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Traffic Speed Prediction with Congestion Data:
An ISGA-Optimized Hybrid Deep Learning
Model

Changxi Ma, Xiaoyu Huang and Bo Du

Abstract—Accurately predicting traffic speed can not only
optimize travel route guidance and alleviate congestion but also
significantly improve the overall safety of urban road traffic
systems. To enhance the prediction accuracy of traffic speed, we
propose a hybrid model integrating a multi-head self-attention
(MHSA) mechanism, a 1D convolutional network (ConvlD),
and a gated recurrent unit (GRU). The improved snow goose
algorithm (ISGA) is employed to optimize its hyperparameters,
constructing the ISGA-MHSA-ConvlD-GRU model. This
model exhibits strong local feature extraction and long-term
temporal dependency learning capabilities, while leveraging
ISGA's dual advantages of accelerated convergence and
superior global search capacity, which provide robustness
against hyperparameter sensitivity. Two real-world traffic
datasets are selected for analysis, incorporating traffic
congestion as an input feature during model training.
Comparative experiments were conducted against multiple
baseline models, including LSTM, GRU, ConvlD, GRU-LSTM,
ConvlD-GRU, MHSA-ConvlD-GRU, and
SGA-MHSA-ConvlD-GRU. Numerical results demonstrate
that the ISGA-MHSA-ConvlD-GRU model outperforms all the
baseline models according to the prediction accuracy.
Specifically, compared to the baseline models, it reduces MSE
by 26.5%-93.9%, decreases MAE by 26.5%—-80.1%, and yields
an R* closer to 1. The promising results indicate that the
proposed model excels in both prediction accuracy and metric
stability for traffic speed forecasting.

Index Terms—traffic speed, prediction accuracy, ISGA,
MHSA- Conv1D-GRU, traffic congestion

1. INTRODUCTION

RAFFIC congestion has become a critical bottleneck
restricting urban development, making it imperative to
vigorously develop smart transportation and congestion
control technologies. Traffic speed prediction on urban roads
serves not only as a fundamental component of intelligent
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transportation information systems, but also provides crucial
support for intelligent traffic control and management
systems. As a key parameter for evaluating traffic conditions
and predicting potential accidents, urban road average speed
warrants in-depth analysis. By thoroughly examining its
characteristics, understanding its variation patterns, and
enhancing the accuracy, timeliness, and applicability of
predictions, we can not only optimize travel route guidance
and alleviate congestion, but also significantly improve the
overall safety of urban road transportation systems.

At present, traffic prediction models can be categorized
into two types: statistical models and deep learning models.
Statistical models primarily include the historical average
method, time series models, and filtering algorithms [1].
These models typically assume that future traffic flow trends
follow similar patterns of the historical data. Although the
historical average method generates predictions by
computing the mean of past observations, its results exhibit
high volatility, are sensitive to outliers, and fail to capture the
complex spatiotemporal features and underlying patterns in
traffic data. In the era of big data in transportation, its
applicability is limited [2]. Some scholars treat traffic flow
prediction as a time series forecasting problem and employ
models such as autoregressive moving average (ARMA) for
predictions. These models account for temporal correlations
in the data, thereby improving prediction accuracy to some
extent. However, when traffic flow data exhibit high variance,
stationarity must be achieved through differencing, which
increases computational complexity [3]. To address
non-stationary traffic flow sequences, some researchers
apply filtering algorithms for prediction [4]. Nevertheless,
the Kalman filter is limited to linear problems, and its
effectiveness in nonlinear prediction remains an area of
ongoing research [5].

Deep learning models, on the other hand, rely on neural
networks to extract patterns from large-scale historical data.
These methods can effectively model nonlinear relationships
among various factors while leveraging historical
information for prediction. Common deep learning models
for traffic prediction include long short-term memory (LSTM)
[6-8], Bi-directional long short-term memory (BILSTM)
[9-10], gated recurrent units (GRU) [11-12], and
convolutional neural networks (CNN) [13-14]. While these
individual models can achieve satisfactory performance,
further improvements in prediction accuracy often require
hybrid architectures that combine their strengths. Nowadays,
most research is based on hybrid deep learning models,
which have the advantages of their respective models and can
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further improve prediction accuracy. For example, Wang et
al. [15] proposed a mixed deep learning model combining
1D-CNN, LSTM, and attention mechanisms for traffic
prediction, achieving excellent performance. Zhang et al. [16]
proposed an attention graph convolutional
sequence-to-sequence hybrid model (AGC-Seq2Seq), which
effectively solves the multi-step prediction problem. Riaz et
al. [17] proposed a bidirectional LSTM with fully
convolutional network (FCN) based on an attention
mechanism, which explicitly modeled the temporal backward
dependency of traffic data and achieved strong performance
in both short-range and long-range traffic speed prediction.
Wang et al. [18] built a prediction model based on ARIMA,
GRU, and Wavelet Transform (WT), and applied WT to
decompose the speed time-series data, significantly
improving prediction accuracy. Ke et al. [19] proposed a
two-stream multi-channel convolutional neural network
(TM-CNN) model, which explicitly modeled the correlation
between lanes; experimental results demonstrated the
effectiveness of their method. Dong et al. [20] developed a
graph attention network with convolutional gated recurrent
units and conducted experiments on real datasets, verifying
that the proposed model outperforms state-of-the-art models.
Ma et al. [21] proposed the ResCNN-GRU-Attention
prediction model, which effectively processed complex and
low-quality data and made the prediction more accurate.

