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Abstract: Accurate real-time State-of-Charge (SOC)
estimation is critical for battery management systems (BMSs),
but deploying complex deep learning models like Transformers
on resource-constrained hardware remains challenging. This
paper introduces Li-Mamba, a novel sequence model
leveraging the efficiency of selective state space models (SSMs)
for battery SOC estimation. Li-Mamba integrates the Mamba
architecture with domain knowledge through a physics-guided
residual head that incorporates Coulomb counting and
includes optional lightweight spatial encoders for multi-cell
pack analysis. Evaluated on diverse datasets including NREL
drive cycles, NASA aging data, and extreme temperature tests,
Li-Mamba achieves state-of-the-art accuracy (0.65% MAE on
NREL, 0.88% MAE on unseen WLTP cycles) while being
significantly more efficient than Transformer-based
approaches, demonstrating 2.6x faster inference (0.7 ms vs 1.8
ms per step) and 4.4x lower memory footprint (1.9 MB vs 8.4
MB) on a target STM32H7 microcontroller. Ablation studies
confirm the importance of the physics-guided residual head
(0.18% MAE improvement) and optimal SSM kernel length
(K=32). Extended robustness analysis shows superior
performance under sensor noise (1.05% vs 1.62% MAE at high
noise levels) and effective spatial modeling for multi-cell packs
(0.81% MAE with spatial encoder). As the first application of
Mamba to electrochemical state estimation, Li-Mamba
demonstrates the feasibility of deploying highly accurate,
advanced sequence models for real-time SOC estimation on
edge BMS hardware.

Index Terms: Lithium-ion batteries, State-of-Charge (SOC)
estimation, Battery Management System (BMS), State Space
Models (SSM), Mamba, selective state space, deep learning,
real-time systems, embedded systems, physics-informed
machine learning

1. INTRODUCTION

B attery management systems (BMSs) play a critical role
in ensuring the safe and efficient operation of lithium-
ion batteries, which power a wide range of applications from
electric vehicles to grid storage systems [1], [2]. Among the
key state variables monitored by BMSs, state-of-charge
(SOC) estimation remains a fundamental yet challenging
task, directly impacting performance, safety, and lifespan of
battery systems [3]. Accurate and real-time SOC estimation
enables optimal charging strategies, extends battery life, and
provides reliable range prediction for electric vehicles [4].
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Traditional SOC estimation methods include Coulomb
counting, equivalent circuit models (ECMs), and Kalman
filtering [5, 6]. These approaches are computationally
efficient but have limited accuracy under varying operating
conditions, battery aging, and sensor noise [7]. The nonlinear
dynamics of electrochemical processes and complex
relationships between battery states and measurable
parameters constrain the performance of conventional
modeling methods [8].

Deep learning has emerged as an approach for battery
state estimation [9, 10]. Recurrent neural networks (RNNs),
including Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU), capture temporal dependencies in
battery data sequences [11, 12]. Convolutional neural
networks (CNNs) extract spatial features from multi-cell
battery packs, and hybrid approaches combine temporal and
spatial learning [13].

Transformer-based architectures have achieved high
performance in SOC estimation [14, 15]. Their self-attention
mechanisms model long-range dependencies in battery time-
series data and perform well across diverse operating
conditions and degradation states. However, the quadratic
complexity of self-attention with respect to sequence length
requires substantial memory and processing time, limiting
deployment in resource-constrained BMSs [16].

State Space Models (SSMs) provide an alternative to
attention-based architectures for sequence modeling [17, 18].
These models linear
dynamical systems with discretization techniques, offering
advantages in modeling long-range dependencies while
maintaining linear computational complexity with sequence
length. Structured state space models (S4) have shown
competitive performance with Transformers across multiple
domains [19].

Mamba [20] introduced a selective state space model with
data-dependent parameter selection, enabling adaptive
computation based on input characteristics while preserving
the efficiency advantages of SSMs. This model has shown
success in natural language processing, computer vision, and
time-series forecasting tasks, often matching or exceeding
Transformer performance with significantly reduced
computational requirements [21].

This paper presents Li-Mamba, the first application of
selective state space sequence models to electrochemical
systems for battery SOC estimation. The approach integrates
battery domain knowledge with the Mamba architecture,
introducing a physics-guided residual head and optional
lightweight spatial encoders for battery state estimation. Li-

parameterize  continuous-time
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Mamba achieves high accuracy while reducing
computational overhead, enabling real-time deployment on
resource-constrained battery management system hardware.
Through experimentation on diverse datasets including drive
cycles, aging conditions, and temperature extremes, Li-
Mamba achieves 0.65% MAE on NREL and 0.88% MAE on
unseen WLTP cycles, while reducing inference time by 2.6x
(0.7 ms vs 1.8 ms per step) and memory requirements by
4.4x (1.9 MB vs 8.4 MB) compared to Transformer-based
approaches. These improvements enable deployment in
vehicle BMSs where computational resources are limited but
estimation accuracy affects range prediction, charging
optimization, and safety functions.

II. RELATED WORKS

A. Traditional SOC Estimation Methods

Accurate estimation of battery SOC remains a challenge
in BMSs. approaches
measurement techniques, model-based methods, and data-
driven  approaches.  Open-circuit  voltage (OCV)
measurement provides a direct correlation with SOC through
the battery’s electrochemical properties, but requires long
rest periods to reach electrochemical equilibrium, making it
impractical for dynamic applications such as electric
vehicles [3]. Coulomb counting integrates current flow over
time but has cumulative errors due to measurement noise,
integration drift, and the need for periodic recalibration [7].

Model-based techniques use ECMs to represent battery
dynamics. These approaches employ Kalman filtering
variants, including the Extended Kalman Filter (EKF) [5],
Unscented Kalman Filter (UKF), and Particle Filter (PF), to
estimate internal states from observable parameters. While
computationally efficient, these methods’ accuracy depends
on model fidelity and parameter identification. Their
performance varying temperature
conditions, aging effects, and extreme operating states [6],
[8]. More sophisticated electrochemical models, such as the
pseudo-two-dimensional (P2D) and single particle models
(SPM), provide higher fidelity representations of battery
physics. However, their computational complexity makes
real-time implementation challenging in
constrained embedded systems, limiting their practical
application in commercial BMSs [9].

