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Abstract—Detecting surface-floating objects is critical for
applications like autonomous ship navigation and river
sanitation. However, current methodologies have significant
shortcomings in recall rate and detection precision due to the
small size of floating objects and complex environmental
interferences such as water surface oscillations and light
variations. This study presents an enhanced model, YOLO-MC,
derived from YOLOV11, to address these issues. To enhance the
feature representation capability of the network model for
small targets, a multiscale attention wavelet transform
convolution (MSWTC) architecture is devised, and the C3k2
module is refined in the neck region. This structure enhances
the feature extraction capability of small floating objects on the
water surface, resulting in a significant increase in detection
accuracy. A coordinate edge attention module (CEAM) is added
before the detection head to increase the representation of edge
information. Despite minor improvements in accuracy, it
greatly improves recall rate and successfully augments the
model's capacity to distinguish difficult targets. Experimental
results indicate that the optimized model's recall rate R has
grown by 2.1%, mAP@0.5 has increased by 2.3%, and
mAP@0.5:0.95 has improved by 0.4%.

Index Terms—Detection of floating objects; minor targets;
extraction of features; edge data

1. INTRODUCTION

ITH rapid economic development and increased

human activity, the problem of river water pollution is
getting more serious, and floating waste on the water's
surface has emerged as a major concealed threat to the natural
environment and maritime safety. Traditional manual
salvaging is inefficient, dangerous, and understaffed, making
it difficult to satisfy actual needs. Recent breakthroughs in
deep learning technology have made it possible to detect and

Manuscript received May 23, 2025; revised August 30, 2025.

This work was supported in part by Jiangxi Provincial Natural Science
Foundation(20252BAC240112).

Zhaoming Wu is an associate professor at the School of Information
Engineering, Jiangxi University of Water Resources and Electric Power,
Nanchang 330099, Jiangxi, China (e-mail: zmwunit@foxmail.com).

Mengjun An is a postgraduate student at the School of Information
Engineering, Jiangxi University of Water Resources and Electric Power,
Nanchang 330099, Jiangxi, China (e-mail: anmengjun1025@]163.com).

Chengzhi Deng is a professor at the School of Information Engineering,
Jiangxi University of Water Resources and Electric Power, Nanchang
330099, Jiangxi, China (corresponding author, e-mail: dengcz@nit.edu.cn).

Xiaowei Sun is a lecturer at the School of Information Engineering,
Jiangxi University of Water Resources and Electric Power, Nanchang
330099, Jiangxi, China (e-mail: 304652253 @qq.com).

Chenguang Xu is a lecturer at the School of Information Engineering,
Jiangxi University of Water Resources and Electric Power, Nanchang
330099, Jiangxi, China (e-mail: xcg@nit.edu.cn).

clear surface trash automatically. Rapid identification and
processing of floating items on the water's surface is possible
because of multi-sensor fusion and fast target detection
algorithms. However, due to the features of tiny target size,
frequent fluctuations, and high reflections in water scene
scenarios, existing detection algorithms frequently have
issues with missed detection and false detection, making it
difficult to adapt to the diversity of the natural environment.
As a result, developing a small target detection model
capable of detecting floating items on the water's surface has
emerged as a critical technical challenge in environmental
monitoring and water management.

Object detection is a key component of computer vision,
and deep learning has accelerated progress in this area. The
current dominant methods are classified into two types:
CNN-based[1] and transformer-based[2].Transformer
methods (such as RT-DETR[3], Deformable DETR[4], and
Dynamic DETRJ[5]) use the self-attention mechanism to
improve feature modeling capabilities and adapt to complex
scenes, whereas CNN-based methods are classified into
two-stage (such as R-CNN, Fast R-CNN, and Faster
R-CNNJ6]) and single-stage (such as SSD[7] and the YOLO
series[8,9]) architectures. The two-stage method is more
accurate but more computationally expensive, whereas the
single-stage method has a lighter structure and is better suited
to real-time detection. Nonetheless, in specific application
scenarios such as surface rubbish identification, items are
small and easily disturbed, and single-stage algorithms
frequently struggle to attain optimal accuracy, whilst
two-stage algorithms have large computational costs due to
sophisticated processing procedures. Although Transformer
can capture long-distance dependencies, its computing
expense limits its usefulness. To meet the objectives of
surface waste identification, it is very important to choose
and refine appropriate detection algorithms in certain
settings.

Because water surface variations, illumination changes,
and reflections frequently produce spurious objects, resulting
in misidentification and lower detection accuracy, this article
introduces the C3k2MSWTC module in the neck structure
based on YOLOVI11. This module uses a multiscale wavelet
transform to decompose the input signal into various
frequency bands and scales. It not only captures the diverse
characteristics of low-frequency long waves and
high-frequency rapid disturbances in water surface
fluctuations, but it also has excellent edge detection
capabilities, allowing the model to more precisely perceive
hidden small target features and improve fine-grained target
detection performance. Furthermore, the CEAM introduced
in front of the detection head combines coordinate attention
and edge enhancement mechanisms, effectively enhancing
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the expression of target contours and local structural features,
as well as improving the model's accuracy in identifying
small targets, reflective blurred targets, and targets obscured
by water waves. Overall, the addition of the aforesaid
modules considerably improves the model's detection
performance in complicated water surface situations.

