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Measuring Mobile Trajectory Geometric Similarity

Based on Discrete Positioning Points

Zhixiu Liu, Ziyang Deng, and Zihao Guo

Abstract—The assessment of similarity among mobile
trajectories plays an important role in trajectory data mining.
Trajectory similarity is a vague concept, and there is no precise
metric, where the geometric similarity of the trajectories has
received more attention. Considering the commonly used
Hausdorff and Fréchet distances as measures, there is a process
of traversal calculation to match the corresponding points or
parts of two trajectories, which is computationally expensive
and cannot reflect the geometric similarity of the trajectory
commendably. By using deep learning technology to
approximate or extract the features of the trajectory, the
measure of trajectory similarity depends on the quality and
scale of the data. Meanwhile, it is difficult to explain the
geometric significance of the abstract features of the trajectory
extracted by deep learning technology. In view of this, this study
proposes the concepts of local shape matrix and merged shape
matrices for characterizing the local and overall shapes of
moving trajectories. The symbol overlap method for the merged
shape matrix is also proposed to match the corresponding points
or parts of the two trajectories. Both theoretical analysis and
experiments show that the proposed shape matrix and symbol
overlap method can be effectively used to measure the geometric
similarity of moving trajectories based on discrete positioning
points.

Index Terms—Trajectory Similarity; Shape Matrix; Symbol
Overlap Method; Hausdorff Distance; Fréchet Distance; Deep
Representation Techniques

I. INTRODUCTION

ITH the widespread adoption of satellite positioning
V&/ applications and services, the acquisition and

utilization of positioning data have become
increasingly convenient. As is well known, we commonly
gather satellite-based location data for mobile objects (such
as vehicles, ships, and mobile robots) at discrete time
intervals. Consequently, the positioning data employed are
typically characterized by their discrete nature. The
investigation of similarity among mobile trajectories based
on such discrete positioning data has emerged as a critical
focal point in the realm of trajectory information mining [1-
2]. This research holds significant practical implications, as it
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provides essential underpinning for various applications,
including trajectory search, anomaly detection, target
tracking, path planning, and navigation [3-6]. In fact, the
study of trajectory similarity proves to be an exceedingly
open-ended inquiry, seemingly devoid of singular evaluative
criteria. Numerous distinct research methodologies and
perspectives exist, often contingent on their ability to address
practical challenges. In terms of primary research
methodologies of the geometric similarity of the trajectories,
they can broadly be categorized into two classes [7-11]: those
centered on "computing distances between curves" and those
involving "fitting or approximating curves and their
features."

Evidently, the movement trajectories can be regarded as
spatial curves (point sets). The similarity of two curves
generally refers to geometric similarity. The notion of two

curves, € and C, being similar implies the existence of a
certain one-to-one correspondence between the points of

curve C and those of curve C. In other words, the ratio
between the line segments connecting any two points on

curve ¢ and the corresponding line segments connecting
two points on curve is  constant, as illustrated in Fig. 1 .
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Fig. 1. Illustration of the curve similarity.

For smooth curves, we have some criteria for determining
curve similarity [12-13]. However, in practice, it is often
challenging to find two curves, especially those derived from
real-world scenarios, that are entirely similar. Instead, our
primary focus is on quantifying the differences or degree of
similarity between two given curves. This is a complex and
open-ended problem that lacks a widely accepted similarity
metric. Currently, it is addressed to a certain extent and within
specific contexts. Even continuous plane curves can exhibit
highly intricate forms that are challenging to measure in
terms of their similarities. For example, consider the
Weierstrass function, which is nowhere differentiable and has
a dimension exceeding 1, or the Peano curve, which fills the
entire square region [14-15]. The problem becomes even
more intricate when dealing with similarity measurements for
curves in general three-dimensional spaces. Currently, the
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most commonly used distance-based methods for measuring

curve or mobile trajectory similarity include L” distance,
Hausdorff distance, Fréchet distance, and their various
derivatives [16-20]. Considering their original definitions
(which have corresponding discrete forms for practical
computation and various variations that remain rooted in their
essence), it is evident that these methods involve traversing
computations to establish correspondence between points or
parts on two trajectories. This results in high computational
complexity, with relatively less emphasis on capturing the
"shape" similarity of trajectories.

Definition A (L? distance) [16] Given two trajectories,

denoted as CA(t) and Cg(f), tefo,1] , their L7 distance

is defined as
1

d,(C.Cp) U C4(0) CB(t)”dtj”. (1)

Given a threshold &£>0 , when a’L,,(CA,CB)SE ,we

consider trajectories CA(t) and CB(t) to be similar.

Conversely, we regard them as being dissimilar.

Upon close examination, a natural question arises: are
points c,(¢) and cC,(r) on the aforementioned trajectories
correctly matched as corresponding points? If the matching
of the corresponding points is misaligned, it will result in
different 77 distances. As illustrated in Fig. 2, consider

trajectories C 4 and Cp, both consisting of straight-line

segments but with different point correspondences. It is
evident that the calculated L” distances would differ.
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Fig. 2. Different correspondences of matching points in two trajectories

The optimal point correspondence between the two
trajectories can be determined through an exhaustive search,
allowing for the correction of the distance between the two
trajectories to be expressed as

1
(ﬁ(s)l”dsj” 0))
where OC(S) and ,B(S) encompass all continuous non-

ﬂ(o) =0 and
Ot(l) =p (1) =1. It is evident that such exhaustive traversal

computations would be prohibitively expensive and may
even be infeasible to implement. Furthermore, as illustrated
in Fig. 3, it is apparent that two curves with significantly
different shapes can still have equal L” distances from the
same reference curve. This underscores the limitation of
distance in adequately capturing the shapes of the curves.
Now, let us examine the commonly used Hausdorff and
Fréchet distances.

