
 

 
Abstract—Accurately predicting traffic speed can not only 

optimize travel route guidance and alleviate congestion but also 
significantly improve the overall safety of urban road traffic 
systems. To enhance the prediction accuracy of traffic speed, we 
propose a hybrid model integrating a multi-head self-attention 
(MHSA) mechanism, a 1D convolutional network (Conv1D), 
and a gated recurrent unit (GRU). The improved snow goose 
algorithm (ISGA) is employed to optimize its hyperparameters, 
constructing the ISGA-MHSA-Conv1D-GRU model. This 
model exhibits strong local feature extraction and long-term 
temporal dependency learning capabilities, while leveraging 
ISGA's dual advantages of accelerated convergence and 
superior global search capacity, which provide robustness 
against hyperparameter sensitivity. Two real-world traffic 
datasets are selected for analysis, incorporating traffic 
congestion as an input feature during model training. 
Comparative experiments were conducted against multiple 
baseline models, including LSTM, GRU, Conv1D, GRU-LSTM, 
Conv1D-GRU, MHSA-Conv1D-GRU, and 
SGA-MHSA-Conv1D-GRU. Numerical results demonstrate 
that the ISGA-MHSA-Conv1D-GRU model outperforms all the 
baseline models according to the prediction accuracy. 
Specifically, compared to the baseline models, it reduces MSE 
by 26.5%–93.9%, decreases MAE by 26.5%–80.1%, and yields 
an R² closer to 1. The promising results indicate that the 
proposed model excels in both prediction accuracy and metric 
stability for traffic speed forecasting. 
 

Index Terms—traffic speed, prediction accuracy, ISGA, 
MHSA- Conv1D-GRU, traffic congestion 
 

I. INTRODUCTION 

RAFFIC congestion has become a critical bottleneck 
restricting urban development, making it imperative to 

vigorously develop smart transportation and congestion 
control technologies. Traffic speed prediction on urban roads 
serves not only as a fundamental component of intelligent 

 
Manuscript received April 23, 2025; revised August 20, 2025. 
This research was supported by Gansu Provincial Science and 

Technology Major Special Project - Enterprise Innovation Consortium 
Project (No.22ZD6GA010), Industry Support Plan Project from Department 
of Education of Gansu Province (No.2024CYZC-28), Key Research and 
Development Project of Gansu Province (No.22YF7GA142), and the 
Natural Science Foundation of China (No.52062027). 

Changxi Ma is a Professor at School of Traffic and Transportation, 
Lanzhou Jiaotong University, Lanzhou 730070, China (e-mail: 
machangxi@mail.lzjtu.cn). 

Xiaoyu Huang is a postgraduate student at School of Traffic and 
Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China 
(Corresponding author, e-mail: 12231106@stu.lzjtu.edu.cn).  

Bo Du is a senior lecturer at the Department of Management, Griffith 
University, Brisbane QLD 4111, Australia (e-mail: bo.du@griffith.edu.cn). 

 

transportation information systems, but also provides crucial 
support for intelligent traffic control and management 
systems. As a key parameter for evaluating traffic conditions 
and predicting potential accidents, urban road average speed 
warrants in-depth analysis. By thoroughly examining its 
characteristics, understanding its variation patterns, and 
enhancing the accuracy, timeliness, and applicability of 
predictions, we can not only optimize travel route guidance 
and alleviate congestion, but also significantly improve the 
overall safety of urban road transportation systems. 

At present, traffic prediction models can be categorized 
into two types: statistical models and deep learning models. 
Statistical models primarily include the historical average 
method, time series models, and filtering algorithms [1]. 
These models typically assume that future traffic flow trends 
follow similar patterns of the historical data. Although the 
historical average method generates predictions by 
computing the mean of past observations, its results exhibit 
high volatility, are sensitive to outliers, and fail to capture the 
complex spatiotemporal features and underlying patterns in 
traffic data. In the era of big data in transportation, its 
applicability is limited [2]. Some scholars treat traffic flow 
prediction as a time series forecasting problem and employ 
models such as autoregressive moving average (ARMA) for 
predictions. These models account for temporal correlations 
in the data, thereby improving prediction accuracy to some 
extent. However, when traffic flow data exhibit high variance, 
stationarity must be achieved through differencing, which 
increases computational complexity [3]. To address 
non-stationary traffic flow sequences, some researchers 
apply filtering algorithms for prediction [4]. Nevertheless, 
the Kalman filter is limited to linear problems, and its 
effectiveness in nonlinear prediction remains an area of 
ongoing research [5]. 

