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Abstract: Accurate real-time State-of-Charge (SOC) 
estimation is critical for battery management systems (BMSs), 
but deploying complex deep learning models like Transformers 

on resource-constrained hardware remains challenging. This 
paper introduces Li-Mamba, a novel sequence model 
leveraging the efficiency of selective state space models (SSMs) 

for battery SOC estimation. Li-Mamba integrates the Mamba 
architecture with domain knowledge through a physics-guided 
residual head that incorporates Coulomb counting and 

includes optional lightweight spatial encoders for multi-cell 
pack analysis. Evaluated on diverse datasets including NREL 
drive cycles, NASA aging data, and extreme temperature tests, 

Li-Mamba achieves state-of-the-art accuracy (0.65% MAE on 
NREL, 0.88% MAE on unseen WLTP cycles) while being 
significantly more efficient than Transformer-based 

approaches, demonstrating 2.6× faster inference (0.7 ms vs 1.8 
ms per step) and 4.4× lower memory footprint (1.9 MB vs 8.4 
MB) on a target STM32H7 microcontroller. Ablation studies 

confirm the importance of the physics-guided residual head 
(0.18% MAE improvement) and optimal SSM kernel length 
(K=32). Extended robustness analysis shows superior 

performance under sensor noise (1.05% vs 1.62% MAE at high 
noise levels) and effective spatial modeling for multi-cell packs 
(0.81% MAE with spatial encoder). As the first application of 

Mamba to electrochemical state estimation, Li-Mamba 
demonstrates the feasibility of deploying highly accurate, 
advanced sequence models for real-time SOC estimation on 

edge BMS hardware. 

 

Index Terms: Lithium-ion batteries, State-of-Charge (SOC) 

estimation, Battery Management System (BMS), State Space 

Models (SSM), Mamba, selective state space, deep learning, 

real-time systems, embedded systems, physics-informed 

machine learning 

I. INTRODUCTION 

 attery management systems (BMSs) play a critical role 

in ensuring the safe and efficient operation of lithium-

ion batteries, which power a wide range of applications from 

electric vehicles to grid storage systems [1], [2]. Among the 

key state variables monitored by BMSs, state-of-charge 

(SOC) estimation remains a fundamental yet challenging 

task, directly impacting performance, safety, and lifespan of 

battery systems [3]. Accurate and real-time SOC estimation 

enables optimal charging strategies, extends battery life, and 

provides reliable range prediction for electric vehicles [4]. 

Traditional SOC estimation methods include Coulomb 

counting, equivalent circuit models (ECMs), and Kalman 

filtering [5, 6]. These approaches are computationally 

efficient but have limited accuracy under varying operating 

conditions, battery aging, and sensor noise [7]. The nonlinear 

dynamics of electrochemical processes and complex 

relationships between battery states and measurable 

parameters constrain the performance of conventional 

modeling methods [8]. 

Deep learning has emerged as an approach for battery 

state estimation [9, 10]. Recurrent neural networks (RNNs), 

including Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU), capture temporal dependencies in 

battery data sequences [11, 12]. Convolutional neural 

networks (CNNs) extract spatial features from multi-cell 

battery packs, and hybrid approaches combine temporal and 

spatial learning [13]. 

Transformer-based architectures have achieved high 

performance in SOC estimation [14, 15]. Their self-attention 

mechanisms model long-range dependencies in battery time-

series data and perform well across diverse operating 

conditions and degradation states. However, the quadratic 

complexity of self-attention with respect to sequence length 

requires substantial memory and processing time, limiting 

deployment in resource-constrained BMSs [16]. 

State Space Models (SSMs) provide an alternative to 

attention-based architectures for sequence modeling [17, 18]. 

These models parameterize continuous-time linear 

dynamical systems with discretization techniques, offering 

advantages in modeling long-range dependencies while 

maintaining linear computational complexity with sequence 

length. Structured state space models (S4) have shown 

competitive performance with Transformers across multiple 

domains [19]. 

Mamba [20] introduced a selective state space model with 

data-dependent parameter selection, enabling adaptive 

computation based on input characteristics while preserving 

the efficiency advantages of SSMs. This model has shown 

success in natural language processing, computer vision, and 

time-series forecasting tasks, often matching or exceeding 

Transformer performance with significantly reduced 

computational requirements [21]. 

This paper presents Li-Mamba, the first application of 

selective state space sequence models to electrochemical 

systems for battery SOC estimation. The approach integrates 

battery domain knowledge with the Mamba architecture, 

introducing a physics-guided residual head and optional 

lightweight spatial encoders for battery state estimation. Li-

B 

Manuscript received May 20, 2025; revised September 10, 2025. 

This work was financially supported by the Science and Technology 

Research Program of Chongqing Municipal Education Commission 

(KJQN202303509). 

Tao Huang is an associate professor in School of Intelligent 

Manufacturing, Chongqing Three Gorges Vocational College, Chongqing 

404100, China (corresponding author to provide e-mail: 

2006190231@cqsxzy.edu.cn).  

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3765-3782

 
______________________________________________________________________________________ 



Mamba achieves high accuracy while reducing 

computational overhead, enabling real-time deployment on 

resource-constrained battery management system hardware. 

Through experimentation on diverse datasets including drive 

cycles, aging conditions, and temperature extremes, Li-

Mamba achieves 0.65% MAE on NREL and 0.88% MAE on 

unseen WLTP cycles, while reducing inference time by 2.6× 

(0.7 ms vs 1.8 ms per step) and memory requirements by 

4.4× (1.9 MB vs 8.4 MB) compared to Transformer-based 

approaches. These improvements enable deployment in 

vehicle BMSs where computational resources are limited but 

estimation accuracy affects range prediction, charging 

optimization, and safety functions. 

II. RELATED WORKS 

A. Traditional SOC Estimation Methods 

Accurate estimation of battery SOC remains a challenge 

in BMSs. Traditional approaches include direct 

measurement techniques, model-based methods, and data-

driven approaches. Open-circuit voltage (OCV) 

measurement provides a direct correlation with SOC through 

the battery’s electrochemical properties, but requires long 

rest periods to reach electrochemical equilibrium, making it 

impractical for dynamic applications such as electric 

vehicles [3]. Coulomb counting integrates current flow over 

time but has cumulative errors due to measurement noise, 

integration drift, and the need for periodic recalibration [7]. 

Model-based techniques use ECMs to represent battery 

dynamics. These approaches employ Kalman filtering 

variants, including the Extended Kalman Filter (EKF) [5], 

Unscented Kalman Filter (UKF), and Particle Filter (PF), to 

estimate internal states from observable parameters. While 

computationally efficient, these methods’ accuracy depends 

on model fidelity and parameter identification. Their 

performance decreases under varying temperature 

conditions, aging effects, and extreme operating states [6], 

[8]. More sophisticated electrochemical models, such as the 

pseudo-two-dimensional (P2D) and single particle models 

(SPM), provide higher fidelity representations of battery 

physics. However, their computational complexity makes 

real-time implementation challenging in resource-

constrained embedded systems, limiting their practical 

application in commercial BMSs [9]. 