The contributions of this work can be summarized in the
following ways:

(1) To optimize C3k2, a multiscale attention wavelet
transform convolution module (MSWTC) was developed,
allowing the model to more sensitively capture information
about small targets hidden in water surface fluctuations
without significantly increasing the number of parameters,
thereby improving small target recognition accuracy.

(2) At the same time, the CEAM module inserted before
the detection head improves the model's ability to describe
local features of small target edges, resulting in improved
detection performance for drifting small objects.

(3) Experiments reveal that YOLO-MC has higher recall
and detection accuracy on the public FloW-IMG and
WSODD datasets.

II. RELATED WORK

A. Small object detection

The fundamental issue of small object recognition is that
its pixel fraction in the image is tiny[10], and the discriminant
information that can be employed to identify targets is
restricted. To solve the problems of insufficient feature
extraction and low precision in small object detection, Xiao
et al.[11] proposed a feature enhancement method, including
refining the backbone network, increasing the number of
small target queries, and optimizing the loss function to
improve the performance of small object detection, and
further improved the perception of small targets through
hollow convolution and recursive prediction modules; to
solve the problem of lack of semantic information in
low-level networks in small object detection, Song et al.[12]
proposed a small target detection algorithm based on
multiscale feature fusion, which improved the detection
performance by fusing shallow and deep features. In addition,
a detector MSFYOLO based on a multiscale deep feature
learning network was built, which combined global and local
information and optimized the detection effect using a feature
pyramid. At the same time, a novel feature extraction
network, CourNet, was suggested, which can better represent
the feature information of small objects. To tackle the
limitations of small objects in complex background detection,
Zhao et al.[13] proposed a highly efficient algorithm. The
cross-scale feature fusion attention module (ECFA) employs
the attention mechanism to effectively suppress noise and
strengthen relevant features, thereby addressing feature
redundancy and insufficient representation of small targets.
SEConv, an efficient convolution module, aims to reduce
computational redundancy and improve multiscale feature
learning. Furthermore, a dynamic focus sample weighting
function, DFSLoss, is provided to successfully address the
issue of sample difficulty imbalance, and Wise-IoU is

introduced to mitigate the influence of low-quality examples
on model convergence. Deng et al.[14] proposed an extended
feature pyramid network (EFPN), which introduces an
ultra-high-resolution pyramid level specifically for small
object detection, designs a feature texture transfer (FTT)
module for super-resolution feature extraction and retains
regional details, and adopts a cross-resolution distillation
mechanism to transfer detailed information.

B. Floating object detection

Previous research on surface floating object identification
has made substantial progress. Chen et al.[15] suggested a
more advanced YOLOVS model for real-time detection of
small surface floating objects. The model significantly
improved the detection effect of small objects by more
effectively fusing shallow and deep features and alleviating
the problem of missed detection; Shi et al.[16] proposed a
surface floating object detection algorithm based on
CDW-YOLOV8, which improved the C2f module (C2f-CA)
by introducing a coordinate attention mechanism, replaced
the Upsample with the DySample module, and added a small
object detection layer to improve the perception of small
floating debris; at the same time, the Focaler-WloUv3 loss
function was used for optimizing the positioning accuracy
and reduce the impact of low-quality anchor frames; Chen et
al.[17] proposed a detection and tracking method based on
spatiotemporal information fusion, improved the SSD
network by enhancing the high-resolution layer to adapt to
small target detection, and introduced the fast directional
gradient histogram (FHOG) and pyramid scale estimation to
improve KCF tracker, and combined the detection and
tracking results for spatiotemporal fusion, which effectively
solved the problem of difficult detection of small floating
objects in complex water surface environments; Zhang et
al.[18] proposed a real-time water garbage detection model
based on RefineDet. They upgraded the anchor refinement
module, collected more detailed semantic information, and
increased the model's detection accuracy. In addition, they
introduced the focal loss function and tweaked its parameters
to boost the model's detection performance.