4, (C.Cy) =it [ al)

decreasing real functions, satisfying 0((0) =

AN

G

Fig. 3. Two sets of curves with equal distances but significant shape
differences

Definition B (Hausdorff distance) [10] Given two

trajectories, denoted as Cs (t) and Cy ([)
Hausdorff distance is defined as follows:

max min )“a b||} 3)

bECB( )uECA

tefo.] , their

dH(CA,CB) max{arenca?)bgélsn )“a |

Definition C (Fréchet distance) [11] Given two trajectories,

denoted as CA (Z) and CB (Z) L€ [0’1], their Fréchet distance is
defined as follows:

dp(C4.Cy)=inf max|Cy(als)-Co(AG) (@)

where OC(S) and ,B(S) encompass all continuous non-

decreasing real functions, satisfying 0!(0) = ﬂ(o) =0 and

oft) = 1) =1.

The aforementioned Hausdorff and Fréchet distances both
entail exhaustive computations involving the selection of
maximum or minimum values. One of the critical rationales
behind this approach is to ensure proper pairing of
corresponding points or parts between two trajectories. For

minJo-
instance, in the case of the Hausdorff distance, the *<Cst)

operation aims to locate the most suitable corresponding

Cslt) for a given point @ . Similarly, in
inf

the context of the Fréchet distance, the use of %/, as

point in trajectory

previously discussed in the context of the corrected L”
distance, serves the purpose of appropriately matching the
corresponding points between the two curves. Consequently,
these computations incur substantial computational
overheads. Furthermore, both distance metrics are based on
point-to-point distances and do not provide a comprehensive
reflection of the geometric shapes and characteristics of the
trajectories. As illustrated in Fig. 4, consider the curves Cu,
constructed from the two oblique sides of a regular triangle

and Cs
Hausdorff and Fréchet distances between curve C, and

, which is a straight line segment. Notably, the

line ¢, both steadily decrease towards zero( 71 —> 0 ).
However, it is crucial to recognize that curve C, is
consistently twice as long as ¢, . Their geometric shapes

inherently differ significantly, since ~ is a zigzag shape
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but ¢, is a straight line shape [21].

C G

C G

C\") cl’ Cr’\. Ci.

G \/ G G

Fig. 4. Two sets of curves with distances tending to infinitesimally,
differing in length by a factor of two.

In addition to the distance-based methods discussed earlier
for measuring trajectory similarity by calculating the
distances between two curves, there are approaches that
involve curve and their characteristics fitting and
approximation, notably the well-known deep learning
methods [22-23]. These techniques typically involve
approximating curves or abstracting their features using deep
learning methodologies and subsequently employing these
representations to measure curve similarity. For example,
applications such as deep learning-based handwritten digit
recognition [24-25] and deep learning-based mobile
trajectory similarity analysis [7-8,26] are fundamentally
aimed at measuring curve similarity. However, the use of
deep learning methods to measure trajectory similarity is
heavily dependent on the quality and scale of the trajectory
data. Furthermore, these methods often lack interpretability,
making it challenging to easily attribute geometric
significance to the abstract features extracted from the
trajectories using deep learning techniques.

Considering the limitations of using distance-based
methods, which involve computationally expensive point
matching through traversal, and the challenges associated
with deep learning techniques for trajectory similarity
measurement, where data quality and quantity requirements
are high and interpretability is limited, this study introduces
the concept of "local shape matrices" to describe the local
shapes of mobile trajectories. Additionally, it presents the
concept of "merged shape matrices" for characterizing the
overall shape of curves. The proposed methodology utilizes
the "merged shape matrix," "negative merged shape matrix,"
"inverse merged shape matrix," and "negative inverse merged
shape matrix" from one trajectory, overlapped with the
"merged shape matrix" of another trajectory, employing a
"symbol overlap method" to match the corresponding points
or parts on the two trajectories (i.e., the maximum number of
matching points where the signs of the values at overlapping
positions in the two matrices are the same). This approach
circumvents complex traversal computations, effectively
aligns the corresponding points or parts on the trajectories,
and does not require an abundance of trajectory data to train
deep representation models. The subsequent sections
(Sections Two and Three) delineate the mobile trajectory
similarity measurement methodology proposed in this paper,
while Section Four computes and visually validates the
similarity levels of various mobile trajectories based on
discrete positioning data[27-29].

II. SHAPE MATRICES FOR MOBILE TRAJECTORIES
A. Local Bending Direction of Mobile Trajectories -
Characterized by the Sign of Triangle Algebraic Area

Given a set of points on a planar trajectory, assuming that
the trajectory runs from A to F , as depicted in Fig. 5, we
examined the bending direction of contiguous sets of three
points, such as ABC and DEF, within this trajectory segment.
Let the coordinates of points A, B, C, D, E, and F be denoted

as (xA’yA)a(xB’yB)>(xC’yC)’(xD’yD)’(xE’yE)and

(x s Vr ), respectively. The algebraic area of triangle ABC
is calculated as follows:

Fig. 5. Tllustration of local bending directions in the trajectories.