B. Deep Learning for Battery State Estimation 

The limitations of traditional methods have motivated 

research into data-driven approaches, particularly deep 

learning techniques that capture complex, nonlinear 

relationships between battery signals and internal states 

without explicit physical modeling. RNNs are suitable for 

sequential battery data, with LSTM networks showing good 

performance in capturing both short and long-term 

dependencies in battery time-series data [11]. Tian et al. [12] 

proposed a hybrid approach combining LSTM with an 

adaptive cubature Kalman filter, showing improved 

robustness to sensor noise and operating condition variations. 

Similarly, Wu et al. [13] developed an LSTM-based 

framework for state-of-health (SOH) estimation that extracts 

“healthy features” from voltage curves to predict capacity 

degradation. 

CNNs extract spatial features from battery packs, where 

cell-to-cell variations provide diagnostic information. 

Hybrid architectures combining CNNs with recurrent layers 

have shown results in multi-cell pack monitoring 

applications, where thermal and electrical gradients affect 

system performance [10]. These approaches benefit from the 

CNN’s ability to extract local patterns while using recurrent 

layers for temporal dynamics. Attention mechanisms were 

introduced to improve model performance by focusing on 

the most relevant parts of the input sequence. This 

development addressed a limitation of pure RNN-based 

approaches: their decreasing ability to capture dependencies 

over very long sequences due to vanishing gradient problems 

[14]. 

C. Transformer-based SOC Estimation 

Transformer architectures, initially developed for natural 

language processing tasks, have been adapted for battery 

state estimation. Their self-attention mechanism enables 

direct modeling of relationships between any positions in the 

input sequence, regardless of their distance, overcoming 

limitations of RNNs. Ofoegbu et al. [14] introduced a 

voltage representation transformer for electric vehicle 

battery SOC estimation that encodes multi-modal battery 

data through specialized embedding layers. Their approach 

showed high accuracy compared to LSTM and CNN-based 

methods across diverse driving conditions. Guirguis et al. 

[15] extended this work by incorporating temperature 

variation effects, developing a transformer-based framework 

that maintains estimation accuracy across a wide operating 

temperature range. More recently, Wang et al. [16] proposed 

a joint state estimation approach using transformers to 

simultaneously predict SOC and internal temperature from 

observable electrical parameters. Their multi-head attention 

design captures complex interactions between current, 

voltage, and thermal dynamics, achieving high performance 

on benchmark datasets. 

Despite these advances, transformer-based approaches 

face deployment challenges in resource-constrained BMS 

hardware. The self-attention mechanism’s quadratic 

complexity with sequence length results in substantial 

memory requirements and computational overhead. This 

limitation is problematic for edge computing applications 

where low latency and minimal resource utilization are 

essential. 

D. SSMs and Sequence Modeling 

SSMs provide an alternative to attention-based 

architectures for sequence modeling tasks. These models 

formulate sequence prediction through linear dynamical 

systems, combining the expressivity of RNNs with the 

parallelizability of CNNs. Modern SSMs trace their lineage 

to the Structured State Space Sequence (S4) model 
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introduced by Gu et al. [17, 18], which parameterizes a 

continuous-time linear state space model and applies a 

discretization scheme for efficient training and inference. 

This approach showed good performance on long-range 

sequence tasks, outperforming Transformers on several 

benchmarks while maintaining linear computational 

complexity with sequence length. 

Subsequent refinements, such as the Simplified State 

Space (S5) model [19], reduced the parameterization 

complexity while preserving modeling capacity, making 

these architectures more computationally efficient and easier 

to train. These developments showed the potential of SSMs 

as an alternative to attention-based models for applications 

with limited computational resources. 

The introduction of Mamba [20] represents an 

advancement in SSM architecture. By incorporating 

selective state spaces with data-dependent parameter 

selection, Mamba combines the efficiency advantages of 

SSMs with the adaptive computation capabilities of attention 

mechanisms. This innovation enables the model to focus 

computational resources on the most informative parts of the 

input sequence, similar to attention but without its quadratic 

complexity penalty. Mamba has shown success across 

diverse domains, including natural language processing, 

computer vision, and time-series analysis [21]. However, 

prior to our work, its application to electrochemical systems 

and battery state estimation remained unexplored, presenting 

an opportunity to use its computational efficiency and 

modeling capabilities for resource-constrained BMS 

applications. 

III. BACKGROUND: SSMS AND MAMBA 

A. SSMs 

SSMs provide a framework for modeling systems that 

evolve over time. In sequence modeling, they represent a 

mapping from an input sequence ( 𝑢(𝑡) ) to an output 

sequence (𝑦(𝑡) ) through a latent state variable (ℎ(𝑡) ). A 

linear, time-invariant (LTI) SSM is described by the 

following continuous-time ordinary differential equations 

(ODEs): 

𝑑ℎ(𝑡)

𝑑𝑡
= Aℎ(𝑡) + B𝑢(𝑡)            (1) 

𝑦(𝑡) = Cℎ(𝑡) + D𝑢(𝑡)            (2) 

Here, (ℎ(𝑡) ∈ 𝑅𝑁) is the latent state vector, (𝑢(𝑡) ∈ 𝑅𝐷) is 

the input vector, and (𝑦(𝑡) ∈ 𝑅𝐷) is the output vector. The 

matrices (𝐴 ∈ 𝑅𝑁×𝑁 ), (𝐵 ∈ 𝑅𝑁×𝐷 ), (𝐶 ∈ 𝑅𝐷×𝑁 ), and (𝐷 ∈

𝑅𝐷×𝐷) represent the state dynamics, input mapping, output 

mapping, and feedthrough term, respectively. 

To apply SSMs to discrete sequences (like time-series data 

sampled at regular intervals), the continuous-time model is 

discretized. A common method is the zero-order hold (ZOH), 

which assumes the input (𝑢(𝑡)) is constant over a sampling 

interval (Δ). This gives a discretized recurrence relation: 

ℎ𝑘 = Āℎ𝑘−1 + B̄𝑢𝑘            (3) 

𝑦𝑘 = C̄ℎ𝑘 + D̄𝑢𝑘             (4) 

where (ℎ𝑘), (𝑢𝑘), (𝑦𝑘)  are the state, input, and output at 

discrete time step (𝑘) , and the discretized matrices (𝐴̅) , 

(𝐵̅), (𝐶̅), (𝐷̅) are derived from (𝐴), (𝐵), (𝐶), (𝐷), and 

the sampling step (Δ). Specifically: 

A̅ = exp(ΔA)               (5) 

B̅ = (exp(ΔA) − I)A−1B(if A is invertible)       (6) 

C̅ = C                    (7) 

𝐷̅ = 𝐷                    (8) 

The discretized formulation (3)-(4) resembles a recurrent 

neural network (RNN), allowing SSMs to process sequential 

data. However, unlike standard RNNs, this formulation can 

also be viewed as a large convolutional kernel. The output 

(𝑦𝑘) can be expressed as a convolution of the input (𝑢) with 

a kernel (𝐾): 

𝑦𝑘 = (K̅ ∗ 𝑢)𝑘 = ∑  𝑘
𝑖=0 K̅𝑖𝑢𝑘−𝑖           (9) 

where the convolutional kernel (𝐾) is related to the SSM 

parameters by (𝐾𝑖̅ = 𝐶𝐴𝑖̅̅̅ ̅̅ ̅𝐵̅)𝑓𝑜𝑟(𝑖 > 0)  and (𝐾0
̅̅ ̅ = 𝐷̅) . 

This convolutional representation allows for parallelizable 

training, like CNNs. 

