
Rician Noise Level Estimation and Constraint
Model for MRI Restoration

Juncheng Guo, Jia Liu

Abstract—We propose a new Rician noise level estimation
method to use for MRI restoration in this paper. This method
relies on the application of a novel distance as the primary
constraint, combined with the total variation as a prior con-
dition. Based on the estimated noise level, we present a non-
parametric constraint model, which minimizes the regulariza-
tion term while maintaining constraints on the fidelity term.
This model can be successfully solved using the primal-dual
algorithm. Experimental results demonstrate the effectiveness
and efficiency of the proposed method in estimating Rician
noise.

Index Terms—MRI; Image Restoration; Rician Noise Esti-
mation; Total Variation

I. INTRODUCTION

THE magnetic resonance imaging (MRI) technique is
utilized to generate comprehensive images of the human

internal body, offering unparalleled detailed insights that
render it an indispensable tool for diagnosing potentially
fatal diseases. Utilizing the data obtained from the sensors,
the system reconstructs sectional images and enables the
generation of three-dimensional images at any desired angle.
The acquired raw data in MRI are formally complex values
represented in a frequency domain (k-space). Both the real
and imaginary components of these data are affected by
zero-mean, uncorrelated Gaussian noise, with equal variances
for both components. While the complex data inherently
encompass all pertinent information, After estimating the
signal amplitude, it is customary to convert the data into
magnitude images, as these are more intimately connected to
physiological and anatomical characteristics. [22], [26], [15],
[16]. Then, the data’s distribution undergoes a transformation
from Gaussian to Rician [18]. However, in areas of low
image intensity, the Rician distribution converges towards
the Rayleigh distribution, whereas in high-intensity areas,
it deviates from the Gaussian distribution. The mean value
of Rician noise fluctuates according to the local image
intensity, making it distinct from additive Gaussian noise,
which remains unaffected by the signal [17]. Therefore, the
complexity of the MRI image restoration problem persists
owing to the diverse distributions it encompasses.

There are a variety of study methods for MRI denois-
ing problems, such as approaching the problem of MRI
filtering with standard denoising algorithms designed for
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homoskedastic observations [11]. Furthermore, numerous
applications utilizing statistical analysis methodologies, in-
cluding functional MRI and voxel-based morphometry, of-
ten derive their conclusions from underlying assumptions
related to noise characteristics [16], [19]. During the image
formation process, the presence of various noise sources
leads to additive Gaussian noise. However, magnitude mag-
netic resonance (MR) images often encounter Rician noise.
These images, inherently composed of data acquired by a
quadrature detector, are essentially two- or three-dimensional
arrays made up of complex numbers [14]. Typically, they
can be viewed as a pair of images representing the real
and imaginary parts of a complex array. Therefore, several
artifacts and noise sources typically affect MR images. When
using MRI, the raw data, which hold complex values, are
acquired in the spatial frequency domain and are corrupted
by Gaussian-distributed noise.

In most image processing problems, the data are often
considered corrupted by noise, so estimating the noise level
is an important factor in obtaining good results. For example,
in the classic ROF model,

min
u
TV (u) + λ‖u− f‖22,

where f is viewed as an image with additive white Gaussian
noise, and λ is a parameter determined by noise level. With-
out a known λ (which means the noise level is unknown),
the ROF model cannot be used to obtain a result. In many
methods of image processing, the noise level is treated as
known data and related parameters have been well tuned
for the noise level. However, in the real world, noise level
is always unknown, and estimating noise level becomes an
important task.

In most common situations, the noise can be regarded
as additive white Gaussian noise, and the noise level is
characterized by its standard deviation. Some filter-based
methods have been proposed [2], [20], [13]. These algorithms
mainly use a filter to prevent subtle textures from getting
an approximation of a clean image and treat the differences
between the filtered image or the original data as the noisy
information. Wavelet-based methods use wavelet transforms
and view the high-frequency parts as noise [24]. Patch-
based methods try to find areas where the clean image is
smooth or constant[12], [21]. Subsequently, they estimate the
noise level by calculating the standard deviation within these
identified areas.

