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Reduced Second Zagreb Index and Bounds of
Graph Products

K.Rengalakshmi, and S.Pethanachi Selvam

Abstract — In graph theory, binary operations are used to
construct new graphs from existing ones, enabling the study of
complex structures. Topological indices are numerical
descriptors that capture structural features of graphs and have
wide applications in chemistry and network analysis. The
reduced second Zagreb index is a recently developed degree-
based topological index, defined over the edges of a graph using
vertex degrees. In this paper, we derive closed-form expressions
for the reduced second Zagreb (R, M) index of the strong, semi-
strong, vertex corona, and vertex-edge corona products of two
simply connected graphs. We further provide exact upper and
lower limits for these indices along with the necessary conditions
for equality. The derived results contribute to a deeper
mathematical understanding of graph products and may
support applications in chemical and communication network
modelling.

Index Terms—Strong product, Semi-strong product, vertex
corona product, vertex-edge corona product, Reduced second
Zagreb index.

L INTRODUCTION

In graph theory, a graph G is typically defined as an
ordered pair (V, E), where V is the set of vertices and E
is the set of edges. In chemical graph theory, graphs serve as
models for molecular structures, with vertices representing
atoms and edges representing chemical bonds. Binary
operations on graphs are used to construct new graphs from
existing ones, enabling the modelling of more complex
systems and supporting a range of theoretical and applied
studies.

Topological indices are quantitative descriptors that
contain structural data of chemical compounds and have been
used extensively to predict their physicochemical properties.
Among them, degree-based indices play a special role.
Recent work in mathematics as well as chemistry underscores
their profound relation with molecular features, making them
important in quantitative structure—property relationship
(QSPR) research.

The Zagreb indices, first presented by Gutman and
Trinajsti¢, are leading degree-based topological indices with
well-documented uses in boiling point prediction, molecular
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stability, and toxicity prediction [1], [2]. In order to enhance
sensitivity and capture finer structural features, the reduced
Zagreb indices were later introduced [3] and has been
increasingly utilized in certain chemical modelling contexts.
Contemporary research has focused on broadening their
applicability and theoretical grounding. For instance, new
bounds for variable Zagreb-type and inverse sum-degree
indices were established, including extremal graph
characterizations and practical applications in modelling
molecular structures [4].

Graph products [5], [6] such as strong, semi-strong, and
corona products, are powerful tools for modelling, building,
and simplifying complicated systems. For example, the
strong product of two path graphs gives rise to a mesh-like
structure, which is universally found in wireless
communication networks. Recent studies have explored
graph products through resistance-based indices [7], metric
dimensions [8], spectral analysis of wreath products [9], and
the stability of Cayley and circulant graphs using algebraic
techniques [10]. These developments not only reinforce the
enduring relevance of graph products but also showcase their
evolving role in addressing complex problems in modern
graph theory.

References [11], [12], and [13] are hereby recommended
for complete studies on Zagreb and hyper Zagreb indices of
graph products, whereas more information on the reduced
second Zagreb index can be obtained from [14] and [15].

Inspired by the widespread uses of graph products and the
importance of degree-based topological indices, this research
seeks to calculate the reduced second Zagreb index of the
strong, semi-strong, vertex corona, and vertex-edge corona
products of simply connected graphs. In addition, we derive
upper and lower bounds for these indices and explore their
relevance in real-world contexts. Throughout this work, all
graphs considered are assumed to be simple and connected.

1I. PRELIMINARIES

In this section, we introduce the fundamental definitions
and notations necessary for the subsequent results.
Definition IL.1. [16]: Let Q; = (V(Q,), E(Q,) ) be a simple
connected graph. The degree of a vertex r in G, denoted by
dg, (r), is the number of edges incident to 7 .

Definition I1.2. [16]: A graph Q is said to be regular if all the
vertices in Q, are of same degree.

