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Numerical Solution of Class of Third-Order
Singularly Perturbed Delay Differential Equations
via Quartic B-Spline Method

Shilpa Malge, and Ram Kishun Lodhi

Abstract—This paper presents a quartic B-spline method to
find the numerical solution of third-order singularly perturbed
delay differential equations. The method is directly applied to
the third-order singularly perturbed delay differential equation
without reducing the order, thereby maintaining the original
structure. Uniform mesh is used to generate the grid points. The
quartic B-spline method converts the boundary value problem
into a system of linear equations. This system is solved by
matrix method to find the numerical solution. The convergence
of the method is discussed via truncation error analysis. Three
numerical examples are solved to test the efficiency of the
proposed method. Maximum absolute error, uniform error and
uniform convergence are determined. Further, the obtained
results are compared with the existing results in the literature.
Graphs are drawn to study the behavior of the solution.

Index Terms—Singular perturbation, Delay Differential
Equations, Boundary Layer, Quartic B-spline Method, Con-
vergence.

I. INTRODUCTION

ELAY differential equations arise in the practical phe-

nomenon where slow and advanced processes coexist.
In these equations, the dependent variable or its derivatives
depend on the past stages of the independent variable.
Further, differential equations involving small parameters
that cause abrupt changes in the solution in some part of
the domain are referred as singularly perturbed differential
equations (SPDE). The SPDEs that involve delays are called
singularly perturbed delay differential equations (SPDDEs).
SPDDEs occur in many practical applications, such as hydro-
dynamics and liquid helium [1], diffusion in polymers [2],
and neural reflex mechanism [3].

Third and higher-order differential equations occur in
the mathematical modelling of many real-life applications.
Various models are presented in [4]. Different types of
SPDEs and SPDDEs of third-order are seen in the literature.
An SPDE arising in the theory of thin film flow is tackled
by asymptotic expansions [5]. One such phenomenon of the
mechanical robotics model with damping gives third-order
delay differential equations [6]. Authors have studied the
asymptotic stability properties of third-order delay differen-
tial equations. The boundedness and asymptotic stability of
the solution of these equations are reported in [7], [8], and

[9].
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Applications of SPDEs and SPDDEs of the third-order
tempted many researchers to find the approximate solution of
these equations and study different analytical properties. Var-
ious analytical and numerical methods are applied to solve
SPDEs and SPDDEs. In [10], authors have applied analytical
and numerical methods to find an approximate solution of
third-order SPDEs with a discontinuous source term. A third-
order SPDE of reaction-diffusion type is approximated by a
numerical method comprised of shooting method and stan-
dard finite difference method (FDM)[11]. A parameterized
third-order SPDE is discussed in [12]. Geetha et al. [13] have
discussed the parameter uniform numerical method based on
Shishkin mesh to find the numerical solution of a third-order
SPDE with turning point exhibiting boundary layers.

Recently, third-order SPDDEs caught the attention of
many researchers. Various numerical methods are used to
find the solution of these equations. One common numerical
method, FDM, is applied for different types of third-order
SPDDEs [14], [15], [16], and [17]. A trigonometric B-spline
collocation method is applied on a uniform mesh for nu-
merical solution of third-order SPDDEs with discontinuous
convection-diffusion term and source term [18].

In this article, the Quartic B-spline method (QRBSM) is
employed to find the numerical solution of the third-order
SPDDE with a large delay. Splines are piecewise continuous
curves and these are defined by using the different basis
functions, such as polynomial and non-polynomial functions.
Spline methods can provide the solution at any point in
the domain. Spline techniques provide a set of flexible
methods and the order of the spline can be chosen as per the
desired accuracy and order of convergence. Different types
of boundary value problems are solved using various order
spline-based methods. Ersoy [19] and Mittal et al. [20] have
applied the cubic B-spline method to solve two-dimensional
unsteady advection diffusion equations. In [21], authors have
applied B-spline method to obtain the numerical solution
of a differential equation in RLC closed series circuit with
small inductance value. In [22], authors have applied two
high-order numerical methods for solving a time-fractional
Fokker—Planck equation based on Quintic B-splines and an
improvised Quintic B-spline collocation method.

Spline methods are also applied for different SPDEs, such
as: second-order SPDEs [23], [24], [25], SPDE with discon-
tinuous source term [26], SPDDEs with turning point [27],
linear and nonlinear SPDDEs [28], parabolic SPDDEs with
large shifts and integral boundary condition [29]. QRBSM
uses fourth-order polynomials, providing three times con-
tinuously differentiable solution. Thus, the application of
QRBSM is seen for different BVPs. QRBSM is used for
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numerical solution of nonlinear SPDDEs [30]. A second-
order nonlinear BVP with Neumann and Robin boundary
conditions is solved using the Quartic B-spline method on
a uniform mesh [31]. B-spline techniques are applied for
Bratu-type and Lane-Emden problems [32]. The Quartic
spline method is used for a fifth-order BVPs with a two-point
boundary condition [33]. A Quartic trigonometric B-spline
collocation method is applied for non-isothermal reaction
diffusion model equations in a spherical catalyst and biocat-
alyst [34]. A comparison of Cubic and Quartic Hyperbolic
B-splines for a coupled Navier Stokes equation is presented
in [35].

This work motivated us to apply QRBSM for finding
the numerical solution of third-order SPDDEs with large
delay. The primary objective of the proposed work is to
obtain a more accurate numerical solution and an enhanced
order of convergence. The remaining part of the paper is
organized into five sections. The problem statement is given
in Section 2. Section 3 contains the detailed explanation of
QRBSM. Convergence analysis and different error bounds
are discussed in Section 4. Numerical illustrations and result
discussion are included in Section 5. The summary of find-
ings is presented in Section 6, the conclusion, at the end of
the paper.

II. STATEMENT OF PROBLEM

Consider the following third-order SPDDE defined on the
interval Q = Q- UQT, where Q = (0,2), O~ = (0,1), and
Qt =(1,2):

=y (v) + a(v)" (v) + b(v)¢' (v) + c(v)(v)

) (0 —1) = fv), vew, o
with the boundary conditions:
¢(U) = ¢(U)7 v e [_170]? W(Q) = ly (2)
YP(v) =¢'(v), ve [_150]’

where, 0 < ¢ < 1 is the perturbation parameter, and the

functions a(v) > a1 >a+2>3, blv)>Ly>0, Ilp<

c(v) <1<0, 1 <d() <0 and 2« + 24~y + 59 > 0,

further, a(v),b(v), c(v),d(v), f(v) are assumed to be suf-

ficiently smooth on €2, and v is a constant. With these

conditions the above Equations (1)—(2) have solution [36].
To handle the delay term, apply Taylor’s expansion:

V1)~ )~ 0) + 0 0). )

Substituting Equation (3) into Equation (1), we obtain the
modified form:

(=& + %2 (v) + AW)Y"(v) + Blo)¥(v)

“)
+C(W)Y(v) = f(v),
where v € ¥, subject to the boundary conditions:
$(0) =(0), ¢'(2)=1, ¢(0)=¢(0), (5
where
A(w) = a(v)—d(v), B(v)=>bv)+d(v), C(v)=c(v).