During the MRI data calculation and transmission pro-
cess, Rician noise arises when both the real and imaginary
parts are corrupted by two additive white Gaussian noises,
each having the same standard deviation, denoted as σ.
Background-based methods are proposed since Rician noise
obeys a Rayleigh distribution when the true value is zero
[23]. Wavelet-based methods try to find the estimator of
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Rician noise by the relationship between Gaussian noise and
σ [9].

Based on the MAP method [5], the MRI restoration models
utilize the probability density function used in Rician noise.
It necessarily requires not only the noise level need be known
but also a parameter should be tuned.

Thus, we assume that the image is large enough and that
most of its area is smooth, a novel method is proposed to
estimate the Rician noise level using patches and histograms.
The main contributions are summarized as follows.
• Using the high resolution of MRI, the pixel values in the

noiseless image can be approximately seen as constant
in most of the patches. That is to say, by presuming that
the variations in pixel values within each patch represent
noise, it is possible to estimate the noise level. This
means that most of the estimated values will be around
the real noise level.

• We produce a novel distance functions as a constraint
condition, and the total variation is used as a priori
condition. The advantage of this model is that the
noise level is directly used and there are no parameters,
which can circumvent the parameter training problems
commonly encountered in typical image processing.

• The formulated model constitutes a non-smooth op-
timization problem, thus rendering the primal-dual
method a suitable approach for solving it. The math-
ematical properties of the algorithm are analyzed, and
some numerical implementations show that the good
results can be achieved.

The arrangement of the paper is as follows. Some basic
information about Rician noise and the image restoration
model is reviewed in section 2. The method for Rician noise
level estimation is proposed in section 3. A constraint model
for MRI restoration and the algorithm for solving the model
is in section 4. Some number experiments are shown in
section 5, and section 6 is the conclusion.

II. RICIAN NOISE

In the imaging system, the modeling of noise in MRI
varies based on the number of coils. In a single-coil setup,
the noise distribution in MRI can be characterized by a
Rician distribution, assuming that the real and imaginary
components of the MRI signal follow uncorrelated Gaus-
sian distributions with zero mean and equal variance [4].
Conversely, in a multicoil system (parallel MRI), the noise
magnitude conforms to a non-central Chi distribution when
employing a sum-of-squares (SoS) reconstruction technique
[8]. Similarly, noise within MRI images obtained through
the process of generalized auto-calibrating partially parallel
acquisition (GRAPPA) reconstruction can also be described
by a non-central Chi distribution [6]. Essentially, the Rician
distribution represents a specific instance of the non-central
Chi distribution.

In MRI reconstruction, due to the use of a complex Fourier
transform, the Gaussian noise is added to both the real and
imaginary images, and the corrupted data are the absolute
values of the complex images.

f =
√

(u+ n1)2 + n2
2, (1)

where f is the noisy image, and u is original image, n1, n2 ∼
N (0, σ), and n1, n2 are independent.

So the image is corrupted by Rician noise, and its proba-
bility density function is

p (f |u) =
f

σ2
e−

u2+f2

2σ2 I0

(
uf

σ2

)
. (2)

In the above formula, I0 is the modified Bessel function of
the first kind with order zero. The definition of the modified
Bessel function of the first kind with order n is

In(x) =
1

π

∫ π

0

cos(nθ) exp(x cos θ)dθ. (3)

Thus, the Rician noise is neither additive nor independent and
induces a bias in the noisy image. However, if the noise level
σ is relatively low compared with the signal value, Rician
noise has little difference from Gaussian noise. To model this
noise, MAP method is tried by solving

max
u

P (u|f),

with Bayes’s rules, which known as

P (u|f) =
P (f |u)P (u)

P (f)
.

We can rewrite it as

max
u

P (u|f) = max
u

P (f |u)P (u)

P (f)

= min
u
− log (P (f |u))− log(P (u))

= min
u
−
∫

Ω

log (P (f(x)|u(x))) dx− log(P (u))

= min
u

∫
Ω

u2

2σ2
dx−

∫
Ω

log

(
I0

(
uf

σ2

))
dx

− log (P (u)) .