Definition I1.3. [2]: The first Zagreb index of a graph Q,,
denoted by M;(Qp), is defined as:

M@= ) &
v;€V(Q1)
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Definition I1.4. [2]: The second Zagreb index of a graph @,
denoted by M,(Q,), is given by:

M,(Q,) = dvid,,j
vv;€E(Q1)
Definition IL.5. [3]: The reduced second Zagreb index of a
graph Q;, denoted by R,M(Q,), is defined as:

RM@)= ) (dy—1)(dy,—1)
vV €E(Q1)

Definition IL.6. [5]: The Strong product of Q; and Q, denoted
by Q; ® Q, is defined on the vertex set V(Q;) X V(Q,).
(r,f) and (s,g) in V(Q, ® Q) are adjacent iff r = s and
(f,9) €EQ,) or f=g and (r,s) € E(Q,) or (f,g) €
E(Qz) and (r,s) € E(Qy). Degree of (r,f) € V(Q; ® Q)
can be written as dg, (1) + dg, () + dg, (1) dy, (f). Strong
product of a path on three vertices (P;) and a path on two
vertices(P,) is graphically depicted in figure 1.

Fig 1. Strong Product of P; and P,.

Definition I1.7. [17]: The Semi-strong product Q; © Q, is
defined on V(Q;) X V(Q,) where (r,f) and (s,g) are
adjacent iff f = g and (r,s) € E(Q,) or (f,g) € E(Q,) and
(r,s) € E(Q,). Degree of (r, f) € V(Q; © Q) is given by
dg,(r) +dg,()dg,(f). Semi-Strong product of P; and P,
is illustrated in figure 2.

Fig 2. Semi-Strong product of P; and P,.

Definition I1.8. [18],[19]: Vertex corona product Q; © Q, is
constructed by taking one copy of Q; and |V (Q,)| copies of
Q. Each vertex r € V(Q,) is connected to every vertex in a

distinct copy of Q,. Degree of
reQ, ®Q,is
d ) = {dQl M)+ V(@I ifreV(Q)

100, do,(r) +1 ifrev(Q,) -

Vertex corona product of P; and P, is depicted in figure 3.

Fig 3. Vertex corona product of P; and P,.

Definition IL.9. [6]: Vertex-edge corona product of Q; and Q,
denoted by Q; ¢ Q, is the graph obtained by one copy of Q;,
|V(Q,)| and |E(Q,)| copies of Q,, then joining the i*" vertex

of Q; to every vertex in the i" copy of Q, and also joining
the end vertices of j'* edge of Q; to every vertex in the j*
edge copy of Q,, where 1<i<|V(Q,)] and 1<) <

|E Q)]
Degrec of r € Q; © Q, is

dQ1'Qz(r)
(V@I + Ddg, (r) +IV(Q)] VreV(Qy)
={ dy,(r;j) +2 v €V, (Q)
dg,(sij) +1 vsij € Vi, (Q2)

The vertex-edge corona product of P; and P, is illustrated in
figure 4.

VY

Fig 4. Vertex-edge corona product of P; and P,.

I11. REDUCED SECOND ZAGREB INDEX FOR GRAPH
PrRODUCTS

In this section, we derive general expressions for the R, M
index corresponding to the strong, semi-strong, vertex
corona, and vertex-edge corona graph products. Let Q; =
(V(Q1),E(Q)) and Q; = (V(Q2),E(Q2)) be two given
graphs, where [V(Q)| =V1, |E(Q)] =E1, [V(Q)| =V,
and |E(Q,)| = E,. The degree of a vertex r € V(Q,) and f €
V(Q,) are denoted by dy, () and d,, (f) respectively.

Additionally, we compute the R,M index for particular
instances of these graph products, focusing on standard
graphs like paths(P,) and cycles(C,) with n vertices.