All the above studies employ hybrid deep learning models
to process and predict traffic data, each with distinct
characteristics. These studies show that different hybrid
models yield varying performance outcomes. Selecting
high-performance hybrid models and adapting them to
specific datasets remains a critical challenge. Furthermore,
the predictive performance of these hybrid architectures
exhibits  strong  dependence  on  hyperparameter
configurations. Most existing studies manually configure
these parameters, which becomes overly cumbersome for
models with numerous parameters. Improper parameter
settings may significantly degrade model performance.
Additionally, current research has largely overlooked the
impact of traffic congestion, focusing primarily on external
factors while neglecting intrinsic data characteristics.

To address the aforementioned challenges, this study
proposes a novel traffic speed prediction model integrating
the improved snow geese Algorithm (ISGA) and MHSA
mechanisms with ConvlD-GRU architecture. The ISGA
algorithm is employed to optimize key hyperparameters of
the MHSA-ConvlD-GRU framework. Furthermore, by
incorporating traffic congestion factors and relevant feature
affecting traffic speed, we construct an enhanced
ISGA-MHSA-ConvlD-GRU composite model, which
effectively reduces prediction errors and improves accuracy.

The main contributions of this study are as follows: (1) An
MHSA-ConvlD-GRU model is proposed, which
demonstrates strong capabilities in extracting both local
features and long-term dependencies, while enhancing the
extraction of key features. (2) The model integrates both
traffic congestion levels and temporal variations across
weekdays and weekends, incorporates an in-depth correlation
analysis of these factors with traffic speed patterns, and
demonstrates enhanced prediction realism through validation
on real-world datasets. (3) The adoption of ISGA for model

parameter optimization eliminates the limitations associated
with manual parameter setting. Benchmarking against
conventional SGA confirms the significant performance
enhancement brought by this methodological advancement.
The remainder of the paper is organized as follows:
Section 2 introduces the overall model and its components;
Section 3 presents the experiments, including a comparative
analysis between the proposed model and multiple baseline
models on real-world datasets. Section 4 concludes the paper.

II. METHODOLOGY

A. ConviD

CNN is a type of neural network that involves convolution
operations, and has a deep structure. It is widely used for
processing time series or image data [22]. It is mainly
composed of convolutional layers, pooling layers, and fully
connection layers, as illustrated in Fig. 1.

Characteristic
Input matrix
O u \ O Output
=S 11 77? 1 ?
Convolutional . Full connection
layer Pooling layer layer

Fig. 1. Overall structure of a CNN model

In a typical CNN structure above, there are two special
neural network layers: the convolutional layer and the
pooling layer. The convolutional layer performs local feature
extraction. The main features and periodic characteristics of
the input data are extracted through the convolutional layer.
The number of features extracted is mainly determined by the
number and size of the convolution kernels. The network
extracts features through the convolutional layer, and its
mathematical expression is as follows:

C, =D W,*X,+b, (1)

where * refers to the convolution operation; W is the weight
of the i-th filter in layer j, i € [1, n], and n is the number of
convolution kernels; Xj is the input data of layer j; b; is the
bias of layer j; C; is the convolution output of layer ;.

The pooling layer can further extract features and
down-sample the data, thereby compressing both the data
volume and parameters to reduce overfitting. This process
combines and reduces dimensions. Pooling operations
include average pooling and maximum pooling. This paper
adopts maximum pooling. The formula is:

PL =max(C,)+b ()

where PL is the output of the pooling layer and b is the
deviation.

Therefore, the overall operation of CNN is as follows:
Initially, the input feature map passes through the
convolution layer containing multiple extracted features.
Subsequently, these convolutional features are resampled via
the pooling layer's operations. Finally, the pooled neurons are
fully connected to a dense layer to generate the final output.

