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Abstract—In a recent study, we addressed the problem of
pricing a compound Ratchet-type equity-indexed annuity (EIA)
in the Indonesian market under three interest-rate assump-
tions: constant, stochastic based on the Vasicek model, and
stochastic based on the Cox-Ingersoll-Ross (CIR) model, where
the underlying asset was modelled using a geometric Brownian
motion. In the present paper, we address the calculation of the
net single premium of endowment life insurance whose benefit
is specified to be the effective return of the above compound
Ratchet-type EIA. We assume that the mortality rate obeys
the Gompertz model, estimating the parameter values using
the Indonesian Mortality Table IV. Our numerical simulation
reveals that the Vasicek and CIR models lead to nearly identical
premiums, while the classic constant interest-rate assumption
—where the interest rate is set to be the long-term mean used
in the two stochastic cases— leads to an overpricing of the
premium. Additionally, in the two stochastic interest-rate cases,
a sensitivity analysis demonstrates that the calculated premium
depends most sensitively on the interest rate’s long-term mean.

Index Terms—Ratchet, equity-indexed annuity, Vasicek
model, Cox-Ingersoll-Ross model, geometric Brownian motion,
premium, endowment life insurance, Gompertz model

I. INTRODUCTION

IN a recent study [29], we considered the pricing of a com-
pound Ratchet-type equity-indexed annuity (EIA) in the

Indonesian market under three interest-rate assumptions: con-
stant, stochastic based on the Vasicek model, and stochastic
based on the Cox-Ingersoll-Ross (CIR) model. We calculated
the EIA prices under the assumption of geometric Brownian
motion for the underlying asset, with the models’ parameters
estimated from historical Indonesian bond and stock market
data. In the present paper, we aim to continue the above study
by integrating the return of the aforementioned Ratchet-
type EIA into the structure of life insurance policies. More
specifically, we shall consider the pricing of the net single
premium of endowment life insurance whose benefit is the
effective return of the above Ratchet-type EIA.

The motivation for such integration arises from broader
developments in life insurance product design over the
past few decades. As insurance markets continue to evolve

Manuscript received July 22, 2025; revised September 16, 2025.
Jovan Brian Tanujaya is a graduate of the Mathematics Programme,

Faculty of Science, Parahyangan Catholic University, Bandung, Indonesia
(e-mail: jovanbrian611@gmail.com).

Ferry Jaya Permana is a researcher at the Center for Mathematics and
Society, Faculty of Science, Parahyangan Catholic University, Bandung,
Indonesia (e-mail: ferryjp@unpar.ac.id).

Jonathan Hoseana is a researcher at the Center for Mathematics and
Society, Faculty of Science, Parahyangan Catholic University, Bandung,
Indonesia (corresponding author, e-mail: j.hoseana@unpar.ac.id).

globally, actuaries and financial engineers have increasingly
sought to refine conventional life products by embedding
features that mirror the behaviour of financial markets. These
refinements include the inclusion of equity participation,
interest rate guarantees, and dynamic surplus distribution
strategies [15], [23]. Capturing these complexities requires
robust modelling frameworks that combine actuarial risk
structures with financial stochastic processes [2], [27]. To
provide context for the hybrid structure proposed in this
paper, we begin by reviewing relevant developments in
product design and pricing methodology, particularly in the
intersection of actuarial science and quantitative finance.

Endowment insurance products continue to play an impor-
tant role in life insurance portfolios due to their dual function
of providing long-term savings and life protection benefits
[1]. However, many traditional pricing methods for such
contracts rely on overly simplified assumptions, most notably
constant interest rates, which fail to capture the variability
and uncertainty inherent in financial markets. Given the long-
term horizon and embedded guarantees of these products,
accurately reflecting interest rate dynamics is essential. In-
terest rates are known to fluctuate and revert to long-term
means over time, especially under economic uncertainty. To
address this, numerous researchers —including Bühlmann
[8], Miltersen and Persson [27], as well as Bacinello and
Persson [2]— have advocated the use of stochastic interest
rate models that incorporate market behaviour more real-
istically. Models such as Vasicek [31] and Cox-Ingersoll-
Ross (CIR) [11] are particularly well-suited for capturing
such dynamics, as they allow interest rates to evolve over
time with mean-reverting properties. These frameworks have
been shown to enhance the robustness and accuracy of life
insurance pricing, particularly in the presence of embedded
guarantees and investment-linked features [32].