Xq Va| |*s y3+xc Ye

Xp Vel Xc V| X4 Va
The algebraic area of triangle DEF can be computed as

Xp Vp| [*e JVe| |*r YVFr

+
Xg Ye| |¥r Vel *p Vb

Here, we are primarily concerned with the sign of the
algebraic area, as it signifies the relative positions of the three
vertices of the triangle. As shown in Fig. 5,

sgn Xy yA+xB y3+xc Ye

Xp V| [*¥¢ V| |Xa V4

_|_

_|_

<0

signifying that points A, B, and C form a clockwise
orientation,
X Yp| X Y| [Xr Y
sen D DI ["E E| L [7F Flls 0

Xe Vel X Vel Xp Vp||
indicating that points D, E, and F form a counterclockwise
orientation. Consequently, the sign of the algebraic area of
the triangle formed by three adjacent points on the mobile
trajectory represents the local bending direction of the
trajectory segment. In the mathematical expression above,

+1 z>0
sgn[z]: 0 z=0
-1 z<0

denotes the sign function, where the| |Within the brackets

represents the determinant. It is important to note that in other
parts of this paper,

| may denote the absolute value.

Remark 1 In practical applications, due to inherent data
errors, the true value of the algebraic area of the triangle
formed by adjacent three points on a trajectory is unlikely to
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be precisely zero, even if the triangle degraded into a straight
line segment. Therefore, it is customary to establish a very

small positive value, denoted € as a threshold instead of

zero to adjust sgn [Z].Thus, segn [Z] is replaced with

+1 z>¢&
sgn[z]=90 -e<z<e, (5)
-1 z<-¢

it is employed to determine the sign of the algebraic area of
the triangle formed by the adjacent three points, effectively
indicating the local bending direction of the trajectory.

Remark 2 For trajectories in three-dimensional space, it is
agreed that the positive z direction is upward vertical to
ground, and the x and y directions are determined according
to the right-hand rule. The trajectories can be projected onto
an x-y coordinate plane, and their local bending direction can
be determined based on the plane coordinates of the projected
trajectory. As illustrated in Fig. 6, the z-coordinates of points
A and C are greater than that of point B, projecting points A,
B, and C onto A', B', and C' allows us to ascertain the local
bending direction of the original trajectory based on the
observation direction of points A', B', and C'.

z
C
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| B
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e | 1 - y
-~ L Iy -
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A | “B’ ™. -C
- |
g L~
X A ¢

Fig. 6. Projection of points from spatial trajectories onto the plane.

B. Local Horizontal Bending Degree of Mobile
Trajectories - Characterized by the Ratio of Triangle Side
Lengths

B
.—-"’"‘o-""‘--.u ;'fr \"
" e / |
L — ] { \
A C
A o

Fig. 7. Bending Degree of points along the trajectory.

As shown in Fig. 7, with three points A (xA,yA) , B

(xB,yB) , and C (Xc,yc) on a mobile trajectory, it is

evident that angle B on the left is greater than angle B on the
right. By utilizing the Law of Cosines for triangles, we can
represent the cosine value of angle B as follows:

|4B|" +|BC|" ~|4c|
cos/B =
2|4B|BC|

The larger the value in the equation, the smaller the angle
B, indicating a more pronounced bending at point B on the

(6)

trajectory. Conversely, a smaller value in the equation

corresponds to a larger angle B, indicating a lesser degree of

bending at point B. Therefore, we can use the following

expression to represent the bending degree at point B on the
trajectory:

2 2 2

|4B[ +|BC|" -|AC]|

2|4B|BC]|

If the sampling points on the trajectory are uniformly

spaced, meaning that they are sampled based on equal arc

lengths (which is approximately the case for constant velocity

moving object trajectories based on satellite positioning at

equal interval times), for the sake of computational
convenience, it is also possible to directly use

|4B|+|BC|

4c]
to characterize the bending degree at point B of the trajectory.
Clearly, the larger the value in the expression, the smaller the

angle B, indicating more pronounced bending at point B on
the trajectory. Conversely, a smaller value in the expression

(7

®)

+ +

or

X4 Va

X Vs

X Vs

Xe Yo

Xe Ye

Xy Yy

+ +

=T —

results in a larger angle B, signifying a lesser degree of
Due to
‘AB‘Z +‘BC‘2 _‘AC‘Z _ [(XB _XA)Z +(ya _)’.4)2]+ [(xc _xg)z Jlr(y( _)’3)2]_ [(xc _XA)Z +(yc _yA)z]
2[(x5 —Xy )2 +(}'B — V4 )ZH(XC ’xs)z +(yc ’}’B)Z]E
2 2 ! 2 2 :
[481+(8¢] _[is, 2. f + 0=y FF el - f +be-n V- 9)
In summary, it is possible to utilize
|:xA Ya| ¥ Vs| e Ve
sgn
) ) ) ) ) )
[(xB _XA) +(J’B _yA) l+ kxc _xﬁ) +(J’c _yB) l_ [(xc _XA) +(yc _J’A) }
| i
2 2 2 )
2[(’63_)?4) +(J’B_J’,4) H(xc_xﬁ) +(Yc_y3) ]E
2 1 ) a;
[(XB_XA) +(yB_yA)F+(xC_xB) +(yC_yB)lE (10)
[(xc _xA)Z "'(yc _yA)2 :
trajectory.
Remark 3 Similar to Remark 2, if the mobile trajectory is
coordinate plane, as shown in Fig. 6. Subsequently, the local
bending degree of the trajectory can be determined based on

bending at point B.

2J85c] 1

AC 2 a:

‘ ‘ [(xc_xA) +(yc_y4) ]E

Xp Vel e Ve| K4 V4 ]

denotes the direction and degree of bending at point B on the
in three-dimensional space, it can be projected onto the x-y
the plane coordinates of the points on the projected trajectory.