Traditional include direct

decreases under

resource-

B. Deep Learning for Battery State Estimation

The limitations of traditional methods have motivated
research into data-driven approaches, particularly deep
learning techniques that capture complex, nonlinear
relationships between battery signals and internal states
without explicit physical modeling. RNNs are suitable for
sequential battery data, with LSTM networks showing good
performance in capturing both short and long-term
dependencies in battery time-series data [11]. Tian et al. [12]
proposed a hybrid approach combining LSTM with an
adaptive cubature Kalman filter, showing improved

robustness to sensor noise and operating condition variations.

Similarly, Wu et al. [13] developed an LSTM-based
framework for state-of-health (SOH) estimation that extracts
“healthy features” from voltage curves to predict capacity
degradation.

CNNs extract spatial features from battery packs, where
cell-to-cell variations provide diagnostic information.
Hybrid architectures combining CNNs with recurrent layers
have shown results in multi-cell pack monitoring
applications, where thermal and electrical gradients affect
system performance [10]. These approaches benefit from the
CNN’s ability to extract local patterns while using recurrent
layers for temporal dynamics. Attention mechanisms were
introduced to improve model performance by focusing on
the most relevant parts of the input sequence. This
development addressed a limitation of pure RNN-based
approaches: their decreasing ability to capture dependencies
over very long sequences due to vanishing gradient problems
[14].

C. Transformer-based SOC Estimation

Transformer architectures, initially developed for natural
language processing tasks, have been adapted for battery
state estimation. Their self-attention mechanism enables
direct modeling of relationships between any positions in the
input sequence, regardless of their distance, overcoming
limitations of RNNs. Ofoegbu et al. [14] introduced a
voltage representation transformer for electric vehicle
battery SOC estimation that encodes multi-modal battery
data through specialized embedding layers. Their approach
showed high accuracy compared to LSTM and CNN-based
methods across diverse driving conditions. Guirguis et al.
[15] extended this work by incorporating temperature
variation effects, developing a transformer-based framework
that maintains estimation accuracy across a wide operating
temperature range. More recently, Wang et al. [16] proposed
a joint state estimation approach using transformers to
simultaneously predict SOC and internal temperature from
observable electrical parameters. Their multi-head attention
design captures complex interactions between current,
voltage, and thermal dynamics, achieving high performance
on benchmark datasets.

Despite these advances, transformer-based approaches
face deployment challenges in resource-constrained BMS
hardware. The self-attention mechanism’s quadratic
complexity with sequence length results in substantial
memory requirements and computational overhead. This
limitation is problematic for edge computing applications
where low latency and minimal resource utilization are
essential.

D. SSMs and Sequence Modeling

SSMs provide an alternative to attention-based
architectures for sequence modeling tasks. These models
formulate sequence prediction through linear dynamical
systems, combining the expressivity of RNNs with the
parallelizability of CNNs. Modern SSMs trace their lineage
to the Structured State Space Sequence (S4) model
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introduced by Gu et al. [17, 18], which parameterizes a
continuous-time linear state space model and applies a
discretization scheme for efficient training and inference.
This approach showed good performance on long-range
sequence tasks, outperforming Transformers on several
benchmarks while maintaining linear computational
complexity with sequence length.

Subsequent refinements, such as the Simplified State
Space (S5) model [19], reduced the parameterization
complexity while preserving modeling capacity, making
these architectures more computationally efficient and easier
to train. These developments showed the potential of SSMs
as an alternative to attention-based models for applications
with limited computational resources.

The introduction of Mamba [20] represents an
advancement in SSM architecture. By incorporating
selective state spaces with data-dependent parameter
selection, Mamba combines the efficiency advantages of
SSMs with the adaptive computation capabilities of attention
mechanisms. This innovation enables the model to focus
computational resources on the most informative parts of the
input sequence, similar to attention but without its quadratic
complexity penalty. Mamba has shown success across
diverse domains, including natural language processing,
computer vision, and time-series analysis [21]. However,
prior to our work, its application to electrochemical systems
and battery state estimation remained unexplored, presenting
an opportunity to use its computational efficiency and
modeling capabilities for
applications.

resource-constrained BMS

II1. BACKGROUND: SSMS AND MAMBA

A. SSMs

SSMs provide a framework for modeling systems that
evolve over time. In sequence modeling, they represent a
mapping from an input sequence (u(t)) to an output
sequence (y(t)) through a latent state variable (h(t)). A
linear, time-invariant (LTI) SSM is described by the
following continuous-time ordinary differential equations
(ODEs):

an _

dt

y(t) = Ch(t) + Du(t) 2)
Here, (h(t) € R") is the latent state vector, (u(t) € RP) is
the input vector, and (y(t) € RP) is the output vector. The
matrices (A € RV*N), (B € RN*P), (C € RP*N), and (D €
RP*PY represent the state dynamics, input mapping, output
mapping, and feedthrough term, respectively.

To apply SSMs to discrete sequences (like time-series data
sampled at regular intervals), the continuous-time model is
discretized. A common method is the zero-order hold (ZOH),
which assumes the input (u(t)) is constant over a sampling
interval (A). This gives a discretized recurrence relation:

hy = Ahy_q + Buy, 3)
Vi = Chy + Dy, “)

AR(E) + Bu(t) (1)

where (hy), (uy), (yx) are the state, input, and output at
discrete time step (k), and the discretized matrices (A),
(B), (C), (D) are derived from (A), (B), (C), (D), and
the sampling step (A). Specifically:

A = exp(AA) 5)

B = (exp(AA) — DAIB(if A is invertible) (6)
C=c %)

D=0 ®)

The discretized formulation (3)-(4) resembles a recurrent
neural network (RNN), allowing SSMs to process sequential
data. However, unlike standard RNNs, this formulation can
also be viewed as a large convolutional kernel. The output
(yx) can be expressed as a convolution of the input (u) with
a kernel (K):

yie = Kxw)y = T8 Ky 9)
where the convolutional kernel (K) is related to the SSM
parameters by (K, = CA'B)for(i >0) and (K, =D).
This convolutional representation allows for parallelizable
training, like CNNs.

Modern S4 [17], [18] use specific structures for the (A)
matrix (e.g., diagonal or companion matrix forms) and
efficient discretization methods like the bilinear transform to
enable computationally tractable modeling of very long
sequences.

