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Abstract— Stock investment is widely practiced, and 

diversification helps manage risk and improve returns. This 

analysis was conducted to apply risk analysis methods by 

considering extreme market conditions. Ward Clustering is 

chosen for its ability to produce homogeneous clusters by 

minimizing squared errors. The Mean-Semivariance model 

proposed by Markowitz focuses on downside risk, which better 

reflects investors' perception of risk, where portfolio weight 

optimization is performed using Lagrange Multipliers with the 

aim of minimizing risk. Risk estimation is carried out using the 

Cornish-Fisher VaR approach, which incorporates skewness 

and excess kurtosis, and is enhanced with Stress Testing to 

simulate potential losses during abnormal market conditions. 

The analysis is applied to the PEFINDO i-Grade index, which 

contains 30 stocks from companies with investment-grade 

ratings with daily closing stock prices for the period January 1, 

2023, to December 31, 2024, as the basis for calculation. In 

clustering, the variables used are Price to Earnings Ratio (PER), 

Price to Book Value (PBV), and Market Capitalization. The 

resulting portfolio consists of 3 stocks with a weighting of 

74.217% for BMRI, 19.793% for MFIN, and 5.990% for BRPT. 

The resulting portfolio VaR is 1.503% of the initial capital 

invested within one day. In extreme scenarios, the level of risk 

generated by Stress Testing increases, indicating that the Stress 

Testing method can be used to identify potential risks in extreme 

market conditions. 

 

Index Terms— Ward Clustering, Mean-Semivariance, VaR 

Cornish-Fisher Expansion, Stress Testing, PEFINDO i-Grade 

I. INTRODUCTION 

TOCK investment is one of the most popular investment 

instruments. Investment refers to the allocation of 

capital by investors, across various business sectors with the 

aim of generating profits. In the investment process, 

constructing an optimal portfolio is essential to minimize risk 

and maximize returns. The concept of an efficient portfolio 

through diversification as a means of reducing risk was 

introduced in [1]. Therefore, stock selection and risk 

measurement are crucial aspects of portfolio analysis. This 

study adopts a quantitative approach by applying Ward 

Clustering for stock selection, Mean-Semivariance for 

portfolio weighting, and Value at Risk (VaR) using the 

Cornish-Fisher Expansion to measure portfolio risk. 

Additionally, the Stress Testing method is employed to assess 

portfolio risk under extreme market scenarios.  
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Stock selection is conducted using Ward Clustering, a 

hierarchical method that groups stocks based on the similarity 

of their characteristics, aiming to form more homogeneous 

clusters. Portfolio weighting is carried out using the Mean-

Semivariance approach, which was developed as an 

improvement over the Mean-Variance model. Markowitz 

recommended the use of downside risk measured by Mean-

Semivariance, as it is considered more relevant for investors 

who tend to avoid losses [2]. To measure portfolio risk, the 

Cornish-Fisher Expansion of VaR is used to enhance risk 

estimation by accounting for skewness and excess kurtosis in 

return distributions [3]. Since VaR is designed for normal 

market conditions and may fail to capture extreme events, it 

is complemented with Stress Testing to evaluate how the 

portfolio would perform under significant changes in 

economic or market variables [4]. The analytical methods are 

applied to the PEFINDO i-Grade index, which comprises 30 

stocks from investment-grade-rated companies, for the 

purpose of portfolio optimization and risk mitigation. 

II. WARD CLUSTERING 

Ward Clustering works by maximizing homogeneity 

within clusters while minimizing the variation among objects 

within the same cluster. Ward Clustering is a hierarchical 

method based on an agglomerative approach, meaning the 

grouping process is performed by combining cluster pairs that 

best match to form a hierarchical structure in the dataset [5].  

Data standardization is the process of adjusting the scale of 

the data being analyzed. Significant differences in scale can 

lead to invalid calculations in cluster analysis. In cluster 

analysis, data standardization is performed when the 

variables used have different units of measurement.  

𝑍𝑖𝑘 =
𝑥𝑖𝑘 − 𝑥̅𝑘

𝑠𝑘

 (1) 

where 𝑍𝑖𝑘 is the standardized value of observation i on 

variable k, 𝑥𝑖𝑘 is the original value of observation i on 

variable k, 𝑥̅𝑘 is the mean of variable k, and 𝑠𝑘 is the standard 

deviation of variable k. 

Two assumptions must be fulfilled in conducting cluster 

analysis: 

1. Sample Representativeness Assumption 

The sample must represent the population (i.e., be 

representative) to ensure that the clustering process is valid 

and reliable.  

2. Non-Multicollinearity Assumption 
Multicollinearity refers to the existence of linear 

relationships among independent variables. Variables used in 

cluster analysis should be free from multicollinearity issues. 