C. Local Vertical Steepness Direction and Degree of
Mobile Trajectories - Characterized by the Ratio of
Triangle Side Lengths

Building on Remarks 2 and 3, we previously discussed the
characterization of the local bending direction and degree of
spatial trajectories in the horizontal direction. Now, let us
address the characterization of the local vertical steepness
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direction and degree of the trajectories. For local spatial
trajectories, such as points A, B, and C in Fig.6, let's denote

the coordinates of points A, B, and C as (xA,yA,ZA) s

(xB,yB,ZB) , and (xc,yc,zc) , respectively. Since the

tangent value of angle B in right triangle AA4A4"B
characterizes the slope direction and degree of side AB , we
can use
AA” —
48]

AAH

_ ZB %4
|Ava| 1

ey 0P+ (s -2 2
Xp=X4) +\Vp—=V4
to represent the vertical steepness variation from point A to
point B along the trajectory. Similarly, we can use
CI‘C _ CIIC _
|BC”| |B’C‘|

(11

Zc —Zp

1
[(xc _x3)2 +(J’c — VB )2F
to represent the vertical steepness variation from point B to
point C along the trajectory.
As shown in Fig. 6, when

AA" A4 Zg—2,

A" B - A'B| !
BB - P
is less than 0, it signifies a decrease in the trajectory's vertical

direction from point A to point B. Conversely, when
c'c _cC'c Zo—Zy

" (Pall 1

‘BC ‘BC‘ [(xc_xﬁ)z"'(YC_yB)z]E
is greater than 0, it indicates an increase in vertical direction
from point B to point C. The absolute values of these tangent
values correspond to the steepness of the local trajectory, with

larger absolute values denoting steeper segments.
Remark 4 Similar to Remark 1, the threshold for
determining whether the local trajectory is ascending or
descending vertically, denoted as 0, should typically be

(12)

(13)

(14

replaced with a positive value &in practice. This adjustment
accounts for the presence of errors in the real data. Even if
points A, B, and C lie in the same plane, their differences in
the z-coordinates are usually not exactly 0, but rather a
relatively small value.

D. Local Shape of Mobile Trajectories - Characterized by
Local Shape Matrices

Previously, we described the horizontal bending direction
and degree, as well as the vertical steepness direction and
degree of the local trajectory around points A, B, and C.
Combining these aspects, we can use a three-dimensional
vector, denoted as

sg“["1 il s v, fre w]’ xyf +(g- H)H(*r xp) +lc=ry) H)( ‘)1(}.(7}7’1)2}
Y V| ¢ ‘C a4 T 2[)5,, VA) +(5- 14)H( )+(y(v—y3)]j
[(x4—x5)j+7(,‘:,4‘.VB)z]%
[("'F*XB)2+(}'C’}'E)Z]%
or
Ty SRS, AN, | I

~ [("‘c Xy )Z +(ve -y )Z ]5
[(»"A X )Z +(vi-vs )2]%

Z0-Zp
1

[(«"(‘ X )Z +(ve-ys )Z]E

to characterize the local shape of the trajectory near point B.
This vector is referred to as the "local shape vector" and is
denoted as (s, s, s,)7, where s,, s,,and s, represent

the first, second, and third components of the vector in
expression (15).
A" ArH

&0

o

Ao

NN

Fig. 8. Multiple sampling points on mobile trajectory.

For any three adjacent sampling points on the mobile
trajectory, a corresponding local shape vector can be
computed based on expression (15). These local shape
vectors, determined by all sets of adjacent three sampling
points except for the initial and final points, are arranged
sequentially into a matrix denoted as

SioSt o ST
Sy S5 - 87 s)
S; 83 o S5 Sy

(16)

3xn
We refer to this matrix as the "local shape matrix" of the
mobile trajectory. As illustrated in the diagram in Fig. 8, the
first column represents the local shape vectors calculated
from 4,,4,,4,,the second column from 4, 4, 4,, and so forth,

with the last column showing the local shape vectors
calculated from 4, .4, .4,

E.  Global Shape of Mobile Trajectories - Characterized
by Merged Shape Matrices

It is discernible that the vector formed by the signs of the
components in the local shape vector, which we refer to as
the "symbol vector", encapsulates the approximate local
shape of the trajectory. This pertains to both the horizontal
bending direction and the vertical ascent or descent
orientation. The magnitude of the numerical values following
the symbols (omitted here for brevity) denotes the degree of
horizontal bending and the steepness of the vertical direction,
as illustrated in Fig. 9.

z

e
(0. 0. T
(+, 4 ‘}|T
- 1
. T
» -')1 'l!» L = . T
(e T Tt )

&

X

Fig. 9. The corresponding symbol vectors for local shape vectors and their
significance
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Consequently, when the symbol vectors of adjacent local
shape vectors within the local shape matrix are identical, it
signifies that they share a common horizontal bending and
vertical ascent/descent direction. This indicates the
continuation of the same shape pattern, which can be
aggregated and accumulated to represent broader shape
characteristics of the particles. In other words, if every

iooi il il itl il
component of both (Sl 5 S3) and(s1 55 )lshares the
same sign, they are merged into a new vector

i i+l i i+l i i+l
(51+S1 54857 S+ )I,andthe merging process continues
until no further merging is possible between adjacent
columns. The resulting matrix, denoted as

shost s
8 -8 (17)
§ 8 8

3xi

is referred to as the "merged shape matrix." It offers a deeper
insight into the overall shape of the mobile trajectory, often

with <1,

III. SYMBOL OVERLAP APPROACH FOR CORRESPONDENCE
MATCHING AND TRAJECTORY SIMILARITY

A. Different Perspectives on Mobile Trajectories -
Represented with Negative, Inverse, and Negative-Inverse
Merged Shape Matrices