III. YOLO-MC NETWORK MODEL

A. Introduction to YOLO-MC

The overall structure of the YOLO-MC algorithm is shown
in Figure 1. Based on the overall architecture of YOLOwv1In,
the algorithm designs the MSWTC module to optimize the
C3k2 structure of the neck; in addition, we design CEAM in
front of the detection head so that the detection head can
focus more on small target floating objects. Through the
above improvements, the YOLO-MC algorithm achieves a
balance between performance and efficiency between
computational complexity, number of parameters, and
computational efficiency, thereby ensuring that it can provide
high-performance detection capabilities when deployed on
edge devices for small target floating objects[19,20] on the
water surface.
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Fig. 1. YOLO-MC model. When C3k is False, the C3k2 module acts as a traditional C2f module and contains a conventional bottleneck structure; when C3k

is True, the bottleneck module will be replaced by a more efficient C3 module.
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Fig. 2. MSWTC module

B. MSWTC

For solving feature interference induced by water surface
fluctuations and lighting variations in the detection of small
floating objects on the water surface, this study presents a
new module based on multiscale attention wavelet transform
convolution (MSWTC), as illustrated in Figure 2. The
original architecture of this module was based on the Wavelet
Transform Convolution (WTC) structure described by Finder
et al.[21]. Its main idea is to employ the wavelet transform to
broaden the receptive field[22] of a convolutional neural
network (CNN) without considerably altering model
parameters. Traditionally, large-size convolution kernels

X AvgPool Y AvgPool 3x3 Conv

Concat+Conv

Sigmoid

GroupNorm

Avg Pool

Avg Pool

Matmul
Matmul

Sigmoid

Output

have been utilized to broaden the receptive field, increasing
both the number of parameters and the computational
complexity. The MSWTC module divides the input signal
into various frequency bands using cascading layers of
wavelet transforms, extracting low-frequency and
high-frequency information at different scales. Specifically,
the low-frequency section keeps the general contour and
global structural information and is stable to brightness
variations produced by illumination changes, whereas the
high-frequency part can capture local detail changes caused
by water surface oscillations. Although these high-frequency
signals are easily disturbed by noise, independent
convolution processing[23] allows them to better restore the
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target's edge information. Following decomposition, the
characteristics of each frequency band are processed using a
separate convolution technique. This approach can include
adaptive filters for various frequency domain variables,
increasing the accuracy of information extraction. This
method of layer-by-layer augmenting local features and
global structures using a succession of modest convolution
kernel operations enables the network to record subtle feature
changes while retaining general context information,
effectively widening the network's receptive field.

MSWTC also introduces a multiscale attention method to
account for the varying significance of characteristics at
different scales[24] to the detection job in real-world water
scenes. This mechanism can dynamically allocate attention
weights based on the feature responses extracted from each
frequency band, allowing the network to adapt to changes in
illumination or water surface, focusing on scale features[25]
that are more discriminative for detecting small target
drifting objects[26]. Specifically, features at key scales
typically hold more stable structural information, whereas
other scales may be influenced by external noise. Dynamic
weighting not only reduces noise interference but also
optimizes the overall feature representation.

In the previous content, we introduced the basic principles
and advantages of the MSWTC module. Next, we will use
formulas to explain in detail the working mechanism of the
module and how to optimize signal processing to improve the
accuracy of small target floating object detection. For a given
two-dimensional image X, a one-dimensional transformation
is applied to the two spatial dimensions (width and height) of
the image to obtain outputs in four different frequency bands:
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Among them, f,, is a low-frequency filter to preserve the

overall structure, f,, , f, and f, are horizontal

high-frequency filters to capture horizontal edges, vertical
high-frequency filters to capture vertical edges, and diagonal
high-frequency filters to capture corner details.

Convolving the input image x with these filter's results in
four output channels:
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Among them, x,, is the low-frequency part, and the other

three are high-frequency components, corresponding to the
high-frequency information of horizontal, vertical and
diagonal lines respectively.

To capture a wider range of contextual information, the
cascaded wavelet decomposition is performed by recursively
performing wavelet transform on the low-frequency
components. The decomposition result of each layer contains
low-frequency and high-frequency components, gradually
reducing the spatial resolution and increasing the frequency
resolution:

X(/') X(i) X

LL>“YLH > HL’X[(;[){ :WT(XZiL_])) (3)
Where x© = x is the original input, and I represents the

current wavelet decomposition level.

The cascaded wavelet transform is further combined with
the small convolution kernel to recursively process the
low-frequency part of each layer. The convolution process of
each layer is as follows:

X0, X0 WO
Oy _ O (y() 3O “4)
Y, Y, =Conv(W™ (X}, X))
Where x@ represents all high-frequency components of

the i layer.

Then, the results of different frequency levels are
combined by inverse wavelet transform:

Z0 =T (Y +Z"" Y (5)

Among them, z" is the aggregated output of all
convolution results starting from the i layer.

After the wavelet transform convolution, the attention
mechanism is introduced to weight the features of different
scales. The goal of the attention mechanism is to dynamically
adjust the weights of the features of each scale according to
their relevance to the current task. The attention weight
a,(a) is calculated by the feature z¢ of each scale « . The
weight can be calculated by the following attention
mechanism:

f;;z: GAP(Z((;))'VV(M

exp(f,,) (6)

> ep(f)

Among them, f, is the correlation score of the scale

aatt (a) =

feature calculated in some way, GAP is the global average
pooling, w_ is the learnable weight matrix, and «,(a)

reflects the importance of each scale feature in the current
task.