Multicollinearity can affect clustering results because it can 
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make it difficult to determine the influence of each variable 

analyzed. The Variance Inflation Factor (VIF) is one method 

used to detect the presence of multicollinearity [6].  

𝑉𝐼𝐹𝑘 =
1

1 − 𝑅𝑘
2 (2) 

where 𝑅𝑘
2 is the coefficient determination for variable k. If the 

VIF value exceeds 10, it indicates that multicollinearity exists 

in that variable. 

In the Ward method, cluster pairs are selected based on the 

smallest increase in total within-cluster variance. The 
increase in variance for each merging step is calculated from 

the difference in the sum of squared Euclidean distances 

between data points and the cluster centroid, before and after 

the merging process [5].  

𝑆𝑆𝐸𝐴 = ∑ (𝒙𝑖 − 𝒙̅𝐴)′(𝒙𝑖 − 𝒙̅𝐴)
𝑛𝐴

𝑖=1
 

𝑆𝑆𝐸𝐵 = ∑ (𝒙𝑖 − 𝒙̅𝐵)′(𝒙𝑖 − 𝒙̅𝐵)
𝑛𝐵

𝑖=1
 

(3) 

𝑆𝑆𝐸𝐴𝐵 = ∑ (𝒙𝑖 − 𝒙̅𝐴𝐵)′(𝒙𝑖 − 𝒙̅𝐴𝐵)
𝑛𝐴𝐵

𝑖=1
 (4) 

where 𝑆𝑆𝐸𝐴 is the SSE for object A, 𝑆𝑆𝐸𝐵 is the SSE for 

object B, 𝑆𝑆𝐸𝐴𝐵 is the SSE for the combined object A and B 

after clustering, 𝒙𝑖 represents the data observation vector, 𝒙̅𝐴 

is the mean observation vector of object A, 𝒙̅𝐵 is the mean 

observation vector of object B, and 𝒙̅𝐴𝐵  is the mean 

observation vector of the combined objects A and B. Objects 

A and B are grouped into the same cluster if 𝑆𝑆𝐸𝐴𝐵 −
(𝑆𝑆𝐸𝐴 + 𝑆𝑆𝐸𝐵) minimized. 

The validation of clustering results is performed to assess 

the quality of the clusters using the silhouette score. The 

silhouette score evaluates the placement of each object by 

calculating the average proximity of objects to identify 
substantial clustering results [7]. 

𝑆𝐶 =
1

𝑛
∑ 𝑠(𝑖)

𝑛

𝑖=1

 (5) 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
; 

𝑎(𝑖) =
1

𝑛(𝐴)−1
∑ 𝑑(𝑥𝑖 , 𝑥𝑗)1𝜖𝐴,𝑖≠𝑗 ; and  

𝑏(𝑖) = min 𝑑(𝑥𝑖 , 𝐸) 

(6) 

where 𝑆𝐶 is the overall silhouette score, 𝑠(𝑖) is the silhouette 

score of the object i, 𝑑 is the distance between objects, 𝑎(𝑖) 

is the average distance of object i to other objects in the same 

cluster, and 𝑏(𝑖) is the minimum average distance of object i 

to all objects in other clusters. 

III. STOCK RETURN 

Stock return is one of the indicators used to assess a 

company's performance. Return has better statistical 

properties than asset prices for risk modeling, as it focuses 

more on the dynamics of return changes rather than price 

changes [8]. 

𝑅𝑡+1 = ln(𝑃𝑡+1) − ln(𝑃𝑡) (7) 

where 𝑅𝑡+1 is the return for period 𝑡 + 1, 𝑃𝑡+1 and 𝑃𝑡  

represent the stock prices. Historical returns are used as the 

basis for determining expected returns and future risks. 

Expected return is the return that investors expect to earn in 

the future. If there are n (number of observations) returns, 

then the expected return is estimated using the sample 

average return. 

IV. NORMALITY TEST 

The assumption of data normality is fundamental in many 

statistical analyses, requiring that the data used in statistical 

modeling be distributed normally or approximately normally 

[9]. 

1. Univariate Normality Test 

A formal univariate normality test can be conducted using 

the Kolmogorov-Smirnov test by comparing the empirical 

distribution function based on the sample data with the 

hypothesized cumulative distribution function [10]. 

H0 : 𝐹(𝑥) = 𝐹∗(𝑥) for 𝑥 from −∞ to +∞ (data follows a 

normal distribution). 

H1 : 𝐹(𝑥) ≠ 𝐹∗(𝑥) for at least one 𝑥 (data do not follow a 

normal distribution). 

