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Abstract—The assessment of similarity among mobile 

trajectories plays an important role in trajectory data mining. 

Trajectory similarity is a vague concept, and there is no precise 

metric, where the geometric similarity of the trajectories has 

received more attention. Considering the commonly used 

Hausdorff and Fréchet distances as measures, there is a process 

of traversal calculation to match the corresponding points or 

parts of two trajectories, which is computationally expensive 

and cannot reflect the geometric similarity of the trajectory 

commendably. By using deep learning technology to 

approximate or extract the features of the trajectory, the 

measure of trajectory similarity depends on the quality and 

scale of the data. Meanwhile, it is difficult to explain the 

geometric significance of the abstract features of the trajectory 

extracted by deep learning technology. In view of this, this study 

proposes the concepts of local shape matrix and merged shape 

matrices for characterizing the local and overall shapes of 

moving trajectories. The symbol overlap method for the merged 

shape matrix is also proposed to match the corresponding points 

or parts of the two trajectories. Both theoretical analysis and 

experiments show that the proposed shape matrix and symbol 

overlap method can be effectively used to measure the geometric 

similarity of moving trajectories based on discrete positioning 

points. 

 
Index Terms—Trajectory Similarity; Shape Matrix; Symbol 

Overlap Method; Hausdorff Distance; Fréchet Distance; Deep 

Representation Techniques 

 

I.  INTRODUCTION 

ITH the widespread adoption of satellite positioning 

applications and services, the acquisition and 

utilization of positioning data have become 

increasingly convenient. As is well known, we commonly 

gather satellite-based location data for mobile objects (such 

as vehicles, ships, and mobile robots) at discrete time 

intervals. Consequently, the positioning data employed are 

typically characterized by their discrete nature. The 

investigation of similarity among mobile trajectories based 

on such discrete positioning data has emerged as a critical 

focal point in the realm of trajectory information mining [1-

2]. This research holds significant practical implications, as it  
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provides essential underpinning for various applications, 

including trajectory search, anomaly detection, target 

tracking, path planning, and navigation [3-6]. In fact, the 

study of trajectory similarity proves to be an exceedingly 

open-ended inquiry, seemingly devoid of singular evaluative 

criteria. Numerous distinct research methodologies and 

perspectives exist, often contingent on their ability to address 

practical challenges. In terms of primary research 

methodologies of the geometric similarity of the trajectories, 

they can broadly be categorized into two classes [7-11]: those 

centered on "computing distances between curves" and those 

involving "fitting or approximating curves and their 

features." 

Evidently, the movement trajectories can be regarded as 

spatial curves (point sets). The similarity of two curves 

generally refers to geometric similarity. The notion of two 

curves, C  and C
~
, being similar implies the existence of a 

certain one-to-one correspondence between the points of 

curve C  and those of curve C
~
. In other words, the ratio 

between the line segments connecting any two points on 

curve C
~

 and the corresponding line segments connecting 

two points on curve is  constant, as illustrated in Fig. 1 . 
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Fig. 1. Illustration of the curve similarity. 

 
For smooth curves, we have some criteria for determining 

curve similarity [12-13]. However, in practice, it is often 

challenging to find two curves, especially those derived from 

real-world scenarios, that are entirely similar. Instead, our 

primary focus is on quantifying the differences or degree of 

similarity between two given curves. This is a complex and 

open-ended problem that lacks a widely accepted similarity 

metric. Currently, it is addressed to a certain extent and within 

specific contexts. Even continuous plane curves can exhibit 

highly intricate forms that are challenging to measure in 

terms of their similarities. For example, consider the 

Weierstrass function, which is nowhere differentiable and has 

a dimension exceeding 1, or the Peano curve, which fills the 

entire square region [14-15]. The problem becomes even 

more intricate when dealing with similarity measurements for 

curves in general three-dimensional spaces. Currently, the 
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most commonly used distance-based methods for measuring 

curve or mobile trajectory similarity include 
pL  distance, 

Hausdorff distance, Fréchet distance, and their various 

derivatives [16-20]. Considering their original definitions 

(which have corresponding discrete forms for practical 

computation and various variations that remain rooted in their 

essence), it is evident that these methods involve traversing 

computations to establish correspondence between points or 

parts on two trajectories. This results in high computational 

complexity, with relatively less emphasis on capturing the 

"shape" similarity of trajectories. 

Definition A ( pL  distance) [16] Given two trajectories, 

denoted as ( )tCA  and ( )tCB ,  1,0t  , their pL  distance 

is defined as 

      ( ) ( ) ( ) .,

1

1

0

pp

BABAL
dttCtCCCd p 







−=        (1) 

Given a threshold 0 , when ( ) BAL
CCd p , ,we 

consider trajectories ( )tCA  and ( )tCB  to be similar. 

Conversely, we regard them as being dissimilar. 

Upon close examination, a natural question arises: are  

points ( )tCA
 and ( )tCB

 on the aforementioned trajectories 

correctly matched as corresponding points? If the matching 

of the corresponding points is misaligned, it will result in 

different pL  distances. As illustrated in Fig. 2, consider 

trajectories AC  and BC , both consisting of straight-line 

segments but with different point correspondences. It is 

evident that the calculated pL  distances would differ. 