Meanwhile, financial innovation has introduced hybrid
products such as unit-linked and equity-indexed annuities
(EIAs), which combine insurance coverage with market-
based returns. While unit-linked products transfer investment
risk directly to the policyholder, EIAs offer a more conserva-
tive alternative by ensuring capital protection through mini-
mum guarantees and participation rates. Among various EIA
structures, the Ratchet-type EIA has gained notable attention
for its ability to lock in annual gains and shield against
downturns [15]. In our afore-cited study [29], we modelled
Ratchet-type EIAs using geometric Brownian motion and
considered both constant and stochastic interest rate settings,
aligning with the frameworks developed in earlier studies [6],
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[18], [22], [25], [24]. Through a sensitivity analysis and data
calibration to Indonesian markets [30], we highlighted the
importance of model choice in EIA pricing, a theme that this
paper now expands into the realm of life insurance product
design.

We organise our work as follows. In the upcoming section
II, we first review the models involved in the calculation
of our endowment insurance’s premium, which include the
three different interest-rate models (constant, Vasicek, and
CIR), the geometric Brownian motion model, the Gompertz
model, and a model for our EIA itself. In the subsequent
section III, we discuss a formula to calculate the premium
of our insurance, along with an estimate provided by the
trapezoidal method. In section IV, we present the results of
our numerical simulation, in which we calculate the premium
of our insurance using the three interest-rate models after
estimating the models’ parameters using datasets provided by
the Jakarta Stock Exchange Composite index, the Indonesian
bond yields, and the Indonesian Mortality Table IV. In section
V, we complement the results with a sensitivity analysis
of the calculated premiums with respect to the models’
parameters in the two stochastic interest-rate cases. In the
final section VI, we present our conclusions and suggest a
number of ways to extend our study.

II. THE MODELS

The calculation of an insurance’s premium is built upon
three key quantities: the interest rate, the asset value, and
the mortality rate. In this study, the asset price is associ-
ated with the return of an EIA, and is represented as a
stochastic process: a geometric Brownian motion. Our study
is conducted under two different interest rate conditions:
constant and stochastic. Although a constant interest rate
assumption is frequently deemed appropriate for short-term
financial products, such as those having maturities under
one year, using it for longer-term options like EIAs, which
generally have maturities between one and ten years, could
lead to considerable pricing errors. Accordingly, we consider
three interest-rate models: a constant rate, a stochastic rate
governed by the Vasicek model, and an additional stochastic
rate governed by the Cox-Ingersoll-Ross (CIR) model. On
the other hand, the mortality rate is assumed not to be
stochastic, but to be characterised by the Gompertz law,
which describes an exponential rise in mortality risks as
age advances. This formulation allows for the calculation of
survival probabilities while ensuring analytical manageability
within the premium calculation. Table I presents a summary
of the parameters utilised in the Vasicek model, CIR model,
geometric Brownian motion, Gompertz law, and the EIA
framework involved in our study. To maintain alignment
with Indonesian market conditions, the models’ parame-
ters are estimated utilising historical data from Indonesian
government bond yields and the Jakarta Stock Exchange
Composite index, as outlined in the numerical simulation
section (Section IV).

A. The interest rate models
Let us now review our three different interest-rate models:

the constant, Vasicek, and Cox-Ingersoll-Ross (CIR) models
involved in our present study, which were also involved in
our previous study [29].

TABLE I
SUMMARY OF PARAMETERS.