CNN structures can flexibly adapt to different data
dimensions. In time series prediction, IDCNN has significant
advantages. It generates a new sequence by sliding a
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one-dimensional convolution kernel along the input sequence,
performing pointwise multiplication and summation.
Although 1DCNN operates along a single dimension, it
retains CNN’s translation invariance and effectively extracts
sequence features. Compared to 2D CNN, it can use larger
convolution kernels without significantly increasing
computational complexity, thereby expanding the receptive
field. The convolutional layer’s output is activated by the
ReLU function before passing to the pooling layer, where
max pooling helps reduce overfitting and improve
computational efficiency.

B. GRU

GRU is a type of recurrent neural network (RNN) that
addresses the issues of long-term memory and gradient
problems during back-propagation in RNNs. It serves a
similar purpose to LSTM, but is simpler and easier to train
[23-24]. The model structure is shown in Fig. 2.
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Fig. 2. Structure of a GRU model

GRU employs two gating mechanisms: (1) Reset gate (r;)
controls historical information retention. (2) Update gate (z)
replaces LSTM's separate forget/input gates. The candidate
state (hs) is generated through reset operations, with final
output determined by update gating. The specific formulas
are:

r=o (W, [h.x]) Q)
2=l ) 0

h, = tanh(W [rno [h,_l,xt]]) (5)
h=(1-z)Oh_+z,Oh, (6)

where W is the weight matrix, % is the status, and © is the

multiplication by element, ¢ indicates sigmoid activation
function.

C. MHSA mechanism

The self-attention mechanism is a strategy used to capture
internal dependencies in sequence data. Regardless of the
position of the relationship within the sequence,
self-attention enables the model to examine different
positions in the input sequence to extract meaningful features,
thereby capturing the contextual information that may be
required in the next step [25-26]. The multi-head
self-attention mechanism is an enhancement of the
self-attention mechanism. By introducing multiple heads, it
can effectively mine the temporal characteristics of the

prediction data. Each head can learn different attention
representations in parallel across different subspaces and then
fuse them, which allows for better capture of data
information and more flexible attention to each part of the
sequence data [27]. The structure of the multi-head
self-attention mechanism is shown in Fig. 3.

1
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Fig. 3. MHSA mechanism structure

The calculation process of MHSA mechanism is as
follows:

(1) Calculate each attention head, and use the operation
process of self-attention mechanism for the four heads in the
MHSA model to obtain the corresponding results. The
calculation formula is as follows:

0* K’
Jd,

where Q represents character query vector; K represents
character matching vector; V' represents character value
vector; di represents the dimensions of O and K. The larger
the dimension, the larger the corresponding dy.

(2) Use the Concat operation to splice in the channel
dimension, and fuse the splicing results through the W”
parameter to get the final result. Its calculation formula is as
follows:

Attention(Q,K,V ) = Soft max [ J 4 (7

head, = Attention (QW,-Q,QW,-K ow/ ) (8)
Cat = Concat (head, , head, ,---, head,,, ) )
MultiHead (0,K,V ) = Cat *W*° (10)

where head refers to the i-th self-attention mechanism of the
MHSA module; W2, WX, W/ are independent trainable
parameter matrices for each attention head; Concat indicates
splicing operation; num is the number of splicing vectors.

D. ISGA

The SGA is a new metaheuristic algorithm proposed in
2024 [28]. Its inspiration comes from the migration behavior
of snow geese, particularly the unique "herringbone" and
"straight-line" flight patterns formed during their migration.
By simulating the flying behavior of snow geese, the
algorithm achieves efficient search and optimization in the
solution space. The SGA is primarily divided into three
stages: the initialization stage, the exploration stage
(herringbone shapes), and the exploitation stage (straight line
shapes).
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The initialization stage is the initialization of individual
position. The position of snow geese is randomly generated
in the search space, and the initial position is determined
according to the population size, solution space boundary and
dimension. The location update formula is as follows:

P =1b+rand x(ub—1b) (11)

where P is the initialized set position, ub and /b are the upper
and lower bounds of the solution space respectively, and rand
is a random number in the range of [0,1].

The exploration stage simulates the "herringbone" flight
formation of snow geese to enhance the population's search
capability within the solution space. During migration,
factors such as aerodynamic drag and energy expenditure
significantly influence their flight dynamics. The geese's
energy level initially increases and then gradually declines as
they approach the destination. For simplicity, gravitational
effects are excluded from the analysis. The flight dynamics
are modeled by the following formula:

V' =cV' +a (12)
4¢

=t (13)
MeM

where V is the velocity, ¢ is the weight factor, and a is the
acceleration. M is the maximum number of iterations.

During snow geese flight, two fundamental factors must be
considered: the acrodynamic drag (air resistance) and their
intrinsic flight energy, both governed by Newton's second
law. The position update is then calculated using the
following formula:

P[r+1 :Pit +b(P/f —Bt)-l-KHI (14)

where P! is the position of the current optimal individual,
and b is the weight coefficient.