For continuity at v = 1, we assume:

v(17) =9(1F), (7)) =y/(17).

TABLE I
VALUES OF Q4,m (v), Q} ,,(v), QY ,,,(v), AND Q}’, (v) AT NODAL
POINTS
Um—3 Um—2 Um—1 Um Um+1 Um-+2
1 i1 i1 1
Qa,m(v) 0 24 24 24 24 0
/ 1 3 3 1
O O N T O 0
1
4m (V) 0 2p2 | T2p2 | T 2n2 2h2 0
1 3 3
dm@) | 0 ol "w | w | —ms | 0

III. METHOD DESCRIPTION

In this section, QRBSM is developed to find the numerical
solution of Equations (4)—(5). The technique is applied on
a uniform mesh. Let Iy = {0 = vg < v1 < v < -++ <
vy = 2} be a partition of [0,2], where v,, = vy + mh,
h = 2/N. Define a set P, 11, of all polynomials of degree
< 4 in the interval [vy,, V1] for m = 0,1,...,N — 1
of IIy. Py, forms a linear space and the set P of all
functions 7(v) € Py, N C3[0,2] is a subspace of Py 11,
Add four extra knots on each side of the partition I, as
v_g < U9 <wv_1 < vy and vy < UN+1 < Un42 <
UN4+3. The quartic B-spline basis functions are defined as
follows:

(V= Um_2)*, UV € [Um—2, Um—1]
h* + 4h3 (v — V1) + 6R%*(V — Vy—1)?
+4h(V — V1) — 4(V — Vp_1)?,

U € [Um—1, Um)]
11A* + 123 (v — vy) — 6R2(V — vy, )?
1) =12h(v = vp)? + 6(v — v,
24k U € [Um, Umy1]
h* 4+ 4h3(Vpy0 — ©) + 682 (Vg2 — )2
+4h(Vmt2 — v)? = A(Umy2 — V)%,

U € [Um+1, Um+2)
(Um+3 - U)47 v e [Um+27 Um+3]
0, otherwise, for m =0,1,..., N.

(6)
From the above Equation (6) it is clear that the basis

functions Q4 (v) are piecewise polynomials of fourth-
degree having knots at II. The set of all Quartic B-spline
basis Qun = {Q4,-2,Q4,-1,Q40,...,QuN,QaN11} 18
linearly independent on [0,2]. The linear span of functions
in @ is a vector space Q*(ITy) of dimension (N + 4) and
Q*(IIy) = Py. Table I gives the values of quartic B-splines
and its derivative at the mesh points.

Lemma 1: The Quartic B-splines (Q4.,,) !, satisfy the
following inequality

Q4,m (U)

N

35

< —.

> 1Quml < 353 @
m=—2

Proof: Refer [37] for proof. [ |

Let Sy (v) be the Quartic B-spline approximation of the

solution ) (v) defined as:

N+1

SnW) = Y omQum(v). ®)

m=—1
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where Q4.,(v) are the quartic B-spline basis functions
defined by Equation (6) and Sy (v) satisfies the interpolatory

conditions
SN(Ui) Z’(/J(Ui), i:O,l,Q,...,N, (9)

h2O) (v;) + s h4( (v;),
i=0,1.2,.... N.

Sy (vi) =

w///(vl) o %

(10)
The values of Sy (v,,) and its derivatives at the nodal points
are given by:

S (vm) = g0m-2+ g10m 1+ 3r0m+ 5zomen, (D)
Sy (vm) = —G%Um—z - %Umq + 21h 61h(7m+(11,2)
SN (V) = ;ﬁam_g — #am_l - 2—}1L2<Im + %am_ﬂ,

(13)
SN (Um) = h13 Om— 2+§3 Om—1— ;3 crerhl3 Oma1. (14)

Substituting Equation (8) in Equations (4)—(5), at each
node v,,, we get:

(= + 2452 ) S3 (W) + AVm) S (W) + B(om)Siy (vm) —48(—€+d§)

+C(vm)Sn (V) = f(um), m=0,1,...,N,
15)
along with the boundary conditions:
Sn(0) =¢(0), Sy(2) =1, Sy(0)=4¢'(0). (16)

Using Equations (11)-(14) in Equations (15)-(16), we
have

dm 1 3 3 1
(‘” 2> ( paom=2 F gETmet T am F h30+1>
+ A, (102—10 ,1—LJ LU )

2p2° T2 gp2 Tt T gp2 Tt gp2
+ Bm (_10m2 - iUmfl + iUm + 1U+1>

6h 2h 2h 6h

1 11 11 1
+ Cm, <240—m—2 + ﬂo—m—l + ﬂam + 240m+1>
= fWL7

(17)

where A,, = A(vp), Bm = B(um), Cm = C(vm),

dpm = d(vy,) and fr, = f(om
we obtain a five-point recurrence relation:

m=0,1,...,N,

,LL1(Um)O'm_2 + ﬂ2(vm)0m—l + NS(Um)Um
+/1'4('Um)0—m+1 :24hfm7 m=0,1,...,N,

(18)

where the coefficients iy, are defined as:

A
p1 (V) = 24 <—g + 2) + 12hA,, + 4h*B,, + h*C,,,

p2(vm) = 72( - d2> —12hA,, — 124h*B,,, + 11h3C,,,

). Simplifying Equation (17),

dm
3 (vy,) = 72 (—s + 2) —12hA,,+124h*B,, +11h3C,,,

pa(vm) = 24 <5 — d;”) + 12hA,, + 4h%B,, + h3C,,,

and the boundary conditions (16) becomes:

o9 + 110'_1 + 110—0 +o01 = 24¢0a
—09 — 30_1 + 300 + 01 = 6h ¢y,

—0nN—2 —30N_1+ 30N +0N4+1 = 6hI.