When examining mobile trajectories from alternative
vantage points, we may encounter scenarios where the signs
and order of the local shape vector components are reversed.
Consequently, we designate the matrices

e IR T S N R Y

S T IR T R

-8 8 e 8] S 8 s
-§) =8]8
-S8! -8 -8, (18)
IR

3xi

as the "Negative Merged Shape Matrix", "Inverse Merged
Shape Matrix", and "Negative-Inverse Merged Shape
Matrix", respectively, corresponding to Merged Shape
Matrix (17). All three matrices, in conjunction with the
original Merged Shape Matrix (17), delineate the shape of the
same trajectory using the identical set of sampling points. The
distinction arises from the vantage point from which the
mobile trajectory is observed. Furthermore, when focusing
exclusively on the horizontal bending and vertical
ascending/descending directions of the mobile trajectory, we
can define the Sign Matrix for each of these matrices. These
Sign Matrices are constructed based on the signs of the
elements within the Merged Shape Matrices, offering a
concise representation of the trajectory's directional
characteristics.

Remark 5 Examining a three-dimensional spatial curve

from alternative angles extends beyond considering only the
four cardinal viewing directions: up, down, front, and rear.
However, for real-world ground object trajectories, it suffices
to project the spatial trajectory of an object onto the
horizontal ground surface. Subsequently, observations can be
made in both the vertical dimension (up and down) and the
longitudinal dimension (front and rear) concerning this
mobile trajectory on the horizontal ground surface.

B.  Matching Corresponding Points or Parts of a Mobile
Trajectory — Utilizing Symbol Overlap Method with
Symbol Matrices

When assessing the similarity between two mobile
trajectories based on their sampled points, a crucial step is to
align and match the corresponding points or parts between
them accurately. This process is analogous to the need for
identifying corresponding vertices when determining the
similarity of two simple triangles. Without appropriately
matching the vertices, it becomes challenging to establish the
similarity of the triangles. Similarly, when dealing with two
mobile trajectories, the correct pairing of points and parts is
essential. Given two sets of sampled points from different
trajectories, we can employ the "symbol overlap method" to
match them effectively.

Assuming two mobile trajectories, denoted as C 4 and C,,

along with their respective sampled points, which correspond
to merged shape matrices

11 o2 1i 1 022 2,
S1~ Sk S S8 e
L1 ol2 L NEX] 2
§0 S o 8| and |53t osp? s (19)
LT ol 1i NN 2
Sy 87 e S N S0 857 o 8 N
3xn Ixm

we seek to simplify them into symbol matrices associated
with the merged shapes. These symbol matrices are aligned
both vertically and horizontally. To establish a match
between one of the symbol matrices and the other, we shift
them relative to one another. The point in time with the
highest number of matching symbols (the symbols are the
same) at the overlapping position represents the optimal
match between these two matrices. A higher number of
matching symbols at the overlapping position indicates a
closer resemblance between the shapes of the trajectory
segments corresponding to the overlapping position. By
determining the optimal match position between the two
symbol matrices, we effectively identified the best
correspondence between points or parts on the two
trajectories. We further extend the matching process by
transforming one of the symbol matrices into its negative,
inverse, and negative-inverse symbol matrices. These
transformed matrices are then overlapped and matched with
the other symbol matrix, allowing us to explore alternative
optimal trajectory matches.

To facilitate clarity, we illustrate the key concepts and
principles of matching using the example of point
correspondences in planar trajectories. For instance, consider

two planar mobile trajectories C 4and Cp, as illustrated in

Fig. 10 . The shorter trajectory has been depicted four times,
including its reverse, inverse, and reverse-inverse renditions.
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Trajectories Cy .o 0", 0. 00" a0, 00 u
o .

] 1 o

\ o oo 0l
] o

/
+, 0, 07 ¢, 0, 0T+, 0, o @, 0, 0"
o T
. (+, 0, 0)
. ‘ Trajectory and Shape 1
Trajectories Cy
o 0, 0F
T T A
€0, 0, 0Y'(-, 0, 0) A b
o A (-, 0. 0)
+, 0, 0) o o o o

v +, 0, oo, 0, 03T
(+, 0, 01

Trajectory and Shape 2 Trajectory and Shape 3 ’

-, 0, 0F

- 0 ﬂ)TD, 0. O)T - 0.
Trajectory and Shape 4 Trajectory and Shape 5

Fig. 10. Two planar trajectories and their local shape symbol vectors.

In Fig. 10, the symbol matrix for the merged shape matrix
of "Trajectory and Shape 1" is

-+ - + - + -+ 0 -
0 000 0O 0 00O
0000 O0OOO0OO0OTGO0OT OO

while the symbol matrix for the merged shape matrix of
"Trajectory and Shape 2" is

0
0

+ 0 - +
0 00O
0 00O

The optimal match position for these two matrices was
found at points A to B of "Trajectory and Shape 1" in Fig. 10.
At this overlapping position, all the symbols in both symbol
matrices are identical. In cases where multiple optimal match
positions exist (i.e., when the number of matching symbols is
the same), all positions are recorded.

Subsequently, the symbol matrix for the merged shape of
"Trajectory and Shape 1" is compared with the merged shape
symbol matrices of "Trajectory and Shape 3," "Trajectory and
Shape 4," and "Trajectory and Shape 5" (i.e., the negative-
inverse, inverse, and negative merged shape matrices of
"Trajectory and Shape 2"). Record all the optimal match
positions.