During the exploitation stage, simulate the "straight line"
flight mode of snow geese and focus on searching to improve
the algorithm's development capabilities. When the angle
between snow geese exceeds 7, they will enter this stage. The
location update formula is as follows:

proi B (BB
TP+ R’—ﬂ’)rOBrownian(d)

r>0.5
r<0.5

(15)

where 7 is a random number within the range of [0,1], if the
random number 7 > 0.5, the goose follows experienced and
physically strong peers to collectively search for the best
destination; When » < 0.5, if trapped in a local solution,

geese will exhibit random behavior similar to Brownian
motion. © representing element by element multiplication,

and Brownian (d) represents Brownian motion.

ISGA is an improved variant of SGA. ISGA significantly
improves the exploration and development ability of the
algorithm by introducing three improvement strategies, so as
to improve the convergence speed and accuracy of the
algorithm [29]. Three improvement strategies are as follows.

The first mechanism is the leader geese rotation, which
simulates the migration process of snow geese. When the
leader geese become tired, other strong individuals take over
their position to maintain flight efficiency and speed.
Through a competition mechanism, the individual with the
highest fitness value is selected as the new leader, thereby
enhancing the algorithm's global exploration capability. The
location update formula is as follows.

13 13 ! 13
P =(1-rand) P, +mand[Ll 5 J+al [(Pb’)—LZ-FB’ J (16)
2 2

where, Py and Py, respectively represent the top three and top
five individual positions in the population, and a; is the
weight factor.

The second mechanism is the call guidance mechanism,
which simulates how snow geese communicate through calls
to guide their flight direction. By using an attenuation model
of sound wave propagation, the position update is adjusted
based on the distance between an individual and the leading
goose, thereby avoiding a decline in convergence ability due
to excessive aggregation or dispersion. The location update
formula is as follows.
L, (lx/ ) Ly,

PxM _ Rr +l1-
LWA - sz

}(Pb’ —R’)@xBrownian(d)+a2 (R’ 7}7’) (17)
where L, is the received sound intensity, Lw4 is the initial
sound intensity of the sound source, L. is the lowest
acceptable sound intensity, and a; is the weight factor.

The third mechanism is the abnormal boundary strategy,
which considers the behavior of snow geese as social birds
that avoid isolation. By calculating the difference between an
individual's fitness and the group's average fitness, the
strategy adjusts the individual's position update to enhance
the algorithm's convergence speed and accuracy. The
position update formula is as follows.

13 13 13 13
B +a3(13,(—f3) ) I(B)>1(P), )
Pt+l — P‘ _P”
! P —e—— < +levy f(R' ) <f(P),
(/(&)-1(2)) ‘

where [ (P)avyg 1s the average fitness value of the population,
P, is the position of the individual with the lowest fitness
value, e is the weight factors, a3 is a random number with a
range of (0,1), levy is the levy flight strategy, which
effectively simulates the irregular movement of snow geese
in preventing them from leaving the sheep.

During exploration, ISGA employs leader rotation to
enhance global search capability; during exploitation, it
utilizes call guidance and abnormal boundary strategies to
refine local search accuracy.

E. MHSA-ConviD-GRU model

In traffic speed prediction problems, speed data exhibits
characteristics such as periodicity, trends, outliers, and noise,
while also containing implicit temporal dependencies.
Effectively capturing these autocorrelations is crucial for
prediction performance. This requires the model to capture
both short-term and long-term patterns in traffic data while
possessing robust time-series modeling capabilities.

To address this, building on the GRU architecture which
captures both long- and short-term characteristics of traffic
data, this paper integrates ConvlD with its superior global
feature extraction capability for optimization, constructing a
ConvlD-GRU model. This model effectively captures
multi-scale temporal dependencies, extracting rich short-term
and long-term feature information to better characterize key
historical traffic patterns.

To further enhance the network's ability to represent and
model base station traffic data, this paper introduces a MHSA
to fuse multi-perspective attention information. This enables
the ConvlD-GRU network to adaptively focus on key
features across different temporal dimensions, thereby
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improving prediction accuracy. The overall architecture of
the MHSA-Conv1D-GRU model is shown in Fig. 4.

Series data

Input layer

Convolution
Layer

l

GRU

MultiHeadAttention
layer

Conv1D layer

GRU layer

MHSA mechanism

layer Dropout

Residual Connection

v
GlobalMaxPooling1 D
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Output

Fully connected
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Fig. 4. Structure of a MHSA-Conv1D-GRU model

Input layer: Preprocess historical data and input multi
feature time series into the model, represented as.