𝑇 = sup
𝑥

|𝐹∗(𝑥) − 𝑆(𝑥)| (8) 

where 𝑇 is the supremum of |𝐹∗(𝑥) − 𝑆(𝑥)|, 𝐹∗(𝑥) is the 

theoretical cumulative distribution function, and 𝑆(𝑥) is the 

empirical distribution function. Reject H0 if 𝑇 > 𝑇𝑡𝑎𝑏𝑙𝑒  (two 

sided) or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼. 

2. Multivariate Normality Test 

According to [11], the assessment of the multivariate 

normality assumption can be done visually by observing a Q-

Q Plot between the squared Mahalanobis distance and the 

Chi-Square quantile, and formally by examining the 

correlation between them using the following steps: 

a) The generalized distance is calculated using the squared 

Mahalanobis distance. 

𝑑𝑗
2 = (𝒙𝑗 − 𝒙̅)

′
𝑺−𝟏(𝒙𝑗 − 𝒙̅), 𝑗 = 1, 2, … , 𝑛 (9) 

where 𝑑𝑗
2 is the squared Mahalanobis distance, 𝒙𝑗  is the 

observation vector, 𝒙̅ is the mean vector of each variable, 

and 𝑺−𝟏 is the inverse of the variance-covariance matrix. 

b) The obtained distances are sorted from smallest to 

largest. 

c) A plot is created of (𝑑𝑗
2, 𝑞𝑗 =  𝜒𝑝

2 (
𝑗−

1

2

𝑛
)) where 𝑞𝑗 =

𝜒𝑝
2 (

𝑗−
1

2

𝑛
) is the percentile 100 (𝑗 −

1

2
) /𝑛 for the Chi-

Square distribution with p degrees of freedom. 

d) If the plot forms a straight diagonal line, then the 

variables are considered to be multivariate normal 

distributed. 

e) A formal test is conducted by calculating the correlation 

between 𝑑𝑗
2 and 𝑞𝑗. 

H0: the data follow a multivariate normal distribution 

H1: the data do not follow a multivariate normal   

distribution 

𝑟𝑄 =
∑ (𝑑𝑗

2 − 𝑑̅2)(𝑞𝑗 − 𝑞̅)𝑛
𝑗=1

√∑ (𝑑𝑗
2 − 𝑑̅2)

2𝑛
𝑗=1

√∑ (𝑞𝑗 − 𝑞̅)
2𝑛

𝑗=1

. (10) 

Reject the hypothesis that the data follow a multivariate 

normal distribution if 𝑟𝑄 < 𝑟𝑡𝑎𝑏𝑙𝑒 , based on the critical 

values from the Q-Q Plot Correlation Coefficients Test 

for Normality. 

V. MEAN-SEMIVARIANCE 

Mean-Semivariance is a method that uses downside risk 
(DSR) in calculating risk [2]. DSR measures a more relevant 
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risk because it focuses on the risk that is below the benchmark 

(B). The benchmark represents a reference point chosen by 

the investor. This method does not have any distributional 

assumptions, making it preferable [12]. The semivariance and 

semicovariance formulas from [13] are as follows: 

Σ𝑖𝐵
2 =

1

𝑇
∑ [𝑀𝑖𝑛(𝑅𝑖,𝑡 − 𝐵, 0)]

2𝑇

𝑡=1
 (11) 

Σ𝑖𝑗𝐵 =
1

𝑇
 ∑ [𝑀𝑖𝑛(𝑅𝑖,𝑡 − 𝐵, 0) 𝑀𝑖𝑛(𝑅𝑗,𝑡 − 𝐵, 0)]

𝑇

𝑡=1
 (12) 

where Σ𝑖𝐵
2  is the semivariance of asset i, Σ𝑖𝑗𝐵 is the 

semicovariance between asset i and asset j, 𝑅𝑖,𝑡 is the return 

of asset i, 𝑅𝑗,𝑡 is the return of asset j, and 𝐵 is the benchmark. 

Portfolio weighting with weights 𝒘 =
[𝑤1 𝑤2

… 𝑤𝑁 ]𝑇 aims to minimize risk based on the 

semivariance of the constructed portfolio. Optimization is 

conducted using the Lagrange function with two multipliers, 

𝜆 and 𝛽. 

𝐿 = 𝒘𝑻𝚺𝒎𝒔𝒗𝒘 + 𝜆(𝜇𝑝 − 𝒘𝑻𝝁) + 𝛽(1 − 𝒘𝑻𝟏𝑁). (13) 

The optimal value of w is determined by finding the partial 

derivative of 𝐿 with respect to 𝒘. 