Parameters Description Unit

κ
the interest rate’s mean-reversion rate:
the speed at which the interest rate
reverts to its long-term mean

time−1

θ
the interest rate’s long-term mean: the
long-term average level to which the
interest rate reverts

% · time−1

σ
the interest rate’s volatility: the standard
deviation of the interest rate changes % ·

√
time

η
the asset price’s drift rate: the expected
rate of return of the asset time−1

ψ the asset price’s volatility: the standard
deviation of the asset’s returns

% ·
√

time

n the insurance’s maturity time time

x the policyholder’s entry age time

B the baseline mortality rate time−1

C
the exponential growth factor of the
mortality rate time−1

f the guaranteed minimum interest rate %

c the guaranteed maximum interest rate %

β the participation rate %

I the initial invested amount currency

1) The constant interest rate model: In the constant
interest rate model, the short rate r(t) is treated as fixed
throughout the considered period. Although this assumption
may lack realism, it provides a useful benchmark for com-
parison with stochastic models, where

P (t, T ) = e−r(T−t); (1)

see [7, equation (1.7)]
2) The Vasicek model: As noted in our previous work

[29], while the value of the interest rate r(t) in the Vasicek
model can be negative, albeit with a very small probability,
the Vasicek model allows for mean-reversion in interest rates,
making the model widely employed. The model is given by
the stochastic differential equation

dr(t) = κ [θ − r(t)] dt+ σ dWr(t),

which leads to

r(t) = θ + e−κt

r(0)− θ +

t∫
0

σeκu dW (u)

 ,

where κ, θ, and σ are positive parameters, and {Wr(t)} is
the standard Brownian motion correlated with {Ws(t)} with
correlation coefficient ρ. It can be shown [28] that the zero-
coupon bond prize at time t for maturity time T is given
by

P (t, T ) = A(t, T ) e−r(t)B(t,T ), (2)

where

A(t, T ) = exp

(
(B(t, T )− (T − t))

(
θ − σ2

2κ2

)
− σ2

4κ
(B(t, T ))

2

)
,

B(t, T ) =
1− e−κ(T−t)

κ
.
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3) The CIR model: The CIR model is an enhancement
of the Vasicek model that modifies the volatility term to
be proportional to the square root of the short rate, thereby
preventing negative rates. The model is represented by the
stochastic differential equation

dr(t) = κ [θ − r(t)] dt+ σ
√
r(t) dWr(t),

which leads to

r(t) = θ + e−κt

r(0)− θ +

t∫
0

σeκu
√
r(u) dW (u)

 ,

where κ, θ, and σ are positive parameters, and {Wr(t)} is
the standard Brownian motion correlated with {Ws(t)} with
correlation coefficient ρ. It can be shown [11] that the zero-
coupon bond prize at time t for maturity time T is given
by

P (t, T ) = A(t, T )e−r(t)B(t,T ), (3)

where

A(t, T ) =

(
2γe(γ+κ)(T−t)/2

C(T, t)

)2κθ/σ2

,

B(t, T ) = 2
eγ(T−t) − 1

C(t, T )
,

C(t, T ) = 2γ + (κ+ γ)
(

eγ(T−t) − 1
)
,

with γ =
√
κ2 + 2σ2.

B. The geometric Brownian motion

As in our previous work [29], we assume that the equity
index level St used to determine the asset price benefits of
the policy follows a geometric Brownian motion. The motion
is defined by the stochastic differential equation

dSt = ηSt dt+ ψSt dW (t),

where η and ψ are positive parameters [26]. This equation
captures both the growth trend and random fluctuations
in the equity market. The geometric Brownian motion is
widely used in financial modelling due to its tractability and
consistency with the log-normal distribution of rate return.

C. The Gompertz Model

Hereafter, let us assume that our time is measured in years.
As noted by Dickson et al. [12], several continuous models
are commonly used to describe mortality rates, including the
de Moivre model, the Gompertz model, and the Makeham
model. In this paper, we use the Gompertz model to represent
the mortality rate of an Indonesian male at every age.

The mortality rate of a person aged x > 0 years according
to the Gompertz model is given by

µx = BCx, (4)

where 0 < B < 1 and C > 1. The associated survival
function is given by

Sx(t) = exp

(
−
∫ t

0

µx+s ds
)

= exp

(
−BC

x

lnC

(
Ct − 1

))
. (5)

D. The EIA

Equity-indexed annuities (EIAs) offer investment-linked
returns with built-in protections, including a guaranteed min-
imum interest rate to prevent losses during market downturns
and a maximum cap to limit insurer liability during strong
market growth. They also feature a participation ratio that
determines the portion of index returns credited to the
policyholder. In Ratchet-type EIAs [22], [3], [14], interest is
calculated annually and compounded over the contract term,
allowing funds to grow cumulatively. Ratchet-type EIAs can
be classified as simple or compound, the latter carrying
forward prior gains to enhance future compounding. The
present study focuses on a compound Ratchet-type EIA.

