
 

   

Abstract—Detecting surface-floating objects is critical for 

applications like autonomous ship navigation and river 

sanitation. However, current methodologies have significant 

shortcomings in recall rate and detection precision due to the 

small size of floating objects and complex environmental 

interferences such as water surface oscillations and light 

variations. This study presents an enhanced model, YOLO-MC, 

derived from YOLOv11, to address these issues. To enhance the 

feature representation capability of the network model for 

small targets, a multiscale attention wavelet transform 

convolution (MSWTC) architecture is devised, and the C3k2 

module is refined in the neck region. This structure enhances 

the feature extraction capability of small floating objects on the 

water surface, resulting in a significant increase in detection 

accuracy. A coordinate edge attention module (CEAM) is added 

before the detection head to increase the representation of edge 

information. Despite minor improvements in accuracy, it 

greatly improves recall rate and successfully augments the 

model's capacity to distinguish difficult targets. Experimental 

results indicate that the optimized model's recall rate R has 

grown by 2.1%, mAP@0.5 has increased by 2.3%, and 

mAP@0.5:0.95 has improved by 0.4%. 

 
Index Terms—Detection of floating objects; minor targets; 

extraction of features; edge data 

 

 

I. INTRODUCTION 

ITH rapid economic development and increased 

human activity, the problem of river water pollution is 

getting more serious, and floating waste on the water's 

surface has emerged as a major concealed threat to the natural 

environment and maritime safety. Traditional manual 

salvaging is inefficient, dangerous, and understaffed, making 

it difficult to satisfy actual needs. Recent breakthroughs in 

deep learning technology have made it possible to detect and 
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clear surface trash automatically. Rapid identification and 

processing of floating items on the water's surface is possible 

because of multi-sensor fusion and fast target detection 

algorithms. However, due to the features of tiny target size, 

frequent fluctuations, and high reflections in water scene 

scenarios, existing detection algorithms frequently have 

issues with missed detection and false detection, making it 

difficult to adapt to the diversity of the natural environment. 

As a result, developing a small target detection model 

capable of detecting floating items on the water's surface has 

emerged as a critical technical challenge in environmental 

monitoring and water management. 

Object detection is a key component of computer vision, 

and deep learning has accelerated progress in this area. The 

current dominant methods are classified into two types: 

CNN-based[1] and transformer-based[2].Transformer 

methods (such as RT-DETR[3], Deformable DETR[4], and 

Dynamic DETR[5]) use the self-attention mechanism to 

improve feature modeling capabilities and adapt to complex 

scenes, whereas CNN-based methods are classified into 

two-stage (such as R-CNN, Fast R-CNN, and Faster 

R-CNN[6]) and single-stage (such as SSD[7] and the YOLO 

series[8,9]) architectures. The two-stage method is more 

accurate but more computationally expensive, whereas the 

single-stage method has a lighter structure and is better suited 

to real-time detection. Nonetheless, in specific application 

scenarios such as surface rubbish identification, items are 

small and easily disturbed, and single-stage algorithms 

frequently struggle to attain optimal accuracy, whilst 

two-stage algorithms have large computational costs due to 

sophisticated processing procedures. Although Transformer 

can capture long-distance dependencies, its computing 

expense limits its usefulness. To meet the objectives of 

surface waste identification, it is very important to choose 

and refine appropriate detection algorithms in certain 

settings. 

Because water surface variations, illumination changes, 

and reflections frequently produce spurious objects, resulting 

in misidentification and lower detection accuracy, this article 

introduces the C3k2MSWTC module in the neck structure 

based on YOLOv11. This module uses a multiscale wavelet 

transform to decompose the input signal into various 

frequency bands and scales. It not only captures the diverse 

characteristics of low-frequency long waves and 

high-frequency rapid disturbances in water surface 

fluctuations, but it also has excellent edge detection 

capabilities, allowing the model to more precisely perceive 

hidden small target features and improve fine-grained target 

detection performance. Furthermore, the CEAM introduced 

in front of the detection head combines coordinate attention 

and edge enhancement mechanisms, effectively enhancing 
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the expression of target contours and local structural features, 

as well as improving the model's accuracy in identifying 

small targets, reflective blurred targets, and targets obscured 

by water waves. Overall, the addition of the aforesaid 

modules considerably improves the model's detection 

performance in complicated water surface situations. 

The contributions of this work can be summarized in the 

following ways: 

(1) To optimize C3k2, a multiscale attention wavelet 

transform convolution module (MSWTC) was developed, 

allowing the model to more sensitively capture information 

about small targets hidden in water surface fluctuations 

without significantly increasing the number of parameters, 

thereby improving small target recognition accuracy. 

(2) At the same time, the CEAM module inserted before 

the detection head improves the model's ability to describe 

local features of small target edges, resulting in improved 

detection performance for drifting small objects. 

(3) Experiments reveal that YOLO-MC has higher recall 

and detection accuracy on the public FloW-IMG and 

WSODD datasets. 

II. RELATED WORK 

A. Small object detection 

The fundamental issue of small object recognition is that 

its pixel fraction in the image is tiny[10], and the discriminant 

information that can be employed to identify targets is 

restricted. To solve the problems of insufficient feature 

extraction and low precision in small object detection, Xiao 

et al.[11] proposed a feature enhancement method, including 

refining the backbone network, increasing the number of 

small target queries, and optimizing the loss function to 

improve the performance of small object detection, and 

further improved the perception of small targets through 

hollow convolution and recursive prediction modules; to 

solve the problem of lack of semantic information in 

low-level networks in small object detection, Song et al.[12] 

proposed a small target detection algorithm based on 

multiscale feature fusion, which improved the detection 

performance by fusing shallow and deep features. In addition, 

a detector MSFYOLO based on a multiscale deep feature 

learning network was built, which combined global and local 

information and optimized the detection effect using a feature 

pyramid. At the same time, a novel feature extraction 

network, CourNet, was suggested, which can better represent 

the feature information of small objects. To tackle the 

limitations of small objects in complex background detection, 

Zhao et al.[13] proposed a highly efficient algorithm. The 

cross-scale feature fusion attention module (ECFA) employs 

the attention mechanism to effectively suppress noise and 

strengthen relevant features, thereby addressing feature 

redundancy and insufficient representation of small targets. 