𝜕𝐿

𝜕𝒘
= 0 

2𝚺𝒎𝒔𝒗𝒘 − 𝜆𝝁 − 𝛽𝟏𝑁 = 0 

𝒘 =
1

2
𝚺𝒎𝒔𝒗

−𝟏 (𝜆𝝁 + 𝛽𝟏𝑁), 

multiply both side by 𝟏𝑁
𝑇 : 

𝟏𝑁
𝑻  𝒘 =

1

2
𝟏𝑁

𝑻  𝚺𝒎𝒔𝒗
−𝟏 (𝜆𝝁 + 𝛽𝟏𝑁) 

1 =
1

2
𝟏𝑁

𝑻  𝚺𝒎𝒔𝒗
−𝟏 (𝜆𝝁 + 𝛽𝟏𝑁) 

𝛽 =
2 − 𝟏𝑁

𝑻  𝚺𝒎𝒔𝒗
−𝟏 𝜆𝝁

𝟏𝑁
𝑻  𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁

 

then subtitute 𝛽: 

𝒘 =
1

2
𝚺𝒎𝒔𝒗

−𝟏 (𝜆𝝁 + (
2 − 𝟏𝑁

𝑻  𝚺𝒎𝒔𝒗
−𝟏 𝜆𝝁

𝟏𝑁
𝑻  𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁

) 𝟏𝑁) 

𝒘 =
1

2
𝜆 (𝚺𝒎𝒔𝒗

−𝟏 𝝁 −
𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁
𝑻 𝚺𝒎𝒔𝒗

−𝟏 𝝁𝟏𝑁

𝟏𝑁
𝑻  𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁

) +
𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁

𝟏𝑁
𝑻  𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁

. 

 

(14) 

In the case of an efficient portfolio with minimum 

semivarian, there is no restriction on the portfolio mean, so 

𝜆 = 0. Thus, the optimal portfolio weighting using the Mean-
Semivariance is defined as follows: 

𝒘 =
𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁

𝟏𝑁
𝑻  𝚺𝒎𝒔𝒗

−𝟏 𝟏𝑁

 (15) 

where 𝚺𝒎𝒔𝒗 is the semivariance-semicovariance matrix. 

Based on the derived weights, the portfolio return can then be 

constructed as: 

𝑅𝑝𝑡 = ∑ 𝑤𝑖𝑅𝑡,𝑖
𝑁
𝑖=1  where ∑ 𝑤𝑖

𝑁
𝑖=1 = 1 (16) 

where 𝑅𝑝,𝑡 is the portfolio return at period t, 𝑅𝑡,𝑖 is the return 

of asset 𝑖 at period 𝑡, and 𝑤𝑖 is the weight of asset i. Expected 

return and semivariance of the portfolio are given by: 

𝜇𝑝 = 𝒘𝑻𝝁 (17) 

𝜎𝑝
2 = 𝒘𝑻𝚺𝐦𝐬𝐯𝒘 (18) 

where 𝜇𝑝 is the expected return of the portfolio, 𝜎𝑝
2 is the 

semivariance of the portfolio return, 𝒘 is the portfolio weight 

vector, 𝝁 is the expected return vector of the constituent 

assets, and 𝚺𝐦𝐬𝐯 is the semivariance-semicovariance matrix. 

VI. CORNISH-FISHER EXPANSION VALUE AT RISK 

VaR (Value at Risk) is a tool for risk management that tells 

us the worst expected loss of portfolio with a certain 

confidence level and for a given period of time [14]. The 

Cornish-Fisher expansion in the context of VaR is a semi-

parametric approach used to estimate quantiles of a non-

normal distribution by incorporating standard normal 

quantiles, skewness, and excess kurtosis of the sample [15]. 

This method provides a simple relationship between 

skewness and excess kurtosis with VaR, thereby facilitating 

portfolio risk measurement. This method is designed to 

address non-normality of variables by incorporating 

skewness and excess kurtosis [3]. 

𝑧𝑐𝑓 = 𝑞(1−𝛼) +
(𝑞(1−𝛼)

2 − 1)𝛾1

6
 

+
(𝑞(1−𝛼)

3 − 3𝑞(1−𝛼))𝛾2

24
−

(2𝑞(1−𝛼)
3 − 5𝑞(1−𝛼))𝛾1

2

36
 (19) 

where 𝑧𝑐𝑓 is Cornish-Fisher quantile, 𝑞(1−𝛼) is standard 

normal quantile, 𝛾1 is skewness, and 𝛾2 is excess kurtosis. 