The term “− log(P (u))” can be viewed as a regularization
term like the total variation λ

∫
Ω
|Du|dx, and the MAP model

is

min
u

∫
Ω

u2

2σ2
dx−

∫
Ω

log

(
I0

(
uf

σ2

))
dx+ λ

∫
Ω

|Du|dx.

In this model, we can see that we not only need to know a
noise level σ but also a tuned parameter λ.

III. NOISE LEVEL ESTIMATION

In many image restoration models, the noise level is
always treated as already known and the weight parameter
λ is tuned to achieve the best solution for certain σ. But in
many situations, the relation between λ and σ is not quite
clear. Therefore, a lot of experiments are needed to reset λ
for a different σ. However, in real schemes, σ is an unknown
variable, meaning that a good λ cannot be estimated. We are
sure that it is important to estimate the noise level.

The difficulty of noise level estimation is mainly how to
distinguish the noise from the detail texture of the original
image. In natural images, image data often contain more
smooth areas. That is to say, the gradient matrix of the image
information is generally sparse. We know that the `1 norm
tends to sparsen the data, which is why the total variation
regularization term could be a good regularization term in
image processing. Based on this feature, we use a patch-
based method here. Specifically, we estimate the noise level
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in each patch by assuming that the original image remains
constant across all patches. This assumption holds true for
the majority of patches.

As a patch-based method, we select noisy images to
generate a series of patches by sliding the window pixel
by pixel. In each patch, based on the definition of Rician
noise(1),

var
(
f2
)

=E
(
f2 − E(f2)

)2
=E[u2 − E

(
u2
)

+ n2
1 − E

(
n2

1

)
+ n2

2 − E
(
n2

2

)
+

2un1 − 2E (un1)]2

=E (a+ b+ c+ d)
2
,

here, a = u2 − E(u2), b = n2
1 − E(n2

1), c = n2
2 − E(n2

2),
d = 2un1 − 2E(un1). In the case of separate calculations,
each expanded term can be described as

E
(
a2
)

= var
(
u2
)

E
(
b2
)

= var
(
n2

1

)
= 2σ4

E
(
c2
)

= var
(
n2

2

)
= 2σ4

E
(
d2
)

= 4E
(
u2n2

1

)
− 4[E (un1)]2 = 4σ2E

(
u2
)

E (ab) = E(ac) = E(ad) = 0

E(bc) = E(bd) = E(cd) = 0.

Therefore, we can get

var
(
f2
)

= var
(
u2
)

+ 4σ4 + 4σ2E
(
u2
)
.

Based on the definition of Rician noise E
(
f2
)

= E
(
u2
)

+
2σ2, rewrite the above formula as var

(
f2
)

= var
(
u2
)

+
4σ2E

(
f2
)
− 4σ4. Reverse the calculation of σ, and we can

get the estimation of noise intensity

σ =
1

2

√
E (f2)−

√
2E (f2)

2 − E (f4) + var (u2), (4)

where f is the noisy image, E(·) is expectation value, u is
original image, and var(·) is variance.

Since the value of u is unknown, we can assume it to
be constant in each patch. Therefore, we can conclude that
var
(
u2
)

= 0. Using this approach, we can obtain a sequence
of σ, noted {σi|i = 1, 2, . . . , N}, where N is the number of
patches. Then, the histograms of {σi|i = 1, 2, . . . , N} can
be made, and the σi corresponding to the maximum value in
the histogram is viewed as the noise level.