Deep learning models, on the other hand, rely on neural 
networks to extract patterns from large-scale historical data. 
These methods can effectively model nonlinear relationships 
among various factors while leveraging historical 
information for prediction. Common deep learning models 
for traffic prediction include long short-term memory (LSTM) 
[6-8], Bi-directional long short-term memory (BILSTM) 
[9-10], gated recurrent units (GRU) [11-12], and 
convolutional neural networks (CNN) [13-14]. While these 
individual models can achieve satisfactory performance, 
further improvements in prediction accuracy often require 
hybrid architectures that combine their strengths. Nowadays, 
most research is based on hybrid deep learning models, 
which have the advantages of their respective models and can 
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further improve prediction accuracy. For example, Wang et 
al. [15] proposed a mixed deep learning model combining 
1D-CNN, LSTM, and attention mechanisms for traffic 
prediction, achieving excellent performance. Zhang et al. [16] 
proposed an attention graph convolutional 
sequence-to-sequence hybrid model (AGC-Seq2Seq), which 
effectively solves the multi-step prediction problem. Riaz et 
al. [17] proposed a bidirectional LSTM with fully 
convolutional network (FCN) based on an attention 
mechanism, which explicitly modeled the temporal backward 
dependency of traffic data and achieved strong performance 
in both short-range and long-range traffic speed prediction. 
Wang et al. [18] built a prediction model based on ARIMA, 
GRU, and Wavelet Transform (WT), and applied WT to 
decompose the speed time-series data, significantly 
improving prediction accuracy. Ke et al. [19] proposed a 
two-stream multi-channel convolutional neural network 
(TM-CNN) model, which explicitly modeled the correlation 
between lanes; experimental results demonstrated the 
effectiveness of their method. Dong et al. [20] developed a 
graph attention network with convolutional gated recurrent 
units and conducted experiments on real datasets, verifying 
that the proposed model outperforms state-of-the-art models. 
Ma et al. [21] proposed the ResCNN-GRU-Attention 
prediction model, which effectively processed complex and 
low-quality data and made the prediction more accurate. 

All the above studies employ hybrid deep learning models 
to process and predict traffic data, each with distinct 
characteristics. These studies show that different hybrid 
models yield varying performance outcomes. Selecting 
high-performance hybrid models and adapting them to 
specific datasets remains a critical challenge. Furthermore, 
the predictive performance of these hybrid architectures 
exhibits strong dependence on hyperparameter 
configurations. Most existing studies manually configure 
these parameters, which becomes overly cumbersome for 
models with numerous parameters. Improper parameter 
settings may significantly degrade model performance. 
Additionally, current research has largely overlooked the 
impact of traffic congestion, focusing primarily on external 
factors while neglecting intrinsic data characteristics. 

To address the aforementioned challenges, this study 
proposes a novel traffic speed prediction model integrating 
the improved snow geese Algorithm (ISGA) and MHSA 
mechanisms with Conv1D-GRU architecture. The ISGA 
algorithm is employed to optimize key hyperparameters of 
the MHSA-Conv1D-GRU framework. Furthermore, by 
incorporating traffic congestion factors and relevant feature 
affecting traffic speed, we construct an enhanced 
ISGA-MHSA-Conv1D-GRU composite model, which 
effectively reduces prediction errors and improves accuracy.  

The main contributions of this study are as follows: (1) An 
MHSA-Conv1D-GRU model is proposed, which 
demonstrates strong capabilities in extracting both local 
features and long-term dependencies, while enhancing the 
extraction of key features. (2) The model integrates both 
traffic congestion levels and temporal variations across 
weekdays and weekends, incorporates an in-depth correlation 
analysis of these factors with traffic speed patterns, and 
demonstrates enhanced prediction realism through validation 
on real-world datasets. (3) The adoption of ISGA for model 

parameter optimization eliminates the limitations associated 
with manual parameter setting. Benchmarking against 
conventional SGA confirms the significant performance 
enhancement brought by this methodological advancement. 

The remainder of the paper is organized as follows: 
Section 2 introduces the overall model and its components; 
Section 3 presents the experiments, including a comparative 
analysis between the proposed model and multiple baseline 
models on real-world datasets. Section 4 concludes the paper. 

II. METHODOLOGY  

A. Conv1D 

CNN is a type of neural network that involves convolution 
operations, and has a deep structure. It is widely used for 
processing time series or image data [22]. It is mainly 
composed of convolutional layers, pooling layers, and fully 
connection layers, as illustrated in Fig. 1. 

 

Input

Convolutional 
layer

Characteristic 
matrix

Pooling layer Full connection 
layer

Output

 Fig. 1.  Overall structure of a CNN model 
 

In a typical CNN structure above, there are two special 
neural network layers: the convolutional layer and the 
pooling layer. The convolutional layer performs local feature 
extraction. The main features and periodic characteristics of 
the input data are extracted through the convolutional layer. 
The number of features extracted is mainly determined by the 
number and size of the convolution kernels. The network 
extracts features through the convolutional layer, and its 
mathematical expression is as follows: 

*j ij j jC W X b                             (1) 

where * refers to the convolution operation; Wij is the weight 
of the i-th filter in layer j, i ∈ [1, n], and n is the number of 
convolution kernels; Xj is the input data of layer j; bj is the 
bias of layer j; Cj is the convolution output of layer j. 

The pooling layer can further extract features and 
down-sample the data, thereby compressing both the data 
volume and parameters to reduce overfitting. This process 
combines and reduces dimensions. Pooling operations 
include average pooling and maximum pooling. This paper 
adopts maximum pooling. The formula is: 

  max jPL C b    (2) 

where PL is the output of the pooling layer and b is the 
deviation. 