The VaR formula using the Cornish-Fisher is given by: 

𝑉𝑎𝑅𝛼 = 𝑉0 × (𝜇𝑝 + 𝜎𝑝 𝑧𝑐𝑓) × √ℎ𝑝 (20) 

where 𝑉0 is the initial investment, 𝜇𝑝 is the expected portfolio 

return, 𝜎𝑝 is the volatility of portfolio return, 𝑧𝑐𝑓 is the 

Cornish-Fisher quantile, and ℎ𝑝 is the investment holding 

period. 

VII. STRESS TESTING 

Stress Testing is designed to complement Value at Risk 

(VaR) in anticipating extreme events. Stress Testing is a 

useful tool for financial risk managers because it gives us a 

clear idea of the vulnerability of a defined portfolio [16]. The 

selection of extreme scenarios is subjective and depends on 

the stress tester's assessment and experience [17]. The types 

of scenario analysis are categorized as follows [18]: 

1. Historical Scenarios of Crisis: scenarios are formed 

using historical data of extreme events that have occurred 

as a basis for Stress Testing. 
2. Stylized Scenarios: scenarios are formed by simulating 

market movements in interest rates, exchange rates, 

stock prices, and commodity prices against the portfolio. 

3. Hypothetical Events: scenarios are formed through a 

reflection process by considering the consequences of 

certain hypothetical situations. 

The basis of Stress Testing is to recalculate VaR estimates 

with higher volatility. In the G-30 Best Practices Report, it is 

recommended to conduct stress simulations that reflect 

adverse moves of historical and future events [19]. Historical 

scenarios of simulation-based Stress Testing are: 

1. Stress Testing Using Monte-Carlo Simulation 
The Monte Carlo simulation is a parametric approach 

that requires input parameters based on the historical 

distribution of data under extreme conditions.  

𝑃𝑡 = 𝑃𝑡−1 𝑒𝜎𝜀√𝑡 (21) 

where 𝑃𝑡  is the simulated price, 𝑃𝑡−1 is the current stock price, 

𝑒 is Euler number (2,71828), 𝜀 is a standard normally 

distributed random variable, 𝜎 is the volatility, and if VaR is 

estimated for one day, then 𝑡 value is equal to one. 

The formula in Equation (21) cannot be applied to a 

portfolio case, as it is only valid for a single asset. Therefore, 

the simulation process becomes more complex by 

transforming the uncorrelated standard normal random 
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variable 𝜺 into a correlated random variable Z using a 

Cholesky matrix (𝑨): 

[

𝑍1

𝑍2…
𝑍𝑛

]

𝑛×1

= [𝑨]𝑛×𝑛 [

𝜀1

𝜀2…
𝜀𝑛

]

𝑛×1

. (22) 

Extreme simulated prices are then obtained by transforming 

the current prices using the modified Equation (21), where 𝜀 

is replaced with 𝑍. 

Based on the resulting simulated prices, the portfolio value 

is calculated by multiplying the number of shares by the 

simulated prices. The distribution of portfolio profits and 

losses is computed using Equation (23): 

𝑃&𝐿 = 𝑉𝑖 − 𝑉0  (23) 

where 𝑃&𝐿 represent profit or loss, 𝑉𝑖 is the portfolio value 

from the 𝑖 − 𝑡ℎ mulation, and 𝑉0 is the current portfolio 

value. If the portfolio’s simulated 𝑃&𝐿 results are sorted in 

ascending order, the VaR estimate is derived from the α-th 

percentile of this distribution.  

2. Stress Testing Using Historical Simulation 

The historical simulation method involves constructing a 

scenario under the assumption that past events may recur, 

thereby requiring a revaluation of both individual asset values 

and the overall portfolio. The practical implementation steps 

of this method are as follows: 

a) Selecting a period corresponding to the extreme scenario 
to be analyzed. 

b) Calculating historical returns for each scenario 

constructed. 

c) Simulating prices using historical simulation. 

𝑃𝑖 = 𝑃𝑡  𝑒𝑅𝑖 (24) 

where 𝑃𝑖 is the i-th simulated price, 𝑃𝑡  is the current price, 𝑒 

is Euler's number (2,71828), and 𝑅𝑖 is the i-th return. From 

this point, the process is identical to that described for the 

Monte Carlo Simulation. [16]. 

VIII. DATA AND METHOD 

The data used in this study consists of variables employed 

in the clustering process and variables used in determining 

weights to Stress Testing. The variables used for clustering 

include the Price to Earnings Ratio (PER), Price to Book 

Value (PBV), and Market Capitalization of 30 companies 

listed in the PEFINDO i-Grade index as of December 2024. 