 
Fig. 2. Different correspondences of matching points in two trajectories 

 
The optimal point correspondence between the two 

trajectories can be determined through an exhaustive search, 

allowing for the correction of the distance between the two 

trajectories to be expressed as 

    ( ) ( )( ) ( )( )
pp

BABAL
dssCsCCCd p

1

1

0,
inf, 








−=  


  (2) 

where ( )s  and ( )s  encompass all continuous non-

decreasing real functions, satisfying ( )0 = ( )0 0=  and 

( )1 ( )1= 1= . It is evident that such exhaustive traversal 

computations would be prohibitively expensive and may 

even be infeasible to implement. Furthermore, as illustrated 

in Fig. 3, it is apparent that two curves with significantly 

different shapes can still have equal pL  distances from the 

same reference curve. This underscores the limitation of 

distance in adequately capturing the shapes of the curves. 

Now, let us examine the commonly used Hausdorff and 

Fréchet distances. 

 
Fig. 3. Two sets of curves with equal distances but significant shape 

differences 

 

Definition B (Hausdorff distance) [10] Given two 

trajectories, denoted as 
( )tCA  and

( )tCB ,  1,0t , their 

Hausdorff distance is defined as follows: 

( )
( ) ( ) ( ) ( )

.minmax,minmaxmax,








−−=


babaCCd
tCatCbtCbtCa

BAH
ABBA

  (3) 

Definition C (Fréchet distance) [11] Given two trajectories, 

denoted as
( )tCA and

( )tCB ,  1,0t , their Fréchet distance is 

defined as follows: 

    ( )
 

( )( ) ( )( )sCsCCCd BA
s

BAF 


−=
 1,0,
maxinf,      (4) 

where ( )s  and ( )s  encompass all continuous non-

decreasing real functions, satisfying ( )0 ( )0= 0=  and 

( )1 ( )1= 1= . 

The aforementioned Hausdorff and Fréchet distances both 

entail exhaustive computations involving the selection of 

maximum or minimum values. One of the critical rationales 

behind this approach is to ensure proper pairing of 

corresponding points or parts between two trajectories. For 

instance, in the case of the Hausdorff distance, the ( )
ba

tCb B

−

min

 

operation aims to locate the most suitable corresponding 

point in trajectory ( )tCB  for a given point a . Similarly, in 

the context of the Fréchet distance, the use of  ,
inf

, as 

previously discussed in the context of the corrected 
pL  

distance, serves the purpose of appropriately matching the 

corresponding points between the two curves. Consequently, 

these computations incur substantial computational 

overheads. Furthermore, both distance metrics are based on 

point-to-point distances and do not provide a comprehensive 

reflection of the geometric shapes and characteristics of the 

trajectories. As illustrated in Fig. 4, consider the curves nAC
 

constructed from the two oblique sides of a regular triangle 

and BC  , which is a straight line segment. Notably, the 

Hausdorff and Fréchet distances between curve 
nAC  and 

line 
BC  both steadily decrease towards zero( →n ). 

However, it is crucial to recognize that curve 
nAC  is 

consistently twice as long as 
BC . Their geometric shapes 

inherently differ significantly, since 
nAC  is a zigzag shape 
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but 
BC  is a straight line shape [21]. 

 
Fig. 4. Two sets of curves with distances tending to infinitesimally, 

differing in length by a factor of two. 

 

In addition to the distance-based methods discussed earlier 

for measuring trajectory similarity by calculating the 

distances between two curves, there are approaches that 

involve curve and their characteristics fitting and 

approximation, notably the well-known deep learning 

methods [22-23]. These techniques typically involve 

approximating curves or abstracting their features using deep 

learning methodologies and subsequently employing these 

representations to measure curve similarity. For example, 

applications such as deep learning-based handwritten digit 

recognition [24-25] and deep learning-based mobile 

trajectory similarity analysis [7-8,26] are fundamentally 

aimed at measuring curve similarity. However, the use of 

deep learning methods to measure trajectory similarity is 

heavily dependent on the quality and scale of the trajectory 

data. Furthermore, these methods often lack interpretability, 

making it challenging to easily attribute geometric 

significance to the abstract features extracted from the 

trajectories using deep learning techniques. 

Considering the limitations of using distance-based 

methods, which involve computationally expensive point 

matching through traversal, and the challenges associated 

with deep learning techniques for trajectory similarity 

measurement, where data quality and quantity requirements 

are high and interpretability is limited, this study introduces 

the concept of "local shape matrices" to describe the local 

shapes of mobile trajectories. Additionally, it presents the 

concept of "merged shape matrices" for characterizing the 

overall shape of curves. The proposed methodology utilizes 

the "merged shape matrix," "negative merged shape matrix," 

"inverse merged shape matrix," and "negative inverse merged 

shape matrix" from one trajectory, overlapped with the 

"merged shape matrix" of another trajectory, employing a 

"symbol overlap method" to match the corresponding points 

or parts on the two trajectories (i.e., the maximum number of 

matching points where the signs of the values at overlapping 

positions in the two matrices are the same). This approach 

circumvents complex traversal computations, effectively 

aligns the corresponding points or parts on the trajectories, 

and does not require an abundance of trajectory data to train 

deep representation models. The subsequent sections 

(Sections Two and Three) delineate the mobile trajectory 

similarity measurement methodology proposed in this paper, 

while Section Four computes and visually validates the 

similarity levels of various mobile trajectories based on 

discrete positioning data[27-29]. 

II.  SHAPE MATRICES FOR MOBILE TRAJECTORIES 

A. Local Bending Direction of Mobile Trajectories - 

Characterized by the Sign of Triangle Algebraic Area 

Given a set of points on a planar trajectory, assuming that 

the trajectory runs from A to F , as depicted in Fig. 5, we 

examined the bending direction of contiguous sets of three 

points, such as ABC and DEF, within this trajectory segment. 