19)

Equations (18) along with the boundary conditions (19)
gives a system of (N + 4) equations in (N + 4) unknowns
0_9,0_1,00,...,0N4+1. Further, we eliminate 0_5,0_; and
on41 from this system. Substitute the value of o_s from
the first boundary condition in the equation obtained putting
m = 0 in Equation (18), we get

[—336 (—5 + d;) — 144h A, — 168h2Bo} o_1

+ |:—192 (—6 + d20) — 144hAg + 80h230:| o)
g1 = 24h2f0

d
— 24¢q [24 <—5 + 20> + 12hAg + 4h* By + h300} .
(20)
Using the second boundary condition, eliminate o_; from

the equation obtained by putting m = 1 in Equations (18)
and (20), we obtain

d d
144 (—a + ;) + 248h% Byog + 48 (5 - 20) o1

do
= 24h2fy — 24 |24 [ —e + — 12hA
fo o [ ( €+ 5 > + 0 21

+4h*By + h*Co| + 42 <—5 +

24¢0) )

C?) 1 18h A,

+ 21h% By (6he)y +

and

(—96 (—g + d21> — 24hA; — 128h*B; + 1Oh301> o
+ (72 <—5 + d21) — 12hA; + 124h°B; + 11h301) o
+ (—24 (—5 + d;) + 12hA; + 4h*By + h301> o

= 192h2 f; — (6hofy + 24¢0) (24 (—5 + d;) + 12h A,
+4h*By + h*Cy) .

(22)
Further, using the third boundary condition and the equation
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obtained by putting m = N in Equation (18), we obtain
(24hAN + 8hQBN + 2h3C'N)) ON_2 + (—144(—6

d
+ 21\/) + 24hAN — 112thN + 14h CN)> ON_1

+ (144(5 +

( d
= 2413 f — 6hl (24(5 + 7N) + 12hAy +4h?By

d
7N) —48h Ay + 112h2By + 8h3ON)) oN

hCy)
(23)
Equations (18) for m = 2,3,..., N — 1 along with Equa-
tions (21) — (23) form a (N +1) x (N +1) system of linear
equations. This system can be expressed in matrix form as
follows:

PX =F, (24)

where P is the coefficient matrix given below. The entries
in the matrix P are given by:
Yo = —T92(—e + %) + 264h Ay — 51h% By,
1= —72(—¢ + dO) — 72hAy — 9B,
Yo = 120(—¢ + dl) — 132hA; + 62h% B, + 43h3C,
v3 = —264(—e + ©) — 60hA; + 50h%B; + 43h3Ch,
Y4 =96(—¢ + %)+ 48hA; + 8h2 By + 4h3Cy,
Y5 = 24hAN + 2h CN,
Y6 = 144(—¢ + U) + 24h Ay — 6h2By + 14h°Cl,
v7 = —144(—e + %) — 48h Ay + 6h2By + 8h°Cly |
F = [FO F1 24h3f0 24h3f1 24h3fN FQ]T is
the column matrix of right-hand sides, with:
Fy = 4813 fo—48¢0 (24(—e+ %) +12h Ay — 2h2 By +h3Cy)
— (168(—e + %) — T2hAg + 1Th?By)(12¢ — 3hyy).
Fy = 96h3f1 — (129 — 3hep)(24(—¢ + %) + 12h A, —
2h% By + h3Cy,
Fy = 24h3 fy—6hl(24(—e+ %) +12h Ay +2h2 By +h3Cl,
and X =[o_2 o_1 o0y on ony1)T.

This system is solved to find the o/,s and hence the
solution of the SPDDE.

IV. CONVERGENCE ANALYSIS

This section discusses various identities for Sy (v) and it’s
derivatives S](J)(U) up to fifth order at the nodal points v,y,,
m = 0,1,..., N. Truncation error analysis is conducted to
prove the convergence of the proposed method. Following
consistency relation for Quartic B-splines can be obtained
using [38]:

VSN (V) = $(=SN (Vm—2) — 3SN (Vm—1) 25)
+3Sn (v ) + Sn(Umt1)),m=2,3,..,N — 1,

’YSK/(UWL) = %(SN(Um72) - SN('Umfl) (26)
—SN(Um) + SN(Um+1)),m =23,...,N —1,

'-YSKZI(UT") = %(75‘]\/(1}7)1—2) + 3SN(Um—1) 27

—35N(Um) + SN(Um+1)),m

where + is the discrete operator defined by
’Yy(vm) = y(vm—Q) + 11y<”m—1) + lly(vm) + y(vm—H)
Now we discuss the following two lemmas to prove the
convergence of the method.

=2,3,.,N—1,

Lemma 2: Let ¢(v) € C®[0,2] and Sy be the Quartic
B-spline approximations of v, then

YSN (V) = 249" (V) — 12R9" (V)
812" (U) — 303D (U) + SA4) (v,,)
— L n5p© (v,) + O(RE),

(28)

VSR (Vm) = 249" (V) — 120" (V)
+8h29 W (vy,) — BR3P (vy,) + L nAy(©) (v,,)
— 21D (vy) + O(RE),

(29)

VSN (Um) = 249" (vm) — 1209 (vy,)
+6h29 ) (vy,) — 2139 O) (v,,) + 20T (vy,,)
—561°0® () + O(R°),
Proof: Using the interpolatory condition (9) in Equation
(25), we get

(30)

%(*Ip(vm—ﬂ - 31/)(Um_1) + 3¢(Um)
P(Umy1))-

Expanding 1(vy,—2), ¥(vUm—1) and ©¥(v,,41) using Taylor’s
series expansion, we obtain

’YS;\I(Um) =

1S (0) = (6 (11,) — K207 (v,
+2h31/)m(vm) _ gh4¢(4)(vm) + %h51/)(5)(vm)
— 2h8O) (vy) + O(RT)).