After calculating the attention weight of each scale, we
weight the multiscale features obtained by wavelet transform
convolution. The weighted feature X, of each scale can be

expressed as:
x0=a,()Z; (N
Where z© is the signal feature at a certain scale o
obtained by wavelet transform convolution, and ¢, (a) is the

weighting coefficient calculated by the attention mechanism.
Finally, the weighted multiscale features are fused to
obtain the final output feature %(r), which can be expressed

as:

Hn)=2%,(0) ®)

Combining the above parts, the overall formula of the
MSWTC module can be expressed as:

X0 =D o, (ay INT(Y )+ 2", YY) 9)

From the perspective of signal processing, the improved
C3k2MSWTC  module  effectively  improves  the
signal-to-noise ratio through adaptive spectrum control[27],
which significantly enhances the signal characteristics of
small targets under complex water surface conditions. The
C3k2MSWTC module implements fine filtering on each
frequency component, effectively suppressing non-ideal
responses in water surface fluctuations and false signals
caused by reflections, while retaining and enhancing the
spectral characteristics of key signals. Therefore, the entire
model shows excellent robustness and adaptability when

Volume 55, Issue 11, November 2025, Pages 3910-3922



TAENG International Journal of Applied Mathematics

processing subtle signal changes in a spatial dynamic water
surface environment, providing a solid foundation for image
signal extraction for the detection of small floating objects on
the water surface.

C. CEAM

To improve the model's perception of small target edge
information[28], this article offers a coordinate edge
attention module (CEAM)), as illustrated in Figure 3, which is
embedded at the front of the detection head to improve
responsiveness to fine-grained features. This module
combines the coordinate attention mechanism[29] with the
edge enhancement technique and is divided into three parts:
First, edge features are extracted using a learnable deep
separable convolution[30], which is then spliced with the
original feature map in the channel dimension to add spatial
semantic information. Following that, a direction-sensitive
pooling operation (in the horizontal and vertical directions) is
employed to extract contextual features in the spatial
dimension, and feature compression and nonlinear
augmentation are achieved using lightweight convolution[31]
and activation functions. The channel attention branch
generates channel weights using global average pooling and
convolution to alter the relevance of distinct channels, while
the spatial attention branch combines average pooling and
maximum pooling to direct the model's attention to crucial
spatial positions. Finally, the fused channel and spatial
attention weights work on the input characteristics to
significantly improve the edge area.

Let the input feature map be X eRYV“"" , where N
represents the batch size, C represents the number of
channels, and H and W represent the height and width
respectively. First, define an edge extraction operator £()

(composed of depthwise separable convolution, batch
normalization, and ReLU activation) to perform edge
enhancement on the input X:

E=E(X)e RV (10)

To fully integrate the fine-grained edge features extracted
by the edge detector with the original semantic features, the
two are spliced in the channel dimension to form an enhanced
feature map containing rich spatial edge information and
semantic information:

X 4 = Concat(X,E) € R (11)

Subsequently, in order to capture the directional
information of features in different spatial dimensions, the
enhanced feature map x_,  is adaptively averaged pooled in

the horizontal and vertical directions, thereby extracting
global context information in the height and width directions:

X =P X RNXZCXHX]
H OOIH( e )e (12)

dge
X, = Pool, (X ) € RNV

To achieve unified modeling of features in spatial
dimensions, x, needs to be transposed in height and width

dimensions to make it consistent with x, in dimensions.

Then the two are concatenated in the height direction, and the
contextual information from the horizontal and wvertical
directions is integrated to construct a unified direction-aware
representation feature map.

Y = Con(Concat(X,,,X,,")) € RV (13)

Where M is the number of intermediate channels, and
nonlinear transformation is achieved here through
convolution, batch normalization and h-swish activation.

Next, in the channel attention branch, global average
pooling (GAP) is applied to the fused feature Y to obtain
global context information in the channel dimension. This
operation compresses the spatial dimension to 1x1 and
generates a global response representation for each channel.
Subsequently, two layers of consecutive 1x1 convolutions
and activation functions are used for performing nonlinear
mapping on the channel features to capture the dependencies
between channels, and the final channel attention weights are
obtained by normalization through the Sigmoid function.

A = Sigmoid(Conv,(ReLU(Conv,(GAP(Y))))) e R (14)

Among them, Conv, and Comy, are 1x1 convolution

operators for dimensionality reduction and dimensionality
increase, respectively, which are used for compressing the
amount of calculation and enhance the nonlinear expression
ability. The attention weight will be used as a channel-level
modulation factor in the subsequent steps to perform
weighted enhancement on the feature map.

In the spatial attention branch, the average and maximum
values of the features x, along the height direction and x

along the width direction are calculated in the channel
dimension to extract the spatial response information from
different statistical perspectives. These two representations
are then concatenated in the channel dimension to form a
fused representation, and the features are integrated through a
7x7 convolution operator to finally obtain the spatial
attention weight.
A4,= Sigmoig’(Conv7x7([Avg(Xh),Max(Xh)])) (15)
A = Sigmoid(Conv, ,([Avg(X ), Max(X )]))
Among them, [.,.] represents concatenation in the channel
dimension, Conv,, is a convolution operation with a
convolution kernel size of 7x7, and Avg() and max(")

represent average pooling and maximum pooling operations
in the channel dimension, respectively. The final output
attention weights 4, and 4, are used to adjust the spatial

response strength along the height and width directions,
respectively.

