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Analysis of Atangana-Baleanu-Caputo Impulsive
Fractional Delay Differential Equations

Wisdom Udogworen, Dodi Igobi, Uko Jim

Abstract—This work uses the generalised boundedness con-
dition on Schauder’s fixed point and the generalised Lipschitz
condition on Banach contraction principle to investigate suffi-
cient conditions for the existence, uniqueness, and stability of so-
lutions for a novel class of Atangana-Baleanu-Caputo impulsive
fractional delay differential equations with the Caratheodory
function. The developed notion is demonstrated with an exam-
ple, and the outcomes validate its applicability.

Index Terms—Atangana-Baleanu-Caputo, fractional deriva-
tive, fractional delay equation, impulsive fractional equations,
caratheodory function.

I. INTRODUCTION

RACTIONAL calculus has grown and garnered a lot of

interest in the mathematical sciences in recent years.
Of interest is the improvement on the modifications of
the integral calculus of the fractional derivatives from the
singular kernel types (the Riemann-Liouville and Caputo
fractional differential equations) to the non-singular, non-
local kernel types (the Caputo-Fabrizio fractional derivative
and Atangana-Baleanu fractional derivative) introduced in
[9] and [19], respectively. [1] defines the general classical
Riemann-Liouville fractional integral of order £ as

(I £(1) = % / (t— s f(s)ds, (1)
where o
F(g):/o (t)s e tdt £>0, )

is the gamma function, and the corresponding Riemann-
Liouville derivative of order £ is as follows:

W Dif() =
AL 1 dr (! o1
ol f(t) = F(N—@dt"/to(ts) f(s)ds

3)
Equation (3) approach, however, results in initial condi-
tions containing the limit values of the Riemann-Liouville
fractional derivatives at the lower terminal ¢ = ¢y, such
as limt_no t Df_lf(t) = to, 1imt_>t0 toD§_2f(t) = tl,
limy_¢y ¢, D; " f(t) = t,, where ty,k = 1,2,---n are
given constants. Applied problems require definitions of
fractional derivatives that allow the use of physically inter-
pretable initial conditions, which contain f(to), f (to).
With M. Caputo’s modification of (3), initial conditions
for initial value problems for fractional order differential
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equations can be formulated using only the limit values
of integer order derivatives of unknown functions at the
lower terminal (initial time) ¢ = o, as in f(to), f (to). This
has a more physical interpretation, and the general Caputo
fractional derivative of order ¢ is defined in [6] as

1 ’ n—&§—1pmn

Tn =) /to(t s) D" f(s)ds. (4)
An additional benefit of equations (4) over equations (3)
is that a constant’s derivative is zero (§ D:C = 0), The
constant in equations (3) is not zero, but g DgC = Clt Z)
(in contrast).

LIEf)(t) = s~¢F(s)and £ BLDSf(t)dt = s£F(s) —
ZZ;S sEDSTF L F(#)]4—o are the Laplace transform of the
equations (1) and (3) respectively and that of equations (4)
is £ §Dff(t)dt = s*F(s) — Sp—g 5551 f5(0).

In order to address the singularity kernel issue with the frac-
tional derivative discussed above, a new derivative with an
exponential kernel known as the Caputo-Fabrizio fractional
derivative presented in [9] as

©FeDf) ) = 1

—£
was suggested. The goal of Caputo-Fabrizio’s work was to
improve the description of memory-effect systems’ dynam-
ics. Some disadvantages of the derivative were noted, though,
such as the local nature of the kernel that was employed and
the fact that the anti-derivative linked to their derivative is
the average of the function and its integral rather than a
fractional integral. Atangana-Baleanu suggested modifying
(5) using the Mittag-Leffler function to solve the problems;
as a result, this version of the fractional derivative is regarded
as a non-singular, non-local fractional derivative that was first
presented in [19] as

CDif(t) =

(t=2)

f()” clds, (5

ABC ¢ ( S)fk
(A€ D)2 ( 17§/f e[ - ¢ s, o)
and in Riemann-Liouville sense as
ABR p (t - 5)5k
(7

The function (&) share the same characteristics as in
the case of Caputo-Fabrizio fractional derivative, where the
single parametric Mittag-Leffler function E¢ is defined as

o k

Ee(2) = kX_:F(k;H) (8)

with its corresponding integral of equations (6) as

z(t) = 75( 2(t)) /fsz ))(t—s)"tds
9)

¥(&)
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(5) and (6) Laplace transform are L(SFCD:f)(t) =

sF(s)—f(0
%?gtfm O and LEPCD; f)(t) =
f(f&g) %j)%?()) respectively.