Meanwhile, the variables used in determining stock weights 

for the optimal portfolio and during the Stress Testing process 

comprise the daily closing prices of the 30 stocks listed in the 

PEFINDO i-Grade index, as well as the daily closing prices 

of the Indonesia Composite Index (IHSG), spanning from 

January 2, 2023, to December 30, 2024. The data utilized in 

this research are secondary data obtained from several 

sources: 

1. Information on stocks listed in the PEFINDO i-Grade 

index was retrieved from [20] under the Index section. 

2. Data on the Price to Earnings Ratio (PER), Price to Book 

Value (PBV), and Market Capitalization of each 

company in the PEFINDO i-Grade index were obtained 

from the Stock Screener feature on [21]. 

3. Daily closing price data were obtained from [22]. 

The data analysis process in this study involves the 

following steps: 

1. Grouping stocks using Ward Clustering, followed by 

selecting portfolio constituents from each cluster based 

on their expected return. 

2. Constructing the optimal portfolio using the Mean-

Semivariance method with the IHSG return as the 

benchmark to determine the optimal weights. 

3. Estimating the maximum potential risk of the 

constructed stock portfolio using the Cornish-Fisher 

Expansion VaR. 

4. Developing extreme scenarios based on daily IHSG 

prices and estimating the maximum potential portfolio 

risk under these stressed conditions. 

Data were processed using software Python Google Colab. 

IX. RESULT AND DISCUSSION 

This section outlines the stock selection process using 

Ward Clustering, portfolio weighting through the Mean-

Semivariance approach, and risk measurement using the 

Cornish-Fisher VaR method, complemented by Stress 
Testing under extreme market conditions.  

A. Stocks Selection Using Ward Clustering 

This section explains stock selection using Ward 

Clustering. Stocks that make up the portfolio are selected 

from representatives of each cluster based on their expected 
return. The variables used in the clustering consist of PER, 

PBV, and Market Capitalization of 30 stocks included in the 

PEFINDO i-Grade, which have different scales, so 

standardization was required. Multicollinearity detection was 

carried out using the VIF. The VIF values for PER, PBV, and 

Market Capitalization are 2.38432, 3.01531, and 1.43488, 

respectively. Since all VIF values are below 10, it can be 

concluded that there is no multicollinearity, and the 

assumptions for cluster analysis are satisfied. 

Ward Clustering was applied, starting with each 

observation as its own cluster and then successively merging 

clusters based on the smallest increase in within-cluster sum 
of squares (SSE), until a single cluster is formed. The optimal 

number of clusters was determined using the silhouette score. 

 

 
Fig 1. Silhouette Score Plot 

 

The optimal number of clusters for the PEFINDO i-Grade 

stock data clustering is 4 clusters that have the highest 

silhouette score.

0.69591 
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Fig 2. Clustering Dendrogram

 
TABLE I 

CULSTER MEMBERSHIP 

Cluster Count  Cluster Members 

1 3 BBCA, BBRI, BMRI 

2 25 ADHI, BBNI, BJBR, BMTR, BNGA, BRIS, 

BSDE, DSNG, ELSA, HEAL, HRTA, INKP, 

ISAT, JSMR, MBMA, MDKA, MEDC, MFIN, 

MYOR, PNBN, PTPP, SMDR, SMGR, 

SMRA, TLKM 

3 1 BRPT 

4 1 TPIA 

 

TABLE II 

CULSTER MEMBERSHIP 

Cluster PER (times) PBV (times) Market Capitalization (IDR)  

1 13.887 2.770  773,205,455,638,220 

2 9.355 1.217  43,673,124,241,475 

3 339.610 1.380  86,247,440,600,480 

4 -556.660 15.810  631,534,000,000,000 

 

The characteristics of each resulting cluster were examined 

through the average value of each variable within the 

respective clusters in Table II. TPIA was excluded due to 

having a negative PER alongside the highest PBV. This 

condition indicates that the company has not yet been able to 

generate sufficient profits to support its stock price, which is 
considered overvalued. The selection of stocks for portfolio 

construction was based on the highest positive expected 

return from each cluster. A positive expected return reflects 

the anticipated gain from an investment. The higher the 

expected return, the greater the potential profit that can be 

expected. The portfolio consists of BMRI (PT Bank Mandiri 

(Persero) Tbk) from Cluster 1 with an expected return of 

0.00030, MFIN (PT Mandala Multifinance Tbk) from Cluster 

2 with an expected return of 0.00283, and BRPT (PT Barito 

Pacific Tbk) from Cluster 3 with an expected return of 

0.00039. 

 
Fig 3. Multivariate Normal Q-Q Plot 

 

B. Optimum Portfolio Using Mean-Semivariance 

This section explains the optimum weighting for each of 

the portfolio's constituent stocks using Mean-Semivariance. 
Previously, the assumption of multivariate normality was 

tested to determine whether the portfolio's constituent stock 

return is multivariately normally distributed. Meanwhile, if 

the data is not normally distributed, the portfolio optimization 

method can be done using Mean-Semivariance. 