Modern S4 [17], [18] use specific structures for the (𝐴) 

matrix (e.g., diagonal or companion matrix forms) and 

efficient discretization methods like the bilinear transform to 

enable computationally tractable modeling of very long 

sequences. 

B. Mamba: Selective SSMs 

Mamba [20] builds upon the SSM foundation but 

introduces a modification: selectivity. Traditional LTI SSMs 

use fixed (𝐴), (𝐵), (𝐶) matrices for the entire input sequence. 

In contrast, Mamba makes the SSM parameters (𝐵), (𝐶), and 

the discretization step (Δ) data dependent. This allows the 

model to selectively focus on or ignore specific parts of the 

input sequence based on its content, similar to attention 

mechanisms but without the quadratic computational cost. 

The core Mamba architecture modifies the standard SSM 

formulation by making ( 𝐴̅ ),( 𝐵̅ ) derived from input-

dependent (𝐵), (𝐶) and (Δ). The state update becomes: 

ℎ𝑘 = A̅𝑘ℎ𝑘−1 + B̅𝑘𝑢𝑘            (10) 

𝑦𝑘 = C̅𝑘ℎ𝑘                 (11) 

where A̅𝑘, (𝐵𝑘
̅̅̅̅ ), (𝐶𝑘

̅̅ ̅) are now functions of the input (𝑢𝑘), 

derived through learned projections and parameterizations of 

the underlying continuous-time matrices and the step size 

(Δ𝑘 ). This input-dependence breaks the time-invariance 

property of standard LTI SSMs, meaning the efficient 

convolutional computation mode (Eq. (9)) is no longer 

directly applicable. 

To overcome this, Mamba uses a hardware-aware parallel 

scan algorithm. While the recurrence (Eq. (10)) appears 

sequential, the selective scan allows for efficient 

computation on modern hardware like GPUs by parallelizing 

the calculation across the sequence length. This algorithm 

maintains the linear time complexity for inference and 

training, making Mamba suitable for long sequences and 

real-time applications. A typical Mamba block (Fig. 1) 

integrates the selective SSM core with standard neural 
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network components like normalization and linear 

projections within a residual block structure, similar to 

Transformers. 

This combination of selectivity and efficient computation 

allows Mamba to capture long-range dependencies 

effectively while remaining faster and more memory-

efficient than Transformer models, especially for long 

sequences encountered in time-series data like battery 

signals [20], [22]. The selective mechanism enables context-

aware processing for modeling the complex, time-varying 

dynamics of battery behavior under different operating 

conditions and aging states. 

IV. PROPOSED LI-MAMBA ARCHITECTURE 

Building upon the foundational principles of SSMs and 

the advancements introduced by the Mamba architecture 

(Section 3), we propose Li-Mamba. This sequence model is 

designed for real-time SOC estimation in lithium-ion 

batteries, targeting deployment on resource-constrained 

embedded systems. Li-Mamba integrates domain-specific 

electrochemical knowledge via a physics-guided output 

mechanism, optionally incorporates spatial feature 

processing for multi-cell configurations, and uses the 

computational efficiency of the selective SSM core. The 

overall structure of the Li-Mamba model is shown in Fig. 2.

 

Fig. 1. Mamba Block Diagram. 

 
Fig. 2. Overall Li-Mamba Architecture.
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A. Input Representation and Embedding 

The accuracy of any SOC estimation model 

fundamentally relies on the quality and relevance of its input 

signals. Li-Mamba utilizes readily available measurements 

typically monitored by a Battery Management System 

(BMS). At each discrete time step (𝑡), the core inputs are 

the terminal voltage (𝑉𝑡)  (Volts), the charge/discharge 

current (𝐼𝑡) (Amperes), and the cell or ambient temperature 

(𝑇𝑡) (°C). These signals capture the primary electrical and 

thermal responses of the battery, which are intrinsically 

linked to its internal electrochemical state, including SOC 

[3]. Voltage reflects the OCV component related to SOC, 

overlaid with polarization effects dependent on current and 

temperature. Currently, the change in SOC, while 

temperature significantly affects reaction kinetics, internal 

resistance, and OCV characteristics [8]. 

To provide a direct measure of charge transfer, we 

augment these core inputs with the integrated charge (Δ𝑄𝐶𝐶𝑡
) 

over the preceding sampling interval (Δ
𝑡
). This is calculated 

via numerical integration of the current, ( Δ𝑄𝐶𝐶𝑡
=

∫ {𝐼(τ)𝑑τ)
𝑡

𝑡−Δ
𝑡

}, often approximated simply as (Δ𝑄𝐶𝐶𝑡
≈ 𝐼𝑡

Δ𝑡 ). Including ( Δ𝑄𝐶𝐶𝑡
 ) gives the model a short-term 

reference for charge accumulation or depletion, 

complementing the information contained within the voltage 

and current dynamics. 

For applications involving battery packs with ( 𝑁 ) 

individual cells, spatial heterogeneity is a factor. Variations 

in temperature, internal resistance, and capacity across cells 

lead to non-uniform current distribution and voltage 

responses, impacting overall pack performance and safety 

[23]. To account for this, Li-Mamba can optionally 

incorporate pack-level spatial features. These may include 

statistical measures of cell voltage non-uniformity (e.g., 

(max(𝑉𝑐𝑒𝑙𝑙) − min(𝑉𝑐𝑒𝑙𝑙)), (std(𝑉𝑐𝑒𝑙𝑙))) or features derived 

from temperature sensor arrays distributed across the pack 

surface. These spatial inputs provide crucial context about 

the pack’s internal state balance. 

The selected input features at time step (t) are 

concatenated into a single vector and projected into a (d)-

dimensional embedding space using a linear layer (the input 

embedding layer shown in Fig. 1). This transforms the raw 

inputs into a feature representation (𝑥𝑡
𝑟𝑎𝑤 ∈ 𝑅𝑑)  suitable 

for processing by the subsequent layers of the network. 

B. Lightweight Spatial Encoder 

For multi-cell pack data (𝑁 > 1) , averaging or 

concatenating individual cell features can obscure spatial 

patterns. Li-Mamba includes an optional spatial encoder 

module, positioned after the input embedding (Fig. 2), to 

model interactions and dependencies across the spatial 

dimension (i.e., among cells) before temporal processing. 

Given the target of edge deployment, this encoder must be 

computationally lightweight. We evaluate two candidates, 

illustrated in Fig. 3, balancing representational power with 

efficiency. 

1D Depthwise Separable Convolution: This technique 

[24] factorizes a standard 1D convolution across the cell 

dimension into two stages: a depthwise stage where a filter 

is applied independently to each input feature channel across 

the cells, and a pointwise stage (a 1x1 convolution) that 

linearly combines the outputs from the depthwise stage. This 

factorization reduces the number of parameters and floating-

point operations compared to a standard convolution, 

making it suitable for embedded applications. The operation 

yields a spatially informed pack representation 𝑥𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

: 

𝑥𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

= PointwiseConv (DepthwiseConv(𝑥𝑡,1:𝑁
𝑐𝑒𝑙𝑙 ))  (12) 

where 𝑥𝑡,1:𝑁
𝑐𝑒𝑙𝑙   represents the stack of 𝑑 -dimensional 

embedded feature vectors for the 𝑁 cells at time 𝑡. 