Similar to other differential equations, functional differential
equations are generalised to their fractional counterparts
n [8]. Fractional delay differential equations are crucial
for simulating the majority of real-world issues because
the fractional rate of change dependent on the system’s
hereditary effects, which include a sequence of influences
from previous states and future evolution processes.

For the Atangana-Baleanu-Caputo fractinoal delay
differential equations, we take into consideration its
general form, which is

(APODE)2(t) = f(t,20), (10)

where the Atangana-Baleanu-Caputo derivative is repre-
sented by (ABCDf)z(t) and the dynamics of the delay
equations are described by f(¢, z;). Many evolutionary pro-
cesses undergo rapid changes in state at specific points in
time, which may be caused by natural disasters, harvesting,
or shocks [3]. This phenomenon characterises the state of
dynamics of these processes. These processes are susceptible
to brief disruptions, the length of which is insignificant
when compared to the process’s duration. These transient
disruptions are frequently interpreted as having occurred
instantly, that is, as impulses that are portrayed as

2(tF) = 2(t7) + I (tr, 2(t7)), (11)

At some times t., the system’s state jumps due to abrupt
changes introduced by an impulsive fractional differential
delay equations. Typically, these jumps are explained as
follows: z(t;) represents the system’s state immediately fol-
lowing the impulse at time ¢,, z(¢, ) represents the system’s
state immediately before the impulse at time ¢, I (¢, z(t;))
is the impulse function, which is dependent on the state
z(t;) prior to the impulse and the time ¢.. Adding an initial
term 2z, = Oy € PC’ to equations (10) and (11) yields a
novel class of Atangana-Baleanu impulsive fractional delay
differential equations with fixed moments of impulse effect
of the type

g“ﬁfm flt,z),  teQ=lto,q, t#t
AZ(tT) (tT?Z( ))7 tth? 7:1,2,"',]?
to = 00 S PC
(12)
where Az(t) = 2(tf) — 2(t7), to < t1 <, < t, <

tpr1 = ¢ f: Q@ x PC' — R™ is Lebesgue measurable
with respect to ¢ € @ and f(t,0) is continuous with
respect to # € PC! and I, : Q x R® — R™ are contin-
uous for 7 = 1,---,p, where PC' = PCY[-r,0],R"]
denotes the space of piecewise left continuous derlvatlve
functions f[—r,0] — R™ with the ||f||; = sup H9||1,

—r<5

here 7 > 0, ||.| is a norm in R™. z, € PC  is deﬁned
by zi(k) = z(t + k) = (k) for to — r < s < tg. The set
PCY(n) ={0 € PC': ||0]1 < n,¥n >0}

PC'[[to — 7,¢],R"] denote the Banach space of all con-
tinuous functions from @ into R™ with the norm ||z||cc =

sup ||z(t)]].
teto—r,q]

A function z € PC'[[ty — r,q], R"] is said to be a solution

of (12) if z satisfies the equations APDf2(t) = f(t,z)
for almost everywhere ¢t € (@; the equations z(tf) =

z(t7) + I (tr, 2(t;)) and the condition z;, = 6y such that
z(t) =

i,(;é)f(tv Zt)+

00(0) +
@ Jio /(5 26)(t = ) 1ds,

00(0) + g5 i S (ti 2)+
m S Jis (= 8) T f (s, 25)ds
+m Ji F(s,20)(t — )¢ s
+Zz 1 Ii(ti, 2(t:)), te(t77t7+1]77_:1"'7p
(13)
Examining how these model equations behave qualitatively
is crucial, particularly when modelling real-world issues in
the fields of biology, medicine, and economics.
It is discussed in [2] [5] [6] [7] [10] [12] [13] [18] that
the initial value problem for nonlinear impulsive fractional
differential equations involving Caputo, Caputo-Fabrizio, and
Atangana-Baleanu has qualitative properties of existence,
uniqueness and stability.
We extend the idea to examine the requirements for exis-
tence, uniqueness and stability of solutions for a novel class
of Atangana-Baleanu impulsive fractional delay differential
equations. This is motivated by the novel idea of generalising
the boundedness condition and Lipschitz condition in [4] [6]
[2] [15], to established results on the existence, uniqueness
and stability of solutions of nonlinear fractional differential
equations involving the Caputo derivative.