Theorem III.1.
R,M(Q: ® Q) = M3(Q,)(2M5(Q;) + 3M1(Q2) + 6E; +
V) + M3(Q2) BM1(Qy) + 6E1 + V1) + M1(Q1)(M1(Q2) —
E, —V3) + M (Q2)(My(Q1) — Ey —Vy) — 6E1E; + E;Vy +
E,V,

Proof

R,M(Q: ® Q;) = Z (dQ1®Q2 @ f)
rs€EE(Q) =TT

S =
beeE(Qy) TISEQ2) rser(Qy)
—1)(dg,@0,(5,9) — 1)
= Y rseron) (doy@0, 1 ) — 1) (do,@0,(s,9) — 1) +
f9€E(Q2)

B d ! - 1 d ) - 1 +
nggE(SQZ)( Q1®Q2(r f) )( Q1®Qz(r g) )
Z f=g (dQ1®Q2 (T’, f) - 1) (dQ1®Q2 (S, g) — 1)
rseE(Q1)
= Al + Bl + Cl

A = Z (do,00, (1) = 1) (do,00,(5:9) — 1)
rS€EE(Qq)
f9EE(Q2)
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= Yrsencay) (do, (1) + do, (f) + do, (" dq, () —
f9€E(Q2)

1)(dg, () + dg,(g) + dg, (s)dg,(9) — 1)
= 2 Yrser(or) Lrgecay)(do, (1) + do, (f) +
dQ1 (r)sz - 1) (dQ1 (s) + dQ2 9+ dql (S)dQZ @@ -
1)
= 2(M,(Q)(E; + M2(Q) + My (Q,)) + My (Q,)(E; +
M;(Q1)) — E;My(Qy) — EyMy(Q,) + ELEy)
Now,

B, = z (do,oe, (. ) = 1) (dg,@0,(r, 9) — 1)

=5

f9€E(Qz)
= Yr=s ngEE(QZ)(dQl () + do, () + do, (r)dQ2 ) -
1)(do, () + dq,(9) + dg, (N dg,(9) — 1)
= M1 (Q1)(E; + My(Q2)) + Mp(Q2) (Vi + 4E; + M1(Q1))
—ViM;(Q2) — 4E E; + E;V;
Similarly, for

G = Z (dQ1®Qz (T,f) - 1) (dQ1®Qz (S' g) - 1)
f=g

rs€E(Q1)
we get,
¢ = Ml(QZ)(El + Ml(Ql))
+ MZ(QI)(VZ + 4E; + M1(Q2))
— VoM (Q,) — 4E,E; + E|V,
Adding A4, B;, and C;, the result follows.

Corollary III.1.1.
Forn,m > 3,

(1) R,M(B, ® B,) =196mn —339(m + n) + 566

(i) R,M(P, ® C,) = 196mn —290n + 5

(iii) R,M(C,, ® C,,)) = 196mn

Proof

It is known that for any path graph P, and any cycle graph
C,,, the number of vertices and edges are

V(P =n,[V(CHl =n and |E(R)| =

(n — 1), |E(C,)| = n respectively.
Moreover, the first and second Zagreb indices of P, are

M,(B,) = (4n —6) and M,(P,) = (4n —8)
For C,, the first and second Zagreb indices are

M,(C,) =4nand M,(C,) = 4n
Substituting these values in Theorem III.1 yields the desired
result.

Theorem II1.2.
R,M(Q, © Q) = Mz(Q1)(3M1(Q2) +6E, +V, +
2M,(Q2)) — M1 (Q) (M (Q;) + V, + 4E;) + 2E, E, + EqV;
Proof
R,M(Q; © Q) = ereE(Ql)(dQleQZ (r,f)-
fev(Qz)

1) (dQ1@Q2 (S,f) - 1) +

Yrserten (do, 00,1, ) — 1) (do,00,(5,9) — 1)

f9€EQ2)
= A2 + Bz

Ay = Trsero(do 00, (1 ) — 1) (dg,00, (5, f) — 1)
fev(Qz)
= Yrserton)(do, (M do, (f) + dg, (r) — 1) (dg, (s)dg, (f) +
feviQe)
do,(s) — 1)

= Mz(Q1)(M1(Q2) +4E; + Vz) - M1(Q1)(V2 + 2E2)

+V,E;
B, = ZTSEE(Ql)(dQleQZ (r, f) - 1) (dQ1@Q2 (s, g) - 1)
fIEE(Q2)
= ereE(Ql)(dQl (Mdo, (f) +do, () —
fIEE(Q2)

1) (dQl(s)sz (g) +dgo,(s) — 1) +

(dQ1 (r)sz (g) + dQ1 (T) - 1)(dQ1 (S)sz (f) +
dQ1 (s) = 1)
= Mz(Q1)(2(M1(Q2) + Mz(Qz) + Ez)) -

M;(Q)(M1(Q2) + 2E;) + 2E, By
On adding 4,and B,, we arrive at the result.