This proves (28). One can prove (29) and (30) with similar
arguments. |

Lemma 3: Let Sy be approximations of ) given by the
QRBSM which satisfy the required smoothness conditions,
then the following holds:

S (V) = ¥ (Um) + Ash ) (0,,)

2016h61/’(7)( m) + O(h®), ©1
S;(f(vm) = '(/)” (Um) 240 h4"/)(6)( ) (32)
+mh6¢(8 (Um) + O(R®),
Sgl, (Um) = 1/JW (Um) - 7h2¢(5 ( ) (33)
+310 h47/’(7)(vm) + O(h6)
SN (0m) = 0@ (o) + RO (0n) (3
—=5h 0 (v,,) + O(hO),
SJ(\?)(Um) = ¢(5)(Um) %52112100h6¢ 11)( m) (35)
- 1841%141100 W83 (v,,) + O(h'0),
where,
a(4) c(4)
541(\‘]1) (V) = SN (V) ;r Sy (Um+)’ (36)
a(5) a(5)
S«](\?) (Um) = SN (Um—) ;‘ SN (V) 37)
Proof: Using Equations (11)-(14), we obtain
hSy (Um—2) + 118y (V1) + 11y (Um)
+Sn (Vm+1)] = 4[SN (Um41) + 3SN (Uim) (38)
_SSN(Umfl) - SN(rUm72)}7
h? [SX/ (Um) 2[S (Um+ ) — 2SN (Um) (39)

+SN(Um—1)} - %[S (U7rz+1) S}v(vm—l)],
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Y0 M 0 0 0
Y2 3 Y4 0 0
pi(vr)  pa(vi)  ps(uvi) pa(vr) O
P= 0 pr(v2)  p2(ve) pz(ve)  pa(vz)
0 0 0 0 0
0 0 0 0 0

111

B[S () = 208w (Umi1) = Sy (vm-1)]
B[S (Wim1) + 65y (V) — Sy (vm1)];
Apply operator notation in Equation (38), we get

(40)

—4[E + 31 — 351 — E2|Sy(vm).

where E(Sn(vm)) = Sv(Um+1)-
Since E = e"P, where D = %, we get

hle=2"P 4 11e~ P + 111 + e"P] Sy (vy)
= 4[ehD + 31 — 3e"P — =2 DIS N (uy,).

(41)

(42)

Expanding E = e in Taylor’s series, we get
24h( _ %hD—i— %h2D2 _ éth?) + ﬁhélDél
+...)S}V(Um)1 = 244h (D - 1hD? + Lp2D3
—ghsD + ) 1ZJ(U7,L).

Simplifying this, we get

(43)

Sy(m) = (D — 1hD? + In2D% — 1n®D* + )
{1+ (=3nD + §n2D? - 1nD?

-1
+...)} b ().
(44)
Further Simplifying this, we obtain
! _ 1 34 1 7

+%h8D9 + "')¢(U77l)'

This proves Equation (31). Similarly, we can prove the

identities (32) and (33). Now to prove Eq. (34), we consider
the central difference approximation for 5'](\?) (Um) as:

111 1"

SG () = S (Vm1) — Sy Um1),

46
57 (46)
Substitute Equation (33) into Equation (46), we get
— 4 "
50 wm) = 2 {0 Oms1) = HH2HO (V1)
T2 0 ()] @7)

_[w (UWL—I) - TIQth(s) (U’"L—l)
+ 5 h O (W)l }-
Expanding the terms in above Equation (47) by Taylor’s

series about v = wv,,, and simplify. This yields Equation
(34).

0 0 0
0 0 0
0 0 0
0 0 0
pr(on-1) pe(vn-1) ps(on-1) pa(vn-1)
0 Vs Y6 7

To prove Equation (35), use:

111 111 "

S (W 1) = 25 (0m) + St (V1)
h? '
Substituting from Equation (33) and expanding via Taylor
series about v = v,,, we can get the estimate for 5'1(\?) (Um)
as Equation (35). [ |
Theorem 1: Let Sy be the QRBSM approximation of 1,
and define the error as e(v) = Sy(v) — 9 (v). Then for
0<0<1:

SO () = (48)

(1-106%)0 .
A RSB (g,
=20 P (0m)
(562 — 3)6?
1440
(10 —5)0% 7 (7
Ty h®). (4
+ s h 7 () + O @9)
Proof: Expanding e(v,,, + 6h) in Taylor’s series and us-
ing Equation (31)—(35), we obtain (49) upon simplification.
|
This shows that the truncation error is of order O(h®) and
hence the order of convergence of the proposed method is
O(h?).

e(vm +60h) = —

hE(©) (vy,)

V. NUMERICAL ILLUSTRATIONS AND DISCUSSION

In this section, we have implemented the proposed method
on three numerical examples to examine the efficiency and
accuracy. Maximum absolute error (MAE) and rate of con-
vergence (RCGT) are determined for different values of e
and N. The obtained results are compared with [15] and
[17]. Graphs are plotted to see the behavior of the solution
for different values of the parameter. As the exact solutions
are not available, the double mesh principle is employed to
determine the MAE at the nodal points, which is given by:

En = mazo<m<n|SN(Vm) — Sn(vam)|.  (50)

Further, the RCGT is determined using the following
formula:

In(En/E
RCOGT = w (51)
In2
Example 1: Consider the following SPDDE:
—ey" (v) + (16 + v)¢" (v) — P(v) — 3¢ (v — 1) = v,