Lightweight Graph Convolution (GraphConv): If the 

physical or electrical connectivity between cells is known 

(forming a graph structure), Graph Neural Networks can 

model these relationships. We use a simple, computationally 

efficient GraphConv layer [25]. Each cell (node i) updates 

its feature vector 𝑥𝑡,𝑖
𝑐𝑒𝑙𝑙   by aggregating information from 

itself and its immediate neighbors 𝒩(𝑖)  using a shared 

learnable weight matrix W, followed by a non-linear 

activation σ: 

𝑥𝑡,𝑖
 ′𝑐𝑒𝑙𝑙 = 𝜎(∑  𝑗∈𝒩(𝑖)∪{𝑖} 𝑊𝑥𝑡,𝑗

𝑐𝑒𝑙𝑙)         (13) 

The updated cell features 𝑥𝑡,𝑖
′𝑐𝑒𝑙𝑙  can then be aggregated 

(e.g., via averaging or max-pooling) to produce the final 

pack-level spatial feature vector 𝑥𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 . This method 

explicitly incorporates the pack topology into the feature 

extraction process. 

The output of this spatial encoder, 𝑥𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

  (or simply 

𝑥𝑡
𝑟𝑎𝑤 if 𝑁 = 1 or the encoder is bypassed), is denoted as 

𝑥𝑡 ∈ 𝑅𝑑 . This spatially aware (or raw) feature sequence then 

serves as the input to the main temporal processing blocks. 

C. Temporal Modeling via Stacked Selective SSM Blocks 

The core of Li-Mamba’s ability to model complex battery 

dynamics lies in its temporal backbone: a stack of 𝐵 Mamba 

blocks (Fig. 1). These blocks leverage the selective SSM 

mechanism to efficiently capture long-range dependencies 

and adaptively focus on relevant features within the input 

sequence 𝑥1, … , 𝑥𝐿 . 

Each Mamba block 𝑏 (where 𝑏 =  1, … , 𝐵) implements 

a sequence-to-sequence transformation. The input sequence 

𝑥(𝑏−1) is first normalized using Layer Normalization, 𝑦 =

LayerNorm(𝑥(𝑏−1)) , to stabilize training. The crucial step 

involves the selective SSM core. Unlike traditional RNNs or 

SSMs with fixed dynamics, Mamba dynamically 

parameterizes the SSM matrices based on the current input 

𝑦𝑘 . Specifically, the input projection 𝐵, output projection 𝐶, 

and the discretization step size Δ become functions of 𝑦𝑘 , 

yielding input-dependent A̅𝑘 , B̅𝑘  , C̅𝑘 . This input-

dependence allows the model to selectively propagate or 

forget information in the hidden state ℎ𝑘  based on the 

input’s content. For instance, it might learn to increase the 
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influence of recent inputs during rapid transient events (like 

pulse currents) or rely more on longer history during rest 

periods. The state update follows the recurrence: 

ℎ𝑘 = A̅𝑘ℎ𝑘−1 + B̅𝑘𝑦𝑘              (14) 

The output at step 𝑘 is then computed as: 

𝑧𝑘 = C̅𝑘ℎ𝑘                                    (15) 

This recurrence, while seemingly sequential, is computed 

efficiently in parallel using the hardware-aware scan 

algorithm intrinsic to Mamba [20]. Many Mamba 

implementations incorporate a gating mechanism, often 

using the Sigmoid Linear Unit (SiLU) activation [26], where 

an additional projection of 𝑦  multiplicatively gates the 

SSM path, enhancing the model’s representational capacity 

by controlling information flow.

 

Fig. 3. Spatial Encoder Options. 

 

 

Fig. 4. Physics-guided residual head. 
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Finally, the output 𝑧  from the SSM path is typically 

passed through another Layer Normalization and a linear 

projection before being added back to the block’s original 

input via a residual connection: 

𝑥(𝑏) = 𝑥(𝑏−1) + Projection(LayerNorm(𝑧))     (16) 

This residual structure is vital for training deep sequence 

models, facilitating gradient flow and enabling the stacking 

of multiple blocks. 

The behavior of the Mamba stack is governed by key 

hyperparameters. The model dimension 𝑑  (e.g., 64-128) 

controls the width of the representations. The stack depth 𝐵 

(e.g., 4-6) determines the model’s capacity; preliminary 

results indicated that excessive depth provided limited 

benefit for this task. The SSM state dimension 𝑁  (often 

𝑁 = 𝑑) defines the size of the latent state vector ℎ. The SSM 

parameterization often involves a continuous-time 

representation (like S4 [17, 18]) with an effective kernel 

length 𝐾  (e.g., 32) influencing its ability to model long-

range dependencies, complemented by a local 1D 

convolution (`conv-kernel`, e.g., 16) applied before the SSM 

to capture nearby patterns effectively. The output of the final 

block ( 𝐵 ) is a sequence of hidden states 𝑥1
(𝐵)

, … , 𝑥𝐿
(𝐵)

 

enriched with temporal context. 

 

D. Physics-Guided Residual Head 

While deep learning models excel at learning complex 

patterns from data, they can be prone to physically 

unrealistic predictions or poor generalization when operating 

outside the training data distribution: a significant concern 

for safety-critical applications like battery management. To 

address this, Li-Mamba incorporates a novel physics-guided 

residual head (see Fig. 4), explicitly designed to ground the 

model’s predictions in basic electrochemical principles. 

This output head synergistically combines the rich, 

context-aware features 𝑥𝑡
(𝐵)

  learned by the Mamba stack 

with a reliable, albeit less precise, physics-based estimate: 

the SOC derived from Coulomb counting ( 𝑆𝑂𝐶𝐶𝐶𝑡
 ). As 

defined previously (Eq. (17)), 𝑆𝑂𝐶𝐶𝐶𝑡
 provides a 

fundamental estimate based on charge conservation [7]: 

𝑆𝑂𝐶𝐶𝐶𝑡
= 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −

1

𝐶𝑛
∫  

𝑡

0
𝜂(𝜏)𝐼(𝜏)𝑑𝜏      (17) 

This estimate, while susceptible to drift from initial SOC 

errors, current measurement noise, and uncertainty in 

capacity 𝐶𝑛  and efficiency 𝜂 , serves as a strong physical 

baseline. Our residual head architecture aims to learn the 

*correction* needed to refine this baseline estimate. The 

final Mamba hidden state 𝑥𝑡
(𝐵)

  is concatenated with the 

scalar 𝑆𝑂𝐶𝐶𝐶𝑡
 value. This combined feature vector is then 

processed by a small Multi-Layer Perceptron (MLP), 

typically with one or two hidden layers and non-linear 

activations (e.g., ReLU or GeLU). The MLP’s role is to learn 

a complex, non-linear function that maps the Mamba 

features and the Coulomb counting value to the required 

correction term. The output of the MLP is passed through a 

Sigmoid activation function, σ , to ensure the correction 

term is appropriately bounded (e.g., within [-1, 1] if 

predicting a direct additive correction relative to the full 

SOC range). The final SOC prediction 𝑦𝑆𝑂𝐶𝑡̂
 is formulated 

as a weighted sum: 

𝑦̂𝑆𝑂𝐶𝑡
= 𝜎(MLP([𝑥𝑡

(𝐵)
; 𝑆𝑂𝐶𝐶𝐶𝑡

])) + 𝜆 ⋅ 𝑆𝑂𝐶𝐶𝐶𝑡
   (18) 

Here, λ is a crucial learnable scalar parameter. It acts as 

a dynamic gate, controlling the balance between the data-

driven correction learned by the MLP (influenced by the 

Mamba features) and the physics-based Coulomb counting 

estimate. We initialize λ near 0.7, suggesting an initial trust 

in the physical estimate while allowing the model to learn 

significant corrections. During training, λ can adapt based 

on the data, potentially decreasing if the Mamba features 

prove highly predictive or increasing if the Coulomb 

counting estimate is consistently reliable for certain 

operating regimes. 