Using histograms is an efficient way to determine the
distribution of {σi}, where the group distance is determined
by acceptable error and the number of patches. Since we
assume u = 0 in each patch, some estimations should contain
boundary information and may surpass the real noise level.
These estimations can be denoted as {σB,i}, and others are
generated in homogeneous areas, noted as {σH,i}, while the
real noise level is σ0. Therefore, we can get

E(σH,i) = σ0, (5)
σB,i > σ0. (6)

For {σH,i}, on one side, if the noise is Gaussian, the top
of the histogram of {σH,i} should be σ0. On the other side,
Rician noise trends to get another peak at some point smaller
than σ0. To deal with this, we just turn the size of patch n
large enough, because

n→∞, σH,i → σ0, (7)

the larger n can ensure the maximum of histogram is
around σ0. If there is a large enough homogeneous area that
does not contain boundary information, we could even get
min(σi) = σ0. For {σB,i}, on the one hand, the cardinal
number of this set is smaller compared to N . On the other
hand, since boundary information cannot be the same in
many patches, {σB,i} can’t form a significant peak in the
histogram of {σi}. From the above, the patch size n should
not be small, and boundary information should be sparse.
This means the original image requires the conditions as
follows.
• The image is large to ensure that there are enough pixels

in the homogeneous patches to reduce the effects of
Rician noise.

• Compared with boundary regions, homogeneous areas
are much more numerous and host most of the pixels.
These conditions also mean the picture should be large
and the total variation should be pretty low.

IV. NUMERICAL METHOD TO THE PROPOSED MODEL

In this part, we will examine the numerical technique
associated with our proposed model. Prior to deducing the
conjugate representation of the regularization component
within the model, we offer a streamlined explanation of the
total variation theory. Following this, we turn our attention to
the primal-dual approach by reformulating our model into a
minimization-maximization problem. Based on the estimated
noise level, a constraint model without parameters is given by
minimizing the regulation term while constraining the fidelity
term. This proposed model can be solved successfully by the
primal dual algorithm.

A. Total variation theory

Many problems in computer vision can be expressed in
the form of energy minimisations. The total variation has
been introduced as a regularizing criterion for solving inverse
problems. Because our proposed model is closely related to
the total variation function, this subsection mainly reviews
some related total variation theory used in many classic
image denoising works [1], [10], [25].

Since its inception in 1992, the Rudin-Osher-Fatemi (ROF)
model, also referred to as total variation denoising [10], has
garnered numerous applications across various fields. The
total variation regularized model stands out as a potent tool
for image noise removal, attributed to its ability to preserve
edges during the process

min
u∈BV (Ω)

λ

2
‖Au− f‖2 + TV (u). (8)

It has proved to be quite efficient for regularizing images
without smoothing the boundaries of the objects.

This problem was first analyzed on strong Lp topology by
Acar and Vogel [1]. We define a subspace as

BV0(Ω) =

{
u ∈ BV (Ω)

∣∣∣∣∫
Ω

udx = 0

}
.

Here, let 1 be a constant function whose result is always
equal to 1, and A is required to meet A1 6= 0 and
〈Av,A1〉 = 0,∀v ∈ BV0, respectively.

Then, let us describe some notations used throughout the
total variation theory and assume the size or image to be
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m× n. We denotes that X ⊆ Rm×n and Y = X× X. Inner
products in the spaces X and Y are defined as

(u, v) =

m∑
i=1

n∑
j=1

ui,jvi,j and
〈

ĝ, ĥ
〉
=

m∑
i=1

n∑
j=1

2∑
s=1

ĝ2
i,j,sĥ

2

i,j,s,

for u, v ∈ X and ĝ := (g1, g2) ∈ Y, ĥ := (h1, h2) ∈ Y.
Furthermore, we define the related norm as

‖u‖2 :=

√√√√ m∑
i=1

n∑
j=1

u2
i,j and ‖ĝ‖2,1 :=

m∑
i=1

n∑
j=1

√√√√ 2∑
s=1

ĝ2
i,j,s.

In addition, we set the discrete gradient ∇ui,j =
(∇+

x ui,j ,∇+
y ui,j), where ∇+

x ui,j and ∇+
y ui,j denote the

difference operators as

∇+
x ui,j =

{
ui+1,j − ui,j if 1 ≤ i < m
u1,j − ui,j if i = m,

∇+
y ui,j =

{
uı,j+1 − ui,j if 1 ≤ j < n
ui,1 − ui,j if j = n.