B. Mamba: Selective SSMs

Mamba [20] builds upon the SSM foundation but
introduces a modification: selectivity. Traditional LTI SSMs
use fixed (4), (B), (C) matrices for the entire input sequence.
In contrast, Mamba makes the SSM parameters (B), (C), and
the discretization step (A) data dependent. This allows the
model to selectively focus on or ignore specific parts of the
input sequence based on its content, similar to attention
mechanisms but without the quadratic computational cost.
The core Mamba architecture modifies the standard SSM
formulation by making ( A),( B) derived from input-
dependent (B), (C) and (A). The state update becomes:

hy = Aghy_1 + Bruy (10)

Vi = Crchy (1)
where A, (By), (C) are now functions of the input (uy),
derived through learned projections and parameterizations of
the underlying continuous-time matrices and the step size
(Ag). This input-dependence breaks the time-invariance
property of standard LTI SSMs, meaning the efficient
convolutional computation mode (Eq. (9)) is no longer
directly applicable.

To overcome this, Mamba uses a hardware-aware parallel
scan algorithm. While the recurrence (Eq. (10)) appears
sequential, the selective scan allows for efficient
computation on modern hardware like GPUs by parallelizing
the calculation across the sequence length. This algorithm
maintains the linear time complexity for inference and
training, making Mamba suitable for long sequences and
real-time applications. A typical Mamba block (Fig. 1)
integrates the selective SSM core with standard neural
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network components like normalization and linear IV. PROPOSED LI-MAMBA ARCHITECTURE

projections within a residual block structure, similar to
Transformers.
This combination of selectivity and efficient computation

Building upon the foundational principles of SSMs and
the advancements introduced by the Mamba architecture

Mamba to capture long-range dependencies
effectively while remaining faster and more memory-
efficient than Transformer models, especially for long
sequences encountered in time-series data like battery
signals [20], [22]. The selective mechanism enables context-
aware processing for modeling the complex, time-varying
dynamics of battery behavior under different operating
conditions and aging states.

(Section 3), we propose Li-Mamba. This sequence model is
designed for real-time SOC estimation in lithium-ion
batteries, targeting deployment on resource-constrained
embedded systems. Li-Mamba integrates domain-specific
electrochemical knowledge via a physics-guided output
mechanism, optionally incorporates spatial feature
processing for multi-cell configurations, and uses the
computational efficiency of the selective SSM core. The
overall structure of the Li-Mamba model is shown in Fig. 2.

Selective SSM Core
Computation

[ Input/Gating
M Normization
I Selective SSM Core

Data flow from left right I Output Propection
- = = =» Residual Connection

Fig. 1. Mamba Block Diagram.
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Fig. 2. Overall Li-Mamba Architecture.
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A. Input Representation and Embedding

The accuracy of any SOC estimation model
fundamentally relies on the quality and relevance of its input
signals. Li-Mamba utilizes readily available measurements
typically monitored by a Battery Management System
(BMYS). At each discrete time step (t), the core inputs are
the terminal voltage (V;) (Volts), the charge/discharge
current (I;) (Amperes), and the cell or ambient temperature
(T;) (°C). These signals capture the primary electrical and
thermal responses of the battery, which are intrinsically
linked to its internal electrochemical state, including SOC
[3]. Voltage reflects the OCV component related to SOC,
overlaid with polarization effects dependent on current and
temperature. Currently, the change in SOC, while
temperature significantly affects reaction kinetics, internal
resistance, and OCV characteristics [8].

To provide a direct measure of charge transfer, we

augment these core inputs with the integrated charge (AQ¢c,)

over the preceding sampling interval (At). This is calculated

via numerical integration of the current, ( AQcc, =

) tt_ Ar{l (t)dr)}, often approximated simply as (AQcc, ~ I

At). Including (AQcc, ) gives the model a short-term

reference for charge accumulation or depletion,

complementing the information contained within the voltage
and current dynamics.

For applications involving battery packs with ( N )
individual cells, spatial heterogeneity is a factor. Variations
in temperature, internal resistance, and capacity across cells
lead to non-uniform current distribution and voltage
responses, impacting overall pack performance and safety
[23]. To account for this, Li-Mamba can optionally
incorporate pack-level spatial features. These may include
statistical measures of cell voltage non-uniformity (e.g.,
(max (Vo) — min(V.p)), (std(Vey;))) or features derived
from temperature sensor arrays distributed across the pack
surface. These spatial inputs provide crucial context about
the pack’s internal state balance.

The selected input features at time step (t) are
concatenated into a single vector and projected into a (d)-
dimensional embedding space using a linear layer (the input
embedding layer shown in Fig. 1). This transforms the raw
inputs into a feature representation (x/* € R%) suitable
for processing by the subsequent layers of the network.

B. Lightweight Spatial Encoder

For multi-cell pack data (N > 1) , averaging or
concatenating individual cell features can obscure spatial
patterns. Li-Mamba includes an optional spatial encoder
module, positioned after the input embedding (Fig. 2), to
model interactions and dependencies across the spatial
dimension (i.e., among cells) before temporal processing.
Given the target of edge deployment, this encoder must be

computationally lightweight. We evaluate two candidates,
illustrated in Fig. 3, balancing representational power with
efficiency.

1D Depthwise Separable Convolution: This technique
[24] factorizes a standard 1D convolution across the cell
dimension into two stages: a depthwise stage where a filter
is applied independently to each input feature channel across
the cells, and a pointwise stage (a 1x1 convolution) that
linearly combines the outputs from the depthwise stage. This
factorization reduces the number of parameters and floating-
point operations compared to a standard convolution,
making it suitable for embedded applications. The operation

yields a spatially informed pack representation x; patial,
xfpanal = PointwiseConv (DepthwiseConv(xt”,‘iljv ) (12)

where x{§ly represents the stack of d -dimensional

embedded feature vectors for the N cells at time t.

Lightweight Graph Convolution (GraphConv): If the
physical or electrical connectivity between cells is known
(forming a graph structure), Graph Neural Networks can
model these relationships. We use a simple, computationally
efficient GraphConv layer [25]. Each cell (node i) updates
its feature vector x{¢" by aggregating information from
itself and its immediate neighbors N (i) using a shared
learnable weight matrix W, followed by a non-linear
activation o:

xef = o (Tjewun WrES) (13)

The updated cell features x/$"" can then be aggregated
(e.g., via averaging or max-pooling) to produce the final
pack-level spatial feature vector xfpatial. This method
explicitly incorporates the pack topology into the feature
extraction process.

spatial

The output of this spatial encoder,x,
xtraw

(or simply
if N =1 or the encoder is bypassed), is denoted as
X, € R%. This spatially aware (or raw) feature sequence then
serves as the input to the main temporal processing blocks.

