layer (DCNNT). We can observe that the integration of the 
transformer layer has improved all the performance metrics. 
The impact of hyperparameter tuning is shown in Table I. 
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A comparison of metrics without (DCNN) and with a 

transformer layer (DCNNT) is shown in Table II. We can 
observe that almost all metrics, 
improved in DCNNT compared to DCNN.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
An ROC curve is a graphical representation that 

illustrates the trade-off between the true positive rate 
(sensitivity) and the false positive rate (specificity) across 
different thresholds. It provides insights into a model's 
ability to distinguish between classes, making it particularly 
useful for binary classification tasks. The area under the 
curve (AUC) serves as a single metric to summarize overall 
performance, where a higher AUC indicates better 

MPACT OF HYPER-PARAMETER TUNING ON THE PERFORMANCE OF DCNNT
Precision Recall F-1 Score AUC (%) Sensitivity (%)

0.68 0.65 0.65 0.80 

0.96 0.96 0.96 0.98 

0.94 0.94 0.94 0.96 

0.97 0.97 0.97 0.98 

0.90 0.90 0.90 0.94 

0.94 0.94 0.94 0.97 

0.88 0.88 0.88 0.93 

0.94 0.94 0.94 0.96 

0.70 0.63 0.63 0.79 

0.79 0.78 0.77 0.87 

0.33 0.29 0.28 0.59 

0.46 0.42 0.39 0.67 

0.88 0.88 0.87 0.93 

0.92 0.92 0.92 0.96 

0.67 0.62 0.61 0.78 

0.78 0.78 0.77 0.87 

0.40 0.45 0.41 0.68 

0.42 0.37 0.34 0.63 

DCNN AND DCNNT 
 

DCNNT 

0.97 
0.97 
0.97 
0.97 
0.97 
0.99 

   Fig. 10. ROC Curves
 

A comparison of metrics without (DCNN) and with a 
transformer layer (DCNNT) is shown in Table II. We can 
observe that almost all metrics, including accuracy, were 
improved in DCNNT compared to DCNN. 

An ROC curve is a graphical representation that 
off between the true positive rate 

(sensitivity) and the false positive rate (specificity) across 
different thresholds. It provides insights into a model's 

classes, making it particularly 
useful for binary classification tasks. The area under the 
curve (AUC) serves as a single metric to summarize overall 
performance, where a higher AUC indicates better 

DCNNT 
Sensitivity (%) Specificity (%) 

0.65 0.92 

0.96 0.99 

0.94 0.99 

0.97 0.99 

0.90 0.98 

0.94 0.99 

0.88 0.98 

0.94 0.99 

0.63 0.92 

0.78 0.96 

0.29 0.74 

0.42 0.83 

0.88 0.98 

0.92 0.99 

0.62 0.91 

0.78 0.96 

0.45 0.83 

0.37 0.82 
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discrimination capability. Fig. 10 shows the ROC curve a
Fig. 11 shows the training and testing accuracy curves.
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
The consolidated results of the proposed DCNNT model 

are compared with some of the state-of
Table III. We can observe that the proposed DCNNT 
achieved an accuracy of 97% when Adam is used as an 
optimizer with LR=0.001 and DR=0.2. The results obtained 
with our proposed DCNNT model are compared with the 
existing state-of-the-art models and are presented in Table 
II. 

V. CONCLUSION AND FUTURE 

It is evident from the findings that the proposed DCNNT 
model yields strong and encouraging results
promising accuracy of 97% and has outperformed several 
well-established models. 

There is potential to further improve the accuracy
using an ensemble of transfer modelling techniques and our 
DCNNT. In our future work, we will integrate the DCNNT 
with models like DenseNet121, INCEPTIONV3 and form 
an ensemble model that may have the potential of achieving 
much higher accuracy. 
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