Formally, the corresponding backward difference operators
can be defined by

∇−x ui,j =

{
ui,j − ui−1,j if 1 < i ≤ m
ui,j − um,j if i = 1,

∇−y ui,j =

{
ui,j − ui,j−1 if 1 < j ≤ n
ui,j − ui,n if j = 1.

In the case of a discrete setting, the divergence theorem can
be described as

−divρ · u = ρ · ∇u

for u ∈ X and ρ =
(
ρ1, ρ2

)
∈ Y, where −div denotes the

adjoint operator of ∇. Then we have

divρi,j = ∇−x ρ1
i,j +∇−y ρ2

i,j .

In model (8), the regularization term and the fidelity term
should have a weight parameter λ, which is difficult to
determine even with σ known. Therefore, a constraint model
is used to construct without parameters here.

min
u
TV (u)

s.t.Df (u) 6 c(σ),
(9)

where f is noisy image, Df is a distance function, and c(σ)
is a function with respect to the noise level σ. Thus, the key
issue is how to define the set C, or how to choose the distance
function Df and the function c(σ). For MRI, because the
noise is mainly Rician, after taking into account the similarity
between Gaussian noise and Rician noise, `2 norm is used
here. The Rician noise is similar to Gaussian noise with a
higher signal-to-noise ratio(SNR), but the result would be
too smooth if we use this definition to deal with a MRI
with a lower SNR. We could use a smaller c(σ) by c(σ) =√
M × k × σ, k ∈ [0, 1] .
Then, a characteristic function can be used to replace the

constraint condition,

δC(u) =

{
0, if u ∈ C
+∞, otherwise

, C = {u|Df (u) 6 c(σ)}.

(10)

So, the model can be rewritten as

min
u
TV (u) + δC(u). (11)

B. Primal dual method

This image processing could be viewed as an inverse
problem modeled as

min
x
g(x) + f(Kx), (12)

where g(x) is the data fidelity term that ensures that the
solution will not too far from the input data, f(Kx) is the
regularization term describing the characteristic of a clean
image, and K is a linear operator.

Based on the definition of the Legendre-Fenchel transfor-
mation

f∗(x) = sup
y
〈x, y〉 − f(y),

and for a proper convex function f , we get the description

f = f∗∗.

If we replace the original function with a quadratic dual
method, the original minimization problem becomes a saddle
point problem

min
x

max
y
〈Kx, y〉+ g(x)− f∗(y), (13)

which the first order optimal condition is{
Kx ∈ ∂f∗(y)

−K∗y ∈ ∂g(x),
(14)

where K∗ is the adjoint conjugate of K, which is more
general.

Using a proximal point algorithm, the problem’s solution
is [3]
yn+1 = arg miny f

∗(y)− 〈Kxn, y〉+ 1
2α ||y − y

n||2

xn+1 = arg minx〈Kx, yn+1〉+ g(x) + 1
2β ||x− x

n||2

xn+1 = xn+1 + θ
(
xn+1 − xn

)
.

(15)

We rewrite the problem and get

yn+1 = (I + α∂f∗)
−1

(yn + αKxn)

= proxα,f∗ (yn + αKxn)

xn+1 = (I + β∂g)
−1 (

xn − βK∗yn+1
)

= proxβ,g
(
xn − βK∗yn+1

)
xn+1 = xn+1 + θ

(
xn+1 − xn

)
,

(16)

where α > 0 and β > 0 are step sizes of the primal and dual
variables, respectively. How to solve this saddle problem,
where I is the identity operator and ∂ denotes the sub-
gradient defined by ∂~(ȳ) := {v|~(χ̄)− ~(y) ≥ (v, χ̄− ȳ)}
at the point ȳ for a function ~. Then the convergence result
of the scheme (16) would be given as follows.

Theorem 4.1: Assume that the min-max problem (13) has
a saddle point (x∗, y∗) and let αβ‖K‖2 < 1, then the
sequence (xn, yn) generated by the strategy (16) converges to
(x∗, y∗) by choosing some suitable original values(x0, y0) ∈
X× Y and x̄ = x0.