To further enhance the directional sensitivity of the feature,
after obtaining the channel and spatial attention weights,
independent 1x1 convolutions (respectively denoted as
Conv, and Conv, ) are applied to the directional pooled

features X, and X to adjust their channel expression
capabilities. Subsequently, the convolution transformed

features are weighted fused element by element with the
channel attention weight 4  and the spatial attention weights

4, and 4 to obtain the final directional attention response:
a, = Sigmoid(Conv,(X,) © 4.0 4,) (16)
a,= Sigmoid(Conv, (X )OO A0 A,)
Among them, © represents element-wise multiplication,
and Sigmoid(-) 1s used to normalize the attention response
values in each direction. The above operation effectively
improves the model's responsiveness to key structural areas
by fusing the attention information in the channel and spatial
dimensions, especially when dealing with small targets with
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blurred edges or weakened textures.

Finally, the original input features are weighted using the
attention weights:

Y= X0a0a, (17

CEAM enhances the network's capacity to represent target
boundary information by combining edge enhancement and
direction perception[32]. The module's learnable edge
improvement branch extracts minor structural changes
between the target and the background, improving the
model's responsiveness in edge areas. Furthermore, CEAM
does spatial direction-sensitive modeling, which involves
compressing and fusing information in the horizontal and
vertical directions to properly locate important positions.
This structure is particularly well-suited for identifying small
floating targets[33] with low contrast and weak edges,
boosting feature representation discriminability and model
perception, resulting in increased robustness and flexibility in
complicated water surface situations.

IV. EXPERIMENT

A. Dataset

To completely assess the performance and robustness of
the modified algorithm in the job of tiny surface target
detection, this research used two representative public
datasets: FloW-IMG[34] and WSODDI[35]. The two
complement each other in terms of target quantity, scene
complexity, and environmental diversity, allowing the
algorithm to be verified from many angles.

The FloW-IMG dataset was created by Oka Zhibo. It is the
world's first floating item detection dataset created from the
perspective of an unmanned ship, with an emphasis on

Input

Fig. 3. CEAM module
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rubbish detection jobs in real inland waters. The dataset
consists of 2,000 high-resolution images with 5,271
accurately annotated target instances that cover difficult
scenes such as complex lighting conditions, multi-angle
perspectives, dense interweaving of multiple targets, and
small targets at long distances. These photos accurately
depict the distribution of floating items on the water's surface
in various conditions, laying the groundwork for the
adaptability and effectiveness of detection algorithms in
real-world applications. The WSODD dataset broadens the
test dimension by focusing on detection tasks for a variety of
common tiny items on the water surface. WSODD contains
7,467 images, covering 14 types of typical floating objects on
the water surface, with a total of 21,911 target instances
annotated, indicating a significant increase in data scale and
target type. The dataset includes three types of water settings:
oceans, lakes, and small rivers, as well as a range of weather
conditions such as sunny, cloudy, and foggy days, as well as
three time periods: daytime, nighttime, and twilight, which
considerably increases the environment's richness and
complexity. At the same time, WSODD particularly includes
demanding samples such as poor contrast, weak edges,
severe occlusion, and long-distance tiny objects, offering a
rigorous testing platform for assessing the algorithm's
durability under harsh situations. Figure 4 depicts the
distribution of large, medium, and small objects in the
dataset.

In conclusion, the FloW-IMG and WSODD datasets
complement each other in terms of scale, type, and scene
diversity, providing comprehensive and credible data support
for assessing the detection accuracy and environmental
adaptability of the method suggested in this study.
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Fig. 4. Distribution of large, medium, and small objects in the FloW-IMG and WSODD datasets

Volume 55, Issue 11, November 2025, Pages 3910-3922



TAENG International Journal of Applied Mathematics

B. Experimental parameters and evaluation indicators

This experiment was carried out using the Windows 11
operating system, with the deep learning framework Pytorch
2.4.1 and CUDA 12.4, and the hardware configuration was
NVIDIA RTX 4060. The batch size was set to 16, the model
was trained for 300 cycles, and the data was loaded using 4
threads. The FloW-img and WSODD datasets were split
8:1:1, respectively. Other hyperparameters remained
unchanged and were set to their default values.

To effectively assess the improvement effect, numerous
assessment markers were established, including recall (R)
and mean average precision (mAP), parameters, and
GFLOPs. The computation formula is given below:

R=—"T2 _x100% (18)
TP +FN
N
> Pdr
mAP == x100% (19)
N

Among them, TP represents true positives, FN represents
false negatives, N is the number of categories, P is the

precision, and _‘-01 PdR is the average precision (AP).