Let the coordinates of points A, B, C, D, E, and F be denoted 

as ( )AA yx , , ( )BB yx , , ( )CC yx , , ( )DD yx , , ( )EE yx , and

( )FF yx , , respectively. The algebraic area of triangle ABC 

is calculated as follows: 

 
Fig. 5. Illustration of local bending directions in the trajectories. 
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The algebraic area of triangle DEF can be computed as 
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Here, we are primarily concerned with the sign of the 

algebraic area, as it signifies the relative positions of the three 

vertices of the triangle. As shown in Fig. 5, 

0sgn 







++

AA

CC

CC

BB

BB

AA

yx

yx

yx

yx

yx

yx
 

signifying that points A, B, and C form a clockwise 

orientation, 

0sgn
D









++

DD

FF

FF

EE

EE

D

yx

yx

yx

yx

yx

yx
 

indicating that points D, E, and F form a counterclockwise 

orientation. Consequently, the sign of the algebraic area of 

the triangle formed by three adjacent points on the mobile 

trajectory represents the local bending direction of the 

trajectory segment. In the mathematical expression above, 

 

1 0

sgn 0 0

1 0

z

z z

z

+ 


= =
− 

 

denotes the sign function, where the within the brackets 

represents the determinant. It is important to note that in other 

parts of this paper, 
 

may denote the absolute value. 

Remark 1 In practical applications, due to inherent data 

errors, the true value of the algebraic area of the triangle 

formed by adjacent three points on a trajectory is unlikely to 
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be precisely zero, even if the triangle degraded into a straight 

line segment. Therefore, it is customary to establish a very 

small positive value, denoted   as a threshold instead of 

zero to adjust 
 zsgn

. Thus, 
 zsgn

 is replaced with 

         

1

sgn 0

1

z

z z

z



 



+ 


= −  
−  −

,           (5) 

it is employed to determine the sign of the algebraic area of 

the triangle formed by the adjacent three points, effectively 

indicating the local bending direction of the trajectory. 

Remark 2 For trajectories in three-dimensional space, it is 

agreed that the positive z direction is upward vertical to 

ground, and the x and y directions are determined according 

to the right-hand rule. The trajectories can be projected onto 

an x-y coordinate plane, and their local bending direction can 

be determined based on the plane coordinates of the projected 

trajectory. As illustrated in Fig. 6, the z-coordinates of points 

A and C are greater than that of point B, projecting points A, 

B, and C onto A', B', and C' allows us to ascertain the local 

bending direction of the original trajectory based on the 

observation direction of points A', B', and C'. 

 
Fig. 6. Projection of points from spatial trajectories onto the plane. 

 

B. Local Horizontal Bending Degree of Mobile 

Trajectories - Characterized by the Ratio of Triangle Side 

Lengths 

 
Fig. 7. Bending Degree of points along the trajectory. 

 

As shown in Fig. 7, with three points A ( )AA yx , , B

( )BB yx , , and C ( )CC yx ,  on a mobile trajectory, it is 

evident that angle B on the left is greater than angle B on the 

right. By utilizing the Law of Cosines for triangles, we can 

represent the cosine value of angle B as follows: 

         
BCAB

ACBCAB
B

2
cos

222
−+

=        (6) 

The larger the value in the equation, the smaller the angle 

B, indicating a more pronounced bending at point B on the 

trajectory. Conversely, a smaller value in the equation 

corresponds to a larger angle B, indicating a lesser degree of 

bending at point B. Therefore, we can use the following 

expression to represent the bending degree at point B on the 

trajectory: 

            
BCAB

ACBCAB

2

222
−+

             (7) 

If the sampling points on the trajectory are uniformly 

spaced, meaning that they are sampled based on equal arc 

lengths (which is approximately the case for constant velocity 

moving object trajectories based on satellite positioning at 

equal interval times), for the sake of computational 

convenience, it is also possible to directly use  

                   
AC

BCAB +
                (8) 

to characterize the bending degree at point B of the trajectory. 

Clearly, the larger the value in the expression, the smaller the 

angle B, indicating more pronounced bending at point B on 

the trajectory. Conversely, a smaller value in the expression 

results in a larger angle B, signifying a lesser degree of 

bending at point B. 

Due to  

( ) ( )  ( ) ( )  ( ) ( ) 
( ) ( )  ( ) ( ) 2

1
222

1
22

222222222

2
2

BCBCABAB

ACACBCBCABAB

yyxxyyxx

yyxxyyxxyyxx

BCAB

ACBCAB

−+−−+−

−+−−−+−+−+−
=

−+  

( ) ( )  ( ) ( ) 
( ) ( ) 2

1
22

2

1
222

1
22

ACAC

BCBCABAB

yyxx

yyxxyyxx

AC

BCAB

−+−

−+−+−+−
=

+    (9)  

In summary, it is possible to utilize 









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sgn

( ) ( )  ( ) ( )  ( ) ( ) 
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1
22

222222
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or 









++

AA

CC

CC

BB

BB

AA

yx

yx

yx

yx

yx

yx
sgn     

( ) ( )  ( ) ( ) 
( ) ( ) 2

1
22

2

1
222

1
22

ACAC

BCBCABAB

yyxx

yyxxyyxx

−+−

−+−+−+−
  (10) 

denotes the direction and degree of bending at point B on the 

trajectory. 

Remark 3 Similar to Remark 2, if the mobile trajectory is 

in three-dimensional space, it can be projected onto the x-y 

coordinate plane, as shown in Fig. 6. Subsequently, the local 

bending degree of the trajectory can be determined based on 

the plane coordinates of the points on the projected trajectory. 