To establish the theorem (4.1), we can refer to Theorem
1 presented by Chambolle and Pock [3]. Notably, the PDM
eliminates the need for matrix inversion when the functions
g(x) and f∗(y) are separable in terms of the variables x
and y. Consequently, this method is well-suited for tackling
large-scale problems in machine learning and medical image
processing [7], [27].
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C. The proposed model based on the PDM

Based on the primal dual method, we rewrite this model

TV (u) = ‖∇u‖1 =
∑
i

∑
j

√
(∇xui,j)2

+ (∇yui,j)2
.

Let f(x) = ‖x‖1, then TV (u) = f(∇u), and

f∗(y) = sup
x
〈x, y〉 − f(x)

= sup
x
〈x, y〉 − ‖x‖1

=

{
0, yi ∈ [−1, 1]

+∞, otherwise

= δD(y),

where δD is a characteristic function of set D = {p|‖p‖∞ 6
1}. Therefore, going back to Eqn 11, we can get

TV (u) = sup
p
〈u,−divp〉 − δD(p),

and the model can be rewritten as

min
u

sup
p
〈u,−divp〉 − δD(p) + δC(u). (17)

So, the algorithm for the model solution can be an iteration
of two projections[3]:

pn+1 = PD (pn + α∇un)

un+1 = PC
(
un + βdivpn+1

)
un+1 = un+1 + θ

(
un+1 − un

)
.

(18)

The first projection can be solved using the procedure.

pn+1
i,j =

pni,j + α∇uni,j
max

(
1,
∣∣∣pni,j + α∇uni,j

∣∣∣) , (19)

where

∇uni,j =
(
∇xuni,j ,∇yuni,j

)
, pni,j =

(
px
n
i,j , py

n
i,j

)
,

and∣∣∣pni,j+α∇uni,j∣∣∣ =

√(
pxni,j + α∇xuni,j

)2
+
(
pyni,j + α∇yuni,j

)2

.

However, since Rician is a noise dependent on signal, both
its variance and expectation are determined by the true signal
value. To get a desired result, k must be changed according
to different pixel values. We can standardize the noise, and
the constraint condition is changed to∥∥∥∥∥E(u, σ)− f√

var(u, σ)

∥∥∥∥∥
2

2

6M, (20)

where E(u, σ) is the expectation, and var(u, σ) is the vari-
ance of the Rician noise. Both the expectation and variance
can be calculated by the probability density function{

E(u, σ) = σ
√

π
2 exp(− u2

4σ2 )U∗

var (u, σ) = 2σ2 + u2 − (E(u, σ))
2
,

where

U∗ =

[(
1 +

u2

2σ2

)
I0

(
u2

4σ2

)
+

u2

2σ2
I1

(
u2

4σ2

)]
.

But with the constraint condition, C ={
u

∣∣∣∣ ∥∥∥∥ E(u,σ)−f√
var(u,σ)

∥∥∥∥2

2

6M

}
, the first projection to C

will be difficult to calculate. Thus, the model is modified as
minu TV (u)

s.t.

∥∥∥∥ u−f√
var(E−1(u,σ),σ)

∥∥∥∥2

2

6M

 . (21)

Here E−1(u, σ) denotes E(u, σ)→ u, and u0 is the solution.
Then, E−1(u0, σ) will be a better restoration for Rician noise
image. Let var(u, σ) = c2(uσ )σ2, and we get

min
u
TV (u)

s.t.

∥∥∥∥∥∥ u− f

c
(
E−1(u,σ)

σ

)
∥∥∥∥∥∥

2

2

6Mσ2,
(22)

where

c2
(u
σ

)
=

var (u, σ)

σ2

= 2 +
(u
σ

)2

− π

2
exp

(
−
(
u2

2σ2

))
(U∗)2.