Corollary IIL.2.1.
Forn,m = 3,
(i) R;M(B, © B,) = 75mn —122m — 165n + 262
(i) R;M(P,, © C,) =31mn—16m? —32m —29n +
60n? + 46
(iii)) R,M(Cp, © C,) = 75mn
Proof
The proof proceeds in the same manner as that of Corollary
3.1.1, with the application of Theorem II1.2.

Theorem IIL.3.
R,M(Q; © Q) = M1(Q)(V, — 1) + M,(Qq) +
ViM,(Q,) + E,V,% — 2E,V, + E; + 4E,E, + 2V,V,E, —
2V, E,

Proof

R,M(Q; © Q;) = (dQ1©QZ (r, f)

rs€E(Qq) TEV(Q1) T€EV(Q1)
fIEE(Q2) fEV(Q2)

- 1)(dQ1OQz (S’ g) - 1)
= Yrsercon(de, (M) — 1) (dg, () = 1) +
¥ revien (do,(f) — 1)(dg,(9) — 1) +

f9€E(Q2)
Trevion(do, () — 1)(dg, () — 1)
fev(Qz)
= A3 + 33 + Cg
Consider Az = ¥rsepop)(de, M) — 1) (dg, (s) — 1)
= Yrseriop(do, () + V2 = 1) (do, () + V, — 1)
= M(Qq) + VoM, (Q1) — My (Qy) + E\V,* — 2E,V, + E;
= V1 Lrgerc)(do, () +1—1)(dg,(9) +1—1)
= V1M, (Q)
In a similar fashion,
C3 = ZTEV(Ql) (dQl (T) - 1)(dQ2 (f) - 1)
fevQz)
= ZTEV(Ql) (dQl (T) +V2 = 1)(dQ2 (f) +1- 1)
fevQz)

= 4E,E, + 2V,V,E, — 2V,E,

The final expression is derived by summing 45, B; and C5.

Corollary II1.3.1.
Forn,m = 3,
(i) R;M(P,, ® B,) = 8mn — 11m — 12n + 3mn? —
n?+1
(i) R,M (P, © C,) = 8mn + 3mn* —n? —7m — 4n +
5
(i) R,M(C,, © C,) = 8mn + m + 3mn?
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Proof
Following the strategy employed in Corollary IIL.1.1, we
obtain the result by utilizing Theorem III.3.

Theorem II1.4.
R,M(Qy ¢ Q;) = 2M1(Q1)(V22 + V2B, + E, +V3)
+ VaiM,(Q,) + M (Q)(V, + 1)?
+ E; (Mz(Qz) + M1(Qz))
+ E\E,(1 + 4V,) + 2VE + 4E,V,
+ 2V\VLE, — 2V E, + E;(1 + V2)
Proof
R,M(Qq ¢ Q;) = ZrSEE(Ql)(dQl (r) — 1) (dql(s) - 1) +
Ey Yrgeron(do, () + 1) (do,(9) + 1) +
Srserton(do, (1) + do, () = 1) (do, () = 1) +

feviQe)
2 revigy) Ao, (dg,(g) +
fIEE(Q2)
Trevion(do, () — 1) (do,(f) — 1)

fev(Qz)

=A4+B4+C4+D4+E4

A= ) (dg,() = 1) (dg, )~ 1)
rs€E(Q1)
= Srsertn ((Va + Ddg, () + V, = 1) (W, + g, (5) +
v, — 1)
= (V; + 1)°M,(Q,) + M, (Q) (V4 — 1) + Ey Vi — 2E,V,
+E
B, = E; (sz(f)+1)(dQ2(g)+1)
f9€E(Q2)