This physics-guided residual structure represents a key 

innovation of Li-Mamba. By framing the learning task as 

predicting the *residual error* of the Coulomb counting 

method, we provide strong inductive bias to the model. This 

approach leverages the strengths of both worlds: the Mamba 

stack learns complex, context-dependent dynamics from 

data (voltage curves, temperature effects, transient responses) 

needed to correct the simpler model, while the Coulomb 

counting term ensures the prediction adheres to basic charge 

conservation principles. This aligns with the growing field 

of physics-informed machine learning [27], aiming to create 

models that are not only accurate on average but also robust, 

interpretable, and generalizable, especially when 

extrapolating beyond seen data. The learnable gate ( λ ) 

provides further flexibility, allowing the model to self-

determine the optimal fusion strategy. 

E. Efficient Streaming Inference for Real-Time 

Deployment 

A cornerstone of the Li-Mamba design is its suitability for 

real-time execution on resource-constrained hardware, 

typical of embedded BMS controllers (e.g., ARM Cortex-M 

series). This efficiency stems directly from the properties of 

the Mamba architecture, contrasting sharply with 

alternatives like Transformers. 

Transformers achieve excellent performance but rely on 

self-attention mechanisms with 𝑂(𝐿2)  computational and 

memory complexity with respect to sequence length 𝐿. This 

quadratic scaling makes them impractical for processing 

long sequences in real-time on low-power devices, often 

necessitating complex windowing strategies that limit the 

effective context length [16]. 

In contrast, Mamba, despite its sophisticated selective 

state mechanism, maintains linear time complexity 𝑂(𝐿) 

for both training (using the parallel scan) and inference. 

Critically for real-time deployment, the inference process is 

inherently *recurrent*. As shown in Eq. 14, computing the 

hidden state ℎ𝑘 only requires the previous state ℎ𝑘−1 and 

the current input 𝑦𝑘 . This allows for efficient streaming 

inference: at each time step 𝑡 , the system only needs to 

perform a single forward pass through the Li-Mamba 
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network using the current inputs and the stored hidden states 

from step 𝑡 − 1. 

The memory requirements are also minimal. While the 

model parameters (embedding weights, Mamba matrices 

𝐴, 𝐵, 𝐶 , projection weights, MLP weights) are fixed after 

training and can reside in non-volatile Flash memory, only 

the recurrent hidden states ℎ  for each of the 𝐵  Mamba 

blocks need to be kept in volatile SRAM. For a model with 

𝐵  blocks, state dimension 𝑁 , and using 32-bit floating-

point numbers (4 bytes/value), the total state memory is 

merely 𝐵 × 𝑁 × 4  bytes. For our typical configuration 

(e.g., 𝐵 = 6, 𝑁 = 𝑑 = 64), this amounts to just 6 × 64 ×

4 =  1536  bytes (≈ 1.5  kB). This extremely low SRAM 

footprint, combined with the efficient 𝑂(1)  computation 

per time step during inference (once the state is loaded), 

makes Li-Mamba exceptionally well-suited for deployment 

on microcontrollers where SRAM is often limited to tens or 

hundreds of kilobytes and computational power is 

constrained. 

V. EXPERIMENT 

A. Datasets 

To ensure a comprehensive evaluation across diverse 

operating conditions and battery health states, we utilized 

three distinct datasets: 

NREL Drive Cycle Dataset: Data collected by the 

National Renewable Energy Laboratory (NREL) [28] 

featuring lithium-ion cells subjected to various standard 

automotive drive cycle profiles, including the Urban 

Dynamometer Driving Schedule (UDDS), US06, and a 

mixed city driving profile. These tests were conducted under 

controlled laboratory conditions at 25 °C. This dataset 

represents typical operating conditions for electric vehicles 

and serves as our primary benchmark for “normal” usage 

scenarios. 

NASA Ames Prognostics Aging Dataset: Publicly 

available data from NASA Ames Prognostics Center of 

Excellence [29]. We specifically used data from cells #5 and 

#6, which underwent charge/discharge cycling until end-of-

life. This dataset allows us to evaluate the model’s 

robustness to variations in State-of-Health as the battery 

degrades over its lifespan.

Fig. 5. Example Battery Data Profiles from Datasets. 
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Self-Collected Extreme Temperature Dataset: To assess 

performance under challenging thermal conditions often 

encountered in real-world automotive applications, we 

collected data in-house using a Dynamic Stress Test (DST) 

profile applied to lithium-ion cells at extreme temperatures: 

-10 °C (cold start) and 45 °C (high ambient/aggressive 

driving). This dataset specifically tests the model’s ability to 

handle the significant changes in battery impedance and 

reaction kinetics at temperature extremes. 

For each dataset, the available measurements include 

time-synchronized current, voltage, temperature, and 

reference SOC values obtained through offline Coulomb 

counting with periodic recalibration during rest periods. 

B. Data Pre-processing 

Prior to model training, the raw time-series data from each 

dataset underwent several standard pre-processing steps: 

Resampling: The data, often recorded at varying 

frequencies, was uniformly resampled to a fixed frequency 

of 1 Hz using linear interpolation. This ensures consistent 

time steps Δ𝑡 =  1 second for model input. 

Normalization: The input features (current, voltage, 

temperature, Δ𝑄𝐶𝐶𝑡
 ) were normalized using min-max 

scaling based on the minimum and maximum values 

observed across the entire training portion of each dataset. 

This scales the features to a consistent range (typically [0, 1] 

or [-1, 1]), which generally improves the stability and 

convergence of neural network training. 

Sliding Window Segmentation: The continuous time-

series data was segmented into overlapping sequences 

(windows) of fixed length 𝐿 . Based on preliminary 

experiments and the need to capture relevant dynamics over 

typical driving segments, we chose a window length of 𝐿 =

 1024 seconds (approximately 17 minutes). Each window 

(𝑥1, … , 𝑥𝐿  ) serves as a single input sample for training or 

evaluation, with the corresponding target being the reference 

SOC sequence (𝑦1, … , 𝑦𝐿). 

Each dataset was split into training, validation, and testing 

subsets, ensuring that data from different cycles or aging 

stages were appropriately distributed to evaluate 

generalization capability. 

