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Abstract—In this paper, we are studied the different aspects
of time-delay uncertain chaotic systems with uncertainties.
Synchronization between time-delay chaotic systems in case
of identical and non-identical chaotic systems is discussed.
The Lyapunov stability theory is employed to demonstrate the
stability of the chaotic systems. In order to synchronize two
distinct chaotic systems, the adaptive and active controllers are
implemented. By applying adaptive and active control methods
the sufficient conditions are derived to synchronize identical
and non-identical systems. Numerical simulations and graphical
presentation demonstrate the validation and effectiveness of the
proposed methods.

Index Terms—Synchronization, Time-delay chaotic system,
Uncertainty, Active control, Adaptive control.

I. INTRODUCTION

FROM few decades, several significant and fruitful ap-
plications have been seen in the field of nonlinear

dynamics. Application of dynamical systems can be found
in many engineering and scientific fields. A mathematical
model of dynamical system can be stated in the form of
either difference equation or differential equation. The non-
linear dynamics has wide uses in various disciplines such as
biology, physics, engineering and sociology etc. A nonlinear
system with complex nature is known as chaotic system. In
1990, the synchronization between chaotic systems was first
time investigated by Pecora and Carroll [1, 2] to discuss the
some new ideas of chaotic systems. In addition, Boccaletti et
al. [3] also described the synchronization of chaotic systems
in broad sense.

Different type of synchronizations have been analyzed by
using a lot of methods such as active control [4], back-
stepping control [5], sliding mode control [6], optimal control
[7] and nonlinear feedback control [8] etc. These methods
have more applications in the field of control theory. In
adaptive control method the parameters are automatically
adjustable according to current condition [9] while in active
control method the parameters adjust according as desired
results. Tarammim and Akter [10] used active control and
backstepping control techniques to carry out synchroniza-
tion. They showed that by using a recursive backstepping
approach based on Lyapunov stability theory, the chaotic
behavior can be controlled. The active control method also
examined by Agrawal et al. [11] in order to synchronize two
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distinct fractional-order chaotic systems with consideration
of the Lotka–Volterra system as master system whiles the
Newton–Leipnik system as slave system. Similarly, Ahmad
et al. [12] looked at the synchronization issue when un-
certainties and external disturbances occurred with drive-
response systems with varying orders. They provided a robust
generalized active control strategy and compute an appropri-
ate controllers that assures the globally exponentially stable
synchronization. In the field of secure communications, the
information signal becomes more complex due to the anti-
synchronization between uncertain chaotic systems. To tackle
such type of problems, Ahmad and Shafiq [13] investigated
the double combination anti-synchronization of uncertain
chaotic systems. In order to achieve the synchronization
within a constant-time, Su et al. [14] addressed the fixed-time
synchronization for time-delay chaotic neural networks using
active control technique by creating a fixed-time control
approach.

In synchronization, the adaptive control approach is used
when some or all of the system parameters are not measur-
able and necessary to estimate. Using eigenvalue structure
analysis, bifurcation diagrams, Kaplan–Yorke dimension and
Lyapunov exponents Saeed et al. [15] examined a chaotic
system with six parameters. They obtained even with tiny
changes in one or more of its parameter values the suggested
dynamical system maintains its chaotic behavior. The study
of synchronization phenomena between chaotic systems with
parametric uncertainty has been examined by Heidarzadeh et
al. [16]. They developed a unique robust controller with free
from singularity to ensure boundedness of closed-loop signal.
In order to achieve the synchronization between chaotic
systems with time-varying delays, Wang and Li [17] used the
adaptive intermittent control method. They recommended a
novel control strategy to achieve the asymptotic exponential
stability. Shukla et al. [18, 19] analyzed the difference syn-
chronization with and without delay terms to study the adap-
tive difference synchronization for several kinds of chaotic
systems using fixed-time control. The Tinkerbell, Henon
and Hitzl-Zele chaotic maps have been used to show the
synchronization. They also discussed the mechanical analysis
of chaotic system. In order to achieve fast convergence and
to minimize the amplitude of oscillations in the error signals,
Haris et al. [20] proposed an adaptive controller. To deter the
synchronization error, this controller combines nonlinear and
adaptive control components.