 

C. Local Vertical Steepness Direction and Degree of 

Mobile Trajectories - Characterized by the Ratio of 

Triangle Side Lengths 

Building on Remarks 2 and 3, we previously discussed the 

characterization of the local bending direction and degree of 

spatial trajectories in the horizontal direction. Now, let us 

address the characterization of the local vertical steepness 
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direction and degree of the trajectories. For local spatial 

trajectories, such as points A, B, and C in Fig.6, let's denote 

the coordinates of points A, B, and C as ( )AAA zyx ,, ,

( )BBB zyx ,, , and ( )CCC zyx ,, , respectively. Since the 

tangent value of angle B in right triangle BAA   

characterizes the slope direction and degree of side AB , we 

can use 

    

( ) ( ) 2
1

22
''

''

''

''

ABAB

AB

yyxx

zz

BA

AA

BA

AA

−+−

−
==     (11) 

to represent the vertical steepness variation from point A to 

point B along the trajectory. Similarly, we can use 

    

( ) ( ) 2
1

22
''

''

''

''

BCBC

BC

yyxx

zz

CB

CC

BC

CC

−+−

−
==     (12) 

to represent the vertical steepness variation from point B to 

point C along the trajectory. 

As shown in Fig. 6, when 

  

( ) ( ) 2
1

22''

''

''

''

BABA

AB

yyxx

zz

BA

AA

BA

AA

−+−

−
==      (13) 

is less than 0, it signifies a decrease in the trajectory's vertical 

direction from point A to point B. Conversely, when 

     

( ) ( ) 2
1

22''

''

''

''

BCBC

BC

yyxx

zz

CB

CC

BC

CC

−+−

−
==      (14) 

is greater than 0, it indicates an increase in vertical direction 

from point B to point C. The absolute values of these tangent 

values correspond to the steepness of the local trajectory, with 

larger absolute values denoting steeper segments. 

Remark 4 Similar to Remark 1, the threshold for 

determining whether the local trajectory is ascending or 

descending vertically, denoted as 0, should typically be 

replaced with a positive value in practice. This adjustment 

accounts for the presence of errors in the real data. Even if 

points A, B, and C lie in the same plane, their differences in 

the z-coordinates are usually not exactly 0, but rather a 

relatively small value. 

 

D. Local Shape of Mobile Trajectories - Characterized by 

Local Shape Matrices 

Previously, we described the horizontal bending direction 

and degree, as well as the vertical steepness direction and 

degree of the local trajectory around points A, B, and C. 

Combining these aspects, we can use a three-dimensional 

vector, denoted as 

( ) ( )  ( ) ( )  ( ) ( ) 
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to characterize the local shape of the trajectory near point B. 

This vector is referred to as the "local shape vector" and is 

denoted as ( )TSSS 321
, where 

1S , 
2S , and 

3S  represent 

the first, second, and third components of the vector in 

expression (15). 

 
Fig. 8. Multiple sampling points on mobile trajectory. 

 

For any three adjacent sampling points on the mobile 

trajectory, a corresponding local shape vector can be 

computed based on expression (15). These local shape 

vectors, determined by all sets of adjacent three sampling 

points except for the initial and final points, are arranged 

sequentially into a matrix denoted as 

            

n

nn

nn

nn

SSSS

SSSS

SSSS



−

−

−









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1
3

2
1

2
2
2

1
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1
1

1
2
1

1
1







.        (16) 

We refer to this matrix as the "local shape matrix" of the 

mobile trajectory. As illustrated in the diagram in Fig. 8, the 

first column represents the local shape vectors calculated 

from 
210 ,, AAA , the second column from 

210 ,, AAA , and so forth, 

with the last column showing the local shape vectors 

calculated from 
11 ,, +− nnn AAA . 

 

E. Global Shape of Mobile Trajectories - Characterized 

by Merged Shape Matrices 

It is discernible that the vector formed by the signs of the 

components in the local shape vector, which we refer to as 

the "symbol vector", encapsulates the approximate local 

shape of the trajectory. This pertains to both the horizontal 

bending direction and the vertical ascent or descent 

orientation. The magnitude of the numerical values following 

the symbols (omitted here for brevity) denotes the degree of 

horizontal bending and the steepness of the vertical direction, 

as illustrated in Fig. 9. 

 
Fig. 9. The corresponding symbol vectors for local shape vectors and their 

significance 
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Consequently, when the symbol vectors of adjacent local 

shape vectors within the local shape matrix are identical, it 

signifies that they share a common horizontal bending and 

vertical ascent/descent direction. This indicates the 

continuation of the same shape pattern, which can be 

aggregated and accumulated to represent broader shape 

characteristics of the particles. In other words, if every 

component of both
( )Tiii SSS 321 and

( )Tiii SSS 1
3

1
2

1
1

+++

shares the 

same sign, they are merged into a new vector

( )Tiiiiii SSSSSS 1
33

1
22

1
11

+++ +++
, and the merging process continues 

until no further merging is possible between adjacent 

columns. The resulting matrix, denoted as 

      

n

n

n

n

SSS

SSS

SSS

~3

~

3
2
~

3
1
~

3

~

2
2
~

2
1
~

2

~
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~

1
1
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1


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





















         (17) 

is referred to as the "merged shape matrix." It offers a deeper 

insight into the overall shape of the mobile trajectory, often 

with nn ~
. 

 

III.  SYMBOL OVERLAP APPROACH FOR CORRESPONDENCE 

MATCHING AND TRAJECTORY SIMILARITY 

A. Different Perspectives on Mobile Trajectories - 

Represented with Negative, Inverse, and Negative-Inverse 

Merged Shape Matrices 

When examining mobile trajectories from alternative 

vantage points, we may encounter scenarios where the signs 

and order of the local shape vector components are reversed. 