As noted in our previous work [29], the expected value of
the effective annual return of the EIA contract at the end of
year t is given by

E
(
P̃t

)
= (1 + f)N (z1) + (1− α) [N (z2)−N (z1)]

+ βeη [N (z3)−N (z4)]

+ (1 + c) (1−N (z2)) , (6)

where

z1 =
ln (1 + f/β)−

(
η − ψ2/2

)
ψ

,

z2 =
ln (1 + c/β)−

(
η − ψ2/2

)
ψ

,

z3 =
ln (1 + c/β)−

(
η + ψ2/2

)
ψ

,

z4 =
ln (1 + f/β)−

(
η + ψ2/2

)
ψ

,

and N is the cumulative distribution function of the standard
normal distribution.

Assuming an initial investment of I , the investment value
of the EIA at the contract’s maturity time T is given by

Pcr = I
T∏

t=1

P̃t,

as noted by Hsieh and Chiu [16]. Consequently, the value
of the compound Ratchet-type EIA at the maturity time T is
given by

V (T ) = E (Pcr) = I · E

(
T∏

t=1

P̃t

)
= I ·

(
E
(
P̃t

))T
, (7)

where E
(
P̃t

)
is given by equation (6).

III. THE PREMIUM CALCULATION

A life insurance is an agreement in which a policyholder
pays premiums in return for a payout from the insurer
upon the death of the insured. Life insurances are generally
classified into four categories: whole life, term life, pure
endowment, and endowment insurances. As detailed in Dick-
son et al. [12], a life insurance’s benefit payments may be
formulated in either a discrete or a continuous framework.
In the continuous framework, benefits are disbursed imme-
diately after death, whereas in the discrete framework, they
are distributed at the conclusion of the policy year in which
death occurs. Dickson et al. [12] also noted that premiums
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can be established through the equivalence principle or the
percentile premium principle while maintaining a constant
interest rate. The former presumes that the insurer expects
neither profit nor loss when the contract begins, whereas
the latter limits the potential losses for the insurer. The
present study applies the equivalence principle in the setting
of endowment life insurance that includes ongoing benefit
distributions.

Endowment life insurance involves two types of benefits:
a death benefit and a survival benefit. The death benefit is
payable only if the insured, aged x years, passes away within
n years, whereas the survival benefit is payable only if the
insured lives beyond n years. As formulated by Dickson et
al. [12], the present value of a benefit of 1 of an n-year
continuous endowment life insurance is given by the random
variable

Z =

{
vTx = e−δTx , if Tx ⩽ n;

vn = e−δn, if Tx > n,

where δ is the so-called force of interest. Consequently,
the expected present value of the benefit of 1 of the same
insurance is given by

Āx:n = E(Z) =

n∫
0

e−δt Sx(t)µx+t dt+ e−δn Sx(n).

Since we consider the EIA’s effective return to be the
benefit of the endowment life insurance and incorporate both
constant and stochastic interest rates, the expected present
value of the above benefit in our setting is given by

P =

n∫
0

P (0, t)V (t)Sx(t)µx+t dt

+ P (0, n)V (n)Sx(n), (8)

which also represents the net single premium that the pol-
icyholder is required to pay, according to the equivalence
principle.

Since the definite integral in equation (8) is not computable
in an exact manner, we shall estimate its value using the
trapezoidal method [9]. More specifically, we divide the
interval of integration [0, n] into m subintervals of equal
length ∆t = n/m using the points ti = i∆t for every
i ∈ {0, . . . ,m}, so that the premium in equation (8) can
be estimated as

P ≈ n

2m

[
P (0, 0)V (0)Sx(0)µx

+ 2
n−1∑
i=1

P (0, ti)V (ti)Sx(ti)µx+ti

+ P (0, n)V (n)Sx(n)µx+n

]
+ P (0, n)V (n)Sx(n).