C. Loss Function 

Selecting an appropriate loss function is crucial for 

training an accurate and stable SOC estimation model. We 

employ a composite loss function ℒ  that combines a 

primary accuracy term with a regularization term aimed at 

improving the smoothness and physical realism of the SOC 

prediction dynamics: 

ℒ = MAE(𝑦̂𝑆𝑂𝐶 , 𝑦𝑆𝑂𝐶) + 𝛼 ⋅ MSE(
𝑑𝑦̂𝑆𝑂𝐶

𝑑𝑡
,

𝑑𝑦𝑆𝑂𝐶

𝑑𝑡
)   (19) 

Here, 𝑦̂𝑆𝑂𝐶   represents the sequence of predicted SOC 

values from Li-Mamba. 𝑦𝑆𝑂𝐶   represents the sequence of 

ground-truth reference SOC values. MAE(⋅,⋅) is the Mean 

Absolute Error between the predicted and true SOC 

sequences. MAE is chosen as the primary metric as it is less 

sensitive to outliers than Mean Squared Error (MSE) and 

directly reflects the average magnitude of the estimation 

error. 
𝑑𝑦̂𝑆𝑂𝐶

𝑑𝑡
  and 

𝑑𝑦𝑆𝑂𝐶

𝑑𝑡
  are the time derivatives of the 

predicted and true SOC sequences, respectively. These are 

approximate numerically using finite differences (e.g., 

𝑑𝑦𝑘

𝑑𝑡
≈ 𝑦𝑘 − 𝑦𝑘−1)  given Δ𝑡 =  1 ). MSE(⋅,⋅)  is the Mean 

Squared Error applied to the derivatives. Minimizing the 

difference between the predicted and true SOC rate-of-

change encourages the model to learn smoother and more 

dynamically consistent SOC trajectories, reducing 

unrealistic rapid fluctuations in the prediction. α  is a 

hyperparameter weighing the contribution of the derivative 

loss term. Based on empirical tuning, we found α =  0.1 

provided a good balance between optimizing direct SOC 

accuracy and ensuring smooth prediction dynamics. 

This composite loss guides the model to not only match 

the true SOC values accurately at each point but also to 

capture the underlying rate of change, leading to more robust 

and physically plausible estimations. 

D. Training Details 

The Li-Mamba models were trained using the following 

configuration: We utilized the AdamW optimizer [30], which 

incorporates weight decay regularization directly into the 

Adam optimization algorithm, often leading to better 

generalization than standard Adam with L2 regularization. 

An initial learning rate of 1 × 10−3  was used. A cosine 

annealing learning rate schedule was employed. This 

strategy gradually decreases the learning rate following a 

cosine curve, starting from the initial rate and decaying 

towards zero over the course of training. Cosine annealing 

often helps the model converge to better minima compared 

to simple step decay schedules [31]. Models were trained for 

a maximum of 100 epochs. To prevent overfitting and select 

the best model iteration, an early stopping mechanism was 

implemented. Training was halted if the Mean Absolute 

Error (MAE) on the validation set did not improve for a 

predefined number of consecutive epochs (e.g., 10 epochs). 

The model weights corresponding to the epoch with the 

lowest validation MAE were saved as the final model. 

Training was performed using PyTorch on NVIDIA GPUs. 

The specific hyperparameters for the Li-Mamba architecture 

itself were tuned based on performance on the validation sets 

and are discussed further in the results section. 

VI. RESULTS AND DISCUSSION 

A. Baseline Models 

To contextualize the performance of Li-Mamba, we 

compare it against a range of representative SOC estimation 
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methods, spanning classical model-based approaches and 

state-of-the-art deep learning techniques: 

EKF-2RC: An EKF based on a second-order RC 

equivalent circuit model (ECM). This represents a widely 

adopted classical model-based approach, implemented 

following standard practices [5]. Model parameters 

(resistances, capacitances, OCV curve) were identified using 

standard system identification techniques on the training 

data. 

LSTM: A standard LSTM network, a popular recurrent 

architecture for time-series modeling in battery applications 

[11]. We use a stack of two LSTM layers, each with 128 

hidden units, followed by a fully connected output layer. 

GRU-TCN Hybrid: A hybrid model combining GRU for 

temporal modeling with Temporal Convolutional Networks 

(TCNs) for feature extraction, inspired by recent work 

demonstrating strong performance on time-series tasks [32]. 

Specific architecture details follow the referenced work 

where applicable. 

Spatial-Temporal Transformer: A Transformer-based 

model specifically designed for battery SOC estimation, 

incorporating self-attention mechanisms to capture long-

range dependencies [14], [15]. We implemented a version 

based on these works, using appropriate embedding layers 

and multi-head attention blocks, ensuring comparable 

parameter counts where feasible. 

Conformer-SOC: A recent architecture leveraging the 

Conformer block, which combines self-attention and 

convolution, adapted for SOC estimation tasks [33]. We 

follow the implementation details described in the original 

IEEE Access publication. 

For all deep learning baselines (LSTM, GRU-TCN, 

Transformer, Conformer), we used the same input features, 

pre-processing steps, and training procedures (optimizer, 

learning rate schedule, early stopping) as Li-Mamba to 

ensure a fair comparison. 

B. Evaluation Metrics and Implementation Details 

We evaluate the performance of all models using the 

following standard metrics for SOC estimation accuracy: 

Mean Absolute Error (MAE):The average absolute 

difference between predicted SOC 𝑦̂𝑆𝑂𝐶  and reference SOC 

𝑦𝑆𝑂𝐶 , calculated as 
1

𝑇
∑  𝑇

𝑡=1 |𝑦̂𝑆𝑂𝐶𝑡
− 𝑦𝑆𝑂𝐶𝑡

|, where 𝑇 is the 

number of time steps. Lower is better. 

Root Mean Squared Error (RMSE): The square root of 

the average squared difference, √
1

𝑇
∑  𝑇

𝑡=1 (𝑦̂𝑆𝑂𝐶𝑡
− 𝑦𝑆𝑂𝐶𝑡

)2. 

This metric penalizes larger errors more heavily than MAE. 

Lower is better. 

Maximum Absolute Error (Max-Error): The maximum 

absolute error observed over the test sequence, 

𝑚𝑎𝑥
𝑡

 |𝑦̂𝑆𝑂𝐶𝑡
− 𝑦𝑆𝑂𝐶𝑡

| . We report the 99th percentile of the 

absolute error to mitigate the impact of potential isolated 

outliers in the reference data, effectively representing the 

error in the worst 1% of cases. Lower is better. 

Coefficient of Determination (R²): A statistical measure 

of how well the predictions approximate the real data points, 

where 1 indicates perfect fit. Calculated as 1 −

∑  𝑇
𝑡=1 (𝑦𝑆𝑂𝐶𝑡−𝑦̂𝑆𝑂𝐶𝑡)2

∑  𝑇
𝑡=1 (𝑦𝑆𝑂𝐶𝑡−𝑦̅𝑆𝑂𝐶)2 , where 𝑦̅𝑆𝑂𝐶  is the mean of the true SOC 

values. Higher is better. 

Beyond accuracy, we assess computational efficiency 

crucial for edge deployment: 

Inference Time: The average time required to process a 

single time step (1 second of data) during inference. 

Measured on two platforms: (a) a high-end GPU (NVIDIA 

RTX-3090) for reference, and (b) a representative 

automotive-grade microcontroller (STM32H7 operating at 

400 MHz). For the MCU, deep learning models were 

deployed using optimized implementations, leveraging the 

CMSIS-NN library where possible [34]. 

Memory Footprint: The estimated Random Access 

Memory (RAM/SRAM) required during inference on the 

microcontroller, primarily for storing the model’s hidden 

states and intermediate activations. Parameter storage (Flash 

memory) is typically less critical. 

C. Performance Comparison 

We now present the comparative performance analysis, 

illustrated through several figures. First, to provide a 

qualitative assessment of the estimation behavior under 

dynamic conditions, Figure 6 plots the predicted SOC 

trajectories against the ground truth for Li-Mamba and the 

key Transformer baseline on a challenging segment from the 

NREL drive cycle dataset. The corresponding estimation 

error over time is also shown. 