Consequently, we designate the matrices 

n

n

n

n

SSS

SSS

SSS

~3

~
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2
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3

1
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3
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2

2
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2
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1
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
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
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





−−−

−−−

−−−







, 

n

n

n

n
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SSS
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1
~

3

2
~

3

~

3

1
~

2

2
~

2

~

2

1
~

1

2
~

1

~

1


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






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,              

n

n

n

n
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~3

1
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3

2
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3

~

3

1
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2

2
~

2
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2

1
~

1

2
~

1

~

1
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
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
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          (18) 

as the "Negative Merged Shape Matrix", "Inverse Merged 

Shape Matrix", and "Negative-Inverse Merged Shape 

Matrix", respectively, corresponding to Merged Shape 

Matrix (17). All three matrices, in conjunction with the 

original Merged Shape Matrix (17), delineate the shape of the 

same trajectory using the identical set of sampling points. The 

distinction arises from the vantage point from which the 

mobile trajectory is observed. Furthermore, when focusing 

exclusively on the horizontal bending and vertical 

ascending/descending directions of the mobile trajectory, we 

can define the Sign Matrix for each of these matrices. These 

Sign Matrices are constructed based on the signs of the 

elements within the Merged Shape Matrices, offering a 

concise representation of the trajectory's directional 

characteristics. 

Remark 5 Examining a three-dimensional spatial curve 

from alternative angles extends beyond considering only the 

four cardinal viewing directions: up, down, front, and rear. 

However, for real-world ground object trajectories, it suffices 

to project the spatial trajectory of an object onto the 

horizontal ground surface. Subsequently, observations can be 

made in both the vertical dimension (up and down) and the 

longitudinal dimension (front and rear) concerning this 

mobile trajectory on the horizontal ground surface. 

 

 

B. Matching Corresponding Points or Parts of a Mobile 

Trajectory — Utilizing Symbol Overlap Method with 

Symbol Matrices 

When assessing the similarity between two mobile 

trajectories based on their sampled points, a crucial step is to 

align and match the corresponding points or parts between 

them accurately. This process is analogous to the need for 

identifying corresponding vertices when determining the 

similarity of two simple triangles. Without appropriately 

matching the vertices, it becomes challenging to establish the 

similarity of the triangles. Similarly, when dealing with two 

mobile trajectories, the correct pairing of points and parts is 

essential. Given two sets of sampled points from different 

trajectories, we can employ the "symbol overlap method" to 

match them effectively. 

Assuming two mobile trajectories, denoted as AC and BC , 

along with their respective sampled points, which correspond 

to merged shape matrices 
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~
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   (19) 

we seek to simplify them into symbol matrices associated 

with the merged shapes. These symbol matrices are aligned 

both vertically and horizontally. To establish a match 

between one of the symbol matrices and the other, we shift 

them relative to one another. The point in time with the 

highest number of matching symbols (the symbols are the 

same) at the overlapping position represents the optimal 

match between these two matrices. A higher number of 

matching symbols at the overlapping position indicates a 

closer resemblance between the shapes of the trajectory 

segments corresponding to the overlapping position. By 

determining the optimal match position between the two 

symbol matrices, we effectively identified the best 

correspondence between points or parts on the two 

trajectories. We further extend the matching process by 

transforming one of the symbol matrices into its negative, 

inverse, and negative-inverse symbol matrices. These 

transformed matrices are then overlapped and matched with 

the other symbol matrix, allowing us to explore alternative 

optimal trajectory matches.   

To facilitate clarity, we illustrate the key concepts and 

principles of matching using the example of point 

correspondences in planar trajectories. For instance, consider 

two planar mobile trajectories AC and BC , as illustrated in 

Fig. 10 . The shorter trajectory has been depicted four times, 

including its reverse, inverse, and reverse-inverse renditions. 
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Fig. 10. Two planar trajectories and their local shape symbol vectors. 

 

In Fig. 10, the symbol matrix for the merged shape matrix 

of "Trajectory and Shape 1" is 

0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

− + − + − + − + − 
 
 
 
 

 

while the symbol matrix for the merged shape matrix of 

"Trajectory and Shape 2" is  

0

0 0 0 0

0 0 0 0

+ − + 
 
 
 
 

 

The optimal match position for these two matrices was 

found at points A to B of "Trajectory and Shape 1" in Fig. 10. 

At this overlapping position, all the symbols in both symbol 

matrices are identical. In cases where multiple optimal match 

positions exist (i.e., when the number of matching symbols is 

the same), all positions are recorded. 

Subsequently, the symbol matrix for the merged shape of 

"Trajectory and Shape 1" is compared with the merged shape 

symbol matrices of "Trajectory and Shape 3," "Trajectory and 

Shape 4," and "Trajectory and Shape 5" (i.e., the negative-

inverse, inverse, and negative merged shape matrices of 

"Trajectory and Shape 2"). Record all the optimal match 

positions. 

 

C. The Similarity of Mobile Trajectories - Measuring 

Distance Using Post-Matching Filled Matrices 

Calculate the distance between the merged shape matrices 

obtained from all pairwise matches and select the minimum 

distance as a metric for the similarity between the two 

trajectories. The procedure is outlined as follows. First, fill 

the non-overlapping regions of the two merged shape 

matrices with ( )T0,0,0 to extend them to the same order, 

generating what we will refer to as their "filled matrices". 