Based on Figure 3, the plot does not follow a straight 

diagonal line. At a significance level of 𝛼 = 5%, the 

correlation between the squared Mahalanobis distances and 

the Chi-Square quantiles was 0.82764, which is lower than 

the critical value. Therefore, it is concluded that the portfolio 

stock returns do not follow a multivariate normal distribution.  
The construction of the optimal portfolio using the Mean-

Semivariance approach begins with the formation of the 

semivariance-semicovariance matrix. The benchmark used in 

this analysis is the return of the Indonesia Composite Index 

(IHSG). 
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Fig 4. Historical IHSG Prices 

TABLE III 

CORNISH-FISHER CALCULATION COMPONENTS 

Statistics Portfolio Return  

Expected Return 0.00081 

Semivariance 0.00009 

Semideviation   0.00926 

Excess Kurtosis 1.98019 

Skewness -0.37873 

𝚺𝒎𝒔𝒗 = [

Σ𝐵𝑀𝑅𝐼,𝐵
2 Σ𝐵𝑀𝑅𝐼,𝑀𝐹𝐼𝑁,𝐵 Σ𝐵𝑀𝑅𝐼,𝐵𝑅𝑃𝑇𝐵

Σ𝐵𝑀𝑅𝐼,𝑀𝐹𝐼𝑁,𝐵 Σ𝑀𝐹𝐼𝑁,𝐵
2 Σ𝑀𝐹𝐼𝑁,𝐵𝑅𝑃𝑇,𝐵

Σ𝐵𝑀𝑅𝐼,𝐵𝑅𝑃𝑇,𝐵 Σ𝑀𝐹𝐼𝑁,𝐵𝑅𝑃𝑇,𝐵 Σ𝐵𝑅𝑃𝑇,𝐵
2

] 

𝚺𝒎𝒔𝒗 = [
0.00010 0.00003 0.00006
0.00003 0.00032 0.00005
0.00006 0.00005 0.00054

]. 

The inverse of the semivariance-semicovariance matrix 

(𝚺𝒎𝒔𝒗
−1 ) is presented as follows:  

𝚺𝒎𝒔𝒗
−𝟏 = [

10501.692 −753.256 −1098.001
−753.256 3248.904 −188.685

−1098.001 −188.685 1984.877
]. 

𝚺𝒎𝒔𝒗
−𝟏  is then used to determine the optimal weights for the 

portfolio stocks: 

𝒘 =

[
10501.692 −753.256 −1098.001
−753.256 3248.904 −188.685

−1098.001 −188.685 1984.877
] [

1
1
1

]

[1 1 1] [
10501.692 −753.256 −1098.001
−753.256 3248.904 −188.685

−1098.001 −188.685 1984.877
] [

1
1
1

]

 

𝒘 = [

𝑤𝐵𝑀𝑅𝐼

𝑤𝑀𝐹𝐼𝑁

𝑤𝐵𝑅𝑃𝑇

] = [
0.74217
0.19793
0.05990

]. 

The resulting optimal weights for BMRI, MFIN, and BRPT 

are 74.217%, 19.793%, and 5.990%, respectively. 

C. Portfolio Risk Using Cornsh-Fisher Expansion VaR 

This section explains the maximum potential risk of the 

constructed portfolio using the Cornish-Fisher VaR. Prior to 

this, a normality test was conducted on the portfolio returns 

to assess whether the returns follow a normal distribution. If     

the return distribution does not significantly deviate from 

normality, the Cornish-Fisher Expansion VaR can be applied. 

Based  on  the  weights, the portfolio  return  was  calculated 

TABLE IV  

NORMALITY TEST STATISTICS OF STOCK PRICES 

Scenario Period Stock 𝑇 p-value 

Scenario 1 22/03/2024-

19/06/2024 

BMRI 0.12784 0.35678 

MFIN 0.11779 0.45703 

BRPT 0.21626 0.01563 

Scenario 2 10/10/2024-

19/12/2024 

BMRI 0.14952 0.19312 

MFIN 0.43074 0.00000 

BRPT 0.12499 0.38368 

using Equation (16). Checking the univariate normality 

assumption on the portfolio return obtained a test statistic 

value of 0.06677 with p-value of 0.02764. At 5% significance 

level, it can be concluded that the portfolio return is not 
normally distributed.  