SEConv, an efficient convolution module, aims to reduce 

computational redundancy and improve multiscale feature 

learning. Furthermore, a dynamic focus sample weighting 

function, DFSLoss, is provided to successfully address the 

issue of sample difficulty imbalance, and Wise-IoU is 

introduced to mitigate the influence of low-quality examples 

on model convergence. Deng et al.[14] proposed an extended 

feature pyramid network (EFPN), which introduces an 

ultra-high-resolution pyramid level specifically for small 

object detection, designs a feature texture transfer (FTT) 

module for super-resolution feature extraction and retains 

regional details, and adopts a cross-resolution distillation 

mechanism to transfer detailed information. 

B. Floating object detection 

Previous research on surface floating object identification 

has made substantial progress. Chen et al.[15] suggested a 

more advanced YOLOv5 model for real-time detection of 

small surface floating objects. The model significantly 

improved the detection effect of small objects by more 

effectively fusing shallow and deep features and alleviating 

the problem of missed detection; Shi et al.[16] proposed a 

surface floating object detection algorithm based on 

CDW-YOLOv8, which improved the C2f module (C2f-CA) 

by introducing a coordinate attention mechanism, replaced 

the Upsample with the DySample module, and added a small 

object detection layer to improve the perception of small 

floating debris; at the same time, the Focaler-WIoUv3 loss 

function was used for optimizing the positioning accuracy 

and reduce the impact of low-quality anchor frames; Chen et 

al.[17] proposed a detection and tracking method based on 

spatiotemporal information fusion, improved the SSD 

network by enhancing the high-resolution layer to adapt to 

small target detection, and introduced the fast directional 

gradient histogram (FHOG) and pyramid scale estimation to 

improve KCF tracker, and combined the detection and 

tracking results for spatiotemporal fusion, which effectively 

solved the problem of difficult detection of small floating 

objects in complex water surface environments; Zhang et 

al.[18] proposed a real-time water garbage detection model 

based on RefineDet. They upgraded the anchor refinement 

module, collected more detailed semantic information, and 

increased the model's detection accuracy. In addition, they 

introduced the focal loss function and tweaked its parameters 

to boost the model's detection performance. 

III. YOLO-MC NETWORK MODEL 

A. Introduction to YOLO-MC 

The overall structure of the YOLO-MC algorithm is shown 

in Figure 1. Based on the overall architecture of YOLOv11n, 

the algorithm designs the MSWTC module to optimize the 

C3k2 structure of the neck; in addition, we design CEAM in 

front of the detection head so that the detection head can 

focus more on small target floating objects. Through the 

above improvements, the YOLO-MC algorithm achieves a 

balance between performance and efficiency between 

computational complexity, number of parameters, and 

computational efficiency, thereby ensuring that it can provide 

high-performance detection capabilities when deployed on 

edge devices for small target floating objects[19,20] on the 

water surface. 
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Fig.  1.  YOLO-MC model. When C3k is False, the C3k2 module acts as a traditional C2f module and contains a conventional bottleneck structure; when C3k 

is True, the bottleneck module will be replaced by a more efficient C3 module. 
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Fig.  2.  MSWTC module 

 

B. MSWTC 

For solving feature interference induced by water surface 

fluctuations and lighting variations in the detection of small 

floating objects on the water surface, this study presents a 

new module based on multiscale attention wavelet transform 

convolution (MSWTC), as illustrated in Figure 2. The 

original architecture of this module was based on the Wavelet 

Transform Convolution (WTC) structure described by Finder 

et al.[21]. Its main idea is to employ the wavelet transform to 

broaden the receptive field[22] of a convolutional neural 

network (CNN) without considerably altering model 

parameters.  Traditionally, large-size convolution kernels 

have been utilized to broaden the receptive field, increasing 

both the number of parameters and the computational 

complexity.  The MSWTC module divides the input signal 

into various frequency bands using cascading layers of 

wavelet transforms, extracting low-frequency and 

high-frequency information at different scales.  Specifically, 

the low-frequency section keeps the general contour and 

global structural information and is stable to brightness 

variations produced by illumination changes, whereas the 

high-frequency part can capture local detail changes caused 

by water surface oscillations.  Although these high-frequency 

signals are easily disturbed by noise, independent 

convolution processing[23] allows them to better restore the 
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target's edge information. Following decomposition, the 

characteristics of each frequency band are processed using a 

separate convolution technique.  This approach can include 

adaptive filters for various frequency domain variables, 

increasing the accuracy of information extraction. This 

method of layer-by-layer augmenting local features and 

global structures using a succession of modest convolution 

kernel operations enables the network to record subtle feature 

changes while retaining general context information, 

effectively widening the network's receptive field. 

MSWTC also introduces a multiscale attention method to 

account for the varying significance of characteristics at 

different scales[24] to the detection job in real-world water 

scenes. This mechanism can dynamically allocate attention 

weights based on the feature responses extracted from each 

frequency band, allowing the network to adapt to changes in 

illumination or water surface, focusing on scale features[25] 

that are more discriminative for detecting small target 

drifting objects[26]. Specifically, features at key scales 

typically hold more stable structural information, whereas 

other scales may be influenced by external noise. Dynamic 

weighting not only reduces noise interference but also 

optimizes the overall feature representation. 

In the previous content, we introduced the basic principles 

and advantages of the MSWTC module. Next, we will use 

formulas to explain in detail the working mechanism of the 

module and how to optimize signal processing to improve the 

accuracy of small target floating object detection. For a given 

two-dimensional image X, a one-dimensional transformation 

is applied to the two spatial dimensions (width and height) of 

the image to obtain outputs in four different frequency bands: 

 

1 1 1 11 1
,

1 1 1 12 2

1 1 1 11 1
,

1 1 1 12 2
H

LL LH

HL H

f f

f f

−   
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−   
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= =   

− − −   

，
 (1) 

Among them, 
LLf  is a low-frequency filter to preserve the 

overall structure, 
LHf ,

HLf and
HHf are horizontal 

high-frequency filters to capture horizontal edges, vertical 

high-frequency filters to capture vertical edges, and diagonal 

high-frequency filters to capture corner details. 