v e QF,
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TABLE 11
MAE FOR EXAMPLE | WITH DIFFERENT VALUES OF €
€ N =32 N =64 N =128 N = 256 N =512 N =1024
2—T 3.5834E-03 | 7.2699E-04 | 1.7327E-04 | 4.2813E-05 | 1.0671E-05 | 2.6670E-06
2—2 8.3757E-03 | 1.1920E-03 | 2.6661E-04 | 6.4907E-05 | 1.6120E-05 | 4.0231E-06
23 3.3202E-02 | 1.8067E-03 | 3.6664E-04 | 8.7387E-05 | 2.1593E-05 | 5.3816E-06
2—4 6.4733E-02 | 2.4934E-03 | 4.5345E-04 | 1.0574E-04 | 2.5994E-05 | 6.4708E-06
25 2.7639E-02 | 3.1153E-03 | 5.1564E-04 | 1.1820E-04 | 2.9439E-05 | 7.1972E-06
2—6 2.2141E-02 | 3.5744E-03 | 5.5414E-04 | 1.2563E-04 | 3.0679E-05 | 7.6253E-06
27 2.0366E-02 | 3.8637E-03 | 5.7581E-04 | 1.2971E-04 | 3.1629E-05 | 7.8584E-06
2-8 1.9650E-02 | 4.0280E-03 | 5.8734E-04 | 1.3185E-04 | 3.2127E-05 | 7.9810E-06
29 1.9329E-02 | 4.1159E-03 | 5.9330E-04 | 1.3295E-04 | 3.2382E-05 | 8.0436E-06
2-10 | 1.9177E-02 | 4.1614E-03 | 5.9632E-04 | 1.3351E-04 | 3.2512E-05 | 8.0752E-06
211 1.9103E-02 | 4.1846E-03 | 5.9785E-04 | 1.3379E-04 | 3.2576E-05 | 8.0906E-06
212 1.9067E-02 | 4.1962E-03 | 5.9861E-04 | 1.3393E-04 | 3.2608E-05 | 8.0990E-06
2-16 1.9033E-02 | 4.2073E-03 | 5.9933E-04 | 1.3406E-04 | 3.2639E-05 | 8.1064E-06
2720 | 1.9031E-02 | 4.2079E-03 | 5.9938E-04 | 1.3407E-04 | 3.2641E-05 | 8.1068E-06
2—24 | 1.9031E-02 | 4.2080E-03 | 5.9938E-04 | 1.3407E-04 | 3.2641E-05 | 8.1069E-06
TABLE III
RCGT FOR EXAMPLE 1
€ N =32 N =64 N =128 N = 256 N =512
2~ 1T 2.0689E+00 | 2.0169E+00 | 2.0043E+00 | 2.0005E+00 | 2.0005E+00
22 2.1606E+00 | 2.0383E+00 | 2.0095E+00 | 2.0025E+00 | 2.0025E+00
23 2.3009E+00 | 2.0689E+00 | 2.0169E+00 | 2.0044E+00 | 2.0044E+00
24 2.4591E+00 | 2.1004E+00 | 2.0244E+00 | 2.0061E+00 | 2.0061E+00
25 2.5949E+00 | 2.1251E+00 | 2.0301E+00 | 2.0075E+00 | 2.0075E+00
26 2.6894E+00 | 2.1411E+00 | 2.0338E+00 | 2.0084E+00 | 2.0084E+00
27 2.7463E+00 | 2.1503E+00 | 2.0359E+00 | 2.0090E+00 | 2.0090E+00
28 2.7778E+00 | 2.1553E+00 | 2.0371E+00 | 2.0091E+00 | 2.0091E+00
29 2.7944E+00 | 2.1578E+00 | 2.0377E+00 | 2.0093E+00 | 2.0093E+00
2710 | 2.8029E+00 | 2.1591E+00 | 2.0380E+00 | 2.0093E+00 | 2.0093E+00
2—11 | 2.8072E+00 | 2.1598E+00 | 2.0381E+00 | 2.0095E+00 | 2.0095E+00
2712 | 2.8094E+00 | 2.1601E+00 | 2.0382E+00 | 2.0094E+00 | 2.0094E+00
2-16 | 28114E+00 | 2.1604E+00 | 2.0383E+00 | 2.0095E+00 | 2.0095E+00
2720 | 28116E+00 | 2.1605E+00 | 2.0383E+00 | 2.0095E+00 | 2.0095E+00
2724 | 28116E+00 | 2.1605E+00 | 2.0383E+00 | 2.0094E+00 | 2.0094E+00
TABLE IV
COMPARISON OF UNIFORM MAE FOR EXAMPLE 1
N =32 N =64 N =128 N = 256 N =512 N =1024
QRBSM 1.9031E-02 | 4.2080E-03 | 5.9938E-04 | 1.3407E-04 | 3.2641E-05 | 8.1069E-06
Method in [15] | 2.6596E-02 | 1.2806E-02 | 6.3131E-03 | 3.1369E-03 | 1.5637E-03 | 7.8070E-04
3
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Numerical solution of Example 1 for N = 10, and different values

with the boundary conditions:
Y)=2+v,ve[-1,0],¢¥'(2) = 2.

Example 2: Consider the following SPDDE:
—ey)"(v) + (12 + )Y (v) + ¢ (v) = (V) =P (v = 1) =

with the boundary conditions:
Yw)=1+v,ve€[-1,0],¢'(2) = 2.

Example 3: Consider the following SPDDE:
—ey"(v) + 169" (v) —P(v) =¥ (v =1) = 0,v € O,
with the boundary conditions:
Y(w)=1+wv,ve[-1,0,¢'(2) =1.