Note that higher-order merged shape matrices may not 

require filling. Further, calculate the distance between these 

two filled matrices of the same order. 

In specific terms, given two trajectories with merged shape 

matrices denoted as 
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   (20) 

and assuming mn ~~  , we posit that the best matching 

position of the first merged shape matrix within the second 

one starts from the d-th column of the second merged shape 

matrix.  

If mnd ~~1 +− , then the first merged shape matrix is 

expanded into a filled matrix  
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It has 1−d leading ( )T0,0,0 elements and

)1(~~ −−− dnm trailing ( )T0,0,0 elements. The second 

merged shape matrix does not require filling because it is of 

the same order as the filled first merged shape matrix. 

However, if mnd ~~1 +− , both merged shape matrices are 

expanded into filled matrices of equal order, resulting in 

matrices  
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as described above. The first matrix contains 1−d leading

( )T0,0,0 elements, whereas the second matrix has

mnd ~~1 −+− trailing ( )T0,0,0 elements. 

After expanding the matched merged shape matrices into 

filled matrices of the same order, the distance between the 

two matched merged shape matrices is computed by 

subtracting the corresponding elements of the filled matrices, 

squaring them, and summing the results. This yields the 

distance between the two matched merged shape matrices. To 

measure the degree of similarity between the two trajectories, 

we considered the minimum distance among all pairwise- 

matched merged shape matrices. A smaller distance indicates 

a higher degree of similarity between the two trajectories, 

whereas a larger distance suggests a lower degree of 

similarity. The flowchart in Fig. 11 illustrates the process of 

calculating the similarity between two mobile trajectories. 

Use equation(15) to calculate the local 
shape vector of each point on each 

trajectory after excluding the starting 
and ending points.

Construct the local shape vectors of all 
points into two local shape matrices.

Begin by inputting the 
coodinate data for discrete 

positioning points along two 
mobile trajectories.

Transform the smaller merged 
shape matrix into its negative, 
inverse, and negative-inverse 

merged shape matrices.

Combine columns in the local 
shape matrices with the same 
symbols to obtain two lower-
order merged shape matrices.

Align the smaller merged shape 
matrix and its transformed versions 
with the larger merged shape matrix 
using the Symbol Overlap Matching 

method to determine the best 
matching position.

Fill the matched matrices to make 
them of the same order. Compute 
the distances between each pair of 
matched filled matrices. Select the 

minimum distance as the measure of 
similarity between the two 

trajectories.  
Fig. 11. The process of calculating similarity for mobile trajectories. 
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Remark 6 The distance between two matched filled 

matrices of the same order, as described above, is the square 

of the Euclidean distance between the matrices. It is 

important to note that in addition to the Euclidean distance, 

various other distance metrics are available for measuring the 

difference between matrices. The choice of distance metric 

should be based on the specific characteristics of the data and 

the requirements of the research or application. Different 

distance metrics may be more suitable for different scenarios, 

and selecting the appropriate metric can have a significant 

impact on the results and interpretations of your analysis. 

 

IV.  CALCULATION EXPERIMENT OF MOVING TRAJECTORY 

SIMILARITY 

To validate the efficacy and practicality of the 

aforementioned mobile trajectory similarity measurement, 

we conducted a straightforward yet illustrative experiment 

using positioning data from moving vehicles. When vehicles 

are in regular operation, they typically follow smooth 

trajectories at relatively constant speeds. The positioning data 

were collected at equidistant time intervals, aligning with the 

conditions specified in the second formula in expression (15) 

outlined earlier. 

For the purposes of visual comparison, we selected three 

distinct vehicle trajectories in three-dimension space, denoted 

as (a), (b), and (c). The positioning data corresponding to 

these trajectories are succinctly represented in Cartesian 

coordinates (unit, /m), as presented in Tables I, II, and III. In 

these tables, 'i' signifies the sequential order of positioning 

points along the trajectory or the timestamp of data 

acquisition (unit, /10s). The planar projections of these three 

trajectories are shown in Fig.12 (a), (b), and (c). 

Step 1: Computing Local Shape Vectors for Points 2 

through 8 in Table I. As an illustrative example, we 

demonstrate the computation of the local shape vector for 

point 2. 

(1.1)Calculate the algebraic area of the triangle formed by 

points 1, 2, and 3 in Table I, 

0 0 30 71 100 100
+ + =-4100

30 71 100 100 0 0
 

 

TABLE I 
The data collection points from trajectory (a) 

i 
1
ix  

1
iy  

1
iz  

1 0 0 0 

2 30 71 2 

3 100 100 4 

4 170 69 6 

5 200 0 8 

6 280 0 10 

7 358 0 12 

8 435 0 14 

9 510 0 16 
1 Tables may have footers. 

 

 

(1.2)Calculate the following for points in Table I.  

Horizontal distances between points 1 and 2, 2 and 3, and 

3 and 1.  

( ) ( )
2 2

30-0 + 71-0 =77.07788269 , 
  

( ) ( )
2 2

100-30 + 100-71 =75.76938696 , 

( ) ( )
2 2

0-100 + 0-100 =141.4213562 . 
 

Altitude differences between points 1 and 2, 2 and 3. 

2 0 2− = , 4 2 2− = . 

(1.3)Calculate the local shape vector for point 2 using 

expression (1). 

77.07788269 75.76938696 2 2
sgn( 4100) , ,

141.4213562 77.07788269 75.76938696

T
+ 

− 
 

 

In other words, the local shape vector for point 2 is 

( )1.080793409,0.025947781,0.026395885
T

− . 