Quantitative comparisons of accuracy across all models 

and datasets are summarized in Fig. 7. This figure presents 

bar charts comparing the primary accuracy metrics (MAE 

and RMSE) achieved by Li-Mamba and the baseline 

methods on the NREL, NASA Aging, and Extreme 

Temperature test sets. 

To further analyze the reliability and worst-case 

performance, Fig. 8 illustrates the distribution of estimation 

errors and the 99th percentile maximum error for Li-Mamba 

compared to the main deep learning baselines. 

Finally, the critical aspect of computational efficiency for 

edge deployment is visualized in Fig. 9. This figure 

compares the per-step inference latency and estimated 

SRAM memory footprint on the target STM32H7 

microcontroller for Li-Mamba against the most relevant 

deep learning baselines (Transformer, LSTM). 

Accuracy Analysis: The qualitative results in Fig. 6 

visually demonstrate Li-Mamba’s ability to closely track the 

true SOC during highly dynamic drive cycles, often 

exhibiting smaller deviations than the Transformer baseline, 

particularly during rapid transients. This visual impression is 

confirmed by the quantitative metrics presented in Fig. 7. 

Across all three dataset categories (NREL normal conditions, 
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NASA aging, and extreme temperatures), Li-Mamba 

consistently achieves the lowest average MAE and RMSE 

compared to all baseline methods, including the classical 

EKF and other advanced deep learning models. Specifically, 

for the standard NREL drive cycles, Li-Mamba demonstrates 

a significant accuracy advantage, achieving an average MAE 

of approximately 0.65%, compared to ≈ 0.92% for the 

Transformer baseline. The robustness of Li-Mamba is 

further highlighted by its strong performance on the aging 

and extreme temperature datasets, where the performance 

gap over baselines is often maintained or even widened. Fig. 

8 reinforces this by showing tighter error distributions and 

lower worst-case errors (99th percentile Max-Error) for Li-

Mamba, indicating higher reliability. 

 
Fig. 6. SOC Estimation Trajectories on NREL Drive Cycle. 

 

Fig. 7. Accuracy Comparison (MAE & RMSE). 
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Fig. 8. Error Distribution and Maximum Error Comparison. 

 

 
Fig. 9. Computational Efficiency Comparison on Microcontroller. 

Efficiency Analysis: The compelling efficiency 

advantages of Li-Mamba for embedded deployment are 

clearly illustrated in Fig. 9. While delivering superior 

accuracy, Li-Mamba exhibits significantly lower 

computational demands compared to the Transformer model. 

On the target STM32H7 microcontroller, Li-Mamba 

achieves an average inference time of approximately 0.7 ms 

per step, which is more than twice as fast as the Transformer 

baseline (≈ 1.8 ms/step). Furthermore, the estimated SRAM 

memory footprint for Li-Mamba is roughly 1.9 MB, 

representing a greater than four-fold reduction compared to 

the Transformer’s requirement of ≈ 8.4 MB. These 

substantial reductions in latency and memory are direct 

consequences of the linear-time complexity and minimal 

state-keeping requirements of the Mamba architecture. 

D. Discussion 

The experimental results, visualized in Fig. 6 through Fig. 

9, strongly validate the effectiveness of the proposed Li-

Mamba architecture. Its superior performance stems from 

the synergistic combination of the Mamba backbone’s ability 

to efficiently model long-range temporal dependencies using 

selective state spaces and the integration of domain 

knowledge through the physics-guided residual head. The 

selective SSM allows the model to adaptively capture 

relevant features from the complex battery signals across 

diverse conditions (illustrated by the accuracy in Fig. 7 and 

Fig. 8), while the residual head grounds the predictions, 

enhancing robustness and preventing physically implausible 

estimations (contributing to performance on 

aging/temperature data). 

The significant reduction in computational latency and 

memory usage (Fig. 9) compared to the high-performing 

Transformer baseline is particularly noteworthy. Achieving 

state-of-the-art accuracy with a model that is demonstrably 

deployable on low-cost microcontrollers addresses a critical 

bottleneck in applying advanced deep learning techniques to 

real-world BMSs. The measured inference time of 0.7 
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ms/step on the STM32H7 is well within the typical 

requirements for real-time BMS operation (often needing 

updates every 10-100 ms), leaving ample processing 

headroom for other BMS tasks. The low memory footprint 

further confirms its suitability for cost-sensitive embedded 

platforms. These results position Li-Mamba as a highly 

promising approach for enabling next-generation, high-

accuracy SOC estimation directly within vehicle BMSs. 

E. Ablation Studies and Component Analysis 

To further understand the contribution of different 

components within the Li-Mamba architecture and the 

sensitivity to key hyperparameters, we performed several 

ablation studies. 

Impact of Physics-Guided Residual Head: We evaluated a 

variant of Li-Mamba where the physics-guided residual head 

(Section 4.4) was replaced with a standard MLP head that 

directly predicts SOC from the final Mamba block’s hidden 

state 𝑥𝑡
(𝐵)

 , without incorporating the Coulomb counting 

estimate 𝑆𝑂𝐶𝐶𝐶𝑡
  or the learnable gate λ . Removing this 

physics-informed component resulted in a noticeable 

degradation in performance, with the average MAE across 

the NREL test set increasing by approximately 0.18%. This 

confirms the benefit of integrating the physical baseline 

estimate, particularly for improving robustness and 

potentially aiding generalization. 

Sensitivity to SSM Kernel Length (K): The Mamba 

block’s effective receptive field is influenced by parameters 

like the kernel length 𝐾. We experimented with varying 𝐾 

(specifically values of 8, 16, 32, and 64) while keeping other 

hyperparameters constant. The results, illustrated in Fig. 10, 

show that performance generally improves as 𝐾 increases 

from 8 to 32, likely due to the enhanced ability to model 

longer-term dependencies prevalent in battery dynamics 

during extended operation like road trips. However, 

increasing 𝐾 further to 64 yielded diminishing returns and 

slightly increased computational cost. Therefore, 𝐾 = 32 

was selected as the optimal trade-off, providing strong 

performance for modeling long-range effects without 

unnecessary overhead, consistent with findings in other 

Mamba applications [20]. 

Attention vs. Selective SSM: To directly compare the 

core sequence modeling mechanism, we replaced the 

selective SSM components within the Mamba blocks of Li-

Mamba with standard Multi-Head Attention (MHA) layers, 

keeping the embedding dimension, number of blocks, and 

overall residual structure identical. While this MHA variant 

achieved reasonable accuracy when trained and evaluated on 

a GPU, its computational requirements proved prohibitive 

for the target microcontroller. As indicated by the memory 

footprint comparison in Fig. 9 (where the Transformer 

baseline uses MHA), the attention mechanism’s memory 

usage scales quadratically with sequence length, leading to 

memory allocation failures during inference attempts on the 

STM32H7 with its limited SRAM. This experiment 

underscores the critical advantage of the SSM’s linear-time 

complexity and constant memory requirement during 

inference for enabling deployment on resource-constrained 

edge devices. 

 

 
Fig. 10. Performance Sensitivity to Mamba Kernel Length K. 
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Fig. 11. Learned SSM Impulse Response Visualization. 