(23)

Since E−1(u0, σ) is not easy to solve, on the one side, at
higher SNR, the deviation caused by Rician noise is not
obvious. On the other side, at a lower SNR, the original
signal is basically overwhelmed by noise and difficult to
recover. Therefore, a approximate function could be used as

E−1
i,j (u, σ) ≈

{
0,

ui,j
σ 6 2

ui,j , otherwise.
(24)

Then, we get the set C =

u
∣∣∣∣
∥∥∥∥∥ u−f
c
(
E−1(u,σ)

σ

)
∥∥∥∥∥

2

2

6Mσ2

.

The second projection is still not easy to solve, but we can
give an approximate solution as follows,

un+1 = f +
un + βdivpn+1 − f

max
(

1,
∥∥∥ (un+βdivpn+1)
c(E−1(un)/σ)

∥∥∥ /(√Mσ
)) . (25)

Based on formulas (23) and (24), we get the result c
(
E−1(u,σ)

σ

)
= c(0), u

σ 6 2

c
(
E−1(u,σ)

σ

)
≈ 1, otherwise.

(26)

Assuming c is an approximate constant, we get

PC(x) = arg min
u
‖u− x‖22 + γ

(
‖(u− f)/c‖2 −Mσ2

)
.

If γ = 0, then ‖(u− f)/c‖2 6Mσ2, which means u = x
when ‖(x− f)/c‖2 6Mσ2.

If γ 6= 0, by the Euler-Lagrange equation, we get

ui,j =
xi,jc

2
i,j + γfi,j

c2i,j + γ
,

and ∥∥∥∥u− fc
∥∥∥∥2

= Mσ2.

Therefore,

γ =
‖c (x− f) ‖√

Mσ
− c2

and formula (25) can be obtained. While the solution is
surely not the optimal one, this approximation ensure the
solution is in the set C and not far from initial point x.
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V. NUMBER RESULTS

In this section, some number experiments will be shown
to illustrate the effectiveness of our proposed approach about
Rician noise level estimation and its image restoration capa-
bility. We know that in natural images, the gradient matrix
of image information is generally sparse. To better compare
the experiments, we prepare one natural image in original
images.

A total of four images were chosen for testing, as de-
picted in Figure 1. These include one natural image ti-
tled “Cameraman” with a resolution of 256×256 pixels,
and three MR images “Brain”(512×512), “Body”(648×648),
“Leg”(880×880). To quantitatively assess the quality of the
restoration results, two commonly used evaluation metrics in
image processing were employed: the Peak Signal-to-Noise
Ratio (PSNR) and the Structural Similarity Index (SSIM).
All experiments were conducted on a desktop computer
equipped with an Intel Core i7 3.30 GHz processor, 8.0 GB
of RAM, running Windows 10 (64-bit) and the MATLAB
(R2019a) operating environment. The algorithm terminated
either when the maximum number of iterations reached 500
or when a specified relative error threshold is met.

(a) (b)

(c) (d)

Fig. 1: Original images, (a)“Cameraman”, (b)“Brain”,
(c)“Body”and (d)“Leg” are used in the numerical implemen-
tations.

In the first experiment, we estimate the Rician noise
level. As discussed in section 3, if the patch size is too
small, the smooth regions cannot be estimated accurately.
On the contrary, if the patch size is too large, a large
number of patches contain boundary information. Therefore,
the patch size is set at 13, and we estimate the noise level for
the chosen images under different Rician noise intensities.
We test a comparison based on the natural image and the
MRI. Obviously, the image “Cameraman” includes many
approximated cartoon regions and the image “Brain” has
the cerebellum, thalamus, and many nerve tissues. Figure
2 shows the estimation results in relation to different noise
levels. “Cameraman” exerts a large interference on the noise
estimation due to the complex texture area, such as a large
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Fig. 2: Rician noise estimation of image “Cameraman” and
“Brain”

area of grass when the noise intensity is low. The image
“Brain” does not have too many areas with complex texture,
so it has a good performance in noise intensity estimation.

In the second experiment, we use the results of the new
noise intensity estimation method for MRI restoration. In
order to quantitatively compare the performance, we list the
restored results with the values of PSNR and SSIM. The
related data for the restored images are shown in Table I.
It is obvious that the estimated results appear to be very
competitive.