C. The Similarity of Mobile Trajectories - Measuring
Distance Using Post-Matching Filled Matrices

Calculate the distance between the merged shape matrices
obtained from all pairwise matches and select the minimum
distance as a metric for the similarity between the two
trajectories. The procedure is outlined as follows. First, fill
the non-overlapping regions of the two merged shape

matrices with (O,O,O)T to extend them to the same order,

generating what we will refer to as their "filled matrices".
Note that higher-order merged shape matrices may not
require filling. Further, calculate the distance between these
two filled matrices of the same order.

In specific terms, given two trajectories with merged shape
matrices denoted as

T 1,2 2,1 2,2 2,
P S B Si o S
N 1.2 Lii 2,1 2,2 2,7
N SZN 8 $3 $3 5
I 1,2

3

Sbi s21 522 L S

(20)

3xi
and assuming # <m , we posit that the best matching
position of the first merged shape matrix within the second
one starts from the d-th column of the second merged shape
matrix.

If d—1+7%n>m, then the first merged shape matrix is
expanded into a filled matrix

0« 0 ST s s 0 0 @1
0 0 S s s o0 o)
0 - 0 S sk .o oo .. 0
: T
It has d—1 leading (0,0,0) elements and

m-n —(d - 1) trailing (O,O,O)T elements. The second
merged shape matrix does not require filling because it is of
the same order as the filled first merged shape matrix.

However, ifd —1+ 7 > m , both merged shape matrices are
expanded into filled matrices of equal order, resulting in
matrices

0 0 sMosh2 o gl spl 522 S21 0 . 0
0 - 0 Sy sk .. osh st 522 S2" 0 - 0
0 - 0 Sk sk .. oghi syl s3? S0 .. 0

as described above. The first matrix contains & —1 leading

(O,O,O)T elements, whereas the second matrix has

d =141~ M trailing (0,0,0)" elements.

After expanding the matched merged shape matrices into
filled matrices of the same order, the distance between the
two matched merged shape matrices is computed by
subtracting the corresponding elements of the filled matrices,
squaring them, and summing the results. This yields the
distance between the two matched merged shape matrices. To
measure the degree of similarity between the two trajectories,
we considered the minimum distance among all pairwise-
matched merged shape matrices. A smaller distance indicates
a higher degree of similarity between the two trajectories,
whereas a larger distance suggests a lower degree of
similarity. The flowchart in Fig. 11 illustrates the process of
calculating the similarity between two mobile trajectories.

Use equation(15) to calculate the local
shape vector of each point on each
trajectory after excluding the starting
and ending points.
Construct the local shape vectors of all
points into two local shape matrices.

Begin by inputting the
coodinate data for discrete
positioning points along two
mobile trajectories.

Combine columns in the local
shape matrices with the same
symbols to obtain two lower-
order merged shape matrices.

Transform the smaller merged

shape matrix into its negative,

inverse, and negative-inverse
merged shape matrices.

Align the smaller merged shape
matrix and its transformed versions
with the larger merged shape matrix
using the Symbol Overlap Matching
method to determine the best
matching position.

—

Fill the matched matrices to make
them of the same order. Compute
the distances between each pair of
matched filled matrices. Select the
minimum distance as the measure of
similarity between the two
trajectories.

—

Fig. 11. The process of calculating similarity for mobile trajectories.
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Remark 6 The distance between two matched filled
matrices of the same order, as described above, is the square
of the Euclidean distance between the matrices. It is
important to note that in addition to the Euclidean distance,
various other distance metrics are available for measuring the
difference between matrices. The choice of distance metric
should be based on the specific characteristics of the data and
the requirements of the research or application. Different
distance metrics may be more suitable for different scenarios,
and selecting the appropriate metric can have a significant
impact on the results and interpretations of your analysis.

IV. CALCULATION EXPERIMENT OF MOVING TRAJECTORY
SIMILARITY

To wvalidate the efficacy and practicality of the
aforementioned mobile trajectory similarity measurement,
we conducted a straightforward yet illustrative experiment
using positioning data from moving vehicles. When vehicles
are in regular operation, they typically follow smooth
trajectories at relatively constant speeds. The positioning data
were collected at equidistant time intervals, aligning with the
conditions specified in the second formula in expression (15)
outlined earlier.

For the purposes of visual comparison, we selected three
distinct vehicle trajectories in three-dimension space, denoted
as (a), (b), and (c). The positioning data corresponding to
these trajectories are succinctly represented in Cartesian
coordinates (unit, /m), as presented in Tables I, I, and III. In
these tables, 'I' signifies the sequential order of positioning
points along the trajectory or the timestamp of data
acquisition (unit, /10s). The planar projections of these three
trajectories are shown in Fig.12 (a), (b), and (c).

Step 1: Computing Local Shape Vectors for Points 2
through 8 in Table 1. As an illustrative example, we
demonstrate the computation of the local shape vector for
point 2.

(1.1)Calculate the algebraic area of the triangle formed by
points 1, 2, and 3 in Table I,

‘0 0‘ ‘30 71‘ ‘100 100‘
+ + =-4100
30 71 |100 100 0 0
TABLE I
The data collection points from trajectory (a)

i x; v Zi
1 0 0 0
2 30 71 2
3 100 100 4
4 170 69 6
5 200 0 8
6 280 0 10
7 358 0 12
8 435 0 14
9 510 0 16

! Tables may have footers.