The presence and stability of Hopf bifurcation, funda-
mental dynamic features of a four-dimensional hyperchaotic
system, and the formulas for determining the direction of
Hopf bifurcation and the stability of bifurcating periodic
solutions is discussed by Du et al. [21]. The uses of chaotic
systems with a variety of applications including sensors
and cryptography have been shown by Natiq et al. [22].
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In addition, they showed a lot of chaotic systems with
low complexity and hyperchaotic behavior, which might be
detrimental to the uses of chaos-based sensors. Two meta-
heuristic techniques have also used by Dey et al. [23] to
analyze the correlation coefficient for gray-level images. This
demonstrates the parallelism feature of the discrete time
nature of quantum mechanical systems. They also discussed
the standard deviation of fitness and the computational time
of each technique for every test image. Xu et al. [24]
investigated artificial intelligence in the context of image
privacy protection. In addition, several researchers studied
the different aspects of chaotic system [29-36].

For the past few decades, researchers from a wide range
of disciplines including biology, physics, economics, math-
ematics have been attracted to study delay chaotic systems.
Delay differential equations with one or more time-delays are
used to simulate natural systems. The existence of time-delay
can result in several phenomena including metastability,
bifurcation and chaos [37]. Further, several scientists [38-47]
used this concept to solve the real world problems.

This paper is organized in the following manner: In
Section 2 the systems description is given while in Section
3 synchronization between identical and non-identical time-
delay chaotic systems by active control method is analyzed.
Section 4 contains the synchronization between identical
/non-identical chaotic systems by adaptive control method.
Discussion of numerical simulations is explored in Section
5. Finally, in Section 6 conclusion of the paper is revealed.

II. SYSTEM’S DESCRIPTION

In 2019, Sun et al. [25] proposed a new chaotic system and
this system with time-delay is given as

ξ̇1 = αξ2(t− τ1),

ξ̇2 = β(ξ2 − ξ1) + ξ2ξ3,

ξ̇3 = γ − ξ22 .

(1)

The above chaotic system with uncertainty is expressed as

ξ̇1 = αξ2(t− τ1) + 0.01ξ1,

ξ̇2 = β(ξ2 − ξ1) + ξ2ξ3 − 0.01ξ2,

ξ̇3 = γ − ξ22 − 0.01ξ3.

(2)

Here, [0.01ξ1, −0.01ξ2, −0.01ξ3]
T represents uncertain

terms of system (1) and τ1 denotes delay term. For parametric
values α = 1, β = 1, γ = 1 and at initial condition (1, 1, 1)
the above system (2) depictes chaotic behavior. The phase
portraits of this system with different parameters and delay
term are given in Fig. 1.

Veeman et al. [26] explored another chaotic system and
this system with time-delay can be written in following form

η̇1 = η1η3 − 7η3,
η̇2 = −bη22 + η23 ,
η̇3 = −η21 + aη22 + 14η1(t− ω1) + η3 − 49,

(3)

This chaotic system with time-delay and uncertainty is given
as

η̇1 = η1η3 − 7η3 − 0.02η1,
η̇2 = −bη22 + η23 + 0.01η2,
η̇3 = −η21 + aη22 + 14η1(t− ω1) + η3 − 49− 0.01η3,

(4)
where η1, η2 and η3 are the state variables and a and b are
the real constants parameters and ω1 denotes delay term.

Here, [−0.02η1, 0.01η2, −0.01η3]
T represents uncertain

terms of system (4). The phase portraits of this system (4)
are given in Fig. 2.

III. SYNCHRONIZATION BETWEEN CHAOTIC SYSTEMS BY
ACTIVE CONTROL METHOD

Now, we discuss synchronization between time-delay chaotic
systems with and without uncertainty by active control
method. Here, we analyze the synchronization between time-
delay chaotic systems with uncertainties. We take the system
(2) as master system and following system as slave system.

˙̄ξ1 = αξ̄2(t− τ2) + 0.01ξ̄1 +Ω1(t),
˙̄ξ2 = β(ξ̄2 − ξ̄1) + ξ̄2ξ̄3 − 0.01ξ̄2 +Ω2(t),
˙̄ξ3 = γ − ξ̄22 − 0.01ξ̄3 +Ω3(t),

(5)

where, Ω1(t), Ω2(t), Ω3(t) are controller function. Define
the synchronization error as

e1(t) = ξ̄1(t)− ξ1(t),
e2(t) = ξ̄2(t)− ξ2(t),
e3(t) = ξ̄3(t)− ξ3(t).