te [thQ]a

II. PRELIMINARIES

This section presents the initial findings.
Let0 < ¢ <1and f:Q x PC! — R™ be continuous, then
the IVP

{ﬁ@%mfwm, teQ=[toq],

/ 14
zt(,:@()GPC (14

is comparable to the following: Fractional integral Volterra
with memory

20 :90
()—00() wg)f(t zt)+
fto s,2)(t — 5)¢71ds,

(15)
te [to,q].

In other words, all solutions of (14) are also solutions of
(15), and vice versa.

Remark 1 Let f : Q x PC' — R"™ be a Caratheodory
function and ¢ € [0, £) be a constant, then a function f(¢, z;)
isa L¢- Caratheodory if there exists a real-value function
h(t) € L<(Q) such that

1F (s z0)ll < h(t) teq

Remark 2 Let f : @ x PC' — R", a constant w € [0, &)
and a real-value function v(t) € L% (Q) then the function
f(t, z) is L%- Lipschitz if

1 (s 2e) = F (& y)ll < vz = well te@

Lemma 1. Let 0 < &€ < 1 and f : Q x PC' — R" be
Lebesgue measurable in t on Q and f(t,0) is continuous in
0 on PCY. A function z € PC{[[ty —r, q],R"], is a solution

a.e

a.e
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of the IVP (12) if and only if = € PCY[[to—r, q], R™] satisfies
the fractional integral equations (13)

Proof: Assume z satisfies the IVP (15). for ¢ € [t, t1]
h that
such tha ¢

z(t) = 60o(0) + mf(t’ zt)+

§ / (t— s)gflf(s, zs)ds.

LIS

Then ¢
z(t;) = 0o(0) + wf(ta 2t)

¢ /t:l (t1 — 5)571]"(57 zs)ds,

PET(€)

after the impulse
2(t]) = 2(ty) + Lty 2(t1))
1-¢

+

2(t)) = ——f(t1, 2
(t7) = 60(0) + 00 f(tr, )+
m/t l(tl —5)5 7 f (s, 26)ds + ity 2(t7)).
Ift € (ﬁl,tg}
e
z(t) = 2(t]) + G ft, ze)+
§ ! —1
@@ J, 1=
=z(t; A 1-¢ z
2(t) = 2(ty ) + Li(ty, 2(t)) + () f(tz)+
§ ‘ —1
O J, € oz
T
=6p(0) + G f(ty, )+
¢(£)§F(€)/t l(tl —8)57 (s, 20)ds + Lo (t1, 2(t7))
Lk YV S VPR
o o0+ g o s
Then
IR
2(ty ) = 0o(0) + (O f(ty, ze)+
TOTE . () e s+ D7 2(07)
5 z § h — 8)57 (s, 24)ds
e )+ e L 2 9 s

after the impulse
2(ty) = 2(ty) + I(ty , 2(t3)).

1-¢
mf(thzt)“"

/t 'ty — )5 f (s, 2)ds + Lt ()

R VT
HOTE) / (t2 = )" (s,2)d

2(t3) = 60(0) +

§
SN
1-¢

+wf(t2azt) +

+a(ty, 2(t5))-

Ift e (tg,tg}
<(t) = 2(05) + g /(b )+
& t — )57 (s, z5)ds
SOTE
IO
z(t) = 0o(0) + © [t ze)+
# ) —8)5 7 (s, z4)ds 1,2ty
w(f)r(é-) /to (tl ) f( ) 5)d +Il(t17 (tl ))
1=C v & e Vs
e )+ iy | (= 9 (s s
Ir(ty, 2(t3))
5 z § t — )57 (s, z5)ds
e 60+ i -9 s
Then ¢
z(t3) = 0o(0) + Wf(tlvzt)‘f'
[ e e s
S J, (=9 s
Lty 2(t))
1=Co v & e s
520+ g ), (19T e
Lty 2(t3))
5 z § - —5)57 (s, z)ds
e 60+ T |, a9 ez

This mean that after the impulse we have
2(t3) = 2(t3) + Is(ts, 2(t3)).