 
TABLE II 

The data collection points from trajectory (b) 

i 
2
ix  

2

iy  
2

iz  

1 101 101 50 

2 212 213 45 

3 154 353 40 

4 212 495 35 

5 354 700 30 

6 495 495 25 
 

TABLE III 
The data collection points from trajectory(c) 

i 
3

ix  
3

iy  
3

iz  

1 717 717 15 

2 830 830 15 

3 940 940 15 

4 1050 1050 15 

 

 
Fig. 12. Plane projection of three different vehicle trajectories. 

 

Following the same procedure as outlined in (1.1) through 

(1.3), calculate the local shape vectors for the other points in 

Table I. The resulting local shape vectors for each point are 

presented in Table IV. 

Clearly, the local shape matrix for trajectory (a) is 

composed of the data in the second column of Table IV. For 

ease of presentation, we will directly use Table IV to 

represent the local shape matrix for trajectory (a). 

Step 2: Merging the Local Shape Matrices of Trajectory (a) 

to Obtain the Merged Shape Matrix of Trajectory (a). In this 

step, we employ Table V to elucidate the merging process of 

the local shape matrices for trajectory (a). 
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TABLE IV 

Local shape vectors of points in trajectory (a) 

the position of points on the trajectory 

(order number i ) 
local shape vectors 

2 ( )1.080793409,0.025947781,0.026395885
T

−  

3 ( )1.087935814,0.026395885,0.026124268
T

−  

4 ( )1.073365363,0.026124268,0.026581741
T

−  

5 ( )1.195531158,0.026581741,0.025000000
T

 

6 ( )0.000000000,0.025000000,0.025641026
T

 

7 ( )0.000000000,0.025641026,0.025974026
T

 

8 ( )0.000000000,0.025974026,0.026666667
T

 

 
Table V 

Concatenation of local shape matrices for trajectory (a) 

 
TABLE VI 

The merged shape matrix and corresponding symbol matrix for trajectory (a) 

the order 

number after 

merging 

shapes 

the corresponding 

symbol matrix 
merged shape matrix 

1 ( ),+,+
T

−
 

( )3.242094586,0.078467934,0.079101894
T

−
 

2 ( )+,+,+
T

 
( )1.195531158,0.026581741,0.025000000

T

 

3 ( )0,+,+
T

 
( )0.000000000,0.076615052,0.078281718

T

 
 

Consequently, we can obtain the merged shape matrix and 

the corresponding symbol matrix for trajectory (a). Here, we 

can equivalently use Table VI to represent the merged shape 

matrix and its corresponding symbol matrix for trajectory (a). 

They are respectively formed by the data in the third column 

and the second column of Table VI. 

Step 3: Calculating Local Shape Matrices and Merged 

Shape Matrices (Symbol Matrices are Generated Naturally) 

for Trajectories (b) and (c). The same process outlined in 

Steps 1 and 2 is applied to compute the local shape matrices 

and merged shape matrices for trajectories (b) and (c). This 

is represented using Tables VII, VIII, IX, and X. 

Step 4: Deriving Negative Matrices, Inverse Matrices, and 

Negative-Inverse Matrices for the Merged Shape Matrices of 

Trajectories (b) and (c). For ease of observation and using 

the Symbol Overlap Matching method, record only their 

corresponding symbol matrices in Table XI and XII. 

 

the position of points 

on the trajectory 

(order number i ) 

the symbol vector 

corresponding to the local 

shape vector 
the merging of the local shape vectors 

2 ( ),+,+
T

−  
As these symbols of the three items are the same, merge them into one 

item 

3 ( ),+,+
T

−  ( )3.242094586,0.078467934,0.079101894
T

−
 

4 ( ),+,+
T

−  
 

5 ( )+,+,+
T

 
Merge this item into a new one 

( )1.195531158,0.026581741,0.025000000
T

 

6 ( )0,+,+
T

 
As these symbols of the three items are the same, merge them into one 

item 

( )0.000000000,0.076615052,0.078281718
T

 
7 ( )0,+,+

T
 

8 ( )0,+,+
T
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TABLE VII 

Local shape vectors of points in trajectory (b) 

the position of points on the trajectory 

(order number i ) 
local shape vectors 

2 ( )1.200813333, 0.031708505, 0.032994856
T

− −
 

3 ( )1.081302021, 0.032994856, 0.03259699
T

− − −
 

4 ( )1.005629551, 0.03259699, 0.020049946
T

− − −
 

5 ( )-1.760375930, 0.020049946, 0.020095723
T

− −
 

 

 
TABLE VIII 

The merged matrix and corresponding symbol matrix for trajectory (b) 

the order number after 

merging shapes 

the corresponding 

symbol matrix 
merged shape matrix 

1 ( )+,-, -
T

 
( )1.200813333, 0.031708505, 0.032994856

T
− −

 

2 ( )-, -, -
T

 
( )-3.847307501, 0.085641792, 0.072742659

T
− −

 
 

 
TABLE IX 

Local shape vectors of points in trajectory (c) 

the position of points on the trajectory 

(order number i ) 
local shape vectors 

2 ( )0,0,0
T

 

3 ( )0,0,0
T

 
 

 
TABLE X 

The merged matrix and corresponding symbol matrix for trajectory (c) 

the order number after merging 

shapes 
the corresponding symbol matrix 

merged shape matrix 

1 ( )0,0,0
T

 
( )0,0,0

T

 
 

 

 
TABLE XI 

Merged shape matrix for trajectory (b) and corresponding symbol matrices for its negative, inverse, and negative-inverse matrices 

the order 

number 

merged shape matrix 

of trajectory (b) 