Therefore, the overall operation of CNN is as follows: 
Initially, the input feature map passes through the 
convolution layer containing multiple extracted features. 
Subsequently, these convolutional features are resampled via 
the pooling layer's operations. Finally, the pooled neurons are 
fully connected to a dense layer to generate the final output. 

CNN structures can flexibly adapt to different data 
dimensions. In time series prediction, 1DCNN has significant 
advantages. It generates a new sequence by sliding a 
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one-dimensional convolution kernel along the input sequence, 
performing pointwise multiplication and summation. 
Although 1DCNN operates along a single dimension, it 
retains CNN’s translation invariance and effectively extracts 
sequence features. Compared to 2D CNN, it can use larger 
convolution kernels without significantly increasing 
computational complexity, thereby expanding the receptive 
field. The convolutional layer’s output is activated by the 
ReLU function before passing to the pooling layer, where 
max pooling helps reduce overfitting and improve 
computational efficiency. 

B. GRU 

GRU is a type of recurrent neural network (RNN) that 
addresses the issues of long-term memory and gradient 
problems during back-propagation in RNNs. It serves a 
similar purpose to LSTM, but is simpler and easier to train 
[23-24]. The model structure is shown in Fig. 2. 
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 Fig. 2.  Structure of a GRU model 

 

GRU employs two gating mechanisms: (1) Reset gate (rₜ) 
controls historical information retention. (2) Update gate (zₜ) 
replaces LSTM's separate forget/input gates. The candidate 
state (htb) is generated through reset operations, with final 
output determined by update gating. The specific formulas 
are: 

   1,t r t tr W h x     (3) 

   1,t z t tz W h x     (4) 

   1tanh ,tb t t th W r h x       (5) 

   11 t t t tbh z h z h      (6) 

where W is the weight matrix, h is the status, and  is the 

multiplication by element, σ indicates sigmoid activation 
function.  

C. MHSA mechanism 

The self-attention mechanism is a strategy used to capture 
internal dependencies in sequence data. Regardless of the 
position of the relationship within the sequence, 
self-attention enables the model to examine different 
positions in the input sequence to extract meaningful features, 
thereby capturing the contextual information that may be 
required in the next step [25-26]. The multi-head 
self-attention mechanism is an enhancement of the 
self-attention mechanism. By introducing multiple heads, it 
can effectively mine the temporal characteristics of the 

prediction data. Each head can learn different attention 
representations in parallel across different subspaces and then 
fuse them, which allows for better capture of data 
information and more flexible attention to each part of the 
sequence data [27]. The structure of the multi-head 
self-attention mechanism is shown in Fig. 3. 
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Fig. 3.  MHSA mechanism structure 

 

The calculation process of MHSA mechanism is as 
follows: 

(1) Calculate each attention head, and use the operation 
process of self-attention mechanism for the four heads in the 
MHSA model to obtain the corresponding results. The 
calculation formula is as follows: 

   *
, , max *

T

k

Q K
Attention Q K V Soft V

d

 
   

 
  (7) 

where Q represents character query vector; K represents 
character matching vector; V represents character value 
vector; dk represents the dimensions of Q and K. The larger 
the dimension, the larger the corresponding dk. 

(2) Use the Concat operation to splice in the channel 
dimension, and fuse the splicing results through the Wo 
parameter to get the final result. Its calculation formula is as 
follows: 

  , ,Q K V
i i i ihead Attention QW QW QW   (8) 

  1 2, , , numCat Concat head head head     (9) 

  , , * oMultiHead Q K V Cat W   (10) 

where head refers to the i-th self-attention mechanism of the 
MHSA module; Wi

Q, Wi
K, Wi

V are independent trainable 
parameter matrices for each attention head; Concat indicates 
splicing operation; num is the number of splicing vectors. 

D. ISGA 

The SGA is a new metaheuristic algorithm proposed in 
2024 [28]. Its inspiration comes from the migration behavior 
of snow geese, particularly the unique "herringbone" and 
"straight-line" flight patterns formed during their migration. 
By simulating the flying behavior of snow geese, the 
algorithm achieves efficient search and optimization in the 
solution space. The SGA is primarily divided into three 
stages: the initialization stage, the exploration stage 
(herringbone shapes), and the exploitation stage (straight line 
shapes). 
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The initialization stage is the initialization of individual 
position. The position of snow geese is randomly generated 
in the search space, and the initial position is determined 
according to the population size, solution space boundary and 
dimension. The location update formula is as follows: 

  P lb rand ub lb      (11) 

where Р is the initialized set position, ub and lb are the upper 
and lower bounds of the solution space respectively, and rand 
is a random number in the range of [0,1]. 