The portfolio risk using the Cornish-Fisher VaR requires 

several descriptive statistical components of the portfolio 

return in Table III. Portfolio risk in the analysis was 

calculated at the 95% confidence interval or significance 

level 𝛼 = 5% , so the 𝑞
95%

 value is -1.645 [18]. The Cornish-

Fisher quantile (𝑧𝑐𝑓) calculated using Equation (19) is -

1,70985. Assuming an initial investment of IDR 10,000,000 

and an investment period of 1 day, the maximum potential 

loss an investor may experience is IDR 150,298, equivalent 

to 1.503% of the initial capital invested. 

D. Portfolio Risk in Extreme Conditions Using Stress 

Testing 

The selection of extreme scenarios is carried out by 

analyzing extreme events using the historical scenario and 

identifying factors influencing the level of risk based on 

market risk, which is driven by stock price fluctuations. 

Parameters to identify extreme events were determined using 
the composite stock index, under the assumption that the 

IHSG represents the movement of most individual stocks. 

Extreme scenarios were determined based on periods of 

continuous IHSG price decline leading to its lowest point 

presented in Figure 4.  Fifty periods prior to the lowest point 

were selected to capture the downward trend, assuming this 

was sufficient to represent the decline. Therefore, the extreme 

scenarios analyzed occurred during March 22, 2024 – June 

19, 2024, and October 10, 2024 – December 19, 2024.  

Based on the normality test results across all crisis 

scenarios presented in Table IV, none of the closing prices of 

the selected portfolio stocks followed a normal  distribution. 
This  study  employed  a  simulation - based  Stress  Testing, 

Jun 19, 2024  

Dec 19, 2024  
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TABLE V  

STRESS TESTING VAR CALCULATION RESULTS 

Scenario 

VaR Cornish-Fisher 

Expansion 

VaR Historical 

Simulation 

VaR (IDR) VaR (%) VaR (IDR) VaR (%) 

Scenario 1 270,426 2.704 337,734 3.387 

Scenario 2 219,676 2.197 317,843 3.187 

TABLE VI  

INVESTMENT REALIZATION 

Stock 
Weight 

(%) 

Fund 

Allocation 

(IDR) 

Stock Price (IDR) 
Stock 

Quantity 

30/12/24 2/01/25 Lot Shares 

BMRI 74.22  7,421,706  5,700 5,850  13 1300 

MFIN 19.79  1,979,276  3,350  3,480  6 600 

BRPT 5.99 599,018  920  940  6 600 

 

utilizing the historical simulation method exclusively to 

better capture the non-normal characteristics of the data. Risk 

evaluation under extreme conditions was carried out using 

Stress Testing through both the Cornish-Fisher VaR and 

historical simulation.  Stress Testing with the Cornish-Fisher 

VaR was calculated based on portfolio returns using  actual 

prices adjusted to the chosen extreme periods, while the 

historical simulation approach used simulated stock prices for 
each scenario.  

Based on Table V, the VaR values obtained through 

historical simulation were higher than those using actual 

prices in both extreme scenarios. This difference implies that 

the historical simulation method is more conservative, as it 

yields a higher estimated risk. Portfolio risk under extreme 

conditions was higher than the risk calculated over the entire 

study period, which was 1.503%. 

An investment realization assessment was conducted to 

determine whether the potential loss from an investment 

made on December 30, 2024, over one day would exceed the 
estimated VaR. On January 2, 2025, the stock prices of 

BMRI, MFIN, and BRPT were IDR 5,850, IDR 3,480, and 

IDR 940. Based on these prices, the closing prices of all three 

stocks increased compared to the previous period. Based on 

Table VI, the portfolio value on December 30, 2024, was IDR 

9,972,000, and it increased to IDR 10,257,000 on January 2, 

2025. Thus, an investor who allocated IDR 9,972,000 to the 

portfolio gained a capital return of IDR 285,000 or 2.858% of 

the initial investment. 

X. CONCLUSION 

The stocks from the PEFINDO i-Grade index selected for 

the portfolio are BMRI (PT Bank Mandiri (Persero) Tbk) 

with a weight of 74.217%, MFIN (PT Mandala Multifinance 

Tbk) with a weight of 19.793%, and BRPT (PT Barito Pacific 

Tbk) with a weight of 5.990%. The maximum potential loss 

for an investor allocating IDR 10.000.000 to this portfolio at 

a 95% confidence level is IDR 150,298 for the following day, 

equivalent to 1.503% of the initial investment. Portfolio risk 

under extreme conditions indicates a higher potential loss. 

The Cornish-Fisher VaR values under Scenario 1 and 
Scenario 2 are 2.704% and 2.197%, respectively, while the 

historical simulation VaR values under the same scenarios are 

3.387% and 3.187%. The level of risk resulting from Stress 

Testing reflects that under extreme market conditions, the 

potential for loss increases significantly. 
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