X =[X,, X, X,] , X, R’ (19)

where 7 is the sequence length; d is the feature dimension; X;
is the eigenvector at time step ¢.

Convl1D layer: A one-dimensional convolution operation
is applied to extract local temporal features, and the output of
the Conv1D layer is shown below.

C,=ReLU(W,*X,+b,), C, &R"

where d. is the feature dimension output by convolution.

GRU layer: Long-term dependencies are extracted using
two GRU layers with dropout, and the processed data H® is
shown below.

(20)

H"=GRU(C,H, "), H"eR" (1)
~ M
H. = Dropout(H,") (22)
~ M O ~ (D ~ M
HY =[H\ ,H>» ,...H, 1,H, €R" (23)

where H, (V is the hidden state of GRU at the t-th time step,
-
with a hidden dimension of 41. H, is the output after
dropout processing. H is the output of the layer GRU.
MHSA mechanism layer: Global features are extracted
from the complete time series to capture long-range
dependencies, with the resulting output shown below.

Q== WQH(”,K =w.H",V =w,H" (24)
A= sqﬁmax(?/flf) (25)

O=A4V, OeR"™ (26)

0= Dropout(0) 27)

Z = LayerNorm(H" + (N)) (28)

where W, O, K are queries, keys, and values; Wy, Wx, and Wy
are linear transformation parameters with a shape of R"! e

A is the attention weight; O is attention output; O is the
output of the Dropout layer; Z is the output after residual
connection.

Fully connected layer: Through additional processing, the
network extracts salient features, with the final output
presented below.

P = GlobalMaxPooling(Z), P e R" (29)

Y=W P+b, (30)

where P is a fixed dimensional vector; W, is the fully
connected layer weight; b, is the bias term.

Output layer: The output layer applies transformations to the
preceding dense layer's activations, computed as:

Y=0) 3D
where Y is the predicted output value; o is the sigmoid
activation function.

F. ISGA-MHSA-ConvID-GRU model

The ISGA-MHSA-Conv1D-GRU traffic speed prediction
hybrid model is established, which primarily takes the
number of neurons in the GRU hidden layers, the number of
heads in the MHSA layer, and the learning rate as
optimization objectives for the ISGA algorithm in the
MHSA-ConvlD-GRU framework. Through global search
optimization, the optimal parameter combination is assigned
to the MHSA-ConvlD-GRU model to enhance prediction
accuracy. The prediction process of the ISGA-MHSA
Conv1D-GRU model is illustrated in Fig. 5.

Step 1: The model initialization phase establishes critical
parameters for both the optimization algorithm and neural
network architecture. For the ISGA, we define the population
size representing potential solutions and set the maximum
iteration limit to control optimization duration. Concurrently,
we configure the MHSA-Conv1D-GRU model by specifying
its architectural components: the number and dimensions of
convolutional layers, GRU layer configurations, and the
mean squared error (MSE) loss function for performance
evaluation. This dual initialization ensures proper
coordination between the optimization process and model
training.

Step 2: The optimization process commences by mapping
the initial population positions to neural network
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hyperparameters, including learning rates, kernel sizes, and
layer dimensions. Each candidate solution undergoes training
on the designated dataset, with the resulting MSE serving as
the fitness score for evolutionary selection. This evaluation
phase provides the necessary performance metrics to guide
subsequent  optimization steps while maintaining
computational efficiency through parallel processing of
candidate solutions.

Step 3: Population evolution follows a hierarchical update
strategy governed by mathematical formulations. The entire
population's positions undergo transformation through
formula (11), while individual velocities are adjusted
according to formula (12). Elite members (top 20%) receive
specialized updates via the leader rotation mechanism in
formula (16), promoting exploration of promising solution
spaces. The majority cohort (next 60%) follows the call
guidance protocol from formula (17), balancing exploitation
of current best solutions. Formula (18) enforces boundary
constraints to maintain parameter validity throughout these
updates, ensuring all hyperparameters remain within their
defined operational ranges.

Step 4: The optimization cycle iteratively repeats, with
each generation's refined parameters feeding back into the
training process. This continues until either reaching the
maximum iteration count or meeting convergence criteria.
The final output selects the parameter set demonstrating
optimal fitness (minimum MSE), which configures the
complete  ISGA-MHSA-ConvID-GRU  model. This
optimized architecture then processes traffic speed data to
generate final predictions, completing the implementation
pipeline while maintaining all intermediate validation checks
and performance benchmarks.