The exploration stage simulates the "herringbone" flight 
formation of snow geese to enhance the population's search 
capability within the solution space. During migration, 
factors such as aerodynamic drag and energy expenditure 
significantly influence their flight dynamics. The geese's 
energy level initially increases and then gradually declines as 
they approach the destination. For simplicity, gravitational 
effects are excluded from the analysis. The flight dynamics 
are modeled by the following formula: 
 1t tV cV a     (12) 

 
4

4
t

M

t
c

Me

   (13) 

where V is the velocity, c is the weight factor, and a is the 
acceleration. M is the maximum number of iterations. 

During snow geese flight, two fundamental factors must be 
considered: the aerodynamic drag (air resistance) and their 
intrinsic flight energy, both governed by Newton's second 
law. The position update is then calculated using the 
following formula: 

  1 1t t t t t
i i b i iP P b P P V       (14) 

where Pi
t+1 is the position of the current optimal individual, 

and b is the weight coefficient. 
During the exploitation stage, simulate the "straight line" 

flight mode of snow geese and focus on searching to improve 
the algorithm's development capabilities. When the angle 
between snow geese exceeds π, they will enter this stage. The 
location update formula is as follows: 

  
   

1                                  0.5              
 

Brownian       0.5

t t t
t i i b

t t ti
b i b

P P P r r
P

P P P r d r
         

  (15) 

where r is a random number within the range of [0,1], if the 
random number r > 0.5, the goose follows experienced and 
physically strong peers to collectively search for the best 
destination; When r ≤ 0.5, if trapped in a local solution, 

geese will exhibit random behavior similar to Brownian 
motion. ⊙ representing element by element multiplication, 

and Brownian (d) represents Brownian motion. 
ISGA is an improved variant of SGA. ISGA significantly 

improves the exploration and development ability of the 
algorithm by introducing three improvement strategies, so as 
to improve the convergence speed and accuracy of the 
algorithm [29]. Three improvement strategies are as follows. 

The first mechanism is the leader geese rotation, which 
simulates the migration process of snow geese. When the 
leader geese become tired, other strong individuals take over 
their position to maintain flight efficiency and speed. 
Through a competition mechanism, the individual with the 
highest fitness value is selected as the new leader, thereby 
enhancing the algorithm's global exploration capability. The 
location update formula is as follows. 

    1 1 2
1 11

2 2

t t t t
t t tk b k b

i k b

P P P P
P rand P raand a P     

       
   

  (16) 

where, Pk1 and Pk2 respectively represent the top three and top 
five individual positions in the population, and a1 is the 
weight factor. 

The second mechanism is the call guidance mechanism, 
which simulates how snow geese communicate through calls 
to guide their flight direction. By using an attenuation model 
of sound wave propagation, the position update is adjusted 
based on the distance between an individual and the leading 
goose, thereby avoiding a decline in convergence ability due 
to excessive aggregation or dispersion. The location update 
formula is as follows. 

       1
21 Brownian

t
A i lowt t t t t t

i i b i c i
WA low

L l L
P P P P d a P P

L L


 
         

   (17) 

where LA is the received sound intensity, LWA is the initial 
sound intensity of the sound source, Llow is the lowest 
acceptable sound intensity, and a2 is the weight factor. 

The third mechanism is the abnormal boundary strategy, 
which considers the behavior of snow geese as social birds 
that avoid isolation. By calculating the difference between an 
individual's fitness and the group's average fitness, the 
strategy adjusts the individual's position update to enhance 
the algorithm's convergence speed and accuracy. The 
position update formula is as follows. 

 
     

 
        

3

1

                          

    

t t t t
b b i i avg

t tt
i nt ti

i i avgt t
n i

P a P P f P f P

P PP
P e levy f P f P

f P f P



   
      

 (18) 

where f (P)avg is the average fitness value of the population, 
Pn

t is the position of the individual with the lowest fitness 
value, e is the weight factors, a3 is a random number with a 
range of (0,1), levy is the levy flight strategy, which 
effectively simulates the irregular movement of snow geese 
in preventing them from leaving the sheep. 

During exploration, ISGA employs leader rotation to 
enhance global search capability; during exploitation, it 
utilizes call guidance and abnormal boundary strategies to 
refine local search accuracy. 

E. MHSA-Conv1D-GRU model 

In traffic speed prediction problems, speed data exhibits 
characteristics such as periodicity, trends, outliers, and noise, 
while also containing implicit temporal dependencies. 
Effectively capturing these autocorrelations is crucial for 
prediction performance. This requires the model to capture 
both short-term and long-term patterns in traffic data while 
possessing robust time-series modeling capabilities. 

To address this, building on the GRU architecture which 
captures both long- and short-term characteristics of traffic 
data, this paper integrates Conv1D with its superior global 
feature extraction capability for optimization, constructing a 
Conv1D-GRU model. This model effectively captures 
multi-scale temporal dependencies, extracting rich short-term 
and long-term feature information to better characterize key 
historical traffic patterns. 

To further enhance the network's ability to represent and 
model base station traffic data, this paper introduces a MHSA 
to fuse multi-perspective attention information. This enables 
the Conv1D-GRU network to adaptively focus on key 
features across different temporal dimensions, thereby 
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improving prediction accuracy. The overall architecture of 
the MHSA-Conv1D-GRU model is shown in Fig. 4. 
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Fig. 4.  Structure of a MHSA-Conv1D-GRU model 

 

Input layer: Preprocess historical data and input multi 
feature time series into the model, represented as. 