Convolving the input image X  with these filter's results in 

four output channels: 

 ([ ] ), , , ,
LL

LL LH HL H

HH

H

LH

HL

X
Conv f f f f

X
X

X X

 
= 

 
 (2) 

Among them, 
LLX  is the low-frequency part, and the other 

three are high-frequency components, corresponding to the 

high-frequency information of horizontal, vertical and 

diagonal lines respectively. 

To capture a wider range of contextual information, the 

cascaded wavelet decomposition is performed by recursively 

performing wavelet transform on the low-frequency 

components. The decomposition result of each layer contains 

low-frequency and high-frequency components, gradually 

reducing the spatial resolution and increasing the frequency 

resolution: 

 ( ) ( ) ( ) ( ) ( 1), , , ( )i i i i i

LL LH HL HH LLX X X X WT X −=  (3) 

Where (0)

LLX X=  is the original input, and i  represents the 

current wavelet decomposition level. 

The cascaded wavelet transform is further combined with 

the small convolution kernel to recursively process the 

low-frequency part of each layer. The convolution process of 

each layer is as follows: 

 
( ) ( ) ( 1)

( ) ( ) ( ) ( ) ( )

, ( ),

, ( , ( , ))

i i i

LL H LL
i i i i i

LL H LL H

X X WT X
Y Y Conv W X X

−=

=
 (4) 

Where ( )i

HX  represents all high-frequency components of 

the i  layer. 

Then, the results of different frequency levels are 

combined by inverse wavelet transform: 

 ( ) ( ) ( )1( )( ),i i i i

LL HZ IWT Y Z Y+= +  (5) 

Among them, ( )iZ  is the aggregated output of all 

convolution results starting from the i  layer. 

After the wavelet transform convolution, the attention 

mechanism is introduced to weight the features of different 

scales. The goal of the attention mechanism is to dynamically 

adjust the weights of the features of each scale according to 

their relevance to the current task. The attention weight 

( )att   is calculated by the feature ( )iZ
 of each scale  . The 

weight can be calculated by the following attention 

mechanism: 
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= 
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 (6) 

Among them, f
 is the correlation score of the scale 

feature calculated in some way, GAP is the global average 

pooling, 
attW  is the learnable weight matrix, and ( )att   

reflects the importance of each scale feature in the current 

task. 

After calculating the attention weight of each scale, we 

weight the multiscale features obtained by wavelet transform 

convolution. The weighted feature x  of each scale can be 

expressed as: 

 ( )( ) ( ) i

attx t Z  =   (7) 

Where ( )iZ
 is the signal feature at a certain scale   

obtained by wavelet transform convolution, and ( )att   is the 

weighting coefficient calculated by the attention mechanism. 

Finally, the weighted multiscale features are fused to 

obtain the final output feature ( )x t , which can be expressed 

as:  

 )( ) (x t x t


=   (8) 

Combining the above parts, the overall formula of the 

MSWTC module can be expressed as: 

 
( ) ( )1 ( )( ) ( ) ( ),i i i

att LL Ht IWT Y Z Yx


  +=  +  (9) 

From the perspective of signal processing, the improved 

C3k2MSWTC module effectively improves the 

signal-to-noise ratio through adaptive spectrum control[27], 

which significantly enhances the signal characteristics of 

small targets under complex water surface conditions.  The 

C3k2MSWTC module implements fine filtering on each 

frequency component, effectively suppressing non-ideal 

responses in water surface fluctuations and false signals 

caused by reflections, while retaining and enhancing the 

spectral characteristics of key signals.  Therefore, the entire 

model shows excellent robustness and adaptability when 
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processing subtle signal changes in a spatial dynamic water 

surface environment, providing a solid foundation for image 

signal extraction for the detection of small floating objects on 

the water surface. 

C. CEAM 

To improve the model's perception of small target edge 

information[28], this article offers a coordinate edge 

attention module (CEAM), as illustrated in Figure 3, which is 

embedded at the front of the detection head to improve 

responsiveness to fine-grained features. This module 

combines the coordinate attention mechanism[29] with the 

edge enhancement technique and is divided into three parts: 

First, edge features are extracted using a learnable deep 

separable convolution[30], which is then spliced with the 

original feature map in the channel dimension to add spatial 

semantic information. Following that, a direction-sensitive 

pooling operation (in the horizontal and vertical directions) is 

employed to extract contextual features in the spatial 

dimension, and feature compression and nonlinear 

augmentation are achieved using lightweight convolution[31] 

and activation functions. The channel attention branch 

generates channel weights using global average pooling and 

convolution to alter the relevance of distinct channels, while 

the spatial attention branch combines average pooling and 

maximum pooling to direct the model's attention to crucial 

spatial positions. Finally, the fused channel and spatial 

attention weights work on the input characteristics to 

significantly improve the edge area. 

Let the input feature map be N C H WX R    , where N 

represents the batch size, C represents the number of 

channels, and H and W represent the height and width 

respectively. First, define an edge extraction operator ( )  

(composed of depthwise separable convolution, batch 

normalization, and ReLU activation) to perform edge 

enhancement on the input X: 

 ( ) N C H WE X R   =   (10) 

To fully integrate the fine-grained edge features extracted 

by the edge detector with the original semantic features, the 

two are spliced in the channel dimension to form an enhanced 

feature map containing rich spatial edge information and 

semantic information: 

 
2( , ) N C H W

edgeX Concat X E R   =   (11) 

Subsequently, in order to capture the directional 

information of features in different spatial dimensions, the 

enhanced feature map 
edgeX  is adaptively averaged pooled in 

the horizontal and vertical directions, thereby extracting 

global context information in the height and width directions: 

 
2 1

2 1

( )

( )

N C H

H H edge
N C W

W W edge

X Pool X R

X Pool X R
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= 

= 
 (12) 

To achieve unified modeling of features in spatial 

dimensions, 
WX  needs to be transposed in height and width 

dimensions to make it consistent with 
HX  in dimensions. 

Then the two are concatenated in the height direction, and the 

contextual information from the horizontal and vertical 

directions is integrated to construct a unified direction-aware 

representation feature map. 

 ( 1)( ,( )) N M H W

H WY Conv Concat X X R   + =   (13) 

Where M is the number of intermediate channels, and 

nonlinear transformation is achieved here through 

convolution, batch normalization and h-swish activation. 