(6)

Using (2) and (5), we get the error system as

ė1 = α{ξ̄2(t− τ2)− ξ2(t− τ1)}+ 0.01ξ̄1 − 0.01ξ1 +Ω1(t)
ė2 = β(e2 − e1) + ξ̄2ξ̄3 − ξ2ξ3 + 0.01ξ2 − 0.01ξ̄2 +Ω2(t)
ė3 = −ξ22 + ξ̄22 + 0.01ξ3 − 0.01ξ̄3 +Ω3(t)

(7)
Suppose, the control functions are given as

Ω1(t) = −α{ξ̄2(t− τ2)− ξ21(t− τ1)} − ξ̄1 + ξ1+
0.01ξ1 − 0.01ξ̄1 +Ψ1(t)

Ω2(t) = −ξ̄2ξ̄3 + ξ2ξ3 − 0.01ξ2 + 0.01ξ̄2 +Ψ2(t)
Ω3(t) = ξ22 + ξ̄22 − ξ̄3 + ξ3 − 0.01ξ3 + 0.01ξ̄3 +Ψ3(t)

(8)
After putting the control function (8) in (7), the error system
is expressed as

ė1 = −e1 +Ψ1(t)
ė2 = β(e2 − e1) + Ψ2(t)
ė3 = −e3 +Ψ3(t)

(9)

Here Ψ1(t), Ψ2(t), Ψ3(t) are the controller. To stabilize the
above error system we design Ψ1(t)

Ψ2(t)
Ψ3(t)

 = P

 e1
e2
e2


where P is a 3× 3 matrix and given as

P =

 −1 0 0
β −2β 0
0 0 −2


So, the system (9) is reduces in following form

ė1 = −2e1, ė2 = −βe2, ė3 = −3e3 (10)

Now all eigenvalue of error system (10) are negative hence
required condition of synchronization are achieved [27]. To
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Fig. 1. Phase portrait of system (1) with delay and uncertain terms in ξ2 − ξ3 plane.

Fig. 2. Phase portraits of system (4) with delay and uncertain terms in η1 − η2 − η3 space.

study the synchronization between another identical time-
delay chaotic system (4), we consider the controlled slave
system as

χ̇1 = χ1χ3 − 7χ3 − 0.02χ1 + λ1(t),
χ̇2 = −bχ2

2 + χ2
3 + 0.01χ2 + λ2(t),

χ̇3 = −χ2
1 − aχ2

2 + 14χ1(t− ω2) + χ3 − 49− 0.01χ3

+λ3(t),
(11)

where, λ1(t), λ2(t), λ3(t) are the control function and
χ1, χ2, χ3 are the state variables. Now, the error dynamics

is expressed as

e1(t) = χ1(t)− η1(t),
e2(t) = χ2(t)− η2(t),
e3(t) = χ3(t)− η3(t)

(12)

Using equation (4) and (11) in (12), we get

ė1(t) = χ1χ3 − η1η3 − 7e3 − 0.02χ1 + 0.02η1 + λ1(t),
ė2(t) = −b(χ2

2 − η22) + χ2
3 − η23 + 0.01χ2 − 0.01η2 + λ2(t),

ė3(t) = −χ2
1 + η23 − a(χ2

2 − η22) + 14χ1(t− ω2)−
14η1(t− ω1) + e3 − 0.01χ3 + 0.01η3 + λ3(t),

(13)
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Further, the control functions are assumed as

λ1(t) = −χ1χ3 + η1η3 + 0.02χ1 − 0.02η1 + U1(t),
λ2(t) = b(χ2

2 − η22)− χ2
3 + η23 − χ2 + η2 − 0.01χ2+

0.01η2 + U2(t),
λ3(t) = χ2

1 − η23 + a(χ2
2 − η22)− 14χ1(t− ω2)+

14η1(t− ω1) + 0.01χ3 − 0.01η3 + U3(t),
(14)

So, the error system is obtained as

ė1(t) = −7e3 + U1(t),
ė2(t) = −e2 + U2(t),
ė3(t) = e3 + U3(t)

(15)

Now, we choose

 U1(t)
U2(t)
U3(t)

 = S

 e1
e2
e3

 , where, S is a

3× 3 matrix and expressed as

S =

 −1 0 7
0 −1 0
0 0 −2

.