IV. NUMERICAL SIMULATION

Let us now describe our numerical simulation conducted
to apply the previously discussed models to the premium
calculation of endowment life insurance policy. Once again,
we carry out the calculation in three distinct interest-rate
cases: constant, stochastic according to the Vasicek model,
and stochastic according to the CIR model. Our numerical

TABLE II
THE ESTIMATED VALUES OF PARAMETERS.

κ̂ θ̂ σ̂

Vasicek 0.9261 0.0711 0.0107

CIR 0.9253 0.0711 0.0396

ψ̂ η̂

EIA 0.1478 0.0529

B̂ Ĉ

Gompertz 9.7045·10−5 1.0824

simulation is a continuation of that which was conducted
in our previous work [29, section V]. We consider a 35-
year-old male individual who enrolls in a continuous 10-year
endowment life insurance policy whose benefit is specified
to be the effective return of a compound Ratchet-type EIA.
Accordingly, x = 35 and n = 10. As in our previous work
[29, section V], we suppose that the individual provides an
initial capital investment of I = 100, that the interest rates
feature a minimum of f = 6% and a maximum of c = 11%,
and that the participation rate is β = 90%.

Applying the formulae provided in our previous work [29,
subsection IV-C] to the 10-year daily dataset of the Jakarta
Stock Exchange Composite index from March 13th, 2014 to
March 13th, 2024 [20], we obtain the estimates ψ̂ ≈ 0.1478
and η̂ ≈ 0.0529 for the parameters ψ and η involved in
our EIA. Similarly, applying the formulae provided in our
previous work [29, subsections IV-A and IV-B] the 10-year
daily dataset of the Indonesian bond yields from March 13th,
2014 to March 13th, 2024 [21], we obtain the estimates κ̂ ≈
0.9261, θ̂ ≈ 0.0711, and σ̂ ≈ 0.0107 for the parameters κ,
θ, and σ involved in our Vasicek model, and the estimates
κ̂ ≈ 0.9253, θ̂ ≈ 0.0711, and σ̂ ≈ 0.0396 for the parameters
κ, θ, and σ involved in our CIR model. Finally, the estimation
of the parameters B and C involved in our Gompertz model
is carried out using the Indonesian Mortality Table IV. The
table provides the probabilities qx of a person currently aged
x years dying within one year, for various values of x. Using
these values, we perform a linear regression to estimate the
values of B and C from the linearisable equation

qx = 1− Sx(1) = 1− exp

(
−BC

x

lnC
(C − 1)

)
.

The regression is performed on RStudio, using the built-in
function lm. The results are the estimates B̂ ≈ 9.7045 ·10−5

and Ĉ ≈ 1.0824. The above estimates of parameter values
are summarised in Table II. In the constant interest-rate case,
the interest rate used is the mean of the values of θ̂ obtained
in the Vasicek and CIR cases.

Using the parameter values summarised in Table II and
applying equations (2), (4), (5), and (7), we calculate the
insurance’s premium in the aforementioned three distinct
interest-rate cases, where the trapezoidal method is imple-
mented using m = 1000 subintervals. The results are shown
in Table III. We observe that the highest premium is obtained
in the constant interest-rate case. This is not surprising,
since the removal of downward interest rate fluctuations
leads to more stable projected cash flows, thereby increasing
the premium. On the other hand, the premium calculated
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TABLE III
PREMIUM UNDER THREE DIFFERENT INTEREST-RATE ASSUMPTIONS.

Interest-rate assumption Premium

Constant 104.0853

Vasicek 100.6706

CIR 100.6654

TABLE IV
THE SENSITIVITY INDICES OF THE PREMIUM PRICE WITH RESPECT TO κ,
θ, σ, η, ψ, x, AND n IN THE TWO STOCHASTIC INTEREST RATE CASES.