Next, in the channel attention branch, global average 

pooling (GAP) is applied to the fused feature Y to obtain 

global context information in the channel dimension. This 

operation compresses the spatial dimension to 1×1 and 

generates a global response representation for each channel. 

Subsequently, two layers of consecutive 1×1 convolutions 

and activation functions are used for performing nonlinear 

mapping on the channel features to capture the dependencies 

between channels, and the final channel attention weights are 

obtained by normalization through the Sigmoid function. 

 
1 1

2 1( ( ( ( ( ))))) N C

cA Sigmoid Conv ReLU Conv GAP Y R   =   (14) 

Among them, 
1Conv  and 

2Conv  are 1×1 convolution 

operators for dimensionality reduction and dimensionality 

increase, respectively, which are used for compressing the 

amount of calculation and enhance the nonlinear expression 

ability. The attention weight will be used as a channel-level 

modulation factor in the subsequent steps to perform 

weighted enhancement on the feature map. 

In the spatial attention branch, the average and maximum 

values of the features 
hX  along the height direction and 

wX  

along the width direction are calculated in the channel 

dimension to extract the spatial response information from 

different statistical perspectives. These two representations 

are then concatenated in the channel dimension to form a 

fused representation, and the features are integrated through a 

7×7 convolution operator to finally obtain the spatial 

attention weight. 

 7 7

7 7

( ([ ( ) ( )]))
( ([ ( ) ( )]))

,
,

h h h

w w w

A Sigmoid Conv Avg X Max X
A Sigmoid Conv Avg X Max X





=
=

 (15) 

Among them, [ , ]   represents concatenation in the channel 

dimension, 
7 7Conv 

 is a convolution operation with a 

convolution kernel size of 7×7, and Avg( )  and max( )  

represent average pooling and maximum pooling operations 

in the channel dimension, respectively. The final output 

attention weights 
hA  and 

wA  are used to adjust the spatial 

response strength along the height and width directions, 

respectively. 

To further enhance the directional sensitivity of the feature, 

after obtaining the channel and spatial attention weights, 

independent 1×1 convolutions (respectively denoted as 

hConv  and 
wConv ) are applied to the directional pooled 

features 
hX  and 

wX  to adjust their channel expression 

capabilities. Subsequently, the convolution transformed 

features are weighted fused element by element with the 

channel attention weight 
cA  and the spatial attention weights 

hA  and
wA to obtain the final directional attention response: 

 
( ( ) )

( ( ) )
h h h c h

w w w c w

a Sigmoid Conv X A A

a Sigmoid Conv X A A

=

=
 (16) 

Among them,  represents element-wise multiplication, 

and ( )Sigmoid   is used to normalize the attention response 

values in each direction. The above operation effectively 

improves the model's responsiveness to key structural areas 

by fusing the attention information in the channel and spatial 

dimensions, especially when dealing with small targets with 
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blurred edges or weakened textures. 

Finally, the original input features are weighted using the 

attention weights: 

 out h wY X a a=  (17) 

CEAM enhances the network's capacity to represent target 

boundary information by combining edge enhancement and 

direction perception[32]. The module's learnable edge 

improvement branch extracts minor structural changes 

between the target and the background, improving the 

model's responsiveness in edge areas. Furthermore, CEAM 

does spatial direction-sensitive modeling, which involves 

compressing and fusing information in the horizontal and 

vertical directions to properly locate important positions. 

This structure is particularly well-suited for identifying small 

floating targets[33] with low contrast and weak edges, 

boosting feature representation discriminability and model 

perception, resulting in increased robustness and flexibility in 

complicated water surface situations. 

IV. EXPERIMENT 

A. Dataset 

To completely assess the performance and robustness of 

the modified algorithm in the job of tiny surface target 

detection, this research used two representative public 

datasets: FloW-IMG[34] and WSODD[35]. The two 

complement each other in terms of target quantity, scene 

complexity, and environmental diversity, allowing the 

algorithm to be verified from many angles. 

The FloW-IMG dataset was created by Oka Zhibo. It is the 

world's first floating item detection dataset created from the 

perspective of an unmanned ship, with an emphasis on 

rubbish detection jobs in real inland waters. The dataset 

consists of 2,000 high-resolution images with 5,271 

accurately annotated target instances that cover difficult 

scenes such as complex lighting conditions, multi-angle 

perspectives, dense interweaving of multiple targets, and 

small targets at long distances. These photos accurately 

depict the distribution of floating items on the water's surface 

in various conditions, laying the groundwork for the 

adaptability and effectiveness of detection algorithms in 

real-world applications. The WSODD dataset broadens the 

test dimension by focusing on detection tasks for a variety of 

common tiny items on the water surface. WSODD contains 

7,467 images, covering 14 types of typical floating objects on 

the water surface, with a total of 21,911 target instances 

annotated, indicating a significant increase in data scale and 

target type. The dataset includes three types of water settings: 

oceans, lakes, and small rivers, as well as a range of weather 

conditions such as sunny, cloudy, and foggy days, as well as 

three time periods: daytime, nighttime, and twilight, which 

considerably increases the environment's richness and 

complexity. At the same time, WSODD particularly includes 

demanding samples such as poor contrast, weak edges, 

severe occlusion, and long-distance tiny objects, offering a 

rigorous testing platform for assessing the algorithm's 

durability under harsh situations. Figure 4 depicts the 

distribution of large, medium, and small objects in the 

dataset. 

In conclusion, the FloW-IMG and WSODD datasets 

complement each other in terms of scale, type, and scene 

diversity, providing comprehensive and credible data support 

for assessing the detection accuracy and environmental 

adaptability of the method suggested in this study. 
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Fig.  3.  CEAM module 

 

Fig.  4.  Distribution of large, medium, and small objects in the FloW-IMG and WSODD datasets 
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B. Experimental parameters and evaluation indicators 

This experiment was carried out using the Windows 11 

operating system, with the deep learning framework Pytorch 

2.4.1 and CUDA 12.4, and the hardware configuration was 

NVIDIA RTX 4060. The batch size was set to 16, the model 

was trained for 300 cycles, and the data was loaded using 4 

threads. The FloW-img and WSODD datasets were split 

8:1:1, respectively. Other hyperparameters remained 

unchanged and were set to their default values. 