C. Temporal Modeling via Stacked Selective SSM Blocks

The core of Li-Mamba’s ability to model complex battery
dynamics lies in its temporal backbone: a stack of B Mamba
blocks (Fig. 1). These blocks leverage the selective SSM
mechanism to efficiently capture long-range dependencies
and adaptively focus on relevant features within the input
sequence X, ..., X.

Each Mamba block b (where b = 1, ..., B) implements
a sequence-to-sequence transformation. The input sequence
x®~1 s first normalized using Layer Normalization, y =
LayerNorm(x(b_l)), to stabilize training. The crucial step
involves the selective SSM core. Unlike traditional RNNs or
SSMs with fixed dynamics, Mamba
parameterizes the SSM matrices based on the current input
Y- Specifically, the input projection B, output projection C,
and the discretization step size A become functions of y,
yielding input-dependent A, , By , C.. This input-
dependence allows the model to selectively propagate or
forget information in the hidden state h, based on the
input’s content. For instance, it might learn to increase the

dynamically
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influence of recent inputs during rapid transient events (like
pulse currents) or rely more on longer history during rest
periods. The state update follows the recurrence:

hie = Aghy_1 + By (14)
The output at step k is then computed as:
7 = Chy (15)

This recurrence, while seemingly sequential, is computed

A

efficiently in parallel using the hardware-aware scan
algorithm intrinsic to Mamba [20]. Many Mamba
implementations incorporate a gating mechanism, often
using the Sigmoid Linear Unit (SiLU) activation [26], where
an additional projection of y multiplicatively gates the
SSM path, enhancing the model’s representational capacity
by controlling information flow.

1D Depthwise Separable Options

Output

»| Output text
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- .
Depthwise Conv
Feature map \
inputwise
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&

Feature map

1x1 square filter )
]
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Cell Output »  Output text
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Fig. 3. Spatial Encoder Options.
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Fig. 4. Physics-guided residual head.
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Finally, the output z from the SSM path is typically
passed through another Layer Normalization and a linear
projection before being added back to the block’s original
input via a residual connection:

x® = x®=1 4 Projection(LayerNorm(z)) (16)

This residual structure is vital for training deep sequence
models, facilitating gradient flow and enabling the stacking
of multiple blocks.

The behavior of the Mamba stack is governed by key
hyperparameters. The model dimension d (e.g., 64-128)
controls the width of the representations. The stack depth B
(e.g., 4-6) determines the model’s capacity; preliminary
results indicated that excessive depth provided limited
benefit for this task. The SSM state dimension N (often
N = d) defines the size of the latent state vector h. The SSM
parameterization often involves a continuous-time
representation (like S4 [17, 18]) with an effective kernel
length K (e.g., 32) influencing its ability to model long-
range dependencies, complemented by a local 1D
convolution (‘conv-kernel’, e.g., 16) applied before the SSM
to capture nearby patterns effectively. The output of the final
block (B) is a sequence of hidden states xl(B),...,x,EB)
enriched with temporal context.

D. Physics-Guided Residual Head

While deep learning models excel at learning complex
patterns from data, they can be prone to physically
unrealistic predictions or poor generalization when operating
outside the training data distribution: a significant concern
for safety-critical applications like battery management. To
address this, Li-Mamba incorporates a novel physics-guided
residual head (see Fig. 4), explicitly designed to ground the
model’s predictions in basic electrochemical principles.

This output head synergistically combines the rich,
context-aware features xt(B) learned by the Mamba stack
with a reliable, albeit less precise, physics-based estimate:
the SOC derived from Coulomb counting (SOCcc, ). As
defined previously (Eq. (17)), SOC¢, provides a
fundamental estimate based on charge conservation [7]:

1 ot
SO0Ccc, = SOCinitiar — ;fo n(0I(v)de (17)

This estimate, while susceptible to drift from initial SOC
errors, current measurement noise, and uncertainty in
capacity C, and efficiency 7, serves as a strong physical
baseline. Our residual head architecture aims to learn the
*correction® needed to refine this baseline estimate. The
final Mamba hidden state xt(B) is concatenated with the
scalar SOC¢¢, value. This combined feature vector is then
processed by a small Multi-Layer Perceptron (MLP),
typically with one or two hidden layers and non-linear
activations (e.g., ReLU or GeLU). The MLP’s role is to learn
a complex, non-linear function that maps the Mamba
features and the Coulomb counting value to the required
correction term. The output of the MLP is passed through a
Sigmoid activation function, o, to ensure the correction
term is appropriately bounded (e.g., within [-1, 1] if

predicting a direct additive correction relative to the full
SOC range). The final SOC prediction yso¢, is formulated
as a weighted sum:

9s0c, = a(MLP([x{?; S0Ce, 1)) + 4 SOCee,  (18)

Here, A is a crucial learnable scalar parameter. It acts as
a dynamic gate, controlling the balance between the data-
driven correction learned by the MLP (influenced by the
Mamba features) and the physics-based Coulomb counting
estimate. We initialize A near 0.7, suggesting an initial trust
in the physical estimate while allowing the model to learn
significant corrections. During training, A can adapt based
on the data, potentially decreasing if the Mamba features
prove highly predictive or increasing if the Coulomb
counting estimate is consistently reliable for certain
operating regimes.

This physics-guided residual structure represents a key
innovation of Li-Mamba. By framing the learning task as
predicting the *residual error* of the Coulomb counting
method, we provide strong inductive bias to the model. This
approach leverages the strengths of both worlds: the Mamba
stack learns complex, context-dependent dynamics from
data (voltage curves, temperature effects, transient responses)
needed to correct the simpler model, while the Coulomb
counting term ensures the prediction adheres to basic charge
conservation principles. This aligns with the growing field
of physics-informed machine learning [27], aiming to create
models that are not only accurate on average but also robust,
interpretable, and  generalizable, especially when
extrapolating beyond seen data. The learnable gate (A)
provides further flexibility, allowing the model to self-
determine the optimal fusion strategy.

E. Efficient Streaming Inference for Real-Time
Deployment

A cornerstone of the Li-Mamba design is its suitability for
real-time execution on resource-constrained hardware,
typical of embedded BMS controllers (e.g., ARM Cortex-M
series). This efficiency stems directly from the properties of
the Mamba architecture, contrasting sharply with
alternatives like Transformers.