Sensitivity index
Interest rate
assumption

Vasicek CIR

ΥP
κ 0.0090 0.0086

ΥP
θ −0.6270 −0.5995

ΥP
σ 0.0011 −0.0010

ΥP
η 0.0000 0.0000

ΥP
ψ 0.0000 0.0000

ΥP
x 0.0000 0.0000

ΥP
n 0.0317 0.0629

using the CIR model is found to be nearly identical to that
calculated using the Vasicek model. This indicates that the
additional volatility incorporated into the CIR model exerts
little influence on the premium value under the prevailing
market conditions, highlighting the dominant effect of the
mean-reverting behaviour already captured by the Vasicek
model.

V. SENSITIVITY ANALYSIS

Let us now analyse the sensitivity of the premium values
obtained in section IV to the models’ parameters in the two
stochastic interest-rate cases. To quantify the sensitivity of
the premium P with respect to a parameter p, we employ
the sensitivity index of P with respect to p [10]:

ΥP
p =

∂P
∂p

· p
P

≈ ∆P/P
∆p/p

,

This index provides an estimate for the ratio of a relative
change in P with respect to a relative change in the parameter
p. In the case ΥP

p > 0, a 1% increase in the parameter p
results in an increase of ΥP

p % in the premium P . In the
case ΥP

p < 0, a 1% increase in p yields a decrease of ΥP
p %

in the premium P .
In both Vasicek and CIR cases, the partial derivative

∂P/∂p is can be computed analytically by using formula
(7), allowing the sensitivity index ΥP

p to be evaluated in an
exact manner for each parameter p ∈ {κ, θ, σ, η, ψ, x, n}.
The results, evaluated using the parameter values employed
in our numerical simulations (Section IV), are summarised
in Table IV.

As apparent from Table IV, the premium P is found to be
most sensitive to the interest rate’s long-term mean θ in both
stochastic interest-rate models. Specifically, a 1% increase
in θ results in reductions of 0.6270% and 0.5995% in the
premium P in the Vasicek and CIR cases, respectively. By
contrast, limited sensitivity of the premium P is observed
with respect to the mean-reversion rate κ and the interest

rate’s volatility σ, while no sensitivity of the premium P
is detected with respect to the asset price’s drift η and
volatility ψ. Such insensitivity, which implies that changes
in these parameters exert minimal or no influence on the
premium, is likely due to the structural characteristics of the
Ratchet design, which provides downside protection through
guaranteed minimum returns.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have discussed the premium pricing of endowment life
insurance whose benefit is specified to be the effective return
of a compound Ratchet-type equity indexed annuity (EIA).
We modelled the asset price using geometric Brownian
motion, the mortality rate using the Gompertz law, and
the interest rate using two well-known stochastic models:
the Vasicek and Cox-Ingersoll-Ross (CIR) models. After
estimating the models’ parameters using historical data of
Indonesian government bond yields, the Jakarta Stock Ex-
change Composite index, and the Indonesian Mortality Table
IV, we discovered through numerical simulations that the
premium values obtained using the two interest-rate models
are almost identical, indicating that the added complexity of
the CIR model did not yield significant influence under the
given market conditions. By contrast, the classic assumption
of a constant interest rate —the long-term mean used in our
two stochastic models— led to a mispricing —in our case
an overpricing— which is unsurprising since such an as-
sumption removes possible declines in interest rates, thereby
stabilising the anticipated cash flows. Complementarily, a
sensitivity analysis revealed that the premium was most
affected by changes in the long-term mean of the interest
rate, with a 1% increase in the long-term mean leading to an
approximately 0.6% decrease in the premium. By contrast,
the other parameters exert minimal or negligible influence
on the premium value.

As we pointed out in our previous work [29], natural ways
to extend our study include the use of more sophisticated
models for the time-evolution of both the interest rate and
the asset price. The Hull-White model [19], the Dothan
model [13], or the Black-Derman-Toy model [4] constitute
examples for the former, while regime-switching models
[5] and Lévy processes [17] constitute examples for the
latter. In addition, our work can be extended by replacing
the modest Gompertz model for the mortality rate with
alternative models such as the Weibull model, the inverse-
Weibull model, the Gompertz-Makeham model, or stochastic
mortality-rate models.
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