1-¢
wf(tlazt)“‘

/t 'ty — )5 f (5, 7)ds + Lt 2 ()

2(t) = 00(0) +
3
ST (E)

5 Z 3 ’ —5)5 7 f(s,25)ds
o 0+ g [ e O e m)ss

¥(&)
Ix(ty , 2(t3))

R ts e
w(&)r@)/tz (ts = )57 f(s,2)d

+15(t5, 2(t3)).

8,

R

We assume that

2(t) = 60(0) + % [f(t1,20) + f(ta, 2e) + fltz, 2e) -

+f(t7'7 Zt)]

B S A
+w<s>r<£)[/to (=) f(s,2)d

+/t ’ (tr —8)* 1 f(s,25)ds.]

T—1
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Lt 2() + Bty 2(83)
(g, 2(t5)) - Lot 2(87)]

By induction, for t € (¢t;,t,41],t =t,,7=1,---,p

2(t) = 2(t5) + 2 E ity )+
I3

¥(£)

— t N
w@)r(s)/t (8= 8)S"f(s,2,)ds,

-

we obtained equations (15) for z € PC[[tg —r,q],R"]. ®

III. MAIN RESULTS

We convert the Atangana-Baleanu impulsive delay prob-
lem (12) into a fixed point problem in order to demonstrate
the existence and uniqueness theorem. We defined a mapping
as follows for the operator 7' : PC(n) — PC*(n).

T'(z,) = o
T(2(t) =
90(0) + i(f)f(t )+
T o (= 8) T (s, 20)ds,  t€ [to, ),

00( )+ i} £ Zz_l fti,ze)+
B(ET(E) r(g) Zz 1f:‘ (= $)S71f (s, 25)ds
ft f 1f(8 zs>d5

(tHZ(t)) t€ (trytrp],T=1,p
(16)

GG
+ Zz 1

A. Existence

Theorem 1. Assume that the function f : Q x PC' — R"
satisfies the following conditions;

(C1) f: Q x PC' — R™ is Lebesgue measurable with
respect to t on @

(C3) f(t,0)is continuous with respect to 0 on PC*

(C5) there exists a real-valued function h(t) € L%(Q) such
that || f(t,0)|| < h(t), for almost every t € Q and all 6 €
PC(n). Then there exists at least a solution to the IVP (12)
on Q.

Proof: We demonstrate that 7' defined by (16) has a
fixed point by applying the Schauder fixed point theorem.
The evidence will be presented in steps.

Step 1: T : PC*(n) — PC'(n)
Using Holder inequality;

/tt It =) f(s,25) | ds <

( /t ((t— )Y ™2 ds) / (h(s))tds)S  (17)

to

and conditions (C7) — (C5) for t € [to,t1] we have

1-¢
1T < [[60(0)]| + wllf(twt)lH

[ e e s
GNG) /t0|<’f )1 £ (s, 24) | ds,

L2 pizll+

< [16o(0)[| + G

w<s>£r<s> (/ (£ = )1 ) /t:(h(S))éds)C
< 1160 0) | + ;(‘ghw
w(&)grm <%)H“ B t")“(/t: (h(s))*ds)*
< 1600)] + 7 hO)+
w(s)gr@) (i%g)kc(t —to)*CH =1
Similarly t € (t7,tr41]

[T (@) < [[60(0

> it 2(t)], <

i=

DIt ()1, <

i=

+

)l + — Z I1f (8, 2e) [+

1/J(§)€F(§) ; /till(tz' — 8) 7 f (s, 25)ds+
; €3] /t (t—5)5"" f (s, 25)ds+

P(Er
|| + — Z h(t

T

[[00(0
1

m ;/tizl(ti — S)Eflh(s)ds—i—
3
(CINCS

+

/t(t — 8)5 7 h(s)ds+
)| + — Z h(t

¢(§)§F(§) Zl ([qll ((ti - 3)5—1)ﬁds)1—4

T

[[60(0

Al

( /<
o </ (

([ he)tas)

-

h(s))

ds)c—i—
(t — 5)5_1) ﬁds)lfc

+Z||1 ti, 2(t;

1-¢
Wh(t)

£ ‘ _ g6t = )¢
W(&)F(a)(/f(, ((t=9)=) 7 ds)

t
(/ +ZHI (ti, 2(t
to

< [16o(0)[| +

n\H

§

1T (2(t)[loe < 16(0)] + mh(t)
& (L1=Chi¢ e ]
ot e e H

T : PC'(n) — PC(n)
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Step 2: Let {6,,} be a sequence such that §,, — 6 on PC'(n). in Step 1 and Step 2 and z € PC'(n). based on the Holder
and f(s,0,) — f(s,0) and I-(t,,60,(0)) — I.(t;,0(0)) on inequality (17) we obtain

PC*(n) asn — oo, 7 =1,---,p for each t € [t, g then 1—¢
1T(2)q2 = T(z)a |l = m”f(Qszqz) = flay, zq)) |1+

I (a(t)) — T(=(0)] = %Hf(t,m — (L0)+ .
51-\ H/ (g2 — 5)5 1) f(s,2s)ds

|

P EINGLI) “H(f(5,00) — f(5,6))ds
_ + (g2 — )51 f(s ,25)||ds
< +1—\|f(t, On) — f(£,0)]1+ /q

¥(§)
||f(q27 qz) - f(qlazlh)H

et : ¢< )
(t — )| £(s5,0,) — £(s,0), ||ds
PGRG /
© L / @ — (g2 — )N £ (5, 20)]|ds
S +W§)”f(t70n) - f(taa)”oo‘l' 5 4
T / e =51 1.2 s
éngf( an) _f( 9) H (g) (E) “
srE+n? Mt O llos e
Similarly te (tq—atr-&-l] m”f(Q%Zqz) f(qlsz1)||+
I7nle)) = T = ’52\\ftl,e £t 6)|1+ (@ = = s
§ " —35_1 s)ds
Z / D F(5,00) — £(5.6) s *w@r(s) / (@2 = )" h(s)d
o 1—
t < (0, 200) — Fan, 20+
_ 8 S (s 0. — £(s.0)lds iG] “ !
oo I 00) — S )l S
T T \ q — S g2 — S 1=¢das
3 00 0(0) - L 0O HETE R T
iz; . /t (h(s)) % ds)*+
1F(t,0) — F(t:,0)[|+ .
¢(f) § 2 EAVES| i s 1—¢
£ ' -1 0 0)||d w(g)r(f)(/ql (a2 = )) 5 ds)
A0 /to(”) 1£(5,00) — £(5,6)|1ds ( / e’
ST 60(0)) — I, 6(0)) o
2 sl(—gfnf(qz,zqz) Fa1, 2+
1-¢
< L8 pt, 00 — £t 0) |+ e b e
w;g) sore ) (@-9F @0
3 _ s q 1
FaorErn? 1o =160l ([ o)tass
57 0a(0)) — L, 600))]] € " e [T b
= sr ], o Ha ([ o)t
<1- e _1-
"/’(f) ||f(t77971) f(ts, 0)|loot < w( ) ||f(QQ,Zq2) — (g1, 20|
¢ ¢ B EH 1 —(Co- £=1 .,
SETET T 6O = 1)l toere ey m-t
+p||IZ(79n(O)) - Il(’e(o))HOO’ ((QQ _ ql)%-i-l _ (QQ _ to)%—kl)l*C
as n9—> oo, f(.,0,) — f(.,0) and I;(t;,60,(0)) — EH  1-C, . e
e T = (R
Step 3: T' bounded sets into equicontinuous sets on () 1-¢
Leipqh(h glz[ltisi t1(]) aI:ldCQI z?q;;g?(nc)oélezboound; :; as < w”f(% ) — (a1, 2,
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9OHE 1-¢
T oer® e=¢

As g2 — @ the right-hand side of the above inequality tends
to zero, then (T'z)(t) is equicontinuous on ¢ € [tg,t1] the
evidence can be presented similarly on ¢ € (¢,,t,1], hence
(T'z)(t) is equicontinuous on ¢ € (¢, t,1] therefore (T'z)(t)
is piecewise equicontinuous on ). Thus, using the Arzela-
Ascoli theorem for equicontinuous functions, we conclude
that (T'z)(t) is relatively compact, and hence 7" is completely
continuous on PC*(n). By Schauder Fixed point theorem,
T has a fixed point in PC'(n) which is a solution of the
IVP (12) on Q n

) g2 —a)tC

B. Uniqueness

Theorem 2. Assume that the function f : Q x PC' — R"
is continuous and bounded, and if it satisfied the following
conditions:

(Cy) there exists a constant w € (0,&) and a real-valued
function v(t) € L= (Q) such that ||f(t,0) — f(t,¢)| <
v(t)]|0 — ¢||, for almost every t € Q and all 0, € PC*(n)
(Cs) there exists a positive constant p* such that
VL, (£,0(0)) — L (tr, 6(0)) | < 7 10(0) — 6(0)]| for each
0,6 € PCY(n) and 7 =1,2,--- ,p

then the IVP (12) has a unique solution on @) provided

1-¢
0< [1/1(0 v(t)+
L(l_iw)l*w(q_t )E w *_|_pu} <1 (18
VET(E) € ~w ’

where v* = (ft‘i(l/(s))%ds)w,

Proof: The existence of the solution to (12) is estab-
lished by the second theorem. Next, we demonstrate that T’
has a unique fixed point by applying the Banach contraction

mapping principle.

T (21)(t) = T(22) ()| = %Hf(tﬁ) — f(t,0)|l+
|| “f(s,0) — f(s,9))ds
1-¢ ¢
< S vlo—ol+ M ()/u )< w(s)ds||0— |
< (5) v(t)llz1 — 22llot
L t(t—s)f_ll/(s)dstl—ZQH
YET(E) Jiy >
17
< © v(t)lz1 — 22/lcot
T A
Y(ET(E) s,
([ )Faa -z,
1-¢
gwy(t)Hzl 22||Oo+
3% 1-wii-w
GNGREPU N i

1-¢
STGRACM
vt 1l —wil-w B SN
sore ey (@) -zl
Where
17_51/ gy* 1-w 1—w B fmw
0" ere e T
Similarly ¢t € (¢,,tr41]
IT (1) (8) — T(z2) (1) =

Lo Z 1£(:,0) —
# g . £—1 s (s <
ENE) ; | /tu(“ ) (s,0) — £(5, 8))ds+

»O)I+

3 ! (s 0) — e s
w(é)r(g)“/tr(f )T (s,0) — f(s,0))d
+ D Ti(=1(1:), 6(0))

1-¢<&
< w;wt)llﬁ o[+

S X (6ol el
i=17ti-1

— Ii(22(ts, 9(0)))]|

& el — ollds
w@)r@)/t,(t ) w(s)]|0 - o]l
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1-¢
=G

T )2 - =

v(t)+

()
YEOT(E) §—w
Where
1-¢ &v* 1—w
00" vore e
T is therefore a rigorous contraction. As a result, there is a
single fixed point that is a unique solution for (12). ]

)1w£w+pﬂ)<1

C. Stability
In this section, the Lipschitz stability of the solution is

examined.

Definition 1. If a constant K > O exists such that for any
two solutions z(t) and y(t) with initial conditions z, = 0,
where 0y € PC' and y,, = ¢o, where ¢g € PC!
respectively, we have

12(2)

for all t > 0. This indicates that equations (12) is Lipschitz
stable.

—y(t)l < K[|6 — ¢l

Theorem 3. If all the conditions of theorem 2 are satisfied,

then the solution of the initial value problem (12) is Lipschitz
stable if

12 =yl < 3= 1160 = ol

Proof: Let z(t) be a solution of (12 ), and y(¢) be a
solution of (12) satisfying the initial value condition y;, =
b0, where ¢y € PC* then

(2(t) —y(t)) =
(80(0) = 60(0) + 5 (702 = .0)
+w(§)r(g fto )57 (f(s,25) = f(s,ys5))ds, t € [to, g,
()~ %(D+@§Zlﬁ(m%> Pt )+
¢(5)r(5) Zz 1ft t_S)5 1( f(s,25) = f(5,9s))
+w(£)r(£ Ji (=) (s,20) =
+ 20 L, 2(ti ))—

ds

7
S

f(s,ys))ds

(19)
For t € [tg, q]
12()—y(0)]] = 1160 (0)—o (0] + (ﬂﬁta) £t )+
§ t — )5 S (s, 25) — f(s S
wawo”éﬁd = (s, ) — £ )
swam—%mm+%é§wm%@—¢ww+

w(ﬁff(f)/t ((t — )5 u(s)ds]|8 — &
-

< [166(0) — ¢0(0) L@)

([ (=972 ( [ @) as) = =]l

0

v(O)llz = ylloot

< 1[60(0) — ¢0(0)

1-¢
1/1(5) V(t)HZ B y||oo+

(twy(tl)))7t € (t‘rvt‘r+1]a7— = 17p

Ev* 1l—wi1-w B -, _
NG N e
< 1|60(0) — ¢0(0)|+
1_€ 51/* 1—wil—w
e O+ perei=w) (a0 )l-vls
< 160(0) = 600)] + g v 02 = ]+
Ev* 1l -wi1-w _ —wl, _
PGINGL L kO St N
< 160(0) = ¢o(0)[| + Al|z — yHOO

Similarly ¢ € (¢, tr41]

nm— Y]] = [96(0) — $o(0) |+
5§]vt% F(t )l +
" = S (5, 2) — (s p)lds

S ' — ) (s 2) — f(s S
N @W@wl}t YU F (s, 20) = f(5,ys)]lds+

T

S IL(t). 00
||+—Z

= Li(y(t:), ¢(0)) |
< [160(0) — t)10 — oI+

(ti — )" tdsv(s
ti—1

|16 - g]l+

(5)511( )/(ts)5 1d$1/ H97¢||

* max |0(0) —
+;u max [10(0)

||+—Z

¢(0)]|

< [160(0) — )z —yll+

(ti —5)57ds
—7 Jtioa

(f )il

§ ! _s§—1ﬁ81—w
w@ﬁ&%[ﬁ“ )T ds)

([ w)Za e =+l =l

T

1-¢
) v(B)llz - yll+

3 ! _85—1ﬁ81—w
wama«é(& )T ds)

([ @)l = vl + o1z =il

< [160(0) — ¢0(0)
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< 160(0) = o(0)| + g (0= = v+
T ) =t eyl =l
< 1160(0) = o ) + (7 {0+
1/,(;?@(;5)1“(11 —to) o) |l2 -l
< [160(0) = 6o ()l + A}z — o] ..

since A < 1 we have

HZ—MWSH%—¢ﬂ+AW—yH

2 = oo < =100 — b0l
where ¢
v* 1-— —w _ .
o ) )

accounts for the fractional growth.
pu* represents impulse contributions.

1
K=—.
1—-A
As a result, Lipschitz stability is valid. To make Lipschitz
stability significant, we need 0 < A < 1, which guarantees

that k is finite. [ |

Example 1. Consider the Atangana-Baleanu impulsive frac-
tional differential equations with constant delay.

ABCD3o(t) = EUE) - peo,Tn],  t#£ 2
AZ(%):%’ t:%’ 7—21,"',6
z(t) = sint te[-%,0]
(20)
We have that,
sin(z(t — 3)) 1
t =27 st
It z)] = | = <=
¢
where h( ) = %,C - i, ( (h ) _
1 1 .
(fo DN = 0L )| = 0p = 6,1 =
771#(5) 1. Thus, on the interval [0, 7X], there is at least

one solution to the IVP (20) based on theorem 1.
We then confirm that the solution is unique with the following
parameters,

|| i 5))  sin(y(t—3

7 7
= ?H sin(z(t — =)) — sin(y(t — g))“
1 T ™
< ?Hz(t— 5) —y(t— 5)“
where Az(EF) —constant V(t) = fw =131 Vv =
(fto (v(s)=))" = (fo DY = L) 60 =
= 6,1% = 0,(&) = 1.
1_€V §l/ 1 —wii-w E—w *
G O Fer® e=w) towr) <1

1 1 T 1 1 3 1 T 1
:§X§X(7)4+ﬁx(3)4 X?X(7)2
=04<1

According to theorem 2 (20) have a unique solution on the
interval t € [0, T

Since 0 < A < 1 and 1 — X > 0, which guarantees that k is
finite, equation (20) is Lipschitz stable.

IV. CONCLUSION

Impulsive fractional delay differential equations were for-
mulated in the context of the Atangana-Baleanu-Caputo
derivative. Using the generalised boundedness condition on
Schauder’s point and the generalised Lipschitz condition
on Banach contraction principle, conditions for existence,
uniqueness, and stability were analyzed. The developed no-
tion was demonstrated using examples, and the outcomes
validated its applicability.
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