  1 2, ,..., ,
T d

n tX X X X X R    (19) 

where n is the sequence length; d is the feature dimension; Xt 
is the eigenvector at time step t. 

Conv1D layer: A one-dimensional convolution operation 
is applied to extract local temporal features, and the output of 
the Conv1D layer is shown below. 

  * ,   cd
t ij t j tC ReLU W X b C R     (20) 

where dc is the feature dimension output by convolution. 
GRU layer: Long-term dependencies are extracted using 

two GRU layers with dropout, and the processed data H(2) is 
shown below. 

 

 11 1 1
1 1

( ) ( ) ( ), ,    ( ) h
t t t tH GRU C H H R    (21) 

 (
~

)
(1)

1( )t tH Dropout H   (22) 

 1

(1) (1) (1) (1)~ ~ ~ ~
1

1
(

2
) , , , ,[ ] hT

n tH H H H H R     (23) 

where Ht (1) is the hidden state of GRU at the t-th time step, 

with a hidden dimension of ℎ1. 
(1)~

tH  is the output after 
dropout processing. H(1) is the output of the layer GRU.  

MHSA mechanism layer: Global features are extracted 
from the complete time series to capture long-range 
dependencies, with the resulting output shown below. 

 

 (1) (1) (1), ,Q K VW H K W H VQ W H     (24) 

 ( )
T

a

A softmax
QK

h
   (25) 

 1,     O   n hO AV R     (26) 

 
~

( )O Dropout O   (27) 

 
~

(1)( )Z LayerNorm H O    (28) 

where W, Q, K are queries, keys, and values; WQ, WK, and WV 
are linear transformation parameters with a shape of Rℎ1 × ℎ𝑎; 

A is the attention weight; O is attention output; 
~

O is the 
output of the Dropout layer; Z is the output after residual 
connection. 

Fully connected layer: Through additional processing, the 
network extracts salient features, with the final output 
presented below. 
 2( ),   hP GlobalMaxPool ng Z Pi R   (29) 

 o oY W P b    (30) 

where P is a fixed dimensional vector; Wo is the fully 
connected layer weight; bo is the bias term. 
Output layer: The output layer applies transformations to the 
preceding dense layer's activations, computed as: 

 ( )Y Y


   (31) 

where  Y


 is the predicted output value; σ is the sigmoid 
activation function. 

F. ISGA-MHSA-Conv1D-GRU model 

The ISGA-MHSA-Conv1D-GRU traffic speed prediction 
hybrid model is established, which primarily takes the 
number of neurons in the GRU hidden layers, the number of 
heads in the MHSA layer, and the learning rate as 
optimization objectives for the ISGA algorithm in the 
MHSA-Conv1D-GRU framework. Through global search 
optimization, the optimal parameter combination is assigned 
to the MHSA-Conv1D-GRU model to enhance prediction 
accuracy. The prediction process of the ISGA-MHSA 
Conv1D-GRU model is illustrated in Fig. 5. 

Step 1: The model initialization phase establishes critical 
parameters for both the optimization algorithm and neural 
network architecture. For the ISGA, we define the population 
size representing potential solutions and set the maximum 
iteration limit to control optimization duration. Concurrently, 
we configure the MHSA-Conv1D-GRU model by specifying 
its architectural components: the number and dimensions of 
convolutional layers, GRU layer configurations, and the 
mean squared error (MSE) loss function for performance 
evaluation. This dual initialization ensures proper 
coordination between the optimization process and model 
training. 

Step 2: The optimization process commences by mapping 
the initial population positions to neural network 
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hyperparameters, including learning rates, kernel sizes, and 
layer dimensions. Each candidate solution undergoes training 
on the designated dataset, with the resulting MSE serving as 
the fitness score for evolutionary selection. This evaluation 
phase provides the necessary performance metrics to guide 
subsequent optimization steps while maintaining 
computational efficiency through parallel processing of 
candidate solutions. 

Step 3: Population evolution follows a hierarchical update 
strategy governed by mathematical formulations. The entire 
population's positions undergo transformation through 
formula (11), while individual velocities are adjusted 
according to formula (12). Elite members (top 20%) receive 
specialized updates via the leader rotation mechanism in 
formula (16), promoting exploration of promising solution 
spaces. The majority cohort (next 60%) follows the call 
guidance protocol from formula (17), balancing exploitation 
of current best solutions. Formula (18) enforces boundary 
constraints to maintain parameter validity throughout these 
updates, ensuring all hyperparameters remain within their 
defined operational ranges. 