Now, we get

ė1 = −e1, ė2 = −e2, ė3 = −e3 (16)

All eigenvalues of error system are negative which ensure
that stability of error system are achieved.
Finally, we synchronize time-delay non-identical chaotic
systems with uncertainty by active control method. Further,
we suppose system (2) as master system and (4) as slave
system. The controlled slave system is given as

η̇1 = η1η3 − 7η3 − 0.02η1 + Y1(t),
η̇2 = −bη22 + η23 + 0.01η2 + Y2(t),
η̇3 = −η21 − aη22 + 14η1(t− ω1) + η3 − 49− 0.01η3

+Y3(t),
(17)

where Y1(t), Y2(t) and Y3(t) are control functions. The error
system can be written as

e1(t) = η1(t)− ξ1(t),
e2(t) = η2(t)− ξ2(t),
e3(t) = η3(t)− ξ3(t)

(18)

Hence the error system is given as

ė1 = η1η3 − 7e3 − 7ξ3 − αξ2(t− τ1)− 0.02η1 − 0.01ξ1+
Y1(t),

ė2 = −bη22 + η23 − β(e2 + e1)− ξ2ξ3 + 0.01ξ2 + 0.01η2−
β(η2 − η1) + Y2(t),

ė3 = −η21 + aη22 + 14η1(t− ω1) + e3 − 49 + ξ3 − γ + ξ22
−0.01ξ3 + Y3(t)

(19)
Now the control function is supposed as

Y1(t) = −η1η3 + 0.01ξ1 + 7ξ3 + αξ2(t− τ1) + 0.02η1+
Q1(t),

Y2(t) = bη22 − η23 − 0.01ξ2 + ξ2ξ3 − 0.01η2 + β(η2 − η1)
+Q2(t),

Y3(t) = η21 − aη22 + 49− 14η1(t− ω1)− ξ3 + γ − ξ22
+0.01ξ3 +Q3(t)

(20)
where, control inputs Q1(t), Q2(t), Q3(t) are the function
of e1, e2 and e3. After putting (20) in (19), we have

ė1 = −7e3 +Q1(t),
ė2 = −β(e2 + e1) +Q2(t),
ė3 = e3 +Q3(t).

(21)

Now, suppose

 Q1(t)
Q2(t)
Q3(t)

 = H

 e1
e1
e1

, where H is a 3×3

matrix and given as H =

 −1 0 7
β 0 0
0 0 −2

.

So, we get

ė1 = −e1, ė2 = −βe2, ė3 = −e3

According similar fashion we can say that required synchro-
nization is achieved.

IV. SYNCHRONIZATION OF CHAOTIC SYSTEM BY
ADAPTIVE CONTROL METHOD

In this section, we will discuss the synchronization between
time-delay chaotic systems by adaptive control method. We
assume time-delay chaotic system with uncertainties (4) as
master system and following system as slave system.

˙̄ξ1 = αξ̄2(t− τ2) + 0.01ξ̄1 + µ1(t),
˙̄ξ2 = β(ξ̄2 − ξ̄1) + ξ̄2ξ̄3 − 0.01ξ̄2 + µ2(t),
˙̄ξ3 = γ − ξ̄22 − 0.01ξ̄3 + µ3(t),

(22)

where, µ1(t), µ2(t) and µ3(t) are the control function. Now,
the error system is defined as

e1(t) = ξ̄1(t)− ξ1(t),
e2(t) = ξ̄2(t)− ξ2(t),
e3(t) = ξ̄3(t)− ξ3(t)

(23)

In the term of state variables the error system is expressed
as

ė1 = α{ξ̄2(t− τ2)− ξ2(t− τ1)}+ 0.01ξ̄1 − 0.01ξ1 + µ1(t)
ė2 = β(e2 − e1) + ξ̄2ξ̄3 − ξ2ξ3 − 0.01ξ̄2 + 0.01ξ2 + µ2(t)
ė3 = −ξ̄22 + ξ22 − 0.01ξ̄3 + 0.01ξ3 + µ3(t)