Transformers achieve excellent performance but rely on
self-attention mechanisms with O(L?) computational and
memory complexity with respect to sequence length L. This
quadratic scaling makes them impractical for processing
long sequences in real-time on low-power devices, often
necessitating complex windowing strategies that limit the
effective context length [16].

In contrast, Mamba, despite its sophisticated selective
state mechanism, maintains linear time complexity O(L)
for both training (using the parallel scan) and inference.
Critically for real-time deployment, the inference process is
inherently *recurrent®. As shown in Eq. 14, computing the
hidden state h; only requires the previous state h,_; and
the current input y, . This allows for efficient streaming
inference: at each time step t, the system only needs to
perform a single forward pass through the Li-Mamba
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network using the current inputs and the stored hidden states
from step t — 1.

The memory requirements are also minimal. While the
model parameters (embedding weights, Mamba matrices
A, B, C, projection weights, MLP weights) are fixed after
training and can reside in non-volatile Flash memory, only
the recurrent hidden states h for each of the B Mamba
blocks need to be kept in volatile SRAM. For a model with
B blocks, state dimension N, and using 32-bit floating-
point numbers (4 bytes/value), the total state memory is
merely B X N X4 bytes. For our typical configuration
(e.g., B =6,N = d = 64), this amounts to just 6 X 64 X
4 = 1536 bytes (= 1.5 kB). This extremely low SRAM
footprint, combined with the efficient O(1) computation
per time step during inference (once the state is loaded),
makes Li-Mamba exceptionally well-suited for deployment
on microcontrollers where SRAM is often limited to tens or
hundreds of kilobytes
constrained.

and computational power is

V. EXPERIMENT

A. Datasets

Voltage (v

Current (A)

To ensure a comprehensive evaluation across diverse
operating conditions and battery health states, we utilized
three distinct datasets:

NREL Drive Cycle Dataset: Data collected by the
National Renewable Energy Laboratory (NREL) [28]
featuring lithium-ion cells subjected to various standard
automotive drive cycle profiles, including the Urban
Dynamometer Driving Schedule (UDDS), US06, and a
mixed city driving profile. These tests were conducted under
controlled laboratory conditions at 25 °C. This dataset
represents typical operating conditions for electric vehicles
and serves as our primary benchmark for “normal” usage
scenarios.

NASA Ames Prognostics Aging Dataset: Publicly
available data from NASA Ames Prognostics Center of
Excellence [29]. We specifically used data from cells #5 and
#6, which underwent charge/discharge cycling until end-of-
life. This dataset allows us to evaluate the model’s
robustness to variations in State-of-Health as the battery
degrades over its lifespan.
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Fig. 5. Example Battery Data Profiles from Datasets.
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Self-Collected Extreme Temperature Dataset: To assess
performance under challenging thermal conditions often
encountered in real-world automotive applications, we
collected data in-house using a Dynamic Stress Test (DST)
profile applied to lithium-ion cells at extreme temperatures:
-10 °C (cold start) and 45 °C (high ambient/aggressive
driving). This dataset specifically tests the model’s ability to
handle the significant changes in battery impedance and
reaction kinetics at temperature extremes.

For each dataset, the available measurements include
time-synchronized current, voltage, temperature, and
reference SOC values obtained through offline Coulomb
counting with periodic recalibration during rest periods.

B. Data Pre-processing

Prior to model training, the raw time-series data from each
dataset underwent several standard pre-processing steps:

Resampling: The data, often recorded at varying
frequencies, was uniformly resampled to a fixed frequency
of 1 Hz using linear interpolation. This ensures consistent
time steps At = 1 second for model input.

Normalization: The input features (current, voltage,
temperature, AQcc, ) were normalized using min-max
scaling based on the minimum and maximum values
observed across the entire training portion of each dataset.
This scales the features to a consistent range (typically [0, 1]
or [-1, 1]), which generally improves the stability and
convergence of neural network training.

Sliding Window Segmentation: The continuous time-
series data was segmented into overlapping sequences
(windows) of fixed length L . Based on preliminary
experiments and the need to capture relevant dynamics over
typical driving segments, we chose a window length of L =
1024 seconds (approximately 17 minutes). Each window
(%4, ..., x;) serves as a single input sample for training or
evaluation, with the corresponding target being the reference
SOC sequence (y4, ..., Y1)-

Each dataset was split into training, validation, and testing
subsets, ensuring that data from different cycles or aging
stages were appropriately distributed to
generalization capability.

evaluate

C. Loss Function

Selecting an appropriate loss function is crucial for
training an accurate and stable SOC estimation model. We
employ a composite loss function £ that combines a
primary accuracy term with a regularization term aimed at
improving the smoothness and physical realism of the SOC
prediction dynamics:

£ = MAE(soc, Ysoc) + @ - MSE(252¢, 22506 (19

Here, ¥goc represents the sequence of predicted SOC
values from Li-Mamba. yg,. represents the sequence of
ground-truth reference SOC values. MAE(:,) is the Mean
Absolute Error between the predicted and true SOC

sequences. MAE is chosen as the primary metric as it is less
sensitive to outliers than Mean Squared Error (MSE) and

directly reflects the average magnitude of the estimation

dy d
ysoc and Ysoc

error. are the time derivatives of the

predicted and true SOC sequences, respectively. These are

approximate numerically using finite differences (e.g.,

% X Y — Yi—1) given At = 1). MSE(:,-) is the Mean

Squared Error applied to the derivatives. Minimizing the
difference between the predicted and true SOC rate-of-
change encourages the model to learn smoother and more

dynamically consistent SOC trajectories, reducing

unrealistic rapid fluctuations in the prediction. a is a
hyperparameter weighing the contribution of the derivative
loss term. Based on empirical tuning, we found a = 0.1
provided a good balance between optimizing direct SOC
accuracy and ensuring smooth prediction dynamics.

This composite loss guides the model to not only match
the true SOC values accurately at each point but also to

capture the underlying rate of change, leading to more robust
and physically plausible estimations.