In the denoising case, the test images are degraded by
Rician noise with standard deviation σ = 10, 20, 30, re-
spectively. Figure 3 shows the degraded images and the
restoration effect with different noise levels for four original
images. Specifically, Figure 4 shows the zoomed-in parts
of denoising results of different Rician noise levels, where
the corresponding regions are marked green, for instance,
one region includes various organs, the spine, lungs, and
muscle tissue in the image “Body”. It can be seen from
the figures that our proposed method has played a good
role in image restoration. Because the Rician noise is signal
related, and the deviation caused by noise covers the changes
of the original image details, in the restored image, some
details of the original image are erased. Thus, it is difficult
to find or distinguish these details on a noisy image. Figure
5 shows the visual comparison of colorbar to the difference
in clean images and restored images. The results of colorbar
of zoomed-in parts in Figure 4 with σ = 5, 10, 15. As can be
seen, the colorbar shows a more efficient restoration if the
color is more shaded.

VI. CONCLUSION

In this paper, we propose a new method for estimating
Rician noise levels and a parameter-free MRI restoration
model. Given the high resolution of MRI, we employ a
patch-based method to achieve a more accurate estimation
of the Rician noise level, simplifying the estimation process.
Using the estimated noise intensity, we construct a new
distance generalization function, which allows us to establish
a suitable constraint. As a result, an image restoration model
without parameters is established. According to the primal
dual algorithm, the model can be solved successfully. Various
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3: The restoration results with different noise levels σ = 10, 20, 30 under Rician Noise. Column (a) is the original
images. Column (b) is the noisy images and column (c) is the restored images with σ = 10. Column (d) is the noisy images
and column (e) is the restored images with σ = 20. Column (f) is the noisy images and column (g) is the restored images
with σ = 30.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4: Zoomed- in parts of denoising results are shown by different noise levels under Rician Noise, where the corresponding
regions are marked green. Column (a) is the original images. Column (c) is the zoomed-in parts of denoising results of
column (b) with σ = 10. Column (e) is the zoomed-in parts of denoising results of column (d) with σ = 20. Column (g)
is the zoomed-in parts of denoising results of column (f) with σ = 30.
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TABLE I: The results of PSNR and SSIM with different Rician noise levels in Fig. 1 (a)-(d).

Noise σ =5 σ=10 σ=15 σ=20 σ=30

Image Fig. 1 (a)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy Image 34.2511 0.8472 28.3321 0.6438 25.7996 0.5339 22.2555 0.4031 18.7732 0.2846
Restored Image 35.4223 0.9405 32.2075 0.9029 30.8251 0.8686 28.2340 0.8267 25.3841 0.7275

Image Fig. 1 (b)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy Image 34.7019 0.5204 29.2683 0.3776 27.1828 0.3665 24.0314 0.2276 21.0009 0.1395
Restored Image 41.4413 0.9700 39.3607 0.9466 37.7227 0.9451 35.3378 0.8671 32.5878 0.8345

Image Fig. 1 (c)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy Image 33.9251 0.8495 28.1916 0.7795 25.9019 0.7015 22.5966 0.6444 19.5133 0.5267
Restored Image 38.9691 0.9803 35.3406 0.9513 33.9418 0.9328 31.9653 0.8503 30.4385 0.8195

Image Fig. 1 (d)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy Image 33.9251 0.8495 28.7039 0.8985 26.7396 0.8481 23.1775 0.6929 20.0438 0.5145
Restored Image 38.9691 0.9803 37.1185 0.9477 35.9581 0.9071 32.5873 0.7626 30.4256 0.6337

(a) (b) (c) (d) (e)

Fig. 5: Visual comparison of colorbar to the difference between the clean images in Column (a) and restored images in
Column (b). Column (c)-(e) are the results of colorbar of zoomed-in parts in column (b) with σ = 5, 10, 15. The colorbar
shows a more efficient restoration if the color is more shaded.

numerical experiments demonstrate that good recovery re-
sults can be achieved by solving the model with the estimated
Rician noise intensity.
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