= E1(M2(Q2) + M1(Qz) + Ez)
Cs = Zrser(en)(do, (1) + dg, () = 1) (dg, () — 1)
fev(Qg)
= Trsercon (V2 + Ddg, () + Vs = 1+ (Vy + 1)dq, (5) +
fev(Qz)
V= 1) (do,(f) = 1)
= (Vz + 1)M1(Q1)(2E2 + Vz) - 2E1(2E2 + Vz)

Dy =¥ reviy do,(f)dg,(9)
f9€E(Q2)

= V1M, (Q>)
Ey = Trevion(do, (M) — 1) (do, () — 1)
fev(Q2)
= Srevion((Va + D, () + V= 1) (do, (1))
fev(Q2)
= 4E1E2V2 + 4'E1E2 + 2V1V2E2 - 2E2V1
Summing up A4y, By, C4, D, E,4, the result follows.

Corollary I11.4.1.
Forn,m = 3,
()R;M(P,, » P,) = —31n%? — 35n — 24m + 21mn +
27mn? + 18
(i) RyM (P, » C,) = —27n% + 36mn + 5m +
27mn? —49n — 9
(iii) RyM(Cyy, © Cy) = 6n% + 21mn? 4+ 31mn + 5m
Proof
The result is obtained by applying Theorem III.4 through the
same technique as in Corollary III.1.1.
We next focus on the determination of some upper and
lower bounds for the R, M index of these graph products.

IV. BOUNDS FOR THE REDUCED SECOND ZAGREB
INDEX

In this section, we establish upper and lower bounds for the
R,M index of the strong, semi-strong, vertex corona and
vertex-edge corona products of Q,and Q,. The maximum and
minimum degrees of Q; and Q, are denoted by Ay, A, and
8¢, Gq, Tespectively.

Theorem IV.1.
2
(6Q1 + 5Q2 + 6Q16Q2 - 1) (EIEZ + ViE; + E1V2) <
2
RaM(Q; ® Q) < (AQl + 4y, + 4,4, — 1) (E,E, +
The bounds are tight if and only if Q,and @, are regular.
Proof
R,M(Q: ® Q;) =

Z €E Z r=s
;;EE((?;Z)) F9eE@y)

1)(dQl®Qz (S, g) - 1)

= erEE(Ql) Z r=s Z f=g (dQ1 (T') + sz (f) +
fgeE(Q) TISEW@2) rser(on)

dQ1 (r)sz (f) - 1)(dQ1 (S) + sz (g) + dQ1 (S)sz (g) - 1)
2
= (AQl + AQz + AQlAQZ - 1) (EyE; + VIE; + E1V3)
Also,
2
RZM(Ql @ QZ) 2 (6Q1 + 6Q2 + 6@16Q2 - 1) (E1E2 + V1E2
+EiV,)
Clearly the bounds are tight if and only if Q;and Q, are
regular graphs.

=g (do,@e,(r f) =

rs€EE(Q1)

Theorem IV.2.

2
(80,(8, + 1) = 1) (EsV; + E;E,) < R,M(Q; © Q) <
(AQl (AQz + 1) - 1)2(E1V2 + E,E,) where the bounds are

tight if and only if the graphs Q; and @, are regular.
Proof

RZM(Ql © QZ) = ZTSEE(Ql)(dQleQz (T‘,f) -
fev(ez)

1) (do,00,(5, ) = 1) + Brsercar) (doyo0, (T ) —

f9€E(Q2)
1) (dQ1@Q2 (S’g) - 1)

= Yrser(an) Lrser(oy) (Ao, (M) (dg, (f) + 1) —
fev(Qz) fgeE(Q2)

1) (dQ1 (S)(sz (g) + 1) - 1)

< (80,8, + 1) = 1) BV, + B Ey)

Similarly,

(6Q1(8Q2 + 1) - 1)2(E1V2 + E1E2) < RZMQl © QZ

Theorem IV.3.