D. Training Details

The Li-Mamba models were trained using the following
configuration: We utilized the AdamW optimizer [30], which
incorporates weight decay regularization directly into the
Adam optimization algorithm, often leading to better
generalization than standard Adam with L2 regularization.
An initial learning rate of 1 X 1073 was used. A cosine
annealing learning rate schedule was employed. This
strategy gradually decreases the learning rate following a
cosine curve, starting from the initial rate and decaying
towards zero over the course of training. Cosine annealing
often helps the model converge to better minima compared
to simple step decay schedules [31]. Models were trained for
a maximum of 100 epochs. To prevent overfitting and select
the best model iteration, an early stopping mechanism was
implemented. Training was halted if the Mean Absolute
Error (MAE) on the validation set did not improve for a
predefined number of consecutive epochs (e.g., 10 epochs).
The model weights corresponding to the epoch with the
lowest validation MAE were saved as the final model.
Training was performed using PyTorch on NVIDIA GPUs.
The specific hyperparameters for the Li-Mamba architecture
itself were tuned based on performance on the validation sets
and are discussed further in the results section.

VI. RESULTS AND DISCUSSION

A. Baseline Models

To contextualize the performance of Li-Mamba, we
compare it against a range of representative SOC estimation
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methods, spanning classical model-based approaches and
state-of-the-art deep learning techniques:

EKF-2RC: An EKF based on a second-order RC
equivalent circuit model (ECM). This represents a widely
adopted classical model-based approach, implemented
following standard practices [5]. Model parameters
(resistances, capacitances, OCV curve) were identified using
standard system identification techniques on the training
data.

LSTM: A standard LSTM network, a popular recurrent
architecture for time-series modeling in battery applications
[11]. We use a stack of two LSTM layers, each with 128
hidden units, followed by a fully connected output layer.

GRU-TCN Hybrid: A hybrid model combining GRU for
temporal modeling with Temporal Convolutional Networks
(TCNs) for feature extraction, inspired by recent work
demonstrating strong performance on time-series tasks [32].
Specific architecture details follow the referenced work
where applicable.

Spatial-Temporal Transformer: A Transformer-based
model specifically designed for battery SOC estimation,
incorporating self-attention mechanisms to capture long-
range dependencies [14], [15]. We implemented a version
based on these works, using appropriate embedding layers
and multi-head attention blocks, ensuring comparable
parameter counts where feasible.

Conformer-SOC: A recent architecture leveraging the
Conformer block, which combines self-attention and
convolution, adapted for SOC estimation tasks [33]. We
follow the implementation details described in the original
IEEE Access publication.

For all deep learning baselines (LSTM, GRU-TCN,
Transformer, Conformer), we used the same input features,
pre-processing steps, and training procedures (optimizer,
learning rate schedule, early stopping) as Li-Mamba to
ensure a fair comparison.

B. Evaluation Metrics and Implementation Details

We evaluate the performance of all models using the
following standard metrics for SOC estimation accuracy:
Mean Absolute Error (MAE):The average absolute

difference between predicted SOC s and reference SOC
Ysoc» calculated as %Zle |9soc, — Ysoc,|> where T is the

number of time steps. Lower is better.
Root Mean Squared Error (RMSE): The square root of

the average squared difference, \[%Zle Fsoc, — Ysoc)*

This metric penalizes larger errors more heavily than MAE.
Lower is better.

Maximum Absolute Error (Max-Error): The maximum
absolute error observed over the test sequence,
max|Ysoc, — Ysoc,|- We report the 99th percentile of the
absolute error to mitigate the impact of potential isolated
outliers in the reference data, effectively representing the

error in the worst 1% of cases. Lower is better.
Coefficient of Determination (R?): A statistical measure
of how well the predictions approximate the real data points,

where 1 indicates perfect fit. Calculated as 1 —

Yie1 Wsoc,—Isoc,)?
1 Osoc,~Fs00)?’

where Vgoc 1s the mean of the true SOC

values. Higher is better.

Beyond accuracy, we assess computational efficiency
crucial for edge deployment:

Inference Time: The average time required to process a
single time step (1 second of data) during inference.
Measured on two platforms: (a) a high-end GPU (NVIDIA
RTX-3090) for reference, and (b) a representative
automotive-grade microcontroller (STM32H7 operating at
400 MHz). For the MCU, deep learning models were
deployed using optimized implementations, leveraging the
CMSIS-NN library where possible [34].

Memory Footprint: The estimated Random Access
Memory (RAM/SRAM) required during inference on the
microcontroller, primarily for storing the model’s hidden
states and intermediate activations. Parameter storage (Flash
memory) is typically less critical.

C. Performance Comparison

We now present the comparative performance analysis,
illustrated through several figures. First, to provide a
qualitative assessment of the estimation behavior under
dynamic conditions, Figure 6 plots the predicted SOC
trajectories against the ground truth for Li-Mamba and the
key Transformer baseline on a challenging segment from the
NREL drive cycle dataset. The corresponding estimation
error over time is also shown.

Quantitative comparisons of accuracy across all models
and datasets are summarized in Fig. 7. This figure presents
bar charts comparing the primary accuracy metrics (MAE
and RMSE) achieved by Li-Mamba and the baseline
methods on the NREL, NASA Aging, and Extreme
Temperature test sets.

To further analyze the reliability and worst-case
performance, Fig. 8 illustrates the distribution of estimation
errors and the 99th percentile maximum error for Li-Mamba
compared to the main deep learning baselines.

Finally, the critical aspect of computational efficiency for
edge deployment is visualized in Fig. 9. This figure
compares the per-step inference latency and estimated
SRAM memory footprint on the target STM32H7
microcontroller for Li-Mamba against the most relevant
deep learning baselines (Transformer, LSTM).

Accuracy Analysis: The qualitative results in Fig. 6
visually demonstrate Li-Mamba’s ability to closely track the
true SOC during highly dynamic drive cycles, often
exhibiting smaller deviations than the Transformer baseline,
particularly during rapid transients. This visual impression is
confirmed by the quantitative metrics presented in Fig. 7.
Across all three dataset categories (NREL normal conditions,
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NASA aging, and extreme temperatures), Li-Mamba
consistently achieves the lowest average MAE and RMSE
compared to all baseline methods, including the classical
EKF and other advanced deep learning models. Specifically,
for the standard NREL drive cycles, Li-Mamba demonstrates
a significant accuracy advantage, achieving an average MAE
of approximately 0.65%, compared to = 0.92% for the

Transformer baseline. The robustness of Li-Mamba is
further highlighted by its strong performance on the aging
and extreme temperature datasets, where the performance
gap over baselines is often maintained or even widened. Fig.
8 reinforces this by showing tighter error distributions and
lower worst-case errors (99th percentile Max-Error) for Li-
Mamba, indicating higher reliability.