‘ Begin ‘

!
Data
preprocessing

MHSA-Conv1D-
GRU model
initialization

‘ End ‘

]

. ISGA
initialization
]
MHSA-Conv1D-GRU
is trained according to
ISGA to calculate
fitness value

‘ Output results ‘

and Wuhan were collected from 4 March to 24 March, 2025,
using the API of Baidu Maps. A total of 5,760 traffic data
points were obtained for each city. The processed data
samples are presented in Table I, and 0 represents working
days and 1 represents weekends.

We analyze the impact of workdays and congestion index
on traffic speed, highlighting the importance of considering
these two factors in the model. In Fig. 6, the traffic speed
curves on weekdays and weekends are shown using Wuhan
dataset as an example.

Fig. 6 illustrate the fluctuations in traffic speed throughout
the day on weekdays and weekends. Additionally, there are
significant differences in travel demand between weekdays
and weekends at different times. For example, on weekdays,
the speed during peak hours drops sharply due to a large
number of residents commuting by car. During off-peak
hours, the speed increases significantly. In contrast, on
non-working days, the decline in speed during peak hours is
more gradual, and the lowest speed remains higher than that
on working days. Between 10:00 and 17:00, the traffic speed
on non-working days is lower than that on working days. This
may be because residents are at work and are less likely to
travel on weekdays, whereas on weekends, increased travel
activities lead to reduced speeds. Statistical analysis reveals
significant weekday-speed associations.

l

Update snow geese

N| | position, optimal fitness

value and its corresponding
position

MHSA-Conv1D-
GRU uses optimal
parameters for
prediction

Meet,
termination
condition

Output
corresponding
position parameters

Fig.5. Prediction process of the ISGA-MHSA-Conv1D-GRU model

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Description and Analysis
In this study, traffic data of the road networks in Chengdu

TABLE 1
SAMPLE DATA IN DATASETS CHENGDU AND WUHAN
. Speed Congestion
Date time (km/h) index Weekend
2025-3-8
17:30 27.849 1.822 1
2025-3-8
17:35 27.470 1.847 1
Dataset 2025-3-8
Chengdu 17-40 26.587 1.909 1
2025-3-8
17-45 26.278 1.931 1
2025-3-8
17:50 26.491 1.916 1
2025-3-5
7:00 38.965 1.152 0
2025-3-5
7:05 37.240 1.206 0
Dataset 2025-3-5
Wuhan 710 35.257 1.273 0
2025-3-5
715 32.858 1.366 0
2025-3-5
720 30.700 1.462 0
60
=< 50 ,
E 40 oo e
8 20 '
210
SO |
S OO O OO O OO OO0
S T ohie e STOL SR InRe saalan S e ol el
S —= NN TUVCOON O AN =T O~y — N
P SR e, sl s S i N o |
Time
—weekdays —weekends

Fig.6. Continuous daily speed on weekdays and weekends
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This study employs the Pearson correlation test to analyze
the relationship between the congestion index and traffic
speed. The Pearson correlation test formula is as follows.

o (45 -)
JZ(4-4) X (5 -B)

where p is the Pearson correlation coefficient, with a value
range of [-1,1]. 4; and B; are the sample values of variables 4

(32)

and B, respectively. A and B are the means of 4 and B,
respectively. If p is close to 1, it indicates a high positive
correlation; If p is close to -1, it indicates a high negative
correlation.

According to formula (32), the p value of Dataset Chengdu
is -0.9546, and that of Dataset Wuhan is -0.9521. The results
show that both datasets yield values close to -1, indicating a
strong negative correlation between congestion and traffic
speed.

Based on the above analysis, traffic speed, road congestion
index, and whether it is a working day are used as input
features for the model. The data input is normalized via
min-max normalization, and all datasets are divided at a ratio
of 8:2.

B. Baseline Models

This study employs three comparison experiments and one
ablation experiment. The first comparative experiment
evaluates LSTM model, ConvlD model, and GRU model,;
The second comparative experiment compares the
GRU-LSTM, Conv1D-GRU models; The third comparative
experiment contrasts ISGA-MHSA-ConvlD-GRU model
with SGA-MHSA-ConvlD-GRU model. The ablation

experiment assesses ConvlD model, GRU model,
ConvlD-GRU  model, MHSA-ConvlD-GRU, and
ISGA-MHSA-ConvlD-GRU model. Together, these

experiments validate the predictive performance of the
ISGA-MHSA-Conv1D-GRU model. The baseline models
are described as follows.

LSTM: One of the classic variants of recurrent neural
networks [30].

Conv1D: One dimensional convolutional layer extracts
local features through local receptive fields [31].

GRU: GRU simplifies RNN architecture with fewer
parameters than LSTM while maintaining comparable
performance [32].

GRU-LSTM: The model integrates the strengths of
GRU and LSTM, exhibiting superior performance in time
series prediction [33].