E1(6Q1 + VZ - 1)2 + V1E2652 + V1V28QZ(6Q1 + VZ - 1) S
2

RM(Q1 © Qy) S Ey(Bg, + Vo — 1) + V,E,A% +

ViVolg, (Bg, + Vo — 1)

The bounds are tight if and only if Q;and @, are regular

graphs.
Proof

R,M(Q; © Q) = erEE(Ql)(dql ) - 1) (dQ1 (s) - 1) +

Y reviey (do, (f) = 1)(dg, (9) — 1) + Zrevigy (do, () —
f9€E(Q2) fev(Qz)

1)(do, () = 1)
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= Yrsercon(do, () + V2 — 1) (do, () + Vo, = 1) +
Vi Zrgercan (o, () (do, (9)) + Zrevion(do, () +

fev(Qz)

V, —1)(do, () +1-1)
< Ey(Bg, +Vy — 1)" + VE,0L + ViVyAq (Bg, + V5 — 1)
Likely,

RM(Q: O Q2) = Ey (8, +V, —1)" + VE,62,

+ V1V26Q2(6Q1 + VZ - 1)

Theorem IV.4.
E; ((V; + 1)8g, + VZ)Z — 2By (V, + 1)6,, + By (1 +
(6, + 1)) + 21,1 (64, + 1) (Va1 + 8g,) ) + ViE,53, +
8o, (Vo + 1)8g, + V= 1) < RM(Qy + Q) < By ((V, +
1A, + VZ)Z — 2WLE (Vy + Dhg, +Er (1+ (8, +
1)°) + 20351 (Ag, + 1) (Va(1 + Ag,) ) + ViE03, +
A, ((Vz + DAy, +V;, — 1) where the bounds are sharp if

and only if Q;and Q, are regular graphs.
Proof
R,M(Qy ¢ Q;) = erEE(Ql)(dQl (r) - 1) (dql(s) - 1) +
E: Zrgencon(do, () +1) (do,(9) +1) +
ereE(Ql)(dQ1 (r) + do, (s) — 1) (dQ2 - 1) +

fev(Qe)
Z reV(Qq) sz (f)dQZ (g) +
fIEE(Q2)
Trevion(do, () — 1) (do,(f) — 1)

fev(Qz)
= Srsertn ((Va + Ddg, () + V= 1) (W, + g, (5) +

Vo= 1)+ Er Zrgenion(do, (F) + 1) (do, () + 1) +

Trserton ((Va + Ddg, () + V= 1+ (Vy + 1)dg, (5) +
fev(Qa)

Vs = 1) (do, () — 1) + 3 revioy do, (Fdo,(9) +
f9€EE(Q2)

Srevion((Va + Ddg, (1) +V; — 1) (dg, (F))
fev(Qz)

< B ((V; + D, + V2)2 — 2,E (V, + DAg, + By (1+
(Bg, +1)°) +2V,E; (Bg, + 1) (Va(1+8g,)) +

ViE;3, + Ag, ((Vy + Dig, +V, — 1)

Similarly,

RM(Qy » Q5) = Ey ((V, + 18, + VZ)2 — 2V,E, (V, +
18, + By (14 (8q, +1)°) +2V5E, (8¢, + 1) (Vo (1 +

50)) + 44 40, (0 00 +12-1)
The equality holds when both Q; and @, are regular graphs.

V. NUMERICAL ILLUSTRATIONS AND OBSERVATIONS

In this section, we present numerical evaluations of the
R,M index for various graph products involving paths and
cycles. The computed values and corresponding plots
illustrate the behaviour of R, M index across different graph
combinations and product types. These numerical findings
not only validate the theoretical bounds but also reveal
structural influences on the behaviour of the reduced second
Zagreb index.

TABLE 1

R, M Index values for path—path graphs under strong, semi-strong,

vertex corona and vertex-edge corona products.

(m,n) Strong Semi-strong  Vertex corona  VE corona
(3,3) 296 76 -86 978
3.4) 545 136 -144 858
(3.5) 794 196 -222 1832
4.4 990 314 -171 1350
5.4 1435 492 -198 1563
(5.,5) 2076 702 -314 2092
(4,5) 1435 449 -268 4398
(5,6) 2717 912 -462 4062

5000 T T T T

—#— Strong product Y
4000 4 —&— Semi-strong product / i 4

3000

2000

1000

—A— Corona product
—w— Vertex-edge corona product

' (3,3) ' (3,4)

.(3

5) ' (4.4) ' (5.4)

' (5,5) (4,5 '

Fig 5. Graphical representation for Table 1.