(1.2)Calculate the following for points in Table I.
Horizontal distances between points 1 and 2, 2 and 3, and
3and 1.

J(30-0) +(71-0)° =77.077882609.,
+(

J(100-30)

J(0-100)" +(0-100)’ =141.4213562.

Altitude differences between points 1 and 2, 2 and 3.
2—-0=2,4-2=2.
(1.3)Calculate the local shape vector for point 2 using
expression (1).
77.07788269 + 75.76938696 2 2 j"
141.4213562 "77.07788269° 75.76938696
In other words, the local shape vector for point 2 is

(—1 .080793409,0.025947781, O.O26395885)T :

100-71)° =75.76938696 .

[sgn(%lOO)

TABLE I
The data collection points from trajectory (b)
! g 5 E
1 101 101 50
2 212 213 45
3 154 353 40
4 212 495 35
5 354 700 30
6 495 495 25
TABLE III
The data collection points from trajectory(c)
i x; y; z;
1 717 717 15
2 830 830 15
3 940 940 15
4 1050 1050 15

o'
[ )

(a)

)

(el

(b

Fig. 12. Plane projection of three different vehicle trajectories.

Following the same procedure as outlined in (1.1) through
(1.3), calculate the local shape vectors for the other points in
Table I. The resulting local shape vectors for each point are
presented in Table IV.

Clearly, the local shape matrix for trajectory (a) is
composed of the data in the second column of Table IV. For
ease of presentation, we will directly use Table IV to
represent the local shape matrix for trajectory (a).

Step 2: Merging the Local Shape Matrices of Trajectory (a)
to Obtain the Merged Shape Matrix of Trajectory (a). In this
step, we employ Table V to elucidate the merging process of
the local shape matrices for trajectory (a).
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TABLE IV
Local shape vectors of points in trajectory (a)

the position of points on the trajectory
(order number )

local shape vectors

2

3

(~1.080793409,0.025947781,0.026395885)"
(~1.087935814,0.026395885,0.026124268)'

T

(—1.073365363, 0.026124268,0.026581 741)
(1.19553 1 158,0.026581741,0.025000000)T

T

(0.000000000, 0.025000000,0.025641026

T

(0.000000000, 0.025641026, 0.025974026)T
(0.000000000,0.025974026,0.026666667)

Table V
Concatenation of local shape matrices for trajectory (a)

the position of points

on the trajectory
(order numberi )

the symbol vector
corresponding to the local
shape vector

the merging of the local shape vectors

(_ + +)T As these symbols of the three items are the same, merge them into one
2 > item
3 (—++) (~3.242094586,0.078467934,0.079101894)"
4 (—++)
S ( +.+, +)T Merge this item into a new one .
(1. 195531158,0.02658174 1,0.025000000)
6 (O + +)T As these symbols of the three items are the same, merge them into one
T , item
7 (0.+%) (0.000000000,0.076615052,0.078281718)’
8 (0,+,+)"
TABLE VI
The merged shape matrix and corresponding symbol matrix for trajectory (a)
the order
number after  the corresponding dsh i
merging symbol matrix merged shape matrix
shapes
! (—++) (~3.242094586,0.078467934,0.079101894)"
2 4 +) (1.195531158,0.026581741,0.025000000)"
3 0,+,+) (0.000000000,0.076615052,0.078281718)"

Consequently, we can obtain the merged shape matrix and
the corresponding symbol matrix for trajectory (a). Here, we
can equivalently use Table VI to represent the merged shape

matrix and its corresponding symbol matrix for trajectory (a).

They are respectively formed by the data in the third column
and the second column of Table VI.

Step 3: Calculating Local Shape Matrices and Merged
Shape Matrices (Symbol Matrices are Generated Naturally)
for Trajectories (b) and (c). The same process outlined in

Steps 1 and 2 is applied to compute the local shape matrices
and merged shape matrices for trajectories (b) and (c). This
is represented using Tables VII, VIII, IX, and X.

Step 4: Deriving Negative Matrices, Inverse Matrices, and
Negative-Inverse Matrices for the Merged Shape Matrices of
Trajectories (b) and (c). For ease of observation and using
the Symbol Overlap Matching method, record only their
corresponding symbol matrices in Table XI and XII.
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TABLE VII
Local shape vectors of points in trajectory (b)

the position of points on the trajectory
. local shape vectors
(order number? )

2 T

(
; (
(

1.200813333,-0.031708505, —0.032994856)
1.081302021,—-0.032994856, —0.03259699)T

~1.005629551,-0.03259699, —-0.020049946 )"
5 (-1.7603 75930,—0.020049946, —0.020095723)

T

TABLE VIII
The merged matrix and corresponding symbol matrix for trajectory (b)

the order number after  the corresponding

merging shapes symbol matrix merged shape matrix

I (+,--)" (1.200813333,-0.031708505,0.032994856 )"
2 (--)" (-3.847307501,-0.085641792,-0.072742659)"

TABLE IX
Local shape vectors of points in trajectory (c)

the position of points on the trajectory

. local shape vectors
(order number!) P

2 (0,0,0)"
3 (0,0,0)"

TABLE X
The merged matrix and corresponding symbol matrix for trajectory (c)

the order number after merging
shapes

the corresponding symbol matrix merged shape matrix

1 (0,0,0)" (0,0,0)"