Step 4: The optimization cycle iteratively repeats, with 
each generation's refined parameters feeding back into the 
training process. This continues until either reaching the 
maximum iteration count or meeting convergence criteria. 
The final output selects the parameter set demonstrating 
optimal fitness (minimum MSE), which configures the 
complete ISGA-MHSA-Conv1D-GRU model. This 
optimized architecture then processes traffic speed data to 
generate final predictions, completing the implementation 
pipeline while maintaining all intermediate validation checks 
and performance benchmarks. 
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GRU model 
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Fig.5.  Prediction process of the ISGA-MHSA-Conv1D-GRU model 

III. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Data Description and Analysis 

In this study, traffic data of the road networks in Chengdu 

and Wuhan were collected from 4 March to 24 March, 2025, 
using the API of Baidu Maps. A total of 5,760 traffic data 
points were obtained for each city. The processed data 
samples are presented in Table Ⅰ, and 0 represents working 
days and 1 represents weekends. 

We analyze the impact of workdays and congestion index 
on traffic speed, highlighting the importance of considering 
these two factors in the model. In Fig. 6, the traffic speed 
curves on weekdays and weekends are shown using Wuhan 
dataset as an example. 

Fig. 6 illustrate the fluctuations in traffic speed throughout 
the day on weekdays and weekends. Additionally, there are 
significant differences in travel demand between weekdays 
and weekends at different times. For example, on weekdays, 
the speed during peak hours drops sharply due to a large 
number of residents commuting by car. During off-peak 
hours, the speed increases significantly. In contrast, on 
non-working days, the decline in speed during peak hours is 
more gradual, and the lowest speed remains higher than that 
on working days. Between 10:00 and 17:00, the traffic speed 
on non-working days is lower than that on working days. This 
may be because residents are at work and are less likely to 
travel on weekdays, whereas on weekends, increased travel 
activities lead to reduced speeds. Statistical analysis reveals 
significant weekday-speed associations. 

 

TABLE Ⅰ 
SAMPLE DATA IN DATASETS CHENGDU AND WUHAN 

 Date time 
Speed 
(km/h) 

Congestion 
index 

Weekend 

Dataset 
Chengdu 

2025-3-8 
17:30 

27.849 1.822 1 

2025-3-8 
17:35 

27.470 1.847 1 

2025-3-8 
17:40 

26.587 1.909 1 

2025-3-8 
17:45 

26.278 1.931 1 

2025-3-8 
17:50 

26.491 1.916 1 

Dataset 
Wuhan 

2025-3-5 
7:00 

38.965 1.152 0 

2025-3-5 
7:05 

37.240 1.206 0 

2025-3-5 
7:10 

35.257 1.273 0 

2025-3-5 
7:15 

32.858 1.366 0 

2025-3-5 
7:20 

30.700 1.462 0 

 

 
Fig.6.  Continuous daily speed on weekdays and weekends 
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This study employs the Pearson correlation test to analyze 
the relationship between the congestion index and traffic 
speed. The Pearson correlation test formula is as follows. 
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where ρ is the Pearson correlation coefficient, with a value 
range of [-1,1]. Ai and Bi are the sample values of variables A 

and B, respectively.  A  and B   are the means of A and B, 
respectively. If ρ is close to 1, it indicates a high positive 
correlation; If ρ is close to -1, it indicates a high negative 
correlation. 

According to formula (32), the ρ value of Dataset Chengdu 
is -0.9546, and that of Dataset Wuhan is -0.9521. The results 
show that both datasets yield values close to -1, indicating a 
strong negative correlation between congestion and traffic 
speed.  

Based on the above analysis, traffic speed, road congestion 
index, and whether it is a working day are used as input 
features for the model. The data input is normalized via 
min–max normalization, and all datasets are divided at a ratio 
of 8:2. 

B. Baseline Models 

This study employs three comparison experiments and one 
ablation experiment. The first comparative experiment   
evaluates LSTM model, Conv1D model, and GRU model; 
The second comparative experiment compares the 
GRU-LSTM, Conv1D-GRU models; The third comparative 
experiment contrasts ISGA-MHSA-Conv1D-GRU model 
with SGA-MHSA-Conv1D-GRU model. The ablation 
experiment assesses   Conv1D model, GRU model, 
Conv1D-GRU model, MHSA-Conv1D-GRU, and 
ISGA-MHSA-Conv1D-GRU model. Together, these 
experiments validate the predictive performance of the 
ISGA-MHSA-Conv1D-GRU model. The baseline models 
are described as follows. 

LSTM: One of the classic variants of recurrent neural 
networks [30]. 

Conv1D: One dimensional convolutional layer extracts 
local features through local receptive fields [31]. 

GRU: GRU simplifies RNN architecture with fewer 
parameters than LSTM while maintaining comparable 
performance [32]. 

GRU-LSTM: The model integrates the strengths of 
GRU and LSTM, exhibiting superior performance in time 
series prediction [33]. 

Conv1D-GRU: The model leverages convolutional 
operations for local pattern detection and GRU networks for 
sequential dependency modeling. 

MHSA-Conv1D-GRU: The model incorporates 
Conv1D, GRU, and MHSA, further enhancing its capability 
to extract both local features and long-term dependencies. 

SGA-MHSA-Conv1D-GRU: The model is based on 
SGA and MHSA-Conv1D-GRU. SGA is used to optimize the 
hyperparameters of the MHSA-Conv1D-GRU model. 