C. Ablation experiment

In order to completely test the proposed algorithm's
detection performance and validate the function of each
modified module in increasing model performance, we
performed ablation experiments on the FloW-IMG dataset.
First, we carried out experiments on the C3k2MSWTC
module, as shown in Table 1, to investigate the impacts of the
number of wavelet decomposition layers (wt_levels) and the
attention mechanism hyperparameters (groups). On this basis,
we froze the wavelet filter layers (wt_filter and iwt_filter) to
avoid training these fixed mathematical transformation layers,

reducing the computational cost and allowing us to focus on
other adjustable hyperparameters. Specifically, wt levels
determines the number of wavelet decomposition layers,
which influences the model's capacity to extract features at
various scales. We examined the impact of different
decomposition layers on performance by modifying this
hyperparameter; on the other hand, groups represent the
number of channel groupings, which influences the effect of
the attention mechanism. By changing groups, we adjusted
attention allocation between channels and increased the
model's performance.

TABLE I
C3K2MSWTC ABLATION EXPERIMENT
wt_levels groups mAP@0.5 mAg 9@50'5: Params
1 4 0.870 0.507 2.526M
2 4 0.864 0.506 2.531M
3 4 0.876 0.504 2.536M
1 8 0.881 0.517 2.522M
2 8 0.869 0.499 2.527TM
3 8 0.874 0.512 2.532M
1 16 0.865 0.497 2.521M
2 16 0.870 0.501 2.526M
3 16 0.877 0.501 2.531M
Based on the preliminary trial findings of the

C3k2MSWTC module, we finally chose the optimal
configuration, the performance obtained with wt levels:1,
groups:8. To investigate the effect of the attention module on
the overall network of the C3k2MSWTC module, we carried
out a comparative experiment on the attention module alone,
as shown in Table 2, to determine the particular contribution
of each attention module to model performance.

TABLE II
COMPARATIVE EXPERIMENT OF ATTENTION MECHANISM

Attention R mAP@Q0.5 mAP@0.5:0.95 Params GFLOPs
YOLOvIIn 0.814 0.867 0.507 2.582M 6.3
+CAA 0.780 0.848 0.485 2.767M 6.7
+LIA 0.805 0.873 0.504 2.661M 6.3
+ELA 0.797 0.869 0.503 2.586M 6.3
+CCA 0.780 0.848 0.485 2.76T™ 6.7
+CPCA 0.797 0.871 0.508 2.762M 7.0
+ SEAM 0.810 0.873 0.493 2.686M 6.5
+MSDA 0.806 0.873 0.502 2.928M 6.9
+ SEAttention 0.818 0.874 0.507 2.593M 6.3
+ FCAttention 0.797 0.873 0.499 2.669M 6.4
+ TripletAttention 0.770 0.870 0.506 2.583M 6.4
+ MOCAttention 0.784 0.871 0.505 2.628M 6.3
+ CEAM(our) 0.831 0.873 0.507 2.682M 6.5
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As indicated in Table 2, we carried out an attention
mechanism ablation comparative experiment to better
demonstrate the benefits of the CEAM attention mechanism.
However, there are some disparities in the performance of
various attention modules in crucial variables such as average
precision and recall. It is worth mentioning that, while these
attention mechanism comparison studies enhanced model
performance to some extent, their benefits were not as
significant as the CEAM attention mechanism we presented.
The CEAM mechanism considerably enhanced the model's
average precision and recall rate, as well as its
anti-interference performance and detection stability. These
results from the attention comparison experiments
conclusively demonstrate that the CEAM attention
mechanism is indispensable and critical in improving
detection performance in complex water environments,
particularly when dealing with interference factors such as
water surface fluctuations and reflections.

The results in Tables 1 and 2 provide a detailed
examination of the individual contributions of each enhanced
module to overall detection performance. The experimental
results clearly show that the introduction of a single module
improves detection performance, not only by increasing key
indicators such as recall rate and average precision, but also
by demonstrating the synergistic effect that occurs when
different modules are used together. The experimental results
are presented in Table 3. This series of ablation tests offers an
empirical basis for the optimization design and confirms the
importance of each module in improving the model's capacity
to resist interference and extract important information when
detecting small targets on the surface of water.

When the C3k2MSWTC module is used alone, mAP@0.5
improves by 1.4%, and mAP@0.5:0.95 improves by 1%,
implying that the positioning accuracy and overall accuracy
of the detection frame have improved, but the recall rate R is
reduced by 1.1%, indicating that some real targets are not
detected. This phenomenon indicates that, while improving
detection accuracy and anti-interference ability, the model
may have adopted stricter judgment criteria for some edge or
fuzzy targets, resulting in a degree of missed detection. When
the CEAM module is used alone, the recall rate R improves
by 1.7%, mAP@0.5 improves by 0.6%, and mAP@0.5:0.95
remains constant, indicating that the improved module has
played a positive role in improving the robustness of small
target detection, covering more targets, and improving rough
detection performance, but there is still room for
improvement in high-precision positioning capabilities. The
YOLO-MC structure proposed in this article improves the
recall rate R by 2.1%, mAP@0.5 by 2.3%, and
mAP@0.5:0.95 by 0.4%. Although the number of parameters
increases by 0.04M and the computational complexity by 0.2
GFLOPs, the model maintains excellent real-time detection
performance and improves robustness in complex
environments thanks to efficient module optimization.