(24)
From above equation we can design the adaptive parameters
as

µ1(t) = −α̂{ξ̄2(t− τ2)− ξ2(t− τ1)} − 0.01ξ̄1 + 0.01ξ1
−p1e1,

µ2(t) = −β̂(e2 − e1)− ξ̄2ξ̄3 + ξ2ξ3 + 0.01ξ̄2 − 0.01ξ2
−p2e2,

µ3(t) = ξ̄22 − ξ22 + 0.01ξ̄3 − 0.01ξ3 − p3e3,
(25)

where, α̂ and β̂ are the estimation parameters of α and β
respectively. Further, we suppose

eα = α− α̂, eβ = β − β̂, ėα = − ˙̂α, ėβ = − ˙̂
β (26)

Now, equation (24) can be expressed as

ė1 = eα{ξ̄2(t− τ2)− ξ2(t− τ1)} − p1e1,
ė2 = eβ(e2 − e1)− p2e2,
ė3 = −p3e3,

(27)

where p1, p2, p3 are positive constants. Choose a Lya-
punov’s function as

V =
1

2
(e21 + e22 + e23 + e2α + e2β) (28)
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Further, the time derivative of the Lyapunov function will be
expressed as

V̇ = e1(eα{ξ̄2(t− τ2)− ξ2(t− τ1)} − p1e1)+

e2(eβ(e2 − e1)− p2e2) + e3(−p3e3) + eα(− ˙̂α)

+eβ(− ˙̂
β),

= −p1e
2
1 − p2e

2
2 − p3e

2
3 − eα(−e1{ξ2(t− τ2)−

ξ1(t− τ1)}+ ˙̂α)− eβ(e1e2 − e22 +
˙̂
β)

(29)
From equation (29) the derivative of estimated parameters
can be achieved as

˙̂α = e1{ξ̄2(t− τ2)− ξ2(t− τ1)}+ p4eα,
˙̂
β = −e1e2 + e22 + p5eβ ,

(30)

where p4 and p5 are positive constants. After putting the
values of ˙̂α and ˙̂

β from (30) in (29) we obtain

V̇ = −p1e
2
1 − p2e

2
2 − p3e

2
3 − p4e

2
α − p5e

2
β (31)

From above equation we can say that the error system (24)
achieved the synchronization according to stability theory
[28]. Now, we analyze the synchronization between an-
other time-delay chaotic systems by same method. For this
purpose, we assume the system (4) as master system and
following system as slave system.

χ̇1 = χ1χ3 − 7χ3 − 0.02χ1 + ρ1(t),
χ̇2 = −bχ2

2 + χ2
3 + 0.01χ2 + ρ2(t),

χ̇3 = −χ2
1 + aχ2

2 + 14χ1(t− ω2) + χ3 − 49− 0.01χ3+
ρ3(t),

(32)
where, χ1, χ2 and χ3 are the state variables and a, b are the
parameters and ρ1(t), ρ2(t), ρ3(t) are control function. For
above systems, the error system is define as

e1(t) = χ1(t)− η1(t),
e2(t) = χ2(t)− η2(t),
e3(t) = χ3(t)− η3(t),

(33)

Using equation (4) and (32) in (33), we have

ė1(t) = χ1χ3 − η1η3 − 7e3 − 0.02χ1 + 0.02η1 + ρ1(t),
ė2(t) = −b(χ2

2 − η22) + χ2
3 − η23 + 0.01χ2 − 0.01η2

+ρ2(t),
ė3(t) = −χ2

1 + η21 + a(χ2
2 − η22) + 14χ1(t− ω2)− 0.01χ3

−14η1(t− ω1) + e3 + ρ3(t),
(34)