To effectively assess the improvement effect, numerous 

assessment markers were established, including recall (R) 

and mean average precision (mAP), parameters, and 

GFLOPs. The computation formula is given below:  

 
TP

R
TP FN

= 
+

 (18) 

 

1

0
1 100%

N

i

PdR

mAP
N

== 


 (19) 

Among them, TP represents true positives, FN represents 

false negatives, N is the number of categories, P is the 

precision, and 
1

0
PdR  is the average precision (AP). 

C. Ablation experiment 

In order to completely test the proposed algorithm's 

detection performance and validate the function of each 

modified module in increasing model performance, we 

performed ablation experiments on the FloW-IMG dataset. 

First, we carried out experiments on the C3k2MSWTC 

module, as shown in Table 1, to investigate the impacts of the 

number of wavelet decomposition layers (wt_levels) and the 

attention mechanism hyperparameters (groups). On this basis, 

we froze the wavelet filter layers (wt_filter and iwt_filter) to 

avoid training these fixed mathematical transformation layers, 

reducing the computational cost and allowing us to focus on 

other adjustable hyperparameters. Specifically, wt_levels 

determines the number of wavelet decomposition layers, 

which influences the model's capacity to extract features at 

various scales. We examined the impact of different 

decomposition layers on performance by modifying this 

hyperparameter; on the other hand, groups represent the 

number of channel groupings, which influences the effect of 

the attention mechanism. By changing groups, we adjusted 

attention allocation between channels and increased the 

model's performance. 
 

TABLE I  

C3K2MSWTC ABLATION EXPERIMENT 

wt_levels groups mAP@0.5 
mAP@0.5:

0.95 
Params 

1 4 0.870 0.507 2.526M 

2 4 0.864 0.506 2.531M 

3 4 0.876 0.504 2.536M 

1 8 0.881 0.517 2.522M 

2 8 0.869 0.499 2.527M 

3 8 0.874 0.512 2.532M 

1 16 0.865 0.497 2.521M 

2 16 0.870 0.501 2.526M 

3 16 0.877 0.501 2.531M 

 

Based on the preliminary trial findings of the 

C3k2MSWTC module, we finally chose the optimal 

configuration, the performance obtained with wt_levels:1, 

groups:8. To investigate the effect of the attention module on 

the overall network of the C3k2MSWTC module, we carried 

out a comparative experiment on the attention module alone, 

as shown in Table 2, to determine the particular contribution 

of each attention module to model performance. 

 
TABLE II 

COMPARATIVE EXPERIMENT OF ATTENTION MECHANISM 

Attention R mAP@0.5 mAP@0.5:0.95 Params GFLOPs 

YOLOv11n 0.814 0.867 0.507 2.582M 6.3 

+ CAA 0.780 0.848 0.485 2.767M 6.7 

+ LIA 0.805 0.873 0.504 2.661M 6.3 

+ ELA 0.797 0.869 0.503 2.586M 6.3 

+ CCA 0.780 0.848 0.485 2.767M 6.7 

+ CPCA 0.797 0.871 0.508 2.762M 7.0 

+ SEAM 0.810 0.873 0.493 2.686M 6.5 

+ MSDA 0.806 0.873 0.502 2.928M 6.9 

+ SEAttention 0.818 0.874 0.507 2.593M 6.3 

+ FCAttention 0.797 0.873 0.499 2.669M 6.4 

+ TripletAttention 0.770 0.870 0.506 2.583M 6.4 

+ MOCAttention 0.784 0.871 0.505 2.628M 6.3 

+ CEAM(our) 0.831 0.873 0.507 2.682M 6.5 
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As indicated in Table 2, we carried out an attention 

mechanism ablation comparative experiment to better 

demonstrate the benefits of the CEAM attention mechanism. 

However, there are some disparities in the performance of 

various attention modules in crucial variables such as average 

precision and recall. It is worth mentioning that, while these 

attention mechanism comparison studies enhanced model 

performance to some extent, their benefits were not as 

significant as the CEAM attention mechanism we presented. 

The CEAM mechanism considerably enhanced the model's 

average precision and recall rate, as well as its 

anti-interference performance and detection stability. These 

results from the attention comparison experiments 

conclusively demonstrate that the CEAM attention 

mechanism is indispensable and critical in improving 

detection performance in complex water environments, 

particularly when dealing with interference factors such as 

water surface fluctuations and reflections. 

The results in Tables 1 and 2 provide a detailed 

examination of the individual contributions of each enhanced 

module to overall detection performance. The experimental 

results clearly show that the introduction of a single module 

improves detection performance, not only by increasing key 

indicators such as recall rate and average precision, but also 

by demonstrating the synergistic effect that occurs when 

different modules are used together. The experimental results 

are presented in Table 3. This series of ablation tests offers an 

empirical basis for the optimization design and confirms the 

importance of each module in improving the model's capacity 

to resist interference and extract important information when 

detecting small targets on the surface of water. 
 

TABLE III 

ABLATION EXPERIMENT RESULTS 

Model R 
mAP@

0.5 

mAP@

0.5:0.9
5 

Params GFLOPs 

YOLOv11n 0.814 0.867 0.507 2.582M 6.3 

C3k2MSWTC 0.803 0.881 0.517 2.522M 6.3 

CEAM 0.831 0.873 0.507 2.682M 6.5 

YOLO-MC 0.835 0.890 0.511 2.622M 6.5 

 

When the C3k2MSWTC module is used alone, mAP@0.5 

improves by 1.4%, and mAP@0.5:0.95 improves by 1%, 

implying that the positioning accuracy and overall accuracy 

of the detection frame have improved, but the recall rate R is 

reduced by 1.1%, indicating that some real targets are not 

detected. This phenomenon indicates that, while improving 

detection accuracy and anti-interference ability, the model 

may have adopted stricter judgment criteria for some edge or 

fuzzy targets, resulting in a degree of missed detection. When 

the CEAM module is used alone, the recall rate R improves 

by 1.7%, mAP@0.5 improves by 0.6%, and mAP@0.5:0.95 

remains constant, indicating that the improved module has 

played a positive role in improving the robustness of small 

target detection, covering more targets, and improving rough 

detection performance, but there is still room for 

improvement in high-precision positioning capabilities. The 

YOLO-MC structure proposed in this article improves the 

recall rate R by 2.1%, mAP@0.5 by 2.3%, and 

mAP@0.5:0.95 by 0.4%. Although the number of parameters 

increases by 0.04M and the computational complexity by 0.2 

GFLOPs, the model maintains excellent real-time detection 

performance and improves robustness in complex 

environments thanks to efficient module optimization. 