D. Visual analysis

To easily demonstrate the difference in detection ability
between YOLOvlln and YOLO-MC, we conducted a
thorough discussion of the experimental data using visual
analysis. Figures 5 and 6 depict the recall rate R and
mAP@0.5 convergence curves obtained during the
YOLO-MC training and verification processes, respectively.
The horizontal axis displays the number of iterations, and the

TABLE III experiment runs for 300 rounds. Observing the validation set
ABLATION EXPERIMENT RESULTS curve of YOLO-MC on the Flow-IMG dataset, it is clear that
mAP@ . c
Model R ngi_@ 0509 Params  GFLOPs YOLO-MC outperforms YOLOv11n in mAP 11‘1d1cat0r's, and
: 5 the recall rate curve converges after 240 iterations, with the
YOLOVI1n 0814  0.867 0.507 2.582M 6.3 recall rate R value of YOLO-MC stabilizing at roughly 83%.
C3k2MSWTC 0.803 0.881 0.517 2.522M 6.3
CEAM 0.831 0.873 0.507 2.682M 6.5
YOLO-MC 0.835 0.890 0.511 2.622M 6.5
10
0.86
0.8 -
0.84
0.6 |-
0.82
E
& 04t 080
0.78
02k
0.76
—— YOLOvlIn 0.74 . L . .
0.0 |- :
- - -YOLO-MC 200 220 240 260 280 300
1 1 1 1 1 1 1
0 50 100 150 200 250 300

epoch
Fig. 5. Recall rate
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Fig. 7. Comparison of heat maps of different algorithms

Furthermore, we depict the detection results as a heat map
to more intuitively highlight how the algorithm described in
this research optimizes target attention throughout the
detection process, as shown in Figure 7. The heat map clearly
shows the algorithm's level of attention to different locations
throughout processing, particularly the recognition and
positioning of significant objects. The heat map visually
represents the model's attention intensity in various areas
through color changes, with blue and green indicating lower
attention or a weaker activation value, and yellow and red
indicating higher attention or a stronger activation value. This
color-level contrast can draw the model's attention to the
target area, effectively measuring the algorithm's detection
ability and accuracy in complex backdrops.

YOLOvI11

YOLO-MC

E. Comparative experiment

To evaluate the efficacy of YOLO-MC in identifying
diminutive drifting objects on intricate horizontal surfaces,
we chose several established and popular target detection
algorithms, including YOLOv5n, YOLOv6n, YOLOvSn,
YOLOV9-tiny, YOLOv1On, YOLOv10s, YOLOvlln,
YOLOvlls, YOLOvI12n, and YOLOVI12s, for comparative
analysis while maintaining a consistent experimental
environment and the FloW-IMG dataset. Table 4 summarizes
the experimental data.
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TABLE IV
COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS
Model R mAP@0.5 mAP@0.5:0.95 Params GFLOPs

YOLOv5n 0.799 0.870 0.506 2.503M 7.1
YOLOv6n 0.828 0.871 0.500 4.234M 11.8
YOLOvS8n 0.826 0.881 0.508 3.006M 8.1
YOLOV9-tiny 0.793 0.870 0.508 1.971IM 7.6
YOLOv10n 0.805 0.868 0.501 2.695M 8.2
YOLOvV10s 0.785 0.883 0.516 8.036M 24.4
YOLOvlIn 0.814 0.867 0.507 2.582M 6.3
YOLOvlls 0.824 0.884 0.528 9.413M 21.3
YOLOvI12n 0.785 0.861 0.488 2.55TM 6.3
YOLOv12s 0.816 0.881 0.513 9.231M 21.2
YOLO-MC(our) 0.835 0.890 0.511 2.622M 6.5

Table 4 shows that, in the detection experiment using the
FloW-IMG small target floating object dataset, the
YOLO-MC algorithm presented in this study achieved a
detection accuracy of 0.890 in the mAP@O0.5 metric,
outperforming many prominent comparative algorithms.In
the recall rate R comparison, YOLO-MC outperformed the
other ten models tested, with a significantly lower missed
detection rate, proving its robustness and efficacy in small
target identification tasks. While YOLOv10s, YOLOvl11s,
and YOLOvVI12s outperform YOLO-MC in the more strict
mAP@0.5:0.95 assessment criteria, their larger parameter
scale and computational complexity significantly limit their
practical application in resource-constrained environments.
In comparison to earlier lightweight models such as
YOLOV5n, YOLOvo6n, YOLOVS8n, YOLOV9-tiny,
YOLOv10n, YOLOvlln, and YOLOv12n, YOLO-MC
achieves greater detection accuracy while maintaining
reduced model complexity, indicating a successful
performance balance. In conclusion, YOLO-MC has struck
an optimum balance between detection accuracy, computing

efficiency, and deployment feasibility, demonstrating its
application potential and practical utility in micro surface
target identification.