Tables II, V and IX provide the MAE for Examples 1,
2 and 3 respectively. The consistency of the method is
evident as the MAE decreases with an increasing number of
mesh points. It can also be seen that the method provides
a good numerical solution even for small values of N.
Tables III, VI, and X represents the RCGT for Examples
1, 2 and 3 respectively. A uniform rate of convergence is
observed as two for all values of ¢ and N. A comparison
of results with [15] for Examples 1 and 2 are provided in
Tables IV, VII and VIII for the maximum MAE values for
€€ {274,278 ...,2732}; MAE for Example 3 are compared
with the values of MAE in [17] and presented in Table IX.
This comparison highlights the efficiency of the proposed
method. Figures 1, 2 and 3 show the behavior of the solution
for Examples 1, 2 and 3 respectively for different values of
€ and it is seen that the considered problem have a boundary
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TABLE V
MAE FOR EXAMPLE 2
€ N =32 N =64 N =128 N = 256 N =512 N =1024
2—T 3.1557E-03 | 7.1708E-04 | 1.7521E-04 | 4.3554E-05 | 1.0873E-05 | 2.7183E-06
2—2 4.6258E-03 | 9.6951E-04 | 2.3266E-04 | 5.7584E-05 | 1.4360E-05 | 3.5885E-06
23 6.1873E-03 | 1.1862E-03 | 2.7947E-04 | 6.8863E-05 | 1.7154E-05 | 4.2845E-06
2—4 7.5319E-03 | 1.3399E-03 | 3.1116E-04 | 7.6414E-05 | 1.9019E-05 | 4.7501E-06
25 8.4852E-03 | 1.4343E-03 | 3.3002E-04 | 8.0869E-05 | 2.0117E-05 | 5.0227E-06
2—6 9.0698E-03 | 1.4872E-03 | 3.4037E-04 | 8.3302E-05 | 2.0716E-05 | 5.1721E-06
27 9.3965E-03 | 1.5153E-03 | 3.4581E-04 | 8.4577E-05 | 2.1030E-05 | 5.2504E-06
2-8 9.5697E-03 | 1.5298E-03 | 3.4860E-04 | 8.5229E-05 | 2.1190E-05 | 5.2901E-06
29 9.6589E-03 | 1.5372E-03 | 3.5001E-04 | 8.5559E-05 | 2.1271E-05 | 5.3104E-06
2-10 | 9.7042E-03 | 1.5409E-03 | 3.5072E-04 | 8.5725E-05 | 2.1312E-05 | 5.3216E-06
2—11 | 9.7270E-03 | 1.5427E-03 | 3.5107E-04 | 8.5809E-05 | 2.1333E-05 | 5.3259E-06
2—12 | 9.7385E-03 | 1.5437E-03 | 3.5125E-04 | 8.5850E-05 | 2.1343E-05 | 5.3273E-06
216 | 9.7493E-03 | 1.5445E-03 | 3.5142E-04 | 8.5889E-05 | 2.1352E-05 | 5.3305E-06
2720 | 9.7499E-03 | 1.5446E-03 | 3.5143E-04 | 8.5892E-05 | 2.1353E-05 | 5.3299E-06
2—24 | 9.7500E-03 | 1.5446E-03 | 3.5143E-04 | 8.5892E-05 | 2.1353E-05 | 5.3300E-06
TABLE VI
RCGT FOR EXAMPLE 2
e N =32 N =64 N =128 N = 256 N =512
2~ 1T 2.1384E+00 | 2.0332E+00 | 2.0082E+00 | 2.0021E+00 | 2.0014E+00
22 2.2550E+00 | 2.0592E+00 | 2.0145E+00 | 2.0036E+00 | 2.0014E+00
23 2.3836E+00 | 2.0858E+00 | 2.0209E+00 | 2.0052E+00 | 2.0012E+00
24 2.4916E+00 | 2.1065E+00 | 2.0258E+00 | 2.0064E+00 | 2.0019E+00
25 2.5652E+00 | 2.1199E+00 | 2.0289E+00 | 2.0072E+00 | 2.0016E+00
26 2.6091E+00 | 2.1276E+00 | 2.0307E+00 | 2.0076E+00 | 2.0018E+00
27 2.6331E+00 | 2.1318E+00 | 2.0317E+00 | 2.0079E+00 | 2.0020E+00
28 2.6458E+00 | 2.1339E+00 | 2.0322E+00 | 2.0080E+00 | 2.0019E+00
29 2.6522E+00 | 2.1350E+00 | 2.0324E+00 | 2.0081E+00 | 2.0020E+00
2710 | 2.6555E+00 | 2.1355E+00 | 2.0326E+00 | 2.0081E+00 | 2.0025E+00
2—11 | 2.6572E+00 | 2.1358E+00 | 2.0326E+00 | 2.0081E+00 | 2.0021E+00
2-12 2.6580E+00 | 2.1360E+00 | 2.0327E+00 | 2.0081E+00 | 2.0015E+00
216 2.6588E+00 | 2.1361E+00 | 2.0327E+00 | 2.0081E+00 | 2.0019E+00
2720 | 2.6588E+00 | 2.1361E+00 | 2.0327E+00 | 2.0081E+00 | 2.0016E+00
2724 | 2.6588E+00 | 2.1361E+00 | 2.0327E+00 | 2.0081E+00 | 2.0016E+00
TABLE VII
COMPARISON OF UNIFORM MAE FOR EXAMPLE 2
N =64 N =128 N = 256 N =512 N =1024
QRBSM 1.5446E-03 | 3.5143E-04 | 8.5892E-05 | 2.1353E-05 | 5.3300E-06
Method in [15] | 6.7293E-03 | 3.3391E-03 | 1.6750E-03 | 8.4238E-04 | 4.2398E-04
TABLE VIII
COMPARISON OF UNIFORM MAE FOR EXAMPLE 3
N =32 N =64 N =128 N = 256 N =512 N =1024
Quartic B-Spline | 4.4214E-03 7.9221E-04 | 1.8424E-04 | 4.5258E-05 | 1.1265E-05 | 2.8140E-06
Method in [15] 1.2232E+00 | 3.4213E+00 | 7.8455E-01 | 3.8738E-O1 | 1.9251E-O1 | 9.5967E-02

layer on the right side of the domain.

VI. CONCLUSION

This paper presents QRBSM for third-order SPDDEs with
a large delay. The method is directly applied to the third-
order SPDDEs without reducing it to lower-order BVPs to
preserve the original problem structure.

The proposed approach is applied to three numerical ex-
amples, and the obtained results demonstrate high accuracy.
The effectiveness of the QRBSM is evaluated through a
comparative analysis with existing numerical methods. The
convergence of the method is discussed using truncation
error analysis. The method is uniformly convergent, and
the second-order convergence is verified theoretically and
numerically.

Overall, the QRBSM provides a stable and consistent
solution for third-order SPDDEs. In the future, QRBSM can

be applied to further higher-order SPDEs and SPDDEs, or it
can be combined with a piecewise uniform mesh to enhance
accuracy.

REFERENCES

[1] D. D. Joseph and L. Preziosi, “Heat waves,” 1989.

[2] Q. Liu, X. Wang, and D. De Kee, “Mass transport through swelling
membranes,” International Journal of Engineering Science, vol. 43,
no. 19-20, pp. 1464-1470, 2005.

C. T. Baker, G. A. Bocharov, and F. A. Rihan, A report on the use of
delay differential equations in numerical modelling in the biosciences.
Citeseer, 1999, vol. 343.

S. Padhi and S. Pati, Theory of third-order differential equations.
Springer, 2014.

F. A. Howes, “The asymptotic solution of a class of third-order
boundary value problems arising in the theory of thin film flows,”
SIAM Journal on Applied Mathematics, vol. 43, no. 5, pp. 993-1004,
1983.

B. Cahlon and D. Schmidt, “Asymptotic stability of a mechanical
robotics model with damping and delay,” Journal of Mathematical
Analysis and Applications, vol. 303, no. 1, pp. 36-53, 2005.

[3]

[4]
[5]

[6]

Volume 55, Issue 11, November 2025, Pages 3901-3909



TAENG International Journal of Applied Mathematics

TABLE IX
COMPARISON OF MAE FOR EXAMPLE 3 FOR DIFFERENT VALUES € AND GRID SIZES N.