D. Visual analysis 

To easily demonstrate the difference in detection ability 

between YOLOv11n and YOLO-MC, we conducted a 

thorough discussion of the experimental data using visual 

analysis. Figures 5 and 6 depict the recall rate R and 

mAP@0.5 convergence curves obtained during the 

YOLO-MC training and verification processes, respectively. 

The horizontal axis displays the number of iterations, and the 

experiment runs for 300 rounds. Observing the validation set 

curve of YOLO-MC on the Flow-IMG dataset, it is clear that 

YOLO-MC outperforms YOLOv11n in mAP indicators, and 

the recall rate curve converges after 240 iterations, with the 

recall rate R value of YOLO-MC stabilizing at roughly 83%. 
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Fig.  5.  Recall rate 
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Fig.  6.  mAP@0.5 
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Fig.  7.  Comparison of heat maps of different algorithms 

 

Furthermore, we depict the detection results as a heat map 

to more intuitively highlight how the algorithm described in 

this research optimizes target attention throughout the 

detection process, as shown in Figure 7. The heat map clearly 

shows the algorithm's level of attention to different locations 

throughout processing, particularly the recognition and 

positioning of significant objects. The heat map visually 

represents the model's attention intensity in various areas 

through color changes, with blue and green indicating lower 

attention or a weaker activation value, and yellow and red 

indicating higher attention or a stronger activation value. This 

color-level contrast can draw the model's attention to the 

target area, effectively measuring the algorithm's detection 

ability and accuracy in complex backdrops. 

E. Comparative experiment 

To evaluate the efficacy of YOLO-MC in identifying 

diminutive drifting objects on intricate horizontal surfaces, 

we chose several established and popular target detection 

algorithms, including YOLOv5n, YOLOv6n, YOLOv8n, 

YOLOv9-tiny, YOLOv10n, YOLOv10s, YOLOv11n, 

YOLOv11s, YOLOv12n, and YOLOv12s, for comparative 

analysis while maintaining a consistent experimental 

environment and the FloW-IMG dataset. Table 4 summarizes 

the experimental data. 
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TABLE IV 

COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS 

Model R mAP@0.5 mAP@0.5:0.95 Params GFLOPs 

YOLOv5n 0.799 0.870 0.506 2.503M 7.1 

YOLOv6n 0.828 0.871 0.500 4.234M 11.8 

YOLOv8n 0.826 0.881 0.508 3.006M 8.1 

YOLOv9-tiny 0.793 0.870 0.508 1.971M 7.6 

YOLOv10n 0.805 0.868 0.501 2.695M 8.2 

YOLOv10s 0.785 0.883 0.516 8.036M 24.4 

YOLOv11n 0.814 0.867 0.507 2.582M 6.3 

YOLOv11s 0.824 0.884 0.528 9.413M 21.3 

YOLOv12n 0.785 0.861 0.488 2.557M 6.3 

YOLOv12s 0.816 0.881 0.513 9.231M 21.2 

YOLO-MC(our) 0.835 0.890 0.511 2.622M 6.5 

 

Table 4 shows that, in the detection experiment using the 

FloW-IMG small target floating object dataset, the 

YOLO-MC algorithm presented in this study achieved a 

detection accuracy of 0.890 in the mAP@0.5 metric, 

outperforming many prominent comparative algorithms.In 

the recall rate R comparison, YOLO-MC outperformed the 

other ten models tested, with a significantly lower missed 

detection rate, proving its robustness and efficacy in small 

target identification tasks. While YOLOv10s, YOLOv11s, 

and YOLOv12s outperform YOLO-MC in the more strict 

mAP@0.5:0.95 assessment criteria, their larger parameter 

scale and computational complexity significantly limit their 

practical application in resource-constrained environments. 

In comparison to earlier lightweight models such as 

YOLOv5n, YOLOv6n, YOLOv8n, YOLOv9-tiny, 

YOLOv10n, YOLOv11n, and YOLOv12n, YOLO-MC 

achieves greater detection accuracy while maintaining 

reduced model complexity, indicating a successful 

performance balance. In conclusion, YOLO-MC has struck 

an optimum balance between detection accuracy, computing 

efficiency, and deployment feasibility, demonstrating its 

application potential and practical utility in micro surface 

target identification. 

F. Verification experiment 

To improve the reliability of the improved algorithm 

proposed in this paper, it is verified on the WSODD dataset. 

There are 14 categories of labels in this dataset, namely boat, 

ship, ball, bridge, rock, person, rubbish, mast, buoy, platform, 

harbor, tree, grass, and animal, which covers all common 

target types on the water surface and is a common training 

and evaluation dataset for small target detection. 

As shown in Table 5, when compared to the original 

YOLOv11n model, the upgraded model has a 3.1% 

improvement in recall rate and a 1.1% rise in mAP@0.5 on 

the WSODD dataset. At the same time, the suggested model 

has a superior recognition effect on all detection targets in the 

dataset, demonstrating that this strategy increases recall 

while simultaneously improving the model's capacity to 

detect small targets. 

 

TABLE V 

COMPARATIVE EXPERIMENTAL RESULTS ON THE WSODD DATASET 

Class 

YOLOv11n  YOLO-MC 

R mAP@0.5 mAP@0.5:0.95  R mAP@0.5 mAP@0.5:0.95 

boat 0.824 0.903 0.527  0.826 0.903 0.533 

ship 0.894 0.930 0.669  0.889 0.923 0.665 

ball 0.530 0.677 0.253  0.545 0.697 0.250 

bridge 0.941 0.972 0.714  0.956 0.971 0.710 

rock 0.653 0.728 0.327  0.711 0.743 0.348 

person 0.520 0.574 0.288  0.553 0.598 0.258 

rubbish 0.623 0.726 0.404  0.689 0.739 0.405 
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CONTINUED TABLE V 