TABLE II

(5.6) '

R, M Index values for path—cycle graphs under strong, semi-strong,

vertex corona and vertex-edge corona products.

(m,n) Strong Semi-strong  Vertex corona  VE corona
(3.3) 899 538 116 669
3.4) 1197 1034 192 1106
3,5) 1495 1626 284 1651
4.4 1981 1002 265 1687
(5.4) 2765 950 338 2268
(5,5) 3455 1616 500 2511
4,5) 2475 1637 396 3371
(5,6) 4145 2402 690 4690

T T T T
5000 4 —a— Strong product

4000

3000

2000

1000

—e— Semi-strong product
—A— Vertex corona product

—v— Vertex-edge corona product

(33 (B4 G5 @4 (54 (55 @45 (56)

Fig 6. Graphical representation for Table 2
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TABLE 111
R, M Index values for cycle—cycle graphs under strong, semi-strong,
vertex corona and vertex-edge corona products.

(m,n) Strong Semi-strong ~ Vertex corona  VE corona
(3.3) 1764 675 156 915
3.,4) 2352 900 243 1491
3,5) 2940 1125 348 2205
(4,4) 3136 1200 324 1956
(5.4) 3920 1500 405 2421
(5,5) 4900 1875 580 2890
4,5) 3920 1500 464 3575
(5,6) 5880 2250 785 4951

T T T T

6000

—&— Strong product
—— Semi-strong product
5000 4| — Vertex corona product 7]
b4
—v— Vertex-edge corona product /
,,//
4000 -
3000
) 2 -
2000 Z v e /
/Y/ _— il b
e o — ]
1000 A v e
:/MA\/A
0 T

(3.3) (3:4) (3:5) (4:4) (5:4) (515) (4:5) (5:6)
Fig 7. Graphical representation for Table 3

VI. APPLICATION

Graph products have significant real-world applications,
particularly in the modelling of chemical compounds and the
design of communication networks. Computing the reduced
second Zagreb index for these graph products provides
valuable insights into the structural resilience and
connectivity of complex networks.

The strong product of two path graphs, for example P; and
P;, is a 3x3 mesh graph with 9 vertices. This configuration
represents wireless communication networks where data
exchange is possible through several paths. The reduced
second Zagreb index assists in determining the strength and
reliability of such networks based on internal connectivity
and load balancing.

Fig 8. Mesh network on nine vertices.

The corona product of any cycle graph with a null
graph on two isolated vertices can represent cycloalkane
structures, utilized as high-energy fuels, gasoline blending
agents, and starting materials for the synthesis of alcohols.
For example, the corona product produces a ring structure

with pendant vertices, like a decorated cyclopentane.
Cyclopentane and its derivatives also find applications as
solvents and eco-friendly blowing agents in the production
of foam. In this context, the reduced second Zagreb index
captures the influence of pendant groups on molecular
connectivity and branching, which are closely linked to the
structural and stability characteristics of the molecule.

Fig 9. Structure of Cyclopentane.

VII. CONCLUSION

In this work, we investigated the reduced second
Zagreb index for three fundamental graph operations: the
strong, semi-strong, vertex corona and vertex-edge corona
products of simple connected graphs. For each product, we
derived explicit expressions for the index and established
strong upper and lower bounds, along with conditions for
equality. The mathematical understanding of degree-based
topological indices under graph operations has been
strengthened by these findings. Our results have significance
as they can be used in network modelling and chemical graph
theory. As a sensitive structural descriptor, the reduced
second Zagreb index provides insight into characteristics
including molecule stability, durability, and connectivity. In
the future, one may extend this study to other types of graph
products or operations, such as splice, link, or composition
graphs, and explore their relevance in modelling more
complex real-world systems.
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