SOC Prediction Comparison

— True S0C
100 9 ——- Lj-Mamba Predicted
- Transformer Predicted
90
g
o 80 +
o
wn
70
60 A
T T T T T T
Estimation Error Comparison
~ 21 ii
= g
5 ;
g 01 ) bl
w 1
c '
.8
8 5
E
=}
L'}
w
—4 4 === Li-Mamba Error
- Transformer Error

T
0 200 400

Fig. 6. SOC Estimation Trajectories on NREL Drive Cycle.

T T T
600 800 1000

Time (s)

Mean Absolute Error (MAE) Comparison

2.01

MAE (%)

NREL Drive Cycles

MASA Aging
Root Mean Squared Error (RMSE) Comparison

EKF-2RC

LSTM

GRU-TCN
Transformer
Conformer-s0OC
Li-Mamba

Extreme Temp DST

RMSE (%)

NREL Drive Cycles

Fig. 7. Accuracy Comparison (MAE & RMSE).

MNASA Aging

Extreme Temp DST

Volume 55, Issue 11, November 2025, Pages 3765-3782



TAENG International Journal of Applied Mathematics

Worst-Case SOC Estimation Error Across Datasets
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Fig. 8. Error Distribution and Maximum Error Comparison.
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Fig. 9. Computational Efficiency Comparison on Microcontroller.
Efficiency Analysis: The compelling efficiency
advantages of Li-Mamba for embedded deployment are
clearly illustrated in Fig. 9. While delivering superior
accuracy, Li-Mamba exhibits significantly lower

computational demands compared to the Transformer model.

On the target STM32H7 microcontroller, Li-Mamba
achieves an average inference time of approximately 0.7 ms
per step, which is more than twice as fast as the Transformer
baseline (= 1.8 ms/step). Furthermore, the estimated SRAM
memory footprint for Li-Mamba is roughly 1.9 MB,
representing a greater than four-fold reduction compared to
the Transformer’s requirement of = 8.4 MB. These
substantial reductions in latency and memory are direct
consequences of the linear-time complexity and minimal
state-keeping requirements of the Mamba architecture.

D. Discussion

The experimental results, visualized in Fig. 6 through Fig.
9, strongly validate the effectiveness of the proposed Li-
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Mamba architecture. Its superior performance stems from
the synergistic combination of the Mamba backbone’s ability
to efficiently model long-range temporal dependencies using
selective state spaces and the integration of domain
knowledge through the physics-guided residual head. The
selective SSM allows the model to adaptively capture
relevant features from the complex battery signals across
diverse conditions (illustrated by the accuracy in Fig. 7 and
Fig. 8), while the residual head grounds the predictions,
enhancing robustness and preventing physically implausible
estimations (contributing to performance on
aging/temperature data).

The significant reduction in computational latency and
memory usage (Fig. 9) compared to the high-performing
Transformer baseline is particularly noteworthy. Achieving
state-of-the-art accuracy with a model that is demonstrably
deployable on low-cost microcontrollers addresses a critical
bottleneck in applying advanced deep learning techniques to
real-world BMSs. The measured inference time of 0.7
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ms/step on the STM32H7 is well within the typical
requirements for real-time BMS operation (often needing
updates every 10-100 ms), leaving ample processing
headroom for other BMS tasks. The low memory footprint
further confirms its suitability for cost-sensitive embedded
platforms. These results position Li-Mamba as a highly
promising approach for enabling next-generation, high-
accuracy SOC estimation directly within vehicle BMSs.

E. Ablation Studies and Component Analysis

To further understand the contribution of different
components within the Li-Mamba architecture and the
sensitivity to key hyperparameters, we performed several
ablation studies.

Impact of Physics-Guided Residual Head: We evaluated a
variant of Li-Mamba where the physics-guided residual head
(Section 4.4) was replaced with a standard MLP head that
directly predicts SOC from the final Mamba block’s hidden
state xt(B) , without incorporating the Coulomb counting
estimate SOCcc, or the learnable gate A. Removing this
physics-informed component resulted in a noticeable
degradation in performance, with the average MAE across
the NREL test set increasing by approximately 0.18%. This
confirms the benefit of integrating the physical baseline
estimate, particularly for robustness and
potentially aiding generalization.

Sensitivity to SSM Kernel Length (K): The Mamba
block’s effective receptive field is influenced by parameters
like the kernel length K. We experimented with varying K
(specifically values of 8, 16, 32, and 64) while keeping other

improving

hyperparameters constant. The results, illustrated in Fig. 10,
show that performance generally improves as K increases
from 8 to 32, likely due to the enhanced ability to model
longer-term dependencies prevalent in battery dynamics
during extended operation like road trips. However,
increasing K further to 64 yielded diminishing returns and
slightly increased computational cost. Therefore, K = 32
was selected as the optimal trade-off, providing strong
performance for modeling long-range effects without
unnecessary overhead, consistent with findings in other
Mamba applications [20].

Attention vs. Selective SSM: To directly compare the
core sequence modeling mechanism, we replaced the
selective SSM components within the Mamba blocks of Li-
Mamba with standard Multi-Head Attention (MHA) layers,
keeping the embedding dimension, number of blocks, and
overall residual structure identical. While this MHA variant
achieved reasonable accuracy when trained and evaluated on
a GPU, its computational requirements proved prohibitive
for the target microcontroller. As indicated by the memory
footprint comparison in Fig. 9 (where the Transformer
baseline uses MHA), the attention mechanism’s memory
usage scales quadratically with sequence length, leading to
memory allocation failures during inference attempts on the
STM32H7 with its limited SRAM. This experiment
underscores the critical advantage of the SSM’s linear-time
complexity and constant memory requirement during
inference for enabling deployment on resource-constrained
edge devices.
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Fig. 10. Performance Sensitivity to Mamba Kernel Length K.
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Comparison with Theoretical RC Decay

1.0 1 —— Learned S5M Response (Schematic)
v === Theoretical RC Response (Qualitative)

w 081
)
=
=
E 0.6
<
[1¥]
w
=
a
2 0.4
1 1]
-
i 1]
in
2 0.2
E

0.0

T T T T T
0 10 20 30 40 50 60

Discrete Time Steps

Fig. 11. Learned SSM Impulse Response Visualization.