COMPARATIVE EXPERIMENTAL RESULTS ON THE WSODD DATASET 

Class 

YOLOv11n  YOLO-MC 

R mAP@0.5 mAP@0.5:0.95  R mAP@0.5 mAP@0.5:0.95 

mast 0.667 0.663 0.354  0.574 0.639 0.312 

buoy 0.786 0.872 0.552  0.852 0.867 0.531 

platform 0.786 0.859 0.543  0.857 0.878 0.586 

harbor 0.855 0.917 0.560  0.837 0.904 0.558 

tree 1.000 0.983 0.608  0.950 0.941 0.589 

grass 0.500 0.636 0.470  0.500 0.514 0.359 

animal 0.240 0.310 0.073  0.508 0.594 0.210 

all 0.701 0.768 0.453  0.732 0.779 0.451 
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Fig.  8.  Detection comparison of different algorithms 

 

To completely examine the practical usefulness of the 

proposed YOLO-MC algorithm on the WSODD water 

surface small target detection dataset, we did a thorough 

evaluation of the detection performance in realistic complex 
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conditions. We chose a varied selection of authentic real 

water surface landscapes as test examples. These sceneries, 

as seen in Figure 8, include detailed circumstances such as 

partly cloudy, foggy days, glare, and low light and are 

intended to meet a range of normal visual interference 

settings. In such cases, target visibility is typically reduced 

and edge information is easily occluded, providing 

substantial challenges for the detecting system. As a result, 

these test scenarios not only meet real-world application 

requirements but also give a full evaluation of the model's 

robustness and generalization capabilities in complex 

conditions. 

The figure 8 displays the comparison of target 

identification outcomes between the YOLOv11n basic model 

and the model developed in this paper under varied 

environmental settings. YOLO-MC displays improved 

resilience and adaptability compared to the original model, 

accurately identifying and finding small floating objects in 

adverse settings, including blurring target edges, harsh 

reflections on water surfaces, and poor lighting. This result 

further verifies the effectiveness of the introduced 

C3k2MSWTC module and CEAM attention mechanism in 

dealing with complex lighting and dynamic water surface 

background interference. 

V. CONCLUSION 

This paper proposes an improved YOLO-MC algorithm to 

significantly enhance the detection performance of small 

floating objects on the water, addressing the problem of 

insufficient detection accuracy caused by factors such as 

changes in illumination and fluctuations of the water surface 

in complex environments. The algorithm first designs the 

C3k2MSWTC module, which decomposes the input image in 

the frequency domain through wavelet transform and 

multiscale convolution strategy, fully extracts the 

low-frequency structural information and high-frequency 

detail features of the target, and thereby optimizes the feature 

expression; at the same time, the CEAM module is used to 

further enhance the model's ability to capture the target's 

texture and edge information. Through the integrated 

optimization of the above modules, the proposed YOLO-MC 

algorithm shows obvious advantages in the detection of small 

floating objects on the water. 

Experimental results on the FloW-IMG and WSODD 

datasets show that, when compared to existing mainstream 

algorithms, the YOLO-MC algorithm has significantly 

improved detection accuracy and robustness, particularly 

when dealing with small floating objects on the water. The 

model also performs exceptionally well in capturing detailed 

information and resisting environmental interference. These 

findings present an efficient and robust approach for 

detecting small targets in complex aquatic environments, as 

well as a solid theoretical and practical framework for future 

technology enhancement and implementation. 

REFERENCES 

[1] V. Viswanatha, R. K. Chandana, A. C. Ramachandra, “Real time 
object detection system with YOLO and CNN models: A review,” 

Journal of Xi'an University of Architecture and Technology, vol. 14, 

no. 7, pp. 144-151, 2022. 

[2] T. Shehzadi, D. Stricker, M. Z. Afzal, “Semi-Supervised Object 
Detection: A Survey on Progress from CNN to Transformer,” arXiv 

preprint arXiv:2407.08460, 2024. 

[3] Y. Zhao, W. Y. Lv, L. Xu, J. M. Wei, G. Wang, Q. Dang, Y. Liu, J. 

Chen, “Detrs beat yolos on real-time object detection,” Proceedings of 

the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. pp. 16965-16974, 2024. 

[4] X. Zhu, W. J. Su, L. W. Lu, B. Li, X. G. Wang, J. F. Dai, “Deformable 
detr: Deformable transformers for end-to-end object detection,” arXiv 

preprint arXiv:2010.04159, 2020. 

[5] X. Y. Dai, Y. P. Chen, J. W. Yang, P. Zhang, L. Yuan, L. Zhang, 
“Dynamic detr: End-to-end object detection with dynamic attention,” 

Proceedings of the IEEE/CVF International Conference on Computer 
Vision. pp. 2988-2997, 2021. 

[6] W. Sheng, X. F. Yu, J. Y. Lin, X. Chen, “Faster rcnn target detection 

algorithm integrating cbam and fpn,” Applied Sciences, vol. 13, no. 12, 
pp. 6913-6930, 2023. 

[7] H. L. Wang, H. M. Qian, S. Feng, W. N. Wang, “L-SSD: lightweight 
SSD target detection based on depth-separable convolution,” Journal 

of Real-Time Image Processing, vol. 21, no. 2, pp. 33-47, 2024. 

[8] A. Wang, H. Chen, L. H. Liu, K. Chen, Z. J. Lin, J. G. Han, G. Ding, 
“Yolov10: Real-time end-to-end object detection,” Advances in Neural 

Information Processing Systems, vol. 37, pp. 107984-108011, 2024. 

[9] R. Khanam, M. Hussain, “Yolov11: An overview of the key 

architectural enhancements,” arXiv preprint arXiv:2410.17725, 2024. 

[10] J. Luo, Z. Liu, Y. B. Wang, A. Tang, H. Zuo, P. Han, “Efficient Small 
Object Detection You Only Look Once: A Small Object Detection 

Algorithm for Aerial Images,” Sensors, vol. 24, no. 21, pp. 7067-7088, 
2024. 

[11] X. Xiao, X. R. Xue, Zh. Zhao, Y. Fan, “A recursive prediction-based 

feature enhancement for small object detection,” Sensors, vol. 24, no. 
12, pp. 3856-3871, 2024. 

[12] Z. Y. Song, Y. Zhang, Y. Liu, K. H. Yang, M. L. Sun, “MSFYOLO: 
Feature fusion-based detection for small objects,” IEEE Latin America 

Transactions, vol. 20, no. 5, pp. 823-830, 2022. 