ConvlD-GRU: The model leverages convolutional
operations for local pattern detection and GRU networks for
sequential dependency modeling.

MHSA-ConvlD-GRU: The model incorporates
Conv1D, GRU, and MHSA, further enhancing its capability
to extract both local features and long-term dependencies.

SGA-MHSA-ConvlD-GRU: The model is based on
SGA and MHSA-Conv1D-GRU. SGA is used to optimize the
hyperparameters of the MHSA-Conv1D-GRU model.

C. Parameter Settings

The ISGA-MHSA-Conv1D-GRU model utilizes the Adam
optimizer with hyperparameters optimized through the ISGA,
with initial configurations detailed in Table II. The

architecture ~ comprises a  single one-dimensional
convolutional layer with 24 filters, a kernel size of 3, and
ReLU activation, followed by one GRU layer employing
ReLU activation and hidden layer neurons ranging between 1
and 100 as determined by ISGA. The MHSA mechanism's
head count is similarly optimized by ISGA, with the
dimensionality of Key, Query, and Value vectors matching
the neuron count in the GRU layer. A uniform dropout rate of
0.2 is applied throughout the network, while ISGA
concurrently optimizes three critical parameters: the number
of MHSA attention heads, the learning rate, and GRU hidden
layer neuron counts.

TABLE II
ISGA PARAMETER SETTINGS
Parameter Value
Population size 20
Lwa 65
Liow 20
Maximum number of iterations 10

D. Evaluating Indicator

The evaluation indicators selected for the article include
mean square error (MSE), mean absolute error (MAE), and
coefficient of determination (R?). The formulas are defined as
follows.

MSEzLZm:(;,—y,)Z (33)
m .
MAE=—5 - yi‘ (34)
m .
(5-2)
R’ = (35)

where y; is the real value, y, is the predicted value, y; isthe

average value, and m is the number of samples. The smaller
the MSE and MAE, the smaller the model's error in fitting the
true values, and the higher its prediction accuracy; Models
with R? values nearer to 1 exhibit better fitting performance.

E. Experimental Results and Analysis

The experimental environment is configured with
Windows 11 OS, utilizing Python for implementation and
TensorFlow 2.6 for deep learning computations.

We firstly conduct comparative experiments between the
LSTM, ConvlD, and GRU models on Dataset Chengdu.
Both LSTM and GRU are designed with one hidden layer,
each containing 12 neurons and a ReLU activation function.
The Conv1D parameters follow the settings described in the
previous section. All three models are optimized using the
Adam optimizer. The results are shown in Fig. 7. The fitting
performance of these three single-model predictors is
relatively low, suggesting that combining them might
improve prediction accuracy. The performance metrics of the
three single models are presented in Table III.
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Fig. 7. Comparison on prediction results of the three single models
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TABLE III
EVALUATION METRICS ACROSS THE THREE MODELS
Model MSE MAE R’
LSTM 11.67 2.79 0.87
GRU 10.04 2.48 0.89
ConvlD 7.04 1.94 0.92

Table III shows that LSTM performs the worst among the
three models. Compared to GRU and ConvlD, its MSE
increases by 16.2%—65.7%, MAE increases by 12.5%-43.8%,
and R? decreases by 0.02-0.05. GRU outperforms LSTM but
remains inferior to ConvlD, which achieves the highest
prediction accuracy. Therefore, combining GRU and
Conv1D, which exhibit stronger predictive performance, may
further enhance model accuracy.

Subsequently, we conduct ablation studies by combining
ConvlD and GRU to construct a hybrid ConvlD-GRU
model, which is compared with GRU-LSTM model. To
further investigate its potential, we introduce the MHSA
mechanism and evaluate whether it could enhance predictive
performance. The GRU-LSTM model consists of one GRU
layer and one LSTM layer with parameters consistent with
previous section, followed by a Dropout layer (rate=0.5). The

1200

Conv1D-GRU model maintains identical ConvlD and GRU
configurations as previously described, while the MHSA
component uses 3 attention heads with all other parameters
unchanged from earlier implementations. The prediction
results are presented in Fig. 8. Table IV shows the evaluation
metrics of the three models.
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TABLE IV
EVALUATION METRICS OF THE THREE MODELS
Model MSE MAE R?
GRU-LSTM 6.39 1.80 0.92
ConvlD-GRU 5.97 1.78 0.93
MHSA-Conv1D-GRU 4.02 1.56 0.95