F. Model Interpretation: SSM Impulse Response

Beyond quantitative metrics, understanding *how* the
model works is valuable. SSMs offer a degree of
interpretability not always present in other deep learning
architectures. The underlying continuous-time SSM (Eq. 1)
can be analyzed, and its discrete-time representation
involves a convolutional kernel K (Eq. 9). The elements of
this kernel represent the impulse response of the learned
system-how the output reacts over time to a single input
pulse.

We visualized the learned impulse response associated
with the state transition matrix Aand input matrix B from
a trained Li-Mamba model, averaged across the selective
dimensions where appropriate. As shown schematically in
Fig. 11, the shape of this learned impulse response often
bears a striking resemblance to the voltage response curve of
a simple RC circuit charging or discharging-a fundamental
building block in traditional battery ECMs [5]. This suggests
that the Mamba blocks, despite being trained end-to-end on
data, implicitly learn representations that capture physically
meaningful electrochemical dynamics, such as polarization
effects modeled by RC pairs. This observation provides a
compelling narrative for the model’s effectiveness and offers
a potential bridge between data-driven and physics-based
modeling approaches, which can be valuable for building
trust and understanding, particularly for review and adoption
purposes [35, 36].

G. Extended Robustness and Generalization Analysis

To further probe the model's capabilities under
challenging, realistic conditions, we conducted three
additional experiments assessing its robustness to sensor
noise, generalization to entirely unseen driving profiles, and

the efficacy of the spatial encoder module for multi-cell

battery packs.

(1) Robustness to Sensor Noise: Real-world BMSs rely on
sensors that are subject to noise. To evaluate model
robustness, we injected artificial Gaussian noise into the
voltage and current measurements of the NREL test dataset.
We tested three noise levels: low (SmV std dev for voltage,
10mA for current), medium (10mV, 25mA), and high (20mV,
50mA). As shown in Fig. 12, Li-Mamba demonstrates
superior resilience to sensor noise compared to the
Transformer baseline. While the accuracy of both models
degrades as noise increases, Li-Mamba’s performance
degrades more gracefully. At the high noise level, Li-
Mamba’s MAE increased to 1.05%, whereas the
Transformer’s error rose sharply to 1.62%. This suggests that
the combination of the selective state-space structure and the
physics-guided head, which anchors the prediction to the
more stable Coulomb-counted SOC, provides greater
immunity to high-frequency input perturbations [37].

(2) Generalization to Unseen Driving Profiles: A critical
test for any SOC estimation model is its ability to generalize
to driving conditions not encountered during training. We
evaluated the models trained on the NREL dataset (UDDS,
US06, etc.) on a completely new profile: the Worldwide
Harmonised Light Vehicle Test Procedure (WLTP) Class 3b
cycle, which is known for its dynamic and varied phases.
Figure 13 shows that Li-Mamba generalizes significantly
better to this unseen cycle. It maintains a tight tracking of the
ground truth SOC with an MAE of 0.88%, while the
Transformer model struggles with certain dynamic phases,
exhibiting larger deviations and a higher overall MAE of
1.45%. This superior generalization capability indicates that
Li-Mamba learns a more fundamental representation of the
battery’s dynamics, rather than overfitting to the statistical
patterns of the training cycles.
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Fig. 15. Long-Term SOC Error Drift Analysis.

(3) Effectiveness of the Spatial Encoder Module: To
validate the proposed lightweight spatial encoder, we
synthesized a dataset for a 16-cell series-connected battery
pack. Cell-to-cell variations were introduced by assigning
each cell a slightly different capacity (3% variation from
nominal) and internal resistance (£5% variation), creating a
heterogeneous pack that simulates real-world manufacturing
tolerances and aging effects. We then compared the

performance of three models in estimating the average pack
SOC: (i) Li-Mamba with the spatial encoder disabled (using
averaged cell features as input), (ii) Li-Mamba with the 1D
Depthwise Separable Convolution spatial encoder enabled,
and (iii) the Transformer baseline. The results in Fig. 14
clearly demonstrate the value of explicitly modeling spatial
dependencies. The Li-Mamba model with the spatial
encoder achieved the lowest MAE (0.81%), significantly
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outperforming both the standard Li-Mamba (1.12% MAE)
and the Transformer (1.28% MAE). This confirms that the
lightweight spatial encoder effectively captures inter-cell
variations, providing the temporal backbone with a more
informative representation, leading to more accurate pack-
level state estimation.

(4) Long-Term Stability and Error Drift Analysis: A
critical requirement for any practical SOC estimator is the
ability to maintain accuracy over extended operational
periods without requiring frequent recalibration. Methods
like pure Coulomb Counting (CC) are known to suffer from
error accumulation (drift) due to initial SOC inaccuracies or
persistent sensor bias. To evaluate Li-Mamba's long-term
stability, we simulated a continuous 3-hour drive test by
concatenating multiple standard drive cycles (UDDS, US06,
and WLTP). We compared the SOC estimation error of Li-
Mamba against two baselines prone to drift: a pure Coulomb
Counting (CC) model with a small initial offset (0.5%) and
the EKF-2RC model.

As illustrated in Fig. 15, the results highlight a key
contribution of our approach. The pure CC method exhibits
a clear, unbounded linear error drift over time, quickly
becoming unreliable. The EKF model attempts to correct this
drift but still shows significant, oscillating error and a
gradual deviation from the ground truth. In stark contrast, Li-
Mamba's estimation error remains tightly bounded around
zero throughout the entire 3-hour test. This demonstrates that
the selective state-space mechanism, combined with the
physics-guided head, effectively learns to make continuous,
real-time corrections, preventing the error accumulation that
plagues simpler models. This long-term stability is crucial
for ensuring reliable range prediction and safe operation in
real-world electric vehicle applications.

VII CONCLUSION

In this paper, we introduced Li-Mamba, a novel sequence
model for real-time battery SOC estimation that pioneers the
use of selective state spaces in electrochemical modeling. By
integrating the linear-time Mamba architecture with a
physics-guided residual head, Li-Mamba achieves state-of-
the-art accuracy across diverse operating conditions while
drastically reducing computational latency and memory
usage compared to Transformer-based models. This
exceptional efficiency bridges a critical gap, enabling the
deployment of advanced deep learning directly on resource-
constrained BMS microcontrollers. Our work demonstrates
the significant potential of Mamba-based architectures for
robust and efficient physical system modeling, opening
future research avenues into co-estimation of other battery
states like SOH, further hardware optimization, and
application to large-scale battery packs.
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