C. Parameter Settings 

The ISGA-MHSA-Conv1D-GRU model utilizes the Adam 
optimizer with hyperparameters optimized through the ISGA, 
with initial configurations detailed in Table Ⅱ. The 

architecture comprises a single one-dimensional 
convolutional layer with 24 filters, a kernel size of 3, and 
ReLU activation, followed by one GRU layer employing 
ReLU activation and hidden layer neurons ranging between 1 
and 100 as determined by ISGA. The MHSA mechanism's 
head count is similarly optimized by ISGA, with the 
dimensionality of Key, Query, and Value vectors matching 
the neuron count in the GRU layer. A uniform dropout rate of 
0.2 is applied throughout the network, while ISGA 
concurrently optimizes three critical parameters: the number 
of MHSA attention heads, the learning rate, and GRU hidden 
layer neuron counts.  
 

TABLE Ⅱ 
ISGA PARAMETER SETTINGS 

Parameter Value 
Population size 20 

LWA 65 
Llow 20 

Maximum number of iterations 10 

 

D. Evaluating Indicator 

The evaluation indicators selected for the article include 
mean square error (MSE), mean absolute error (MAE), and 
coefficient of determination (R2). The formulas are defined as 
follows.  
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where yi is the real value,  iy is the predicted value, iy  is the 

average value, and m is the number of samples. The smaller 
the MSE and MAE, the smaller the model's error in fitting the 
true values, and the higher its prediction accuracy; Models 
with R² values nearer to 1 exhibit better fitting performance. 
 

E. Experimental Results and Analysis 

The experimental environment is configured with 
Windows 11 OS, utilizing Python for implementation and 
TensorFlow 2.6 for deep learning computations.  

We firstly conduct comparative experiments between the 
LSTM, Conv1D, and GRU models on Dataset Chengdu. 
Both LSTM and GRU are designed with one hidden layer, 
each containing 12 neurons and a ReLU activation function. 
The Conv1D parameters follow the settings described in the 
previous section. All three models are optimized using the 
Adam optimizer. The results are shown in Fig. 7. The fitting 
performance of these three single-model predictors is 
relatively low, suggesting that combining them might 
improve prediction accuracy. The performance metrics of the 
three single models are presented in Table Ⅲ. 
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(a)  LSTM model 

 

 
(b)  GRU model 

 

 
(c)  Conv1D model 

Fig. 7.  Comparison on prediction results of the three single models 
 

TABLE Ⅲ 
EVALUATION METRICS ACROSS THE THREE MODELS 

Model MSE MAE R2 

LSTM 11.67 2.79 0.87 

GRU 10.04 2.48 0.89 

Conv1D 7.04 1.94 0.92 

 
Table Ⅲ shows that LSTM performs the worst among the 

three models. Compared to GRU and Conv1D, its MSE 
increases by 16.2%–65.7%, MAE increases by 12.5%–43.8%, 
and R² decreases by 0.02-0.05. GRU outperforms LSTM but 
remains inferior to Conv1D, which achieves the highest 
prediction accuracy. Therefore, combining GRU and 
Conv1D, which exhibit stronger predictive performance, may 
further enhance model accuracy. 

Subsequently, we conduct ablation studies by combining 
Conv1D and GRU to construct a hybrid Conv1D-GRU 
model, which is compared with GRU-LSTM model. To 
further investigate its potential, we introduce the MHSA 
mechanism and evaluate whether it could enhance predictive 
performance. The GRU-LSTM model consists of one GRU 
layer and one LSTM layer with parameters consistent with 
previous section, followed by a Dropout layer (rate=0.5). The 

Conv1D-GRU model maintains identical Conv1D and GRU 
configurations as previously described, while the MHSA 
component uses 3 attention heads with all other parameters 
unchanged from earlier implementations. The prediction 
results are presented in Fig. 8. Table Ⅳ shows the evaluation 
metrics of the three models. 

 

 
(a)  GRU-LSTM model 

                                                    

 
(b)  Conv1D-GRU model 

 

 
(c)  MHSA-Conv1D-GRU model 

Fig.8.  Comparison on the prediction results of the three models 
 

TABLE Ⅳ 
EVALUATION METRICS OF THE THREE MODELS 

Model MSE MAE R2 

GRU-LSTM 6.39 1.80 0.92 

Conv1D-GRU 5.97 1.78 0.93 

MHSA-Conv1D-GRU 4.02 1.56 0.95 

 
Tables III and IV demonstrate that hybrid architectures 

consistently outperform standalone models in prediction 
accuracy. The GRU-LSTM model achieves superior 
performance compared to individual GRU or LSTM models, 
with 42.5% lower MSE, 31.4% reduced MAE, and 0.03-0.05 
higher R² values. Similarly, the Conv1D-GRU hybrid model 
exhibits significant improvements over single Conv1D or 
GRU models, showing 17.9-68.1% MSE reduction, 
8.9-39.3% MAE decrease, and 0.01-0.04 R² enhancement. 
Notably, the proposed model further surpasses GRU-LSTM 
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performance with additional 6.5% MSE reduction, 1.1% 
MAE improvement, and 0.01 R² increase, attributable to 
Conv1D's enhanced local feature extraction capability 
compared to LSTM. The integration of MHSA mechanisms 
further boosts the model's predictive performance, with the 
MHSA-Conv1D-GRU variant attaining an MSE of 4.02 
(48.5% reduction versus the baseline hybrid), MAE of 1.56 
(14.1% decrease), and R² of 0.95 (0.02 increase). It is 
important to note that these results are obtained using 
manually configured parameters without exhaustive 
optimization, suggesting considerable potential for further 
accuracy enhancement.  