€ N =32 N =64 N =128 N =256 N =512 N = 1024
94 QRBSM 4.4214E-03 | 7.9221E-04 | 1.8424E-04 | 4.5259E-05 | 1.1266E-05 | 2.8140E-06
Method in [17] | 1.9004E-02 | 8.9587E-03 | 4.4032E-03 | 2.1906E-03 | 1.0943E-03 | 5.4757E-04

95 QRBSM 4.9783E-03 | 8.4826E-04 | 1.9547E-04 | 4.7915E-05 | 1.1920E-05 | 2.9763E-06
Method in [17] | 1.8997E-02 | 8.9332E-03 | 4.3840E-03 | 2.1781E-03 | 1.0866E-03 | 5.4295E-04

96 QRBSM 5.3192E-03 | 8.7965E-04 | 2.0163E-04 | 4.9365E-05 | 1.2278E-05 | 3.0658E-06
Method in [17] | 1.8995E-02 | 8.9223E-03 | 4.3760E-03 | 2.1730E-03 | 1.0834E-03 | 5.4110E-04

9—7 QRBSM 5.5097E-03 | 8.9631E-04 | 2.0487E-04 | 5.0125E-05 | 1.2465E-05 | 3.1121E-06
Method in [17] | 1.8995E-02 | 8.9174E-03 | 4.3723E-03 | 2.1707E-03 | 1.0821E-03 | 5.4030E-04

98 QRBSM 5.6106E-03 | 9.0490E-04 | 2.0653E-04 | 5.0514E-05 | 1.2560E-05 | 3.1358E-06
Method in [17] | 1.8995E-02 | 8.9151E-03 | 4.3706E-03 | 2.1696E-03 | 1.0814E-03 | 5.3993E-04

9-9 QRBSM 5.6626E-03 | 9.0927E-04 | 2.0737E-04 | 5.0711E-05 | 1.2609E-05 | 3.1479E-06
Method in [17] | 1.8995E-02 | 8.9139E-03 | 4.3698E-03 | 2.1691E-03 | 1.0811E-03 | 5.3975E-04

9-10 QRBSM 5.6889E-03 | 9.1147E-04 | 2.0779E-04 | 5.0810E-05 | 1.2633E-05 | 3.1539E-06
Method in [17] | 1.8995E-02 | 8.9134E-03 | 4.3694E-03 | 2.1688E-03 | 1.0810E-03 | 5.3967E-04

9-11 QRBSM 5.7022E-03 | 9.1257E-04 | 2.0801E-04 | 5.0859E-05 | 1.2645E-05 | 3.1562E-06
Method in [17] | 1.8995E-02 | 8.9131E-03 | 4.3691E-03 | 2.1687E-03 | 1.0809E-03 | 5.3962E-04

9—12 QRBSM 5.7089E-03 | 9.1312E-04 | 2.0811E-04 | 5.0884E-05 | 1.2651E-05 | 3.1587E-06
Method in [17] | 1.8995E-02 | 8.9130E-03 | 4.3690E-03 | 2.1686E-03 | 1.0808E-03 | 5.3960E-04

9—13 QRBSM 5.7123E-03 | 9.1340E-04 | 2.0816E-04 | 5.0897E-05 | 1.2654E-05 | 3.1599E-06
Method in [17] | 1.8995E-02 | 8.9129E-03 | 4.3690E-03 | 2.1686E-03 | 1.0808E-03 | 5.3959E-04

9-14 QRBSM 5.7139E-03 | 9.1354E-04 | 2.0819E-04 | 5.0903E-05 | 1.2656E-05 | 3.1593E-06
Method in [17] | 1.8995E-02 | 8.9129E-03 | 4.3690E-03 | 2.1686E-03 | 1.0808E-03 | 5.3959E-04

9—15 QRBSM 5.7148E-03 | 9.1361E-04 | 2.0820E-04 | 5.0906E-05 | 1.2657E-05 | 3.1594E-06
Method in [17] | 1.8995E-02 | 8.9128E-03 | 4.3690E-03 | 2.1686E-03 | 1.0808E-03 | 5.3958E-04

9-16 QRBSM 5.7152E-03 | 9.1364E-04 | 2.0821E-04 | 5.0907E-05 | 1.2657E-05 | 3.1600E-06
Method in [17] | 1.8995E-02 | 8.9128E-03 | 4.3689E-03 | 2.1686E-03 | 1.0808E-03 | 5.3958E-04

9-23 QRBSM 5.7156E-03 | 9.1368E-04 | 2.0822E-04 | 5.0909E-05 | 1.2657E-05 | 3.1604E-06
Method in [17] | 1.8995E-02 | 8.9128E-03 | 4.3689E-03 | 2.1686E-03 | 1.0808E-03 | 5.3958E-04

TABLE X
RCGT FOR EXAMPLE 3

€ N =32 N = 64 N =128 N = 256 N =512
2- 2.4806E+00 | 2.1043E+00 | 2.0253E+00 | 2.0063E+00 | 2.0012E+00
2-8 2.6323E+00 | 2.1315E+00 | 2.0317E+00 | 2.0077E+00 | 2.0020E+00
2712 | 2.6444E+00 | 2.1334E+00 | 2.0321E+00 | 2.0079E+00 | 2.0019E+00
2716 | 2.6451E+00 | 2.1336E+00 | 2.0321E+00 | 2.0080E+00 | 2.0019E+00
2720 | 2.6452E+00 | 2.1336E+00 | 2.0321E+00 | 2.0079E+00 | 2.0019E+00
2724 | 2.6452E+00 | 2.1336E+00 | 2.0321E+00 | 2.0079E+00 | 2.0019E+00

- T T 1 1.8
e=102
L} =104 1.7 iz "il
6= : i
3 — = 0% 1 * = 3
voren = o8

1.6

251 g 1.5
c oy
o 2
= =

= S 14
] 5]
(92} 2t | w

1.3

1.2

15} ]
1.1
1 ' ] ; 1
0 0.5 1 1:5 2 0 0.5 1 1.5 2

Fig. 2. Numerical solution of Example 2 for /N = 20, and different values ~ Fig. 3. Numerical solution of Example 3 for N = 20, and different values
of e. of €.

Volume 55, Issue 11, November 2025, Pages 3901-3909



TAENG International Journal of Applied Mathematics

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

C. Tunc, “On the boundedness of solutions of delay differential equa-
tions of third order,” Arabian Journal for Science and Engineering,
vol. 34, no. 1, p. 227, 2009.

H. Yao and W. Meng, “On the stability of solutions of certain non-
linear third-order delay differential equations,” International Journal
of Nonlinear Science, vol. 6, no. 3, pp. 230-237, 2008.

H. Yao and J. Wang, “Globally asymptotic stability of a kind of third
order delay differential system,” International Journal of Nonlinear
Science, vol. 10, no. 1, pp. 82-87, 2010.

S. Valarmathi and N. Ramanujam, “An asymptotic numerical fitted
mesh method for singularly perturbed third order ordinary differen-
tial equations of reaction—diffusion type,” Applied Mathematics and
Computation, vol. 132, no. 1, pp. 87-104, 2002.