(symbolic matrix) 

negative merged shape 

matrix of trajectory (b) 

(symbolic matrix) 

inverse merged shape 

matrix of trajectory (b) 

(symbolic matrix) 

negative-inverse merged shape 

matrix of trajectory (b) 

(symbolic matrix)
 

1 ( )+,-, -
T

 ( )-,+,+
T

 ( )-, -, -
T

 ( )+,+,+
T

 

2 ( )-, -, -
T

 ( )+,+,+
T

 ( )+,-, -
T

 ( )-,+,+
T

 

 

 
TABLE XII 

Merged shape matrix for trajectory (c) and corresponding symbol matrices for its negative, inverse, and negative-inverse matrices 

the order 

number 

merged shape matrix 

of trajectory (c) 

(symbolic matrix) 

negative merged shape 

matrix of trajectory (c) 

(symbolic matrix) 

inverse merged shape matrix 

of trajectory (c) 

(symbolic matrix) 

negative-inverse merged shape 

matrix of trajectory (c) 

(symbolic matrix)
 

1 ( )0,0,0
T

 ( )0,0,0
T

 ( )0,0,0
T

 ( )0,0,0
T
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Table XIII 

Optimal position matching between trajectory (a) and trajectory (b) 

the order 

number 

merged shape matrix 

of trajectory 

 

 (a) 

(symbolic matrix) 

merged shape 

matrix of trajectory 

 

 (b) 

(symbolic matrix) 

negative merged 

shape matrix of 

trajectory  

 

(b) 

(symbolic matrix) 

inverse merged 

shape matrix of 

trajectory 

 

 (b) 

(symbolic matrix)
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TABLE XIV 

Optimal position matching between trajectory (a) and trajectory (c) 

the order 

number 
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matrix of trajectory 

 

(a) 

(symbolic matrix) 

merged shape 

matrix of trajectory 

 

(c) 
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Step 5: Matching Trajectories (b) and (c) with Trajectory 

(a) and Calculating the Similarity of Trajectories. Taking the 

matching of trajectory (b) with trajectory (a) as an example, 

this process involves matching the merged shape symbol 

matrix of trajectory (a) with the merged shape symbol matrix 

of trajectory (b) and its negative, inverse, and negative-

inverse merged shape symbol matrices. The matrices are 

subsequently filled to become matrices of the same order. 

This is depicted in Table XIII. 

The degree of similarity between trajectory (a) and 

trajectory (b) is quantified by the minimum distance between 

two matched filled matrices of the same order. We illustrate 

this by calculating the distance between the two matrices 

found in columns 2 and 3 of Table XIII above. 

3.242094586 0.078467934 0.079101894

1.195531158 0.026581741 0.025000000

0.000000000 0.076615052 0.078281718

T

− 
 
 
 
  -

2

0.000000000 0.000000000 0.000000000

1.200813333 0.031708505 0.032994856

3.847307501 0.085641792 0.072742659

T

 
 

− − 
 − − −  =7.09857725466769 

Similarly, we can compute the following distances: 

Distance between columns 2 and 4 of Table XIII: 

3.457493481344650. 

Distance between columns 2 and 5 of Table XIII: 

0.759965907770135. 

 

Distance between columns 2 and 6 of Table XIII: 

6.156688677791080. 

We select the minimum distance among all matched 

matrix pairs as the measure of similarity between trajectory 

(a) and trajectory (b). Therefore, the similarity between 

trajectory (a) and trajectory (b) is represented as 

0.759965907770135. 

By performing a similar matching procedure for trajectory 

(a) and trajectory (c), and calculating their similarity, we 

obtain the following: 

Taking the minimum distance among all matched matrix 

pairs as the measure of similarity between trajectory (a) and 

trajectory (c), we denote the similarity between trajectory (a) 

and trajectory (c) as 

3.242094586 0.078467934 0.079101894

1.195531158 0.026581741 0.025000000

0.000000000 0.076615052 0.078281718

T

− 
 
 
 
  -

2

0 0 0

0 0 0

0 0 0

T

 
 
 
 
 

=3.45922185785241. 

Since 3.45922185785241 is greater than 

0.759965907770135, we can conclude that trajectory (b) is 

more similar to trajectory (a) than trajectory (c) is to 

trajectory (a). Observing Fig. 12 (a), (b), and (c), it is evident 

that trajectory (b) and (a) are more similar than trajectory (c) 

and (a), aligning with the intuitive observations, thus 

validating our computational results. 
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V. CONCLUSIONS 

In this paper, we investigate the characteristics of real-

world object movement trajectories on the Earth’s surface. 

Drawing on geometric theory, we construct measures to 

capture the local shape of mobile trajectories—specifically, 

the local shape vector and local shape matrix. We further 

introduce a measure to characterize the overall shape of 

mobile trajectories, referred to as the merged shape matrix. 

Correspondingly, symbolic vectors and matrices are 

proposed to represent the coarse shape of these trajectories. 

Additionally, we propose a Symbol Overlap Method for 

matching corresponding points or segments between two 

mobile trajectories. The similarity between mobile 

trajectories is quantified using the distance between their 

matched merged shape matrices. This metric emphasizes the 

geometric properties of the trajectories while effectively 

addressing the challenge of aligning corresponding points or 

segments. Notably, the method does not require large-scale 

data or pre-training of deep representation models. Even 

with limited trajectory data, it reliably computes similarity 

between trajectories. As location-based services continue to 

grow in prevalence, this methodology is positioned to serve 

as a valuable tool for measuring the similarity of mobile 

trajectories. 
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