TABLE XI
Merged shape matrix for trajectory (b) and corresponding symbol matrices for its negative, inverse, and negative-inverse matrices

merged shape matrix ~ negative merged shape inverse merged shape  negative-inverse merged shape
of trajectory (b) matrix of trajectory (b) matrix of trajectory (b) matrix of trajectory (b)
(symbolic matrix) (symbolic matrix) (symbolic matrix) (symbolic matrix)

the order
number

! () (- ) (-=) (+.05)

2 (- (1) () (- )

TABLE XII
Merged shape matrix for trajectory (c) and corresponding symbol matrices for its negative, inverse, and negative-inverse matrices

he ord merged shape matrix ~ negative merged shape  inverse merged shape matrix negative-inverse merged shape
the order

of trajectory (c) matrix of trajectory (c) of trajectory (c) matrix of trajectory (c)
number (symbolic matrix) (symbolic matrix) (symbolic matrix) (symbolic matrix)
T T T T
! (0,0,0) (0,0,0) (0,0,0) (0,0,0)
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Table XIII
Optimal position matching between trajectory (a) and trajectory (b)

the order merged shape matrix ~ merged shape negative merged inverse merged negative-inverse
number of trajectory matrix of trajectory ~ shape matrix of shape matrix of merged shape matrix
trajectory trajectory of trajectory
(a) (b) (b)
(symbolic matrix)  (symbolic matrix) (b) (b) (symbolic matrix)
(symbolic matrix)  (symbolic matrix)
T T T T T
| (=+7+) (0,0,0) (-++) (=--) (0,0,0)
filling filling
2 ++,+) (+,--)" (+,++) (+,--) (+,+,+)
T T T T T
3 0:+:+) (_7-7_) (07070) (07070) (_:+:+)
filling filling
TABLE XIV
Optimal position matching between trajectory (a) and trajectory (c)
the order merged shape merged shape negative merged inverse merged negative-inverse
number matrix of trajectory matrix of trajectory  shape matrix of shape matrix of merged shape matrix
trajectory trajectory of trajectory
(a) () (c) (c) ()
(symbolic matrix) (symbolic matrix)  (symbolic matrix) (symbolic matrix) (symbolic matrix)
T T T T T
| (—++) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
filling filling filling filling
T T T T T
, (+,+,+) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
filling filling filling filling
T T T T T
3 (0,+,+) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Step 5: Matching Trajectories (b) and (c) with Trajectory
(a) and Calculating the Similarity of Trajectories. Taking the
matching of trajectory (b) with trajectory (a) as an example,
this process involves matching the merged shape symbol
matrix of trajectory (a) with the merged shape symbol matrix
of trajectory (b) and its negative, inverse, and negative-
inverse merged shape symbol matrices. The matrices are
subsequently filled to become matrices of the same order.
This is depicted in Table XIII.

The degree of similarity between trajectory (a) and
trajectory (b) is quantified by the minimum distance between
two matched filled matrices of the same order. We illustrate
this by calculating the distance between the two matrices
found in columns 2 and 3 of Table XIII above.

~3.242094586  0.078467934 0.079101894)
1195531158 0.026581741 0.025000000
{0.000000000 0.076615052  0.078281718

1.200813333 —0.031708505 —0.032994856

2
0.000000000 0.000000000 0.000000000 "
-3.847307501 —0.085641792 —-0.072742659

=7.09857725466769
Similarly, we can compute the following distances:
Distance between columns 2 and 4 of Table XIII:
3.457493481344650.
Distance between columns 2 and 5 of Table XIII:
0.759965907770135.

Distance between columns 2 and 6 of Table XIII:
6.156688677791080.

We select the minimum distance among all matched
matrix pairs as the measure of similarity between trajectory
(a) and trajectory (b). Therefore, the similarity between
trajectory (a) and trajectory (b) is represented as
0.759965907770135.

By performing a similar matching procedure for trajectory
(a) and trajectory (c), and calculating their similarity, we
obtain the following:

Taking the minimum distance among all matched matrix
pairs as the measure of similarity between trajectory (a) and
trajectory (c), we denote the similarity between trajectory (a)
and trajectory (c) as

~3.242094586 0.078467934 0.079101894)"
1.195531158 0.026581741 0.025000000
0.000000000 0.076615052 0.078281718

=3.45922185785241.

Since 3.45922185785241 is greater than
0.759965907770135, we can conclude that trajectory (b) is
more similar to trajectory (a) than trajectory (c) is to
trajectory (a). Observing Fig. 12 (a), (b), and (c), it is evident
that trajectory (b) and (a) are more similar than trajectory (c)
and (a), aligning with the intuitive observations, thus
validating our computational results.

2
00 o)
000
000
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V. CONCLUSIONS

In this paper, we investigate the characteristics of real-
world object movement trajectories on the Earth’s surface.
Drawing on geometric theory, we construct measures to
capture the local shape of mobile trajectories—specifically,
the local shape vector and local shape matrix. We further
introduce a measure to characterize the overall shape of
mobile trajectories, referred to as the merged shape matrix.
Correspondingly, symbolic vectors and matrices are
proposed to represent the coarse shape of these trajectories.

Additionally, we propose a Symbol Overlap Method for
matching corresponding points or segments between two
mobile trajectories. The similarity between mobile
trajectories is quantified using the distance between their
matched merged shape matrices. This metric emphasizes the
geometric properties of the trajectories while effectively
addressing the challenge of aligning corresponding points or
segments. Notably, the method does not require large-scale
data or pre-training of deep representation models. Even
with limited trajectory data, it reliably computes similarity
between trajectories. As location-based services continue to
grow in prevalence, this methodology is positioned to serve
as a valuable tool for measuring the similarity of mobile
trajectories.
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