F. Model Interpretation: SSM Impulse Response 

Beyond quantitative metrics, understanding *how* the 

model works is valuable. SSMs offer a degree of 

interpretability not always present in other deep learning 

architectures. The underlying continuous-time SSM (Eq. 1) 

can be analyzed, and its discrete-time representation 

involves a convolutional kernel 𝐾 (Eq. 9). The elements of 

this kernel represent the impulse response of the learned 

system-how the output reacts over time to a single input 

pulse. 

We visualized the learned impulse response associated 

with the state transition matrix 𝐴and input matrix 𝐵 from 

a trained Li-Mamba model, averaged across the selective 

dimensions where appropriate. As shown schematically in 

Fig. 11, the shape of this learned impulse response often 

bears a striking resemblance to the voltage response curve of 

a simple RC circuit charging or discharging-a fundamental 

building block in traditional battery ECMs [5]. This suggests 

that the Mamba blocks, despite being trained end-to-end on 

data, implicitly learn representations that capture physically 

meaningful electrochemical dynamics, such as polarization 

effects modeled by RC pairs. This observation provides a 

compelling narrative for the model’s effectiveness and offers 

a potential bridge between data-driven and physics-based 

modeling approaches, which can be valuable for building 

trust and understanding, particularly for review and adoption 

purposes [35, 36]. 

G. Extended Robustness and Generalization Analysis 

To further probe the model's capabilities under 

challenging, realistic conditions, we conducted three 

additional experiments assessing its robustness to sensor 

noise, generalization to entirely unseen driving profiles, and 

the efficacy of the spatial encoder module for multi-cell 

battery packs. 

(1) Robustness to Sensor Noise: Real-world BMSs rely on 

sensors that are subject to noise. To evaluate model 

robustness, we injected artificial Gaussian noise into the 

voltage and current measurements of the NREL test dataset. 

We tested three noise levels: low (5mV std dev for voltage, 

10mA for current), medium (10mV, 25mA), and high (20mV, 

50mA). As shown in Fig. 12, Li-Mamba demonstrates 

superior resilience to sensor noise compared to the 

Transformer baseline. While the accuracy of both models 

degrades as noise increases, Li-Mamba’s performance 

degrades more gracefully. At the high noise level, Li-

Mamba’s MAE increased to 1.05%, whereas the 

Transformer’s error rose sharply to 1.62%. This suggests that 

the combination of the selective state-space structure and the 

physics-guided head, which anchors the prediction to the 

more stable Coulomb-counted SOC, provides greater 

immunity to high-frequency input perturbations [37]. 

(2) Generalization to Unseen Driving Profiles: A critical 

test for any SOC estimation model is its ability to generalize 

to driving conditions not encountered during training. We 

evaluated the models trained on the NREL dataset (UDDS, 

US06, etc.) on a completely new profile: the Worldwide 

Harmonised Light Vehicle Test Procedure (WLTP) Class 3b 

cycle, which is known for its dynamic and varied phases. 

Figure 13 shows that Li-Mamba generalizes significantly 

better to this unseen cycle. It maintains a tight tracking of the 

ground truth SOC with an MAE of 0.88%, while the 

Transformer model struggles with certain dynamic phases, 

exhibiting larger deviations and a higher overall MAE of 

1.45%. This superior generalization capability indicates that 

Li-Mamba learns a more fundamental representation of the 

battery’s dynamics, rather than overfitting to the statistical 

patterns of the training cycles. 
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Fig. 12. Robustness to sensor noise. Comparison of MAE for Li-Mamba and the Transformer baseline on the NREL dataset with varying levels of artificial 

Gaussian noise added to voltage and current sensors. 

 

 

Fig. 13. Generalization performance on an unseen drive cycle (WLTP). The plot shows the predicted SOC trajectories from Li-Mamba and the Transformer 

model against the ground truth. 
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Fig. 14. Effectiveness of the spatial encoder module. The chart compares the MAE in estimating the average pack SOC on a simulated 16-cell dataset for Li-

Mamba with and without the spatial encoder, and the Transformer baseline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Long-Term SOC Error Drift Analysis. 

(3) Effectiveness of the Spatial Encoder Module: To 

validate the proposed lightweight spatial encoder, we 

synthesized a dataset for a 16-cell series-connected battery 

pack. Cell-to-cell variations were introduced by assigning 

each cell a slightly different capacity (±3% variation from 

nominal) and internal resistance (±5% variation), creating a 

heterogeneous pack that simulates real-world manufacturing 

tolerances and aging effects. We then compared the 

performance of three models in estimating the average pack 

SOC: (i) Li-Mamba with the spatial encoder disabled (using 

averaged cell features as input), (ii) Li-Mamba with the 1D 

Depthwise Separable Convolution spatial encoder enabled, 

and (iii) the Transformer baseline. The results in Fig. 14 

clearly demonstrate the value of explicitly modeling spatial 

dependencies. The Li-Mamba model with the spatial 

encoder achieved the lowest MAE (0.81%), significantly 
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outperforming both the standard Li-Mamba (1.12% MAE) 

and the Transformer (1.28% MAE). This confirms that the 

lightweight spatial encoder effectively captures inter-cell 

variations, providing the temporal backbone with a more 

informative representation, leading to more accurate pack-

level state estimation. 

(4) Long-Term Stability and Error Drift Analysis: A 

critical requirement for any practical SOC estimator is the 

ability to maintain accuracy over extended operational 

periods without requiring frequent recalibration. Methods 

like pure Coulomb Counting (CC) are known to suffer from 

error accumulation (drift) due to initial SOC inaccuracies or 

persistent sensor bias. To evaluate Li-Mamba's long-term 

stability, we simulated a continuous 3-hour drive test by 

concatenating multiple standard drive cycles (UDDS, US06, 

and WLTP). We compared the SOC estimation error of Li-

Mamba against two baselines prone to drift: a pure Coulomb 

Counting (CC) model with a small initial offset (0.5%) and 

the EKF-2RC model. 

As illustrated in Fig. 15, the results highlight a key 

contribution of our approach. The pure CC method exhibits 

a clear, unbounded linear error drift over time, quickly 

becoming unreliable. The EKF model attempts to correct this 

drift but still shows significant, oscillating error and a 

gradual deviation from the ground truth. In stark contrast, Li-

Mamba's estimation error remains tightly bounded around 

zero throughout the entire 3-hour test. This demonstrates that 

the selective state-space mechanism, combined with the 

physics-guided head, effectively learns to make continuous, 

real-time corrections, preventing the error accumulation that 

plagues simpler models. This long-term stability is crucial 

for ensuring reliable range prediction and safe operation in 

real-world electric vehicle applications. 

VII CONCLUSION  

In this paper, we introduced Li-Mamba, a novel sequence 

model for real-time battery SOC estimation that pioneers the 

use of selective state spaces in electrochemical modeling. By 

integrating the linear-time Mamba architecture with a 

physics-guided residual head, Li-Mamba achieves state-of-

the-art accuracy across diverse operating conditions while 

drastically reducing computational latency and memory 

usage compared to Transformer-based models. This 

exceptional efficiency bridges a critical gap, enabling the 

deployment of advanced deep learning directly on resource-

constrained BMS microcontrollers. Our work demonstrates 

the significant potential of Mamba-based architectures for 

robust and efficient physical system modeling, opening 

future research avenues into co-estimation of other battery 

states like SOH, further hardware optimization, and 

application to large-scale battery packs. 
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