Now, the control functions are expressed as

ρ1(t) = −χ1χ3 + η1η3 + 7e3 + 0.02χ1 − 0.02η1 − q1e1,

ρ2(t) = b̂(χ2
2 − η22)− χ2

3 + η23 − 0.01χ2 + 0.01η2 − q2e2,
ρ3(t) = χ2

1 − η21 − â(χ2
2 − η22)− 14χ1(t− ω2) + 0.01χ3

−0.01η3 + 14η1(t− ω1)− e3 − q3e3,
(35)

where, â, b̂ are estimation of parameters of aand b respec-
tively. Substituting equation (35) in (34), we get

ė1(t) = −q1e1,

ė2(t) = −(b− b̂)(χ2
2 − η22)− q2e2,

ė3(t) = (a− â)(χ2
2 − η22)− q3e3

(36)

Now, error dynamics and time derivative of estimated pa-
rameters are given as

ea = a− â, eb = b− b̂, ėa = − ˙̂a, ėb = − ˙̂
b (37)

So equation (36) can be written as

ė1(t) = −q1e1,
ė2(t) = −eb(χ

2
2 − η22)− q2e2,

ė3(t) = ea(χ
2
2 − η22)− q3e3

(38)

The Lyapunov’s function and its derivative will be expressed
as

V =
1

2
(e21 + e22 + e23 + e2a + e2b) (39)

V̇ = e1(−q1e1) + e2{−eb(χ
2
2 − η22)− q2e2}+

e3{ea(χ2
2 − η22)− q3e3}+ ea(− ˙̂a) + eb(− ˙̂

b),

= −q1e
2
1 − q2e

2
2 − q3e

2
3 − ea(−e3(χ

2
2 − η22) +

˙̂a)−
eb(e2(χ

2
2 − η22) +

˙̂
b)

(40)
The estimated parameters can be obtained from equation (40)
as

˙̂a = e3(χ
2
2 − η22) + q4ea,

˙̂
b = −e2(χ

2
2 − η22) + q5eb,

(41)

where, q4 and q5 are positive constants. Finally, the Lya-
punov’s function will be written as

V̇ = −q1e
2
1 − q2e

2
2 − q3e

2
3 − q4e

2
a − q5e

2
b (42)

Hence, from above equation we can say that the error system
has achieved synchronization.
Now, we will discuss synchronization between two non-
identical time-delay chaotic systems by adaptive control
method. We consider the time-delay uncertain chaotic sys-
tems (4) as master system and chaotic system (2) will assume
as slave system. So, the controlled slave system is expressed
as

η̇1 = η1η3 − 7η3 − 0.02η1 + δ1(t),
η̇2 = −bη22 + η23 + 0.01η2 + δ2(t),
η̇3 = −η21 − aη22 + 14η1(t− ω1) + η3 − 49− 0.01η3 + δ3(t),

(43)
where, δ1(t), δ2(t), δ3(t) are adaptive control function. De-
fine the error system as

e1(t) = η1(t)− ξ1(t),
e2(t) = η2(t)− ξ2(t),
e3(t) = η3(t)− ξ3(t)

(44)

Hence, the error system for master system (4) and slave
system (43) according to error system (44) can be expressed
as

ė1 = η1η3 − 7η3 − αξ2(t− τ1)− 0.02η1 − 0.01ξ1 + δ1(t),
ė2 = −bη22 + η23 − β(ξ2 − ξ1)− ξ2ξ3 + 0.01η2 + 0.01ξ2

+δ2(t),
ė3 = −η21 + aη22 + 14η1(t− ω1) + η3 − 49− γ + ξ22−

0.01η3 + 0.01ξ3 + δ3(t),
(45)

Here, the control function are supposed that

δ1(t) = −η1η3 + 7η3 + α̂ξ2(t− τ1) + 0.02η1 + 0.01ξ1−
r1e1,

δ2(t) = b̂η22 − η23 + β̂(ξ2 − ξ1) + ξ2ξ3 − 0.01η2 − 0.01ξ2
−r2e2,

δ3(t) = η21 − âη22 − 14η1(t− ω1)− η3 + 49 + γ̂ − ξ22+
0.01η3 − 0.01ξ3 − r3e3,

(46)
where α̂, β̂, γ̂ and â, b̂ are the estimation of parameters
of α, β, γ and a, b respectively and r1, r2, r3 are positive
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Fig. 3. The time evolution of state of error system e1(t), e2(t), e3(t) by active control method.
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Fig. 4. The time evolution of state of error system e1(t), e2(t), e3(t).