Tables III and IV demonstrate that hybrid architectures
consistently outperform standalone models in prediction
accuracy. The GRU-LSTM model achieves superior
performance compared to individual GRU or LSTM models,
with 42.5% lower MSE, 31.4% reduced MAE, and 0.03-0.05
higher R? values. Similarly, the Conv1D-GRU hybrid model
exhibits significant improvements over single ConvlD or
GRU models, showing 17.9-68.1% MSE reduction,
8.9-39.3% MAE decrease, and 0.01-0.04 R? enhancement.
Notably, the proposed model further surpasses GRU-LSTM
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performance with additional 6.5% MSE reduction, 1.1%
MAE improvement, and 0.01 R? increase, attributable to
ConvlD's enhanced local feature extraction capability
compared to LSTM. The integration of MHSA mechanisms
further boosts the model's predictive performance, with the
MHSA-ConvlD-GRU variant attaining an MSE of 4.02
(48.5% reduction versus the baseline hybrid), MAE of 1.56
(14.1% decrease), and R* of 0.95 (0.02 increase). It is
important to note that these results are obtained using
manually configured parameters without exhaustive
optimization, suggesting considerable potential for further
accuracy enhancement.

To fully exploit this potential, we implement the ISGA for
systematic  hyperparameter optimization of critical
parameters including attention head count, learning rate, and
the number of hidden layer neurons.

Furthermore, a complementary experiment is conducted to
compare the ISGA with the SGA in order to validate the
algorithm's  performance improvement. After SGA
optimization, the model used 2 MHSA attention heads, 60
GRU neurons, and a learning rate of 0.004. With ISGA
optimization, the model configuration was 5 attention heads,
99 GRU neurons, and a learning rate of 0.001. The prediction
results are presented in Fig. 9. Table V shows the evaluation
metrics of the two models.

TABLE V
EVALUATION INDICATORS FOR TWO OPTIMIZED MODELS
Model MSE MAE R?
SGA- MHSA-ConvlD-GRU 2.58 1.15 0.97
ISGA- MHSA-Conv1D-GRU 1.74 1.12 0.98

Tables IV and V demonstrate that the SGA-optimized
model achieves superior prediction accuracy compared to the
unoptimized baseline. Furthermore, ISGA exhibits enhanced
optimization effectiveness relative to SGA. Specifically, the
SGA-MHSA-ConvlD-GRU model shows better metrics
with an MSE of 2.58 (a 35.8% reduction versus the
unoptimized baseline), MAE of 1.15 (a 26.3% reduction),
and R? of 0.97 (a 0.02 increase). When benchmarked against
SGA optimization, the ISGA achieves significant
performance improvements: 32.8% in MSE reduction, 2.6%
in MAE reduction, and 0.01 in R? increase. These results
confirm the enhanced optimization capability of ISGA over
traditional SGA methods, demonstrating the outstanding
prediction accuracy of the proposed model.

To further verify the performance of the proposed model
and enhance the experimental results. The same eight models,
with parameters unchanged from Dataset Chengdu testing,
are subsequently applied to Dataset Wuhan. Fig. 10 shows
the prediction indicators of the eight models.

In consistent with the findings from Dataset Chengdu, the
hybrid architecture demonstrates superior predictive
capability compared to individual model configurations.
Furthermore, the optimized hybrid variant exhibits enhanced
accuracy relative to its non-optimized counterpart. The
ISGA-MHSA-Conv1D-GRU exhibits remarkable
forecasting capability. Fig. 10(a) shows the column diagram
of MSE. The MSE value of the ISGA-MHSA-Conv1D-GRU
model is the lowest, which is 93.9%-26.5% lower than those
of other models, indicating more accurate predictions that

better match real data. As evidenced in Fig. 10(b), our
approach achieves substantially reduced MAE value, which
is 26.5% to 80.1% lower than those of other models,
demonstrating significantly better performance than baseline
approaches. Fig. 10(c) confirms that the R? of the proposed
model is 0.99, increased by 0.01-0.1, indicating good fitting
performance. Therefore, the ISGA-MHSA-Conv1D-GRU
model has good prediction performance.
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IV. CONCLUSIONS

To improve the accuracy of traffic speed prediction,
historical speed data is analyzed to examine the impact of
traffic congestion and weekends on speed correlation. Given
the strict temporal nature of the data, an
ISGA-MHSA-Conv1D-GRU prediction model is developed
using deep learning methods. The proposed model achieved
significant improvements over both the baseline
MHSA-Conv1D-GRU without ISGA optimization (showing
56.7% lower MSE, 28.2% lower MAE, and 0.03% higher R?)
and the SGA-optimized model (demonstrating 32.8% MSE
reduction, 2.6% MAE reduction, and 0.01 R? increase),
confirming ISGA's superior optimization capability
compared to both unoptimized and SGA-optimized
approaches. These results provide a forward-looking
theoretical foundation for mitigating traffic congestion
through data-driven forecasting. However, this study focuses
solely on temporal feature analysis, leaving spatial features
for future research.
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