F. Verification experiment

To improve the reliability of the improved algorithm
proposed in this paper, it is verified on the WSODD dataset.
There are 14 categories of labels in this dataset, namely boat,
ship, ball, bridge, rock, person, rubbish, mast, buoy, platform,
harbor, tree, grass, and animal, which covers all common
target types on the water surface and is a common training
and evaluation dataset for small target detection.

As shown in Table 5, when compared to the original
YOLOvlIn model, the upgraded model has a 3.1%
improvement in recall rate and a 1.1% rise in mAP@0.5 on
the WSODD dataset. At the same time, the suggested model
has a superior recognition effect on all detection targets in the
dataset, demonstrating that this strategy increases recall
while simultaneously improving the model's capacity to
detect small targets.

TABLE V
COMPARATIVE EXPERIMENTAL RESULTS ON THE WSODD DATASET

YOLOvIIn YOLO-MC
Class
R mAP@0.5 mAP@0.5:0.95 R mAP@Q0.5 mAP@0.5:0.95

boat 0.824 0.903 0.527 0.826 0.903 0.533

ship 0.894 0.930 0.669 0.889 0.923 0.665

ball 0.530 0.677 0.253 0.545 0.697 0.250
bridge 0.941 0.972 0.714 0.956 0.971 0.710
rock 0.653 0.728 0.327 0.711 0.743 0.348
person 0.520 0.574 0.288 0.553 0.598 0.258
rubbish 0.623 0.726 0.404 0.689 0.739 0.405
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CONTINUED TABLE V
COMPARATIVE EXPERIMENTAL RESULTS ON THE WSODD DATASET

YOLOvIIn YOLO-MC
Class
R mAP@0.5 mAP@0.5:0.95 R mAP@0.5 mAP@0.5:0.95

mast 0.667 0.663 0.354 0.574 0.639 0.312
buoy 0.786 0.872 0.552 0.852 0.867 0.531
platform 0.786 0.859 0.543 0.857 0.878 0.586
harbor 0.855 0917 0.560 0.837 0.904 0.558
tree 1.000 0.983 0.608 0.950 0.941 0.589
grass 0.500 0.636 0.470 0.500 0.514 0.359
animal 0.240 0.310 0.073 0.508 0.594 0.210
all 0.701 0.768 0.453 0.732 0.779 0.451
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Fig. 8. Detection comparison of different algorithms

To completely examine the practical usefulness of the surface small target detection dataset, we did a thorough
proposed YOLO-MC algorithm on the WSODD water evaluation of the detection performance in realistic complex
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conditions. We chose a varied selection of authentic real
water surface landscapes as test examples. These sceneries,
as seen in Figure 8, include detailed circumstances such as
partly cloudy, foggy days, glare, and low light and are
intended to meet a range of normal visual interference
settings. In such cases, target visibility is typically reduced
and edge information is easily occluded, providing
substantial challenges for the detecting system. As a result,
these test scenarios not only meet real-world application
requirements but also give a full evaluation of the model's
robustness and generalization capabilities in complex
conditions.

The figure 8 displays the comparison of target
identification outcomes between the YOLOv1 1n basic model
and the model developed in this paper under varied
environmental settings. YOLO-MC displays improved
resilience and adaptability compared to the original model,
accurately identifying and finding small floating objects in
adverse settings, including blurring target edges, harsh
reflections on water surfaces, and poor lighting. This result
further wverifies the effectiveness of the introduced
C3k2MSWTC module and CEAM attention mechanism in
dealing with complex lighting and dynamic water surface
background interference.

V. CONCLUSION

This paper proposes an improved YOLO-MC algorithm to
significantly enhance the detection performance of small
floating objects on the water, addressing the problem of
insufficient detection accuracy caused by factors such as
changes in illumination and fluctuations of the water surface
in complex environments. The algorithm first designs the
C3k2MSWTC module, which decomposes the input image in
the frequency domain through wavelet transform and
multiscale convolution strategy, fully extracts the
low-frequency structural information and high-frequency
detail features of the target, and thereby optimizes the feature
expression; at the same time, the CEAM module is used to
further enhance the model's ability to capture the target's
texture and edge information. Through the integrated
optimization of the above modules, the proposed YOLO-MC
algorithm shows obvious advantages in the detection of small
floating objects on the water.

Experimental results on the FloW-IMG and WSODD
datasets show that, when compared to existing mainstream
algorithms, the YOLO-MC algorithm has significantly
improved detection accuracy and robustness, particularly
when dealing with small floating objects on the water. The
model also performs exceptionally well in capturing detailed
information and resisting environmental interference. These
findings present an efficient and robust approach for
detecting small targets in complex aquatic environments, as
well as a solid theoretical and practical framework for future
technology enhancement and implementation.
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