constants.
After substituting the value of control function from (46) in
(45), we get the error system as

ė1 = −(α− α̂)ξ2(t− τ1)− r1e1,

ė2(t) = −(b− b̂)η22 − (β − β̂)(ξ2 − ξ1)− r2e2,
ė3(t) = (a− â)η22 − (γ − γ̂)− r3e3,

(47)

Now, the parameters estimation can be written in succinct
form as

eα = α− α̂, eβ = β− β̂, eγ = γ− γ̂, ea = a− â, eb = b− b̂
(48)

The time derivative of above equation will be written in the

following form

ėα = − ˙̂α, ėβ = − ˙̂
β, ėγ = − ˙̂γ, ėa = − ˙̂a, ėb = − ˙̂

b (49)

Putting the derivative of estimated parameters from (49) in
(47), we have

ė1 = −eαξ2(t− τ1)− r1e1,
ė2(t) = −ebη

2
2 − eβ(ξ2 − ξ1)− r2e2,

ė3(t) = eaη
2
2 − eγ − r3e3,

(50)

Now we assume the Lyapunov’s function and its derivative
are explored as

V =
1

2
(e21 + e22 + e23 + e2α + e2β + e2γ + e2a + e2b) (51)
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Fig. 5. The time evolution of state of error system e1(t), e2(t), e3(t) between non-identical chaotic systems.

V̇ = e1{−eαξ2(t− τ1)− r1e1}+ e2{−ebη
2
2 − eβ(ξ2 − ξ1)

−r2e2}+ e3{eaη22 − eγ − r3e3}+ eα(− ˙̂α) + eβ(− ˙̂
β)

+eγ(− ˙̂γ) + ea(− ˙̂a) + eb(− ˙̂
b),

= −r1e
2
1 − r2e

2
2 − r3e

2
3 − eα(e1ξ2(t− τ2) + ˙̂α)−

eβ(e2(ξ2 − ξ1) +
˙̂
β)− eγ( ˙̂γ)− ea(e3η

2
2 +

˙̂a)−
eb(e2η

2
2 +

˙̂
b)

(52)
From equation (52), we get

˙̂α = −e1ξ2(t− τ2) + r4eα,
˙̂
β = −e2(ξ2 − ξ1) + r5eβ ,
˙̂γ = r6eγ ,
˙̂a = −e3η

2
2 + r7ea,

˙̂
b = −e2η

2
2 + r8eb,

(53)

where r4, r5, r6, r7 and r8 are positive constants. Substitut-
ing equation (53) in (52), we get

V̇ = −r1e
2
1−r2e

2
2−r3e

2
3−r4e

2
α−r5e

2
β−r6e

2
γ−r7e

2
a−r8e

2
b

(54)
Thus we can say that error system has achieved the synchro-
nization.

V. NUMERICAL RESULTS AND DISCUSSION

For numerical simulation MATLAB software is used to
depict the basic features of chaotic systems. The initial
condition of the drive system (1) and (2) are taken as
(1, 1, 1) while the initial condition for the response system
is considered as (0, 0.6, 0.6). The parametric values of the
system (2) and (4) are taken as α = 1 , β = 1 , γ = 1
and a = 3 , b = 1 respectively. Fig. 1 and Fig. 2 depict
the phase portraits of systems (2) and (4) respectively while
Fig. 3, Fig. 4 and Fig. 5 show the state of error w.r.t.
time by active control method. Similarly, Fig. 6, Fig. 7 and
Fig. 8 represent the parameter estimation and error system
w.r.t. time by adaptive control method. Further, to study the

time-delay effects we consider the values of parameters as
τ1 = 0.1, ω1 = 0.01, τ2 = 0.2 and ω2 = 0.02.

VI. CONCLUSION

In this paper, we analyze time-delay chaotic systems with
uncertainties. We proposed a control law to synchronize the
chaotic systems incase of identical and non-identical systems
by using active and adaptive control methods. These analysis
are more useful in engineering, cryptosystems and secure
communication. Lyapunov stability theory, is employed to
calculate the controllers. For effectiveness and validation
of theory the numerical and graphical simulations are also
demonstrated.
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