[13] F. Zhao, J. Zhang, G. Zhang, “FFEDet: fine-grained feature 
enhancement for small object detection,” Remote Sensing, vol. 16, no. 

11, pp. 2003-2024, 2024. 
[14] C. Deng, M. Wang, L. Liu, Y. Liu, “Extended feature pyramid network 

for small object detection,” IEEE Transactions on Multimedia, vol. 24, 

pp. 1968-1970, 2021. 
[15] F. X. Chen, L. X. Zhang, S. Y. Kang, L. T. Chen, H. Dong, D. Li, X. 

Wu, “Soft-NMS-enabled YOLOv5 with SIOU for small water surface 
floater detection in UAV-captured images,” Sustainability, vol. 15, no. 

14, pp. 10751-10768, 2023. 

[16] C. Shi, M. Lei, W. Q. You, H. T. Ye, H. Sun, “Enhanced floating debris 
detection algorithm based on CDW-YOLOv8,” Physica Scripta, vol. 

99, no. 7, pp. 076019-076033, 2024. 
[17] R. Chen, J. Wu, Y. Peng, Z. Li, H. Shang, “Detection and tracking of 

floating objects based on spatial-temporal information fusion,” Expert 

Systems with Applications, vol. 225, pp. 120185-120209, 2023. 
[18] L. Zhang, Y. X. Wei, H. B. Wang, Y. H. Shao, J. Shen, “Real-time 

detection of river surface floating object based on improved refinedet,” 
IEEE Access, vol. 9, pp. 81147-81160, 2021. 

[19] X. Yang, Y. Song, L. He, H. Xue, Z. Dong, and Q. Zhang, 

“USV-YOLO: An Algorithm for Detecting Floating Objects on the 
Surface of an Environmentally Friendly Unmanned Vessel,” IAENG 

International Journal of Computer Science, vol. 52, no. 3, pp. 579-588, 
2025. 

[20] W. Du, X. Ouyang, N. Zhao, and Y. Ouyang, “BCS-YOLOv8s: A 

Detecting Method for Dense Small Targets in Remote Sensing Images 

Based on Improved YOLOv8s,” IAENG International Journal of 

Computer Science, vol. 52, no. 2, pp. 417-426, 2025. 
[21] S. E. Finder, R. Amoyal, E. Treister, O. Freifeld, “Wavelet 

convolutions for large receptive fields,” European Conference on 

Computer Vision, pp. 363-380, 2024. 
[22] M. Elsayed, M. Reda, A. S. Mashaly, A. S. Amein, “LERFNet: an 

enlarged effective receptive field backbone network for enhancing 
visual drone detection,” The Visual Computer, vol. 41, no. 4, pp. 

2219-2232, 2025. 

[23] Z. Lin, B. Leng, “SSN: Scale Selection Network for Multi-Scale 
Object Detection in Remote Sensing Images,” Remote Sensing, vol. 16, 

no. 19, pp. 3697-3719, 2024. 
[24] C. Zhang, L. J. Liu, X. Zang, F. Liu, H. Zhang, X. Y. Song, J. D. Chen, 

“Detr++: Taming your multi-scale detection transformer,” arXiv 

preprint arXiv:2206.02977, 2022. 
[25] Z. Jiang, B. J. Wu, L. Ma, H. W. Zhang, J. Lian, “APM-YOLOv7 for 

Small-Target Water-Floating Garbage Detection Based on Multi-Scale 
Feature Adaptive Weighted Fusion,” Sensors, vol. 24, no. 1, pp. 50-71, 

2023. 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3910-3922

 
______________________________________________________________________________________ 



 

[26] L. Dang, G. Liu, Y. Hou, and H. Han, “YOLO-FNC: An Improved 
Method for Small Object Detection in Remote Sensing Images Based 

on YOLOv7,” IAENG International Journal of Computer Science, vol. 

51, no. 9, pp. 1281-1290, 2024. 

[27] Y. Su, W. X. Tan, Y. F. Dong, W. Xu, P. Huang, J. X. Zhang, D. K. 

Zhang, “Enhancing concealed object detection in Active Millimeter 
Wave Images using wavelet transform,” Signal Processing, vol. 216, 

pp. 109303-109315, 2024. 
[28] J. Pan, and Y. Zhang, “Small Object Detection in Aerial Drone 

Imagery based on YOLOv8,” IAENG International Journal of 

Computer Science, vol. 51, no. 9, pp. 1346-1354, 2024. 
[29] Q. Hou, D. Zhou, J. Feng, “Coordinate attention for efficient mobile 

network design,” Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. pp. 13713-13722, 2021.  

[30] L. B. Li, R. P. Wang, M. J. Zou, F. S. Guo, Y. H. Ren, “Enhanced 

ResNet-50 for garbage classification: Feature fusion and 
depth-separable convolutions,” Plos One, vol. 20, no. 1, pp. 

e0317999-e0318019, 2025. 
[31] L. Li, B. Li, H. Zhou, “Lightweight multi-scale network for small 

object detection,” PeerJ Computer Science, vol. 8, pp. e1145-e1170, 

2022. 
[32] R. Dong, S. Yin, L. Jiao, J. G. An, W. J. Wu, “ASIPNet: 

Orientation-Aware Learning Object Detection for Remote Sensing 

Images,” Remote Sensing, vol. 16, no. 16, pp. 2992-3014, 2024. 

[33] F. Lin, T. Hou, Q. N. Jin, A. J. You, “Improved YOLO based detection 

algorithm for floating debris in waterway, Entropy,” vol. 23, no. 9, pp. 
1111-1124, 2021. 

[34] Y. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. Pang, P. D. Wang, 
“Flow: A dataset and benchmark for floating waste detection in inland 

waters,” Proceedings of the IEEE/CVF International Conference on 

Computer Vision. pp. 10953-10962, 2021. 
[35] Z. Zhou, J. Sun, J. B. Yu, K. Y. Liu, J. W. Duan, L. Chen, C. Chen, “An 

image-based benchmark dataset and a novel object detector for water 
surface object detection,” Frontiers in Neurorobotics, vol. 15, pp. 

723336-723349, 2021. 

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 11, November 2025, Pages 3910-3922

 
______________________________________________________________________________________ 