To fully exploit this potential, we implement the ISGA for 
systematic hyperparameter optimization of critical 
parameters including attention head count, learning rate, and 
the number of hidden layer neurons. 

Furthermore, a complementary experiment is conducted to 
compare the ISGA with the SGA in order to validate the 
algorithm's performance improvement. After SGA 
optimization, the model used 2 MHSA attention heads, 60 
GRU neurons, and a learning rate of 0.004. With ISGA 
optimization, the model configuration was 5 attention heads, 
99 GRU neurons, and a learning rate of 0.001. The prediction 
results are presented in Fig. 9. Table Ⅴ shows the evaluation 
metrics of the two models. 

 
TABLE Ⅴ 

EVALUATION INDICATORS FOR TWO OPTIMIZED MODELS 

Model MSE MAE R2 

SGA- MHSA-Conv1D-GRU 2.58 1.15 0.97 

ISGA- MHSA-Conv1D-GRU 1.74 1.12 0.98 

 

Tables IV and V demonstrate that the SGA-optimized 
model achieves superior prediction accuracy compared to the 
unoptimized baseline. Furthermore, ISGA exhibits enhanced 
optimization effectiveness relative to SGA. Specifically, the 
SGA-MHSA-Conv1D-GRU model shows better metrics 
with an MSE of 2.58 (a 35.8% reduction versus the 
unoptimized baseline), MAE of 1.15 (a 26.3% reduction), 
and R² of 0.97 (a 0.02 increase). When benchmarked against 
SGA optimization, the ISGA achieves significant 
performance improvements: 32.8% in MSE reduction, 2.6% 
in MAE reduction, and 0.01 in R² increase. These results 
confirm the enhanced optimization capability of ISGA over 
traditional SGA methods, demonstrating the outstanding 
prediction accuracy of the proposed model.  

To further verify the performance of the proposed model 
and enhance the experimental results. The same eight models, 
with parameters unchanged from Dataset Chengdu testing, 
are subsequently applied to Dataset Wuhan. Fig. 10 shows 
the prediction indicators of the eight models. 

In consistent with the findings from Dataset Chengdu, the 
hybrid architecture demonstrates superior predictive 
capability compared to individual model configurations. 
Furthermore, the optimized hybrid variant exhibits enhanced 
accuracy relative to its non-optimized counterpart. The 
ISGA-MHSA-Conv1D-GRU exhibits remarkable 
forecasting capability. Fig. 10(a) shows the column diagram 
of MSE. The MSE value of the ISGA-MHSA-Conv1D-GRU 
model is the lowest, which is 93.9%-26.5% lower than those 
of other models, indicating more accurate predictions that 

better match real data. As evidenced in Fig. 10(b), our 
approach achieves substantially reduced MAE value, which 
is 26.5% to 80.1% lower than those of other models, 
demonstrating significantly better performance than baseline 
approaches. Fig. 10(c) confirms that the R² of the proposed 
model is 0.99, increased by 0.01-0.1, indicating good fitting 
performance. Therefore, the ISGA-MHSA-Conv1D-GRU 
model has good prediction performance. 

 

 
(a) SGA- MHSA-Conv1D-GRU model 

 

 
(b)  ISGA- MHSA-Conv1D-GRU model 

Fig.9.  Comparison on the prediction results of the two models 
 

 
(a)  MSE 

 

 
(b) MAE 
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(c)  R2 

Fig.10.  Evaluation indicators for eight models 

IV. CONCLUSIONS 

To improve the accuracy of traffic speed prediction, 
historical speed data is analyzed to examine the impact of 
traffic congestion and weekends on speed correlation. Given 
the strict temporal nature of the data, an 
ISGA-MHSA-Conv1D-GRU prediction model is developed 
using deep learning methods. The proposed model achieved 
significant improvements over both the baseline 
MHSA-Conv1D-GRU without ISGA optimization (showing 
56.7% lower MSE, 28.2% lower MAE, and 0.03% higher R²) 
and the SGA-optimized model (demonstrating 32.8% MSE 
reduction, 2.6% MAE reduction, and 0.01 R² increase), 
confirming ISGA's superior optimization capability 
compared to both unoptimized and SGA-optimized 
approaches. These results provide a forward-looking 
theoretical foundation for mitigating traffic congestion 
through data-driven forecasting. However, this study focuses 
solely on temporal feature analysis, leaving spatial features 
for future research.  
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