J. C. Roja and A. Tamilselvan, “Numerical method for singularly per-
turbed third order ordinary differential equations of reaction-diffusion
type,” Journal of Applied Mathematics & Informatics, vol. 35, no. 3_4,
pp. 277-302, 2017.

D. Shakti and J. Mohapatra, “Uniformly convergent second order
numerical method for a class of parameterized singular perturbation
problems,” Differential Equations and Dynamical Systems, vol. 28, pp.
1033-1043, 2020.

N. Geetha, A. Tamilselvan, and V. Subburayan, “Parameter uniform
numerical method for third order singularly perturbed turning point
problems exhibiting boundary layers,” International Journal of Applied
and Computational Mathematics, vol. 2, pp. 349-364, 2016.

V. Subburayan and R. Mahendran, “Asymptotic computational method
for singularly perturbed third order reaction diffusion type differential
equation with delay,” in AIP Conference Proceedings, vol. 2112, no. 1.
AIP Publishing, 2019.

R. Mahendran and V. Subburayan, “Fitted finite difference method
for third order singularly perturbed delay differential equations of
convection diffusion type,” International Journal of Computational
Methods, vol. 16, no. 05, 2019.

E. Sekar and A. Tamilselvan, “Finite difference scheme for third
order singularly perturbed delay differential equation of convection
diffusion type with integral boundary condition,” Journal of Applied
Mathematics and Computing, vol. 61, pp. 73-86, 2019.

V. Subburayan and R. Mahendran, “Asymptotic numerical method for
third-order singularly perturbed convection diffusion delay differential
equations,” Computational and Applied Mathematics, vol. 39, no. 3,
p. 194, 2020.

M. K. Vaid and G. Arora, “Quintic b-spline technique for numerical
treatment of third order singular perturbed delay differential equation,”
International Journal of Mathematical, Engineering and Management
Sciences, vol. 4, no. 6, pp. 1471-1482, 2019.

0. Ersoy Hepson, “A quartic trigonometric tension b-spline algorithm
for nonlinear partial differential equation system,” Engineering Com-
putations, vol. 38, no. 5, pp. 2293-2311, 2021.

R. C. Mittal, S. Kumar, and R. Jiwari, “A cubic b-spline quasi-
interpolation method for solving two-dimensional unsteady advection
diffusion equations,” International Journal of Numerical Methods for
Heat & Fluid Flow, vol. 30, no. 9, pp. 4281-4306, 2020.

L. Govindarao and E. Sekar, “B-spline method for second order
rlc closed series circuit with small inductance value,” in Journal of
Physics: Conference Series, vol. 2646, no. 1. IOP Publishing, 2023,
p. 0120309.

P. Roul and T. Kumari, “High-order numerical schemes based on b-
spline for solving a time-fractional fokker—planck equation,” Journal
of Computational and Applied Mathematics, vol. 460, p. 116386, 2025.
M. K. Kadalbajoo and P. Arora, “B-spline collocation method for the
singular-perturbation problem using artificial viscosity,” Computers &
Mathematics with Applications, vol. 57, no. 4, pp. 650-663, 2009.

T. Aziz and A. Khan, “A spline method for second-order singularly
perturbed boundary-value problems,” Journal of Computational and
Applied Mathematics, vol. 147, no. 2, pp. 445452, 2002.

R. K. Lodhi and H. K. Mishra, “Quintic b-spline method for solving
second order linear and nonlinear singularly perturbed two-point
boundary value problems,” Journal of Computational and Applied
Mathematics, vol. 319, pp. 170-187, 2017.

S. Mane and R. K. Lodhi, “Cubic b-spline technique for numerical
solution of singularly perturbed convection-diffusion equations with
discontinuous source term,” IAENG International Journal of Computer
Science, vol. 50, no. 2, pp. 402-407, 2023.

D. Kumar, “A collocation method for singularly perturbed differential-
difference turning point problems exhibiting boundary/interior layers,”
Journal of Difference Equations and Applications, vol. 24, no. 12, pp.
1847-1870, 2018.

A. R. Kanth and P. M. M. Kumar, “Computational results and analysis
for a class of linear and nonlinear singularly perturbed convection
delay problems on shishkin mesh,” Hacettepe Journal of Mathematics
and Statistics, vol. 49, no. 1, pp. 221-235, 2020.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

W. S. Hailu and G. F. Duressa, “Parameter-uniform cubic spline
method for singularly perturbed parabolic differential equation with
large negative shift and integral boundary condition,” Research in
Mathematics, vol. 9, no. 1, p. 2151080, 2022.

S. Malge and R. K. Lodhi, “Quartic b-spline method for non-linear
second order singularly perturbed delay differential equations,” In-
ternational Journal of Mathematical, Engineering and Management
Sciences, vol. 9, no. 3, p. 685, 2024.

K. Thula and P. Roul, “A high-order b-spline collocation method for
solving nonlinear singular boundary value problems arising in engi-
neering and applied science,” Mediterranean Journal of Mathematics,
vol. 15, pp. 1-24, 2018.

P. Roul, K. Thula, and V. P. Goura, “An optimal sixth-order quartic b-
spline collocation method for solving bratu-type and lane-emden—type
problems,” Mathematical Methods in the Applied Sciences, vol. 42,
no. 8, pp. 2613-2630, 2019.

S. S. Siddiqi, G. Akram, and A. Elahi, “Quartic spline solution of
linear fifth order boundary value problems,” Applied Mathematics and
Computation, vol. 196, no. 1, pp. 214-220, 2008.

M. P. Alam, T. Begum, and A. Khan, “A new spline algorithm
for solving non-isothermal reaction diffusion model equations in a
spherical catalyst and spherical biocatalyst,” Chemical Physics Letters,
vol. 754, p. 137651, 2020.

M. Kapoor, “Cubic and quartic hyperbolic b-splines comparison for
coupled navier stokes equation via differential quadrature method-a
statistical aspect,” Computers & Mathematics with Applications, vol.
171, pp. 6-33, 2024.

J. L. Henderson, Boundary value problems for functional differential
equations. World scientific, 1995.
S. Malge and R. K. Lodhi, “Quartic b-spline method for non-linear

second order singularly perturbed delay differential equations,” In-
ternational Journal of Mathematical, Engineering and Management
Sciences, vol. 9, no. 3, pp. 685-696, 2024.

D. J. Fyfe, “Linear dependence relations connecting equal interval
nth degree splines and their derivatives,” IMA Journal on Applied
Mathematics, vol. 7, no. 3, pp. 398406, 1971.

Volume 55, Issue 11, November